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Abstra
t. Analysis and renovation of large software portfolios requiressyntax analysis of multiple, usually embedded, languages and this is be-yond the 
apabilities of many standard parsing te
hniques. The tradi-tional separation between lexer and parser falls short due to the limita-tions of tokenization based on regular expressions when handling multiplelexi
al grammars. In su
h 
ases s
annerless parsing provides a viable so-lution. It uses the power of 
ontext-free grammars to be able to deal witha wide variety of issues in parsing lexi
al syntax. However, it 
omes at thepri
e of less eÆ
ien
y. The stru
ture of tokens is obtained using a morepowerful but more time and memory intensive parsing algorithm. S
an-nerless grammars are also more non-deterministi
 than their tokenized
ounterparts, in
reasing the burden on the parsing algorithm even fur-ther.In this paper we investigate the appli
ation of the Right-Nulled Gener-alized LR parsing algorithm (RNGLR) to s
annerless parsing. We adaptthe S
annerless Generalized LR parsing and �ltering algorithm (SGLR)to implement the optimizations of RNGLR. We present an updated pars-ing and �ltering algorithm, 
alled SRNGLR, and analyze its performan
ein 
omparison to SGLR on ambiguous grammars for the programminglanguages C, Java, Python, SASL, and C++. Measurements show thatSRNGLR is on average 33% faster than SGLR, but is 95% faster onthe highly ambiguous SASL grammar. For the mainstream languages C,C++, Java and Python the average speedup is 16%.
1 Introdu
tionFor the pre
ise analysis and transformation of sour
e 
ode we �rst need to parsethe sour
e 
ode and 
onstru
t a syntax tree. Appli
ation areas like reverse en-gineering, web engineering and model driven engineering spe
i�
ally deal withmany di�erent languages, diale
ts and embeddings of languages into other lan-guages. We are interested in the 
onstru
tion of parsing te
hnology that 
anservi
e su
h diversity; to allow a language engineer to experiment with and eÆ-
iently implement parsers for real and 
omplex language 
onstellations.A parser is a tool, de�ned for a spe
i�
 grammar, that 
onstru
ts a synta
-ti
 representation (usually in the form of a parse tree) of an input string anddetermines if the string is synta
ti
ally 
orre
t or not. Parsing often in
ludes as
anning phase whi
h �rst splits the input string into a list of words or \tokens".This list is then further analyzed using a more powerful parsing algorithm. This
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s
anning/parsing di
hotomy is not always appropriate, espe
ially when parsinglega
y languages or embedded languages. S
anners are often too simplisti
 tobe able to deal with the a
tual syntax of a language and they prohibit modularimplementation of parsers. \S
annerless parsing" [20, 21, 29℄ is a te
hnique thatavoids su
h issues that would be introdu
ed by having a separate s
anner [7℄.Intuitively, a s
annerless parser uses the power of 
ontext-free grammars insteadof regular expressions to tokenize an input string.The following Fortran statement is a notorious example of s
anning issues [1℄:DO 5 I = 1.25 . This statement supposedly has resulted in the 
rash of theNASA Mariner 1.1 It is not until the de
imal point that it be
omes 
lear thatwe are dealing here with an assignment to the variable DO5I.2 However, in theslightly di�erent statement: DO 5 I = 1,25 , DO is a keyword and the statementas a whole is a loop 
onstru
t. This example highlights that tokenization usingregular expressions, without a parsing 
ontext, 
an easily be non-deterministi
and even ambiguous. In order to restri
t the number of possibilities, s
annersusually apply several impli
it rules like, e.g., Prefer Longest Mat
h, Prefer Key-words, Prefer First Appli
able Rule. The downside of su
h disambiguation is thatthe s
anner 
ommits itself to one 
hoi
e of tokens and blo
ks other interpreta-tions of the input by the parser. A s
annerless parser with enough lookaheaddoes not have this problem.Another example is the embedding of Java 
ode in Aspe
tJ de�nitions andvi
e versa. If a s
anner is needed for the 
ombination of the two languages,you may end up with reserving the new Aspe
tJ keywords from the Java 
ode.However, existing Java 
ode may easily 
ontain su
h identi�ers, resulting inparsing errors for 
ode that was initially parsed 
orre
tly. One approa
h that
ould avoid this problem would be to use two separate s
anners: one that isa
tive while parsing pure Aspe
tJ 
ode and another that is a
tive while parsingpure Java 
ode. On
e again, the parsing 
ontext would be used to de
ide whi
hs
anner is used in the tokenization. This problem does not exist when using as
annerless parser [8℄.In a 
lassi
al s
anner/parser approa
h the s
anner makes many de
isionsregarding tokenization. In a s
annerless parser these de
isions are postponedand have to be made by the parser. Consequently, s
annerless parsers generallyhave to deal with more non-determinism than before, so the deterministi
 LRparsing algorithms 
an no longer be used. However, it turns out that the non-determinism introdu
ed by the removal of the s
anner 
an be gra
efully handledby Generalized LR (GLR) parsing algorithms [24, 16, 19℄.S
annerless parsing remains a 
ounter-intuitive notion, whi
h is partly due toour edu
ation in 
ompiler 
onstru
tion where s
anner optimization was a 
entralpoint of interest. So we emphasize its bene�ts here on
e more:{ Computational power: lexi
al ambiguity is a non-issue and full de�nition oflexi
al syntax for real languages is possible.1 Various (non-authoritative) sour
es mention that writing a \." in instead of ","
aused the loss of the Mariner 1.2 Re
all that Fortran treats spa
es as insigni�
ant, also inside identi�ers.2



{ Modularity: languages with in
ompatible lexi
al syntaxes 
an be 
ombinedseemlessly.{ S
ope: to generate parsers for more languages, in
luding ambiguous, embed-ded and lega
y languages.{ Simpli
ity: no hard-wired 
ommuni
ation between s
anning and parsing.{ De
larativeness: no side-e�e
ts and no impli
it lexi
al disambiguation rulesne
essary.So, on the one hand a language engineer 
an more easily experiment withand implement more 
omplex and more diverse languages using a parser gen-erator that is based on S
annerless GLR parsing. On the other hand there is a
ost. Although it does not have a s
anning phase, s
annerless parsing is a lotmore expensive than its two-staged 
ounterpart. The stru
ture of tokens is nowretrieved with a more time and memory intensive parsing algorithm. A 
olle
-tion of grammar rules that re
ognizes one token type, like an identi�er 
ouldeasily have 6 rules, in
luding re
ursive ones. Parsing one 
hara
ter 
ould there-fore involve several GLR sta
k operations, sear
hing for appli
able redu
tionsand exe
uting redu
tions. Consider an average token length of 8 
hara
ters andan average number of sta
k operations of 4 per 
hara
ter, a s
annerless parserwould do 4 � 8 = 32 times more work per token than a parser that reads a pre-tokenized string. Furthermore, a s
annerless parser has to 
onsider all whitespa
eand 
omment tokens. An average program 
onsists of more than 50% whites-pa
e whi
h again multiplies the work by two, raising the di�eren
e between thetwo methods to a fa
tor of 64. Moreover, s
annerless grammars are more non-deterministi
 than their tokenized 
ounterparts, in
reasing the burden on theparsing algorithm even more.Fortunately, it has been shown [7℄ that s
annerless parsers are not 64 times asslow as other GLR-style parsers. We estimate the fa
tor to be more in the range of3 to 10. In this paper we investigate the implementation of the S
annerless GLR(SGLR) parser provided with SDF [29, 7℄. It makes s
annerless parsing feasibleby rigorously limiting the non-determinism that is introdu
ed by s
annerlessparsing using \disambiguation �ltering". It is and has been used to parse manydi�erent kinds of lega
y programming languages and their diale
ts, experimentaldomain spe
i�
 languages and all kinds of embeddings of languages into otherlanguages. The parse trees that SGLR produ
es are used by a variety of toolsin
luding 
ompilers, stati
 
he
kers, ar
hite
ture re
onstru
tion tools, sour
e-to-sour
e transformers, refa
toring, and editors in IDEs.As SDF is applied to more and more diverse languages, su
h as s
riptingand embedded web s
ripting languages, and in an in
reasing number of 
ontextssu
h as in plugins for the E
lipse IDE, the 
ost of s
annerless parsing has be
omemore of a burden. That is our motivation to investigate algorithmi
 
hanges toSGLR that would improve its eÆ
ien
y. Note that the eÆ
ien
y of SGLR isde�ned by the eÆ
ien
y of the intertwined parsing and �ltering algorithms.We have su

eeded in repla
ing the embedded parsing algorithm in SGLR|based on Farshi's version of GLR [16℄|with the faster Right-Nulled GLR algo-rithm [22, 12℄. RNGLR is a re
ent derivative of Tomita's GLR algorithm that,3



intuitively, limits the 
ost of non-determinism in GLR parsers. We therefore in-vestigated how mu
h the RNGLR algorithm would mitigate the 
ost of s
anner-less parsing, whi
h introdu
es more non-determinism. The previously publishedresults on RNGLR 
an not be extrapolated dire
tly to SGLR be
ause of (A) themissing s
anner, whi
h may 
hange trade-o�s between sta
k traversal and sta
k
onstru
tion and (B) the fa
t that SGLR is not a parsing algorithm per se, butrather a parsing and �ltering algorithm.The bene�t of RNGLR may easily beinsigni�
ant 
ompared to the overhead of s
annerless parsing and the additional
osts of �ltering.In this paper we show that a S
annerless Right-Nulled GLR parser and �lteris a
tually signi�
antly faster on real appli
ations than traditional SGLR. Theamalgamated algorithm, 
alled SRNGLR, requires adaptations in parse tablegeneration, parsing and �ltering, and post-parse �ltering stages of SGLR. InSe
tion 2 we analyze and 
ompare the run-time eÆ
ien
y of SGLR and the newSRNGLR algorithm. In Se
tions 3 and 4 we explain what the di�eren
es betweenSGLR and SRNGLR are. We 
on
lude the paper with a dis
ussion in Se
tion 6.
2 Ben
hmarking SRNGLRIn Se
tions 3 and 4 we will delve into the te
hni
al details of our parsing al-gorithms. Before doing so, we �rst present our experimental results. We have
ompared the SGLR and SRNGLR algorithms using grammars for an extendedversion of ANSI-C|dubbed C'|, C++, Java, Python, SASL and �1|a smallgrammar that triggers interesting behaviour in both algorithms. Table 1 de-s
ribes the grammars and input strings used. Table 2 provides statisti
s on thesizes of the grammars. We 
ondu
ted the experiments on a 2.13GHz Intel DualCore with 2GB of memory, running Linux 2.6.20.SGLR and SRNGLR are 
omprised of three di�erent stages: parse tablegeneration, parsing and post-parse �ltering. We fo
us on the eÆ
ien
y of thelatter two, sin
e parse table generation is a one-time 
ost. We are not interested inthe runtime of re
ognition without tree 
onstru
tion. Note that between the twoalgorithms the parsing as well as the �ltering 
hanges and that these in
uen
eea
h other. Filters may prevent the need to parse more and 
hanges in theparsing algorithm may 
hange the order and shape of the (intermediate) parseforests that are �ltered. EÆ
ien
y measurements are also heavily in
uen
ed bythe shapes of the grammars used as we will see later on.The SRNGLR version of the parser was tested �rst to output the same parseforests that SGLR does, modulo order of trees in ambiguity 
lusters.Table 3 and Figure 1 show the arithmeti
 mean time of �ve runs and Table 4provides statisti
s on the amount of work that is done. GLR parsers use a GraphStru
tured Sta
k (GSS). The edges of this graph are visited to �nd redu
tionsand new nodes and edges are 
reated when parts of the graph 
an be redu
edor the next input 
hara
ter 
an be shifted. Ea
h redu
tion also leads to the
onstru
tion of a new parse tree node and sometimes a new ambiguity 
luster. Anambiguity 
luster en
apsulates di�erent ambiguous trees for the same substring.4



Name Grammar des
ription Input size(
hars/lines) Input des
riptionC' ANSI-C plus ambiguous ex
ep-tion handling extension 32M/1M Code for an embedded sys-temC++ Approa
hes ISO standard, withGNU extensions 2.6M/111K Small 
lass that in
ludesmu
h of the STLJava Grammar from [8℄ that imple-ments Java 5.0 0.5M/18k Implementation of TheMeta-Environment [5℄Python Derived from the referen
e man-ual [28℄, ambiguous due to miss-ing o�-side rule implementation 7k/201 spawn.py from Python dis-tributionSASL Taken from [26℄, ambiguous dueto missing o�-side rule implemen-tation 2.5k+/114+ Standard prelude, 
on
ate-nated to in
reasing sizes�1 S ::= SSS j SS j a; triggersworst-
ase behavior [12℄ 1{50/1 Strings of a's of in
reasinglengthTable 1. Grammars and input strings used.NNT NP RNP States Shifts Redu
tions LA Redu
tionsSGLR SRNGLR SGLR SRNGLRC' 71 93 94 182k 37k 18k 23k 5.9k 6.3kC++ 90 112 102 112k 18k 19k 19k 1.5k 1.5kJava 81 112 116 67k 9.7k 5.9k 6.0k 1.0k 1.1kPython 56 74 85 22k 3.4k 1.7k 1.9k 0 0SASL 16 21 22 4.5k 0.9k 0.5k 0.6k 0 0�1 0 0 0 13 30 13 15 0 0Table 2. Grammar statisti
s showing nullable non-terminals (NNT), nullable produ
-tions (NP), right-nullable produ
tions (RNP), SLR(1) states, gotos and shifts, Redu
-tions and redu
tions with dynami
 lookahead restri
tion (LA Redu
tions).For both algorithms we 
ount the number of GSS edge visits, GSS node 
reations,edge and node visits for garbage 
olle
tion, and parse tree node and ambiguity
luster visits for post-parse �ltering. Note that garbage 
olle
tion of the GSS isan important fa
tor in the memory and run-time eÆ
ien
y of GLR.For this ben
hmark, SRNGLR is on average 33% faster than SGLR with asmallest speedup of 9.8% for C and a largest speedup of 95% for SASL. Appar-ently the speedup is highly dependant on the spe
i�
 grammar. If we disregardSASL the improvement is still 20% on average and if we also disregard � 501the average drops to a still respe
table 16% improvement for the mainstreamlanguages C, C++, Java and Python. The results show that SRNGLR parsingspeed is higher (up to 95%) for grammars that are highly ambiguous su
h asSASL. SRNGLR also performs better on less ambiguous grammars su
h as Java(14% faster). The parsing time is always faster, and in most 
ases the �lteringtime is also slightly faster for SRNGLR but not signi�
antly so.The edge visit statisti
s (Table 4 and Figure 3) explain the 
ause of theimproved parsing time. Espe
ially for ambiguous grammars the SGLR algorithmtraverses many more GSS edges. A

ording to the time measurements this issigni�
ant for real world appli
ations of s
annerless parsing.5



C' C++ Java Python SASL80 �150S SRN S SRN S SRN S SRN S SRN S SRNSpeed (
hars/se
.) 385k 443k 121k 175k 404k 467k 178 904 78 1k 4.7 24Parse time (se
.) 84.2 73.2 21.5 14.9 2.1 1.8 39.2 7.7 4.8k 202.2 10.8 2.1Filter time (se
.) 102.9 95.5 5.7 5.6 0.8 0.7 327.3298.8 1.6 1.6 7.7 9.5Total time (se
.) 187.2168.8 27.3 20.6 2.9 2.5 366.5306.5 4.8k 203.9 18.5 11.6Speedup (%) 9.8 24.5 13.8 16.4 95 37.6Table 3. Speed (
hara
ters/se
ond), Parse time (se
onds) , Filter time (se
onds), Totaltime (se
onds) and Speedup (%) of SGLR (S) and SRNGLR (SRN). k = 103.C' C++ Java Python SASL80 � 501S SRN S SRN S SRN S SRN S SRN S SRNET 149M 44M 26M 6.6M 3.2M 0.9M 90M 3.4M 71B 165M 48M 0.7MES 81M 18M 145M 27M 5.0M 0.9M 1.8B 234M 16B 14B 28M 14MNC 141M 143M 19M 20M 3.0M 3.0M 157k 157k 2.4M 2.4M 252 252EC 154M 157M 30M 31M 3.5M 3.4M 962k 962k 44M 44M 3.9k 3.9kGC 13M 13M 6.2M 6.8M 0.7M 0.6M 2.0M 2.0M 88M 88B 14k 14kFAC 30k 30k 5.6k 5.6k 0 0 83k 83k 48k 48k 1.2k 2.1kFNC 241M 241M 13M 13M 1.6M 1.6M 707M 707M 3.1M 3.1M 1.1M 1.3MTable 4. Workload data. Edges traversed sear
hing redu
tions (ET), edges traversedsear
hing existing edge (ES), GSS nodes 
reated (NC), GSS edges 
reated (EC), edgestraversed for garbage 
olle
tion (GC), ambiguity nodes 
reated while �ltering (FAC),and parse tree nodes 
reated while �ltering (FNC). k = 103, M = 106; B = 109Filtering time is improved in all but the �1 
ase, although the improvementis not greater than 10%. The workload statisti
s show that about the samenumber of nodes are 
reated during �ltering. The di�eren
es are lost in therounding of the numbers, ex
ept for the �1 
ase whi
h shows signi�
antly morenode 
reation at �ltering time. This di�eren
e is 
aused by di�erent amounts ofsharing of ambiguity 
lusters between the two versions. The amount of sharingin ambiguity 
lusters during parsing, for both versions, depends on the arbitraryordering of redu
tion steps. I.e. it is not relevant for our analysis.Noti
e that the parse time versus �ltering time ratio 
an be quite di�erentbetween languages. This highly depends on the shape of the grammar. LR fa
-tored grammars have higher �ltering times due to the many additional parsetree nodes for 
hain rules. The Python grammar is an example of su
h a gram-mar, while SASL was not fa
tored and has a minimum number of non-terminalsfor its expression sub-language. Shorter grammars with less non-terminals havebetter �ltering speed. We expe
t that by \unfa
toring" the Python grammar alot of speed may be gained.Figure 2 depi
ts how SRNGLR improves parsing speed as the input lengthgrows. For �1 it is obvious that the gain is higher when the input gets larger.Note that although �1 does not have any right-nullable produ
tions (see Table2) there is still a signi�
ant gain. The reason for this is that SRNGLR preventswork from being done for all grammars (see Se
tion 3).From these results we may 
on
lude that SRNGLR 
learly introdu
es a stru
-tural improvement that in
reases the appli
ability of s
annerless GLR parsing to6
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Fig. 3. Correlation between saving ofedge traversals and parsing speedup.large programs written in highly ambiguous s
ripting languages su
h as Pythonand SASL. Also, we may 
on
lude that it introdu
es a not-insigni�
ant improve-ment for less ambiguous or non-ambiguous languages and that the shape of agrammar highly in
uen
es the �ltering speed.
3 SGLR and RNGLRIn this se
tion we outline the RNGLR and SGLR algorithms and highlight themain di�eren
es between them. There are four main di�eren
es between theSGLR and RNGLR algorithms:{ Di�erent parse tables formats are used; SLR(1) [29℄ versus RN [12℄.{ SGLR does more traversals of the GSS during parsing than RNGLR.{ Di�erent parse forest representations are used; maximally shared trees [27℄versus SPPF's [19℄.{ SGLR implements \disambiguation �lters" [7℄ whereas RNGLR does not.

7



The RNGLR algorithm 
ombines adaptations in the parse table generation al-gorithm with simpli�
ations in the parser run-time algorithm. It is based onTomita's algorithm, 
alled Generalized LR (GLR) [24℄. GLR extends the LRparsing algorithm to work on all 
ontext-free grammars by repla
ing the sta
kof the LR parsing algorithm with a Graph Stru
tured Sta
k (GSS). Using theGSS to explore di�erent derivations \in parallel", GLR 
an parse senten
es forgrammars with parse tables that 
ontain LR 
on
i
ts rather eÆ
iently. However,the GLR algorithm fails to terminate on 
ertain grammars. Farshi's algorithm�xes the issue in a non-eÆ
ient manner, by introdu
ing extra sear
hing of theGSS [16℄. This algorithm is the basis for SGLR. The RNGLR algorithm �xesthe same issue in a more eÆ
ient manner.RNGLR introdu
es a modi�ed LR parse table: an \RN table". RN tablesare 
onstru
ted in a similar way to 
anoni
al LR tables, but in addition to thestandard redu
tions, redu
tions on right nullable rules are also in
luded. A rightnullable rule is a produ
tion rule of the form A ::= �� where � �) "3. Byredu
ing the left part of the right nullable rule (�) early, the RNGLR algorithmavoids the problem that Tomita's algorithms su�ered from and hen
e does notrequire Farshi's expensive 
orre
tion. However, sin
e the right nullable symbolsof the rule (�) have not been redu
ed yet it is ne
essary to pre-
onstru
t theparse trees of those symbols. These nullable trees are 
alled "-trees and sin
ethey are 
onstant for a given grammar, they 
an be 
onstru
ted at parse tablegeneration time and in
luded in the RN parse table. The early RN redu
tionwill 
onstru
t a full derivation simply by in
luding the pre-
onstru
ted trees.It is well known that the number of parses of a senten
e with an ambiguousgrammar may grow exponentially with the size of the senten
e [9℄. To avoidexponential 
omplexity, GLR-style algorithms build an eÆ
ient representationof all possible parse trees, using subtree sharing and lo
al ambiguity pa
king.However, the SGLR and RNGLR algorithms 
onstru
t parse trees in di�erentways and use slightly di�erent representations. RNGLR essentially follows theapproa
h des
ribed by Rekers { the 
reation and sharing of trees is handleddire
tly by the parsing algorithm { but does not 
onstru
t the most 
ompa
trepresentation possible. The SGLR algorithm uses the ATerm library [27℄ to
onstru
t parse trees thereby taking advantage of the maximal sharing it imple-ments. This approa
h has several 
onsequen
es. The parsing algorithm 
an besimpli�ed signi�
antly by repla
ing all parse tree 
reation and manipulation 
odewith 
alls to the ATerm library. Although the library takes 
are of all sharing,the 
reation of ambiguities and 
y
les requires extra work.As previously mentioned, in addition to the di�erent 
onstru
tion approa
hes,a slightly di�erent representation of parse forests is used. RNGLR labels internalnodes using non-terminal symbols and uses spe
ial pa
king nodes to representambiguities. SGLR labels internal nodes with produ
tions and represents am-biguous trees using spe
ial ambiguity 
lusters labeled by non-terminal symbols.The reason that produ
tion rules are used to label the internal nodes of the3 �; � are possibly empty lists of terminals and non-terminals, � is the empty stringand �) means \derives in zero or more steps"8



forest is to implement some of the disambiguation �lters that are dis
ussed laterin this se
tion.The SGLR algorithm is di�erent to RNGLR mainly due to the �lters that aretargeted at solving lexi
al ambiguity. Its �lters for priority and preferen
e willbe dis
ussed as well. SGLR introdu
es the following four types of �lters: re-stri
tions, reje
ts, preferen
es and priorities. Ea
h �lter type targets a parti
ularkind of ambiguity. Ea
h �lter is derived from a 
orresponding de
larative dis-ambiguation 
onstru
t in the SDF grammar formalism [7℄. Formally, ea
h �lteris a fun
tion that removes 
ertain derivations from parse forests (sets of deriva-tions). Pra
ti
ally, �lters are implemented as early in the parsing ar
hite
tureas possible, i.e. removing redu
tions from parse tables or terminating parallelsta
ks in the GSS.Four �lter types. We now brie
y de�ne the semanti
s of the four �lter types forlater referen
e. A (follow)restri
tion is intended to implement \longest mat
h"and \�rst mat
h" behavior of lexi
al syntax. In the following example, the -/-operator de�nes a restri
tion on the non-terminal I. Its parse trees may not befollowed immediately by any 
hara
ter in the 
lass [A-Za-z0-9 ℄, whi
h e�e
tivelyresults in longest mat
h behavior for I:I ::= [A-Za-z℄[A-Za-z0-9 ℄ � I -/- [A-Za-z0-9 ℄ (3.1)In general, given a follow restri
tion A -/- � where A is a non-terminal and �is a 
hara
ter 
lass, any parse tree whose root is A ::= 
 will be �ltered if itsyield in the input string is immediately followed by any 
hara
ter in �. Multiple
hara
ter follow restri
tions, as in A -/- �1:�2 : : : �n, generalize the 
on
ept.If ea
h of the n 
hara
ters beyond the yield of A, �t in their 
orresponding
lass �i the tree with root A is �ltered. Note that the restri
tion in
orporatesinformation from beyond the hierar
hi
al 
ontext of the derivation for A, i.e. itis not \
ontext-free".The reje
t �lter is intended to implement \reservation", i.e. keyword reser-vation. In the following example, the freje
tg attribute de�nes that the keywordpubli
 is to be reserved from I:I ::= [A-Za-z℄[A-Za-z0-9 ℄ � I ::= \publi
"freje
tg (3.2)In general, given a produ
tion A ::= 
 and a reje
t produ
tion A ::= Æfreje
tg,all trees whose roots are labeled A ::= Æfreje
tg are �ltered and any tree whoseroot is labeled A ::= 
 is �ltered if its yield is in the language generated byÆ. Reje
ts give SGLR the ability to parse non-
ontext-free languages su
h asanbn
n [29℄.The preferen
e �lter is intended to sele
t one derivation from several al-ternative overlapping (ambiguous) derivations. The following example uses thefpreferg attribute to de�ne that in 
ase of ambiguity the preferred tree shouldbe the only one that is not �ltered. The dual of fpreferg is favoidg.I ::= [A-Za-z℄[A-Za-z0-9 ℄ � I ::= \publi
" fpreferg (3.3)9



In general, given n produ
tions A ::= 
1 to A ::= 
n and a preferred produ
tionA ::= Æfpreferg, any tree whose root is labeled by any of A ::= 
1 to A ::= 
nwill be �ltered if its yield is in the language generated by Æ. All trees whose rootsare A ::= Æfpreferg remain. Dually, given an avoided produ
tion A ::= �favoidgany tree whose root is A ::= �favoidg is �ltered when its yield is in one of thelanguages generated by 
1 to 
n. In this 
ase, all trees with roots A ::= 
1 toA ::= 
n remain. Consequently, the preferen
e �lter 
an not be used to re
ognizenon-
ontext-free languages.The priority �lter solves operator pre
eden
e and asso
iativity. The followingexample uses priority and asso
iativity:E ::= E \!" Efrightg > E ::= E \or" Efleftg (3.4)The > de�nes that no tree with the \!" produ
tion at its root will have a 
hildtree with the \or" at its root. This e�e
tively gives the \!" produ
tion higherpre
eden
e. The frightg attribute de�nes that no tree with the \!" produ
tionat its root may have a �rst 
hild with the same produ
tion at its root. In general,we index the > operator to identify for whi
h argument a priority holds and mapall priority and asso
iativity de
larations to sets of indexed priorities. Given anindexed priority de
laration A ::= �Bi� >i Bi ::= Æ, where Bi is the ith symbolin �Bi�, then any tree whose root is A ::= �Bi� with a subtree that has Bi ::= Æas its root at index i, is �ltered. The priority �lter is not known to extend thepower of SGLR beyond re
ognizing 
ontext-free languages.
4 SRNGLRWe now dis
uss the amalgamated algorithm SRNGLR that 
ombines the s
an-nerless behaviour of SGLR with the faster parsing behaviour of RNGLR. TheSRNGLR algorithm is mainly di�erent in the implementation of SGLR's �ltersat parse table generation time. All of SGLR's �lters need to be applied to thestati
 
onstru
tion of RNGLR's �-trees. However, there are also some 
hangesin the other stages, parse-time and post-parse �ltering. The reje
t �lter was
hanged for 
lari�
ation and for improving the predi
tability of its behavior.Note however that the latter 
hange was applied to both SGLR and RNGLRbefore measuring performan
e di�eren
es.4.1 Constru
tion of �-treesThe basi
 strategy is to �rst 
onstru
t the 
omplete �-trees for ea
h RN redu
tionin a straightforward way, and then apply �lters to them. We 
olle
t all theprodu
tions for nullable non-terminals from the input grammar, and then forea
h non-terminal we simply produ
e all of its derivations in a top-down re
ursivefashion. If there are alternative derivations, they are 
olle
ted under an ambiguitynode.We use maximally shared ATerms [6℄ to represent parse trees. ATerms aredire
ted a
y
li
 graphs, whi
h prohibits by de�nition the 
onstru
tion of 
y
les.10



However, sin
e parse trees are not general graphs we may use the following tri
k.The se
ond time a produ
tion is used while generating a nullable tree, a 
y
leis dete
ted and, instead of looping, we 
reate a \
y
le node". This spe
ial nodestores the length of the 
y
le. From this representation a (visual) graph 
an betrivially re
onstru
ted.Note that this representation of 
y
les need not be minimal, sin
e a part of thea
tual 
y
le may be unrolled and we dete
t 
y
les on twi
e visited produ
tions,not non-terminals. The reason for 
he
king on produ
tions is that the priority�lter is spe
i�
 for produ
tions, su
h that after �ltering, 
y
les may still exist,but only through the use of spe
i�
 produ
tions.4.2 Restri
tionsWe distinguish single 
hara
ter restri
tions from multiple lookahead restri
tions.The �rst are implemented 
ompletely stati
ally, while the latter have a partialimplementation at parse table generation time and a partial implementationduring parsing.Parse table generation. An RN redu
tion A ::= � �� with nullable tree T� inthe parse table 
an be removed or limited to 
ertain 
hara
ters on the lookahead.When one of the non-terminals B in T� has a follow restri
tion B -/- 
, T� mayhave less ambiguity or be �ltered 
ompletely when a 
hara
ter from 
 is on thelookahead for redu
ing A ::= � � �. Sin
e there may be multiple non-terminalsin T� , there may be multiple restri
tions to be 
onsidered.The implementation of restri
tions starts when adding the RN redu
tion tothe SLR(1) table. For ea
h di�erent kind of lookahead 
hara
ter (token), thenullable tree for T� is �ltered, yielding di�erent instan
es of T� for di�erentlookaheads. While �ltering we visit the nodes of T� in a bottom-up fashion. Atea
h node in the tree the given lookahead 
hara
ter is 
ompared to the appli
ablerestri
tions. These are 
omputed by aggregation. When visiting a node labelledC ::= DE, the restri
tion 
lass for C is the union of the restri
tion 
lasses ofD and E. This means that C is only a

eptable when both restri
tions aresatis�ed. When visiting an ambiguity node with two 
hildren labeled F and G,the restri
tions for this node are the interse
tions of the restri
tions of F andG. This means that the ambiguity node is a

eptable when either one of therestri
tions is satis�ed.If the lookahead 
hara
ter is in the restri
ted set, the 
urrent node is �ltered,if not the 
urrent node remains. The 
omputed restri
tions for the 
urrent nodeare then propagated up the tree. Note that this algorithm may lead to the
omplete removal of T� , and the RN redu
tion for this lookahead will be added.If T� is only partially �ltered, and no restri
tion applies for the non-terminalA of the RN redu
tion, the RN redu
tion is added to the table, in
luding the�ltered �-tree.Parser run-time. Multiple 
hara
ter restri
tions 
annot be �ltered stati
ally.They are 
olle
ted and the RN-redu
tions are added and marked to be 
on-ditional as \lookahead redu
tions" in the parsetable. Both the testing of therestri
tion as well as the �ltering of the �-tree must be done at parse-time.11



Before any lookahead RN-redu
tion is applied by the parsing algorithm, the�-tree is �ltered using the restri
tions and the lookahead information from theinput string. If the �ltering removes the tree 
ompletely, the redu
tion is notperformed. If it is not removed 
ompletely, the RN redu
tion is applied and atree node is 
onstru
ted with a partially �ltered �-tree.
4.3 PrioritiesParse table generation. There are only 
hanges in the parse table generationphase. All other phases for priority �ltering remain as in SGLR. The priority�ltering depends on the 
hosen representation of the �-trees (see also Se
tion3); ea
h node holds a produ
tion rule and 
y
les are unfolded on
e. Take forexample S ::= SSfleftgj�. The �ltered �-tree for this grammar should representderivations where S ::= SS 
an be nested on the left, but not on the right. The
y
li
 tree for S must be unfolded on
e to make one level of nesting expli
it.Then the right-most derivations 
an be �ltered. Su
h representation allows astraightforward �ltering of all trees that violate priority 
onstraints. Note thatpriorities may �lter all of the �-tree, resulting in the removal of the 
orrespondingRN redu
tion.
4.4 Preferen
esParse table generation. The preferen
e �lter strongly resembles the priority�lter. Preferen
es are simply applied to the �-trees, resulting in smaller �-trees.However, preferen
es 
an never lead to the 
omplete removal of an �-tree.Post-parse �lter. RN redu
tions labeled with fpreferg or favoidg are pro
essedin a post-parse �lter. This was already present in SGLR and has not needed any
hanges.
4.5 Reje
tsParse table generation. If any nullable produ
tion is labeled with freje
tg,then the empty language is not a

eptable by that produ
tion's non-terminal.If su
h a produ
tion o

urs in an �-tree, we 
an stati
ally �lter a

ording to thede�nition of reje
ts in Se
tion 3. If no nullable derivation is left after �ltering,we 
an also remove the entire RN redu
tion.Parser run-time. Note that we have 
hanged the original algorithm [29℄ for re-je
t �ltering at parser run-time for both SGLR and SRNGLR. The 
ompletenessand predi
tability of the �lter have been improved. The simplest implementationof reje
t is to �lter redundant trees in a post-parse �lter, dire
tly following thede�nition of its semanti
s given in Se
tion 3. However, the goal of the imple-mentation is to prohibit further pro
essing on GSS sta
ks that 
an be reje
tedas early as possible. This 
an result in a large gain in eÆ
ien
y, sin
e it makesthe parsing pro
ess more deterministi
, i.e. there exist on average less parallelbran
hes of the GSS during parsing. 12



The semanti
s of the reje
t �lter is based on synta
ti
 overlap, i.e. ambiguity(Se
tion 3). So, the �lter needs to dete
t ambiguity between a reje
ted produ
tionA ::= 
freje
tg and a normal produ
tion for A ::= Æ. The goal is to stop furtherpro
essing redu
tions of A. For this to work, the ambiguity must be dete
tedbefore further redu
tions on A are done. Su
h ordering of the s
heduling ofredu
tions was proposed by Visser [29℄. However, the proposed ordering is not
omplete. There are grammars for whi
h the ordering does not have the desirede�e
t and reje
ted trees do not get �ltered. Espe
ially nested reje
ts and reje
tsof nullable produ
tions lead to su
h issues. Later alternative implementations ofVisser's algorithm have worked around these issues at the 
ost of �ltering toomany derivations.Instead we have opted for not trying to order redu
tions anymore and toimplement an eÆ
ient method for not using reje
ted produ
tions in derivations.The details of this reje
t implementation are:{ Edges 
reated by a redu
tion of a reje
ted produ
tion are stored separatelyin GSS nodes. We prevent other redu
tions traversing the reje
ted edges,thereby preventing possible further redu
tions on many sta
ks.{ In GLR, edges 
olle
t ambiguous derivations, and if an edge be
omes reje
tedbe
ause one of the alternatives is reje
ted, it stays reje
ted.{ Reje
ted derivations that es
ape are �ltered in a post-parse tree walker. Theymay es
ape when an alternative, non-reje
ted, redu
tion 
reates an edge andthis edge is traversed by a third redu
tion before the original edge be
omesreje
ted by a produ
tion marked with freje
tg.Like the original, this algorithm �lters many parallel sta
ks at run-time withthe added bene�t that it is more 
learly 
orre
t. We argue that: (A) we donot �lter trees that should not have been �ltered, (B) we do not depend onthe 
ompleteness of the �ltering during parse time, and (C) we do not try toorder s
heduling of redu
e a
tions, whi
h simpli�es the 
ode that implementsSRNGLR signi�
antly.The Post-parse �lter of reje
ts simply follows the de�nition of its semanti
s asdes
ribed in Se
tion 3. For the 
orre
t handling of nested reje
ts, it is imperativeto apply the �lter in a bottom-up fashion.
5 Related workThe 
ost of general parsing as opposed to deterministi
 parsing or parsing withextended lookahead has been studied in many di�erent ways. Our 
ontributionis a 
ontinuation of the RNGLR algorithm applied in a di�erent 
ontext.Despite the fa
t that general 
ontext-free parsing is a mature �eld in Com-puter S
ien
e, its worst 
ase 
omplexity is still unknown. The algorithm withthe best asymptoti
 time 
omplexity to date is presented by Valiant [25℄. How-ever, be
ause of the high 
onstant overheads this approa
h is unlikely to be usedin pra
ti
e. There have been several attempts at speeding the run time of LRparsers that have fo
used on a
hieving speed ups by implementing the handle13



�nding automaton (DFA) in low-level 
ode, [4, 13, 17, 18℄. A di�erent approa
hto improving eÆ
ien
y is presented in [2, 3℄, the basi
 ethos of whi
h is to redu
ethe relian
e on the sta
k. Although this algorithm fails to terminate in 
ertain
ases, the RIGLR algorithm presented in [14℄ has been proven 
orre
t for all
ontext-free grammars.Two other general parsing algorithms that have been used in pra
ti
e arethe CYK [10, 15, 30℄ and Earley [11℄ algorithms. Both display 
ubi
 worst 
ase
omplexity, although the CYK algorithm requires grammars to be transformedto Chomsky Normal Form before parsing. The BRNGLR [23℄ algorithm a
hieves
ubi
 worst 
ase 
omplexity without needing to transform the grammar.Note however that the SGLR and the SRNGLR algorithm des
ribed in thispaper is more than a parsing algorithm. Filtering is a major fa
tor too, whi
hmakes SRNGLR in
omparable to other parsing algorithms.
6 Con
lusionsWe improved the speed of parsing and �ltering for s
annerless grammars signif-i
antly by applying the ideas of RNGLR to SGLR. The disambiguation �ltersthat 
omplement the parsing algorithm at all levels needed to be adapted andextended. Together the implementation of the �lters and the RN tables makes
annerless GLR parsing quite a bit faster. The appli
ation areas in softwarerenovation and embedded language design are dire
tly servi
ed by this. It allowsexperimentation with more ambiguous grammars, e.g. interesting embeddings ofs
ripting languages, domain spe
i�
 languages and lega
y languages.A
knowledgements. We are grateful to Arnold Lankamp for helping toimplement the GSS garbage 
olle
tion s
heme for SRNGLR. The �rst authorwas partially supported by EPSRC grant EP/F052669/1.
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