
AMBIDEXTER: Practical Ambiguity Detection
Tool Demonstration

Bas Basten
Centrum Wiskunde & Informatica

basten@cwi.nl

Tijs van der Storm
Centrum Wiskunde & Informatica

Universiteit van Amsterdam
storm@cwi.nl

Abstract

Ambiguity detection tools try to statically track down
ambiguities in context-free grammars. Current ambiguity
detection tools, however, either are too slow for large real-
istic cases, or produce incomprehensible ambiguity reports.
AMBIDEXTER is the ambiguity tool to have your cake and
eat it too.

1. Introduction

Context-free grammars are an important form of source
code, both for the development of source code analysis and
manipulation tools, and for prototyping (domain specific)
languages [7]. A common requirement is that a grammar
is not ambiguous,—i.e. does not allow multiple derivations
for the same string. If a grammar is ambiguous this often in-
dicates a grammar bug that needs to be fixed. It is, however,
very hard to establish whether a grammar is ambiguous or
not.

Ambiguity detection tools are used to statically try and
find ambiguities. To be practical, such tools should (1) pro-
vide feedback that is comprehensible to the grammar de-
veloper, and (2) come up with an answer within reasonable
time. In this tool demo we present AMBIDEXTER, a tool for
practical ambiguity detection. It combines two approaches
to ambiguity detection: exhaustive searching and approxi-
mative searching. As a result, AMBIDEXTER benefits from
each technique’s strengths, while avoiding their respective
drawbacks.

2. Ambiguity Detection

A context-free grammar is ambiguous if it allows multiple
derivations for the same string. A well-known example of
an ambiguous grammar is the following one, describing if-
then-else statements:

Stm → "if" Exp Stm
Stm → "if" Exp Stm "else" Stm

If this grammar is used to parse the string “if x if y ...

else ...” then it is unclear whether the else-branch be-
longs to the inner-most if-statement or to the outer-most if-
statement. In other words, there are two valid derivation
trees for this snippet of source code. Both trees are shown
in Figure 1.

"if" Exp Stm

x
"if" Exp Stm
"else" Stm

y ... ...

"if" Exp Stm
"else" Stm

x "if" Exp Stm

y ...

...

Figure 1. The “dangling else” ambiguity

The goal of ambiguity detection is to statically analyze a
grammar and to uncover ambiguities such as the one in Fig-
ure 1. Unfortunately, ambiguity of context-free grammars
is undecidable in the general case. Nevertheless, there are
semi-decision techniques to approach the problem.

Ambiguity detection techniques can be divided over two
categories:

1. Exhaustive searching: start generating all sentences in
the language of a grammar and check if they have mul-
tiple parse trees [9, 1].

2. Approximative searching: the grammar is approxi-
mated into an alternative form that that can be analyzed
in finite time [8, 4].

An advantage of exhaustive searching is that if an ambigu-
ous sentence is found, the productions involved in the ambi-
guity can be derived from the parse trees (cf. Figure 1). This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301639478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is valuable information for the grammar developer. Unfor-
tunately, generating strings of increasing length is of expo-
nential complexity and will not terminate if the grammar is
unambiguous.

On the other hand, approximative searching techniques
always terminate, but this comes at the expense of preci-
sion. If no ambiguities are found, the grammar is unambigu-
ous. However, if ambiguities are found, they might include
false positives. As a result, they require manual inspection.
Finally, unlike in exhaustive approaches, the ambiguity re-
ports of these tools tend to be hard to understand.

3. AMBIDEXTER

AMBIDEXTER combines exhaustive and approximative
searching to benefit from both their strengths. The goal is
to produce precise and comprehensible ambiguity reports as
fast as possible. We use approximative filtering to narrow
down the search space for an exhaustive checker. This also
allows us to detect both ambiguity and unambiguity.

The tool operates in two stages:

1. Harmless production filtering: harmless productions
are productions that cannot be involved in ambigu-
ity. Using an extension of the approximative tech-
nique of [8] such productions are identified and re-
moved from the grammar.

2. Derivation generator: for the productions that are not
identified as harmless, an exhaustive derivation gener-
ator is applied to detect remaining ambiguities.

As a result, AMBIDEXTER leverages the strengths of
both approaches to ambiguity detection:

• Unambiguity is detected if all productions are identi-
fied as harmless.

• Comprehensible ambiguity reports are produced as a
consequence of employing a derivation generator.

• Performance is improved because the production filter-
ing reduces the derivation generator’s search space.

The filtering technique is described in more detail in [2].
It has been empirically validated on a collection of real-life
programming language grammars [3]. We were able to fil-
ter between 12–78% of the productions rules of the various
grammars. It turns out this improved the performance of
derivation generation substantially, sometimes by orders of
magnitude. For instance, on a C grammar with a “dangling
else” ambiguity like the one in Figure 1, we witnessed a
speedup of AMBER [9] of almost 4000x, after filtering 21%
of the production rules.

Our current derivation generator was not included in [3],
but early results show it is on average twice as fast as

AMBER. Furthermore, we have parallelized it in order to
exploit present-day multicore machines for even better per-
formance.

AMBIDEXTER accepts input grammars in YACC [6]
and SDF [5] format, and takes into account their disam-
biguation constructs like priorities and follow restrictions.
It is available for download at http://homepages.cwi.
nl/~basten/ambiguity/.

4. Conclusion

Context-free grammars are important software engineering
artifacts. They are used for the development of source
code analysis and manipulation tools and for prototyping
computer languages. In this tool demo we have presented
AMBIDEXTER, a tool for practical ambiguity detection.
By combining exhaustive and approximative approaches
AMBIDEXTER produces comprehensible ambiguity reports
in a much faster time.

References

[1] R. Axelsson, K. Heljanko, and M. Lange. Analyzing context-
free grammars using an incremental SAT solver. In Pro-
ceedings of the 35th International Colloquium on Automata,
Languages, and Programming (ICALP’08), volume 5126 of
LNCS, 2008.

[2] H. J. S. Basten. Tracking down the origins of ambiguity in
context-free grammars. In Proceedings of the Seventh In-
ternational Colloquium on Theoretical Aspects of Computing
(ICTAC 2010). Springer, 2010. To appear.

[3] H. J. S. Basten and J. J. Vinju. Faster ambiguity detection by
grammar filtering. In Proceedings of the Tenth Workshop on
Language Descriptions, Tools and Applications (LDTA 2010).
ACM, 2010. To appear.

[4] C. Brabrand, R. Giegerich, and A. Møller. Analyzing am-
biguity of context-free grammars. Sci. Comput. Program.,
75(3):176–191, 2010.

[5] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF - reference manual. SIGPLAN
Notices, 24(11):43–75, 1989.

[6] S. C. Johnson. Yacc: Yet Another Compiler-Compiler. AT&T
Bell Laboratories. http://dinosaur.compilertools.
net/yacc/.

[7] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering
discipline for grammarware. ACM Transactions on Software
Engineering Methodology, 14(3):331–380, 2005.

[8] S. Schmitz. Conservative ambiguity detection in context-free
grammars. In L. Arge, C. Cachin, T. Jurdziński, and A. Tar-
lecki, editors, ICALP’07: 34th International Colloquium on
Automata, Languages and Programming, volume 4596 of
LNCS, 2007.

[9] F. W. Schröer. AMBER, an ambiguity checker for context-
free grammars. Technical report, compilertools.net, 2001. See
http://accent.compilertools.net/Amber.html.


