
ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

The Rascal meta-programming language —
a lab for software analysis, transformation, generation & visualization

Mark Hills Anastasia Izmaylova Paul Klint Atze van der Ploeg Tijs van der Storm
Jurgen Vinju

Centrum Wiskunde & Informatica — SEN1
INRIA Lille — ATEAMS

Abstract

This paper summarizes the goals and features of a do-
main specific programming language called Rascal. On
the one hand it is designed to facilitate software research
— research about software in general. On the other
hand Rascal is applied to specific software portfolios as
well, as a means to improve them and as a means to
learn to understand them.

Specifically, Rascal is used create tools that analyze,
transform, generate or visualize source code of software
products. Such tools are motivated by the need to im-
prove quality of existing software or the need to lower
its cost-of-ownership. More generally such tools are cre-
ated to build laboratory experiments that observe and
measure quality, or try and improve software quality,
etc.

In this paper we provide an overview of Rascal as a
“domain specific language for meta programming”. We
first explain its goals and then its features. We end by
highlighting some example applications in the area of
software analysis and transformation.

1 Introduction

We are generally interested in high-quality source code
and means to assess quality and means to improve qual-
ity of source code. One example aspect of software qual-
ity is maintainability, which is governed mostly by un-
derstandability. A relevant question to any (manager
of a) software engineer is: ”how easy to understand is
this particular source code?”. After having asked this
question many times for many different products, a dif-
ferent question arises: ”how can we quickly and accu-
rately assess the understandability of a large piece of
software?”. Another question would be: ”what design
decisions could have been made to prevent this low un-
derstandability?”.

Our research mission is to produce both new tools
that help answering such questions about specific soft-
ware tools, and to produce insights (theory) about soft-
ware in general. We state that there usually is no gen-
eral answer, one that goes for any software product in

Figure 1: Domain of meta-programming.

any kind of circumstances. Rather, we want to help
ourselves and other software engineers to answer such
questions over and over again in different industrial, aca-
demic and governmental contexts.

2 Goals

Our research strategy in this field of software quality
is to use the Rascal language as a means to rapidly
construct analysis tools, software transformation and
generation tools and software visualization tools. Each
tool is a contribution in itself, if the goal is to analyze,
transform, generate or visualize complex software sys-
tems. Each tool might also be applied to many differ-
ent (kinds of) software systems, to try and learn lessons
about software in general.

The goal of Rascal is to be a programming language
that allows to rapidly construct any kinds of analy-
sis, transformation, generation or visualization of source
code that is written in any kind of programming lan-
guage or combination of programming languages. Fig-
ure 1 summarizes this domain. The challenges that
come with this goal are:

• Scope and abstraction level — how specific should
Rascal be, what should remain open and what
needs automation?

• Concepts and language — what is the audience of
users of Rascal, and how does it influence the shape
of this language?

• Variation — software is written in many kinds
of programming languages, using many kinds of
frameworks and libraries and written by many
kinds of different people, deployed on many differ-
ent kinds of computer hardware.

1
353

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301639078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

• Integration — software analysis, transformation,
generation and visualization are classically sepa-
rated, both conceptually as well as technically. We
want to integrate all of these into a single program-
ming language that allows their seamless integra-
tion.

• Speed — any analysis suffers from the speed ver-
sus accuracy trade-off, and we need to be able to
process large portfolios. Transformations have sim-
ilar trade-offs, where we trade simple and speedy
but “noisy” transformation tools (all indentation is
lost), for high-fidelity but complex tools that keep
all indentation and comments.

These five challenges are inter-related in an intrinsic
manner. For example, the need to balance the speed
to precision trade-off requires a level of abstraction that
still allows programming customized algorithms. The
alternative would be to build specific algorithms into
the language as primitive concepts. On the other hand,
there are standard text-book algorithms in software
analysis that should be available to Rascal users (using
libraries). Another example is that to be able to ac-
cept a wide range of programming languages, we need
powerful but slightly slower parsing algorithms.

In this paper we do not evaluate whether or not Ras-
cal has met the above challenges. Rather we present
some of its features and explain how we applied it. This
should provide the reader with information to help de-
cide to investigate it further. This paper also does not
provide source code examples of Rascal, but it describes
Rascal code from a birds-eye perspective.

3 Features

This section lists the basic design decisions of Rascal.
This information is interesting for programmers to be
able to decide whether or not they can understand and
use this language.

3.1 Procedures and control-flow

The core of Rascal is a normal programming language
with procedures, functions, and structured control-flow
with exceptions. You will find foreach loops, conditional
statements, switch blocks, etc. Their basic use is no
different from a language like C or Java, which allows
programmers to start with Rascal using their knowledge
of programming in general1.

However, these core control features do provide the
fundamental syntax and semantics for the kind of fea-
tures needed for meta programming algorithms in spe-

1This is opposed to our previous meta-programming system,
the ASF+SDF Meta-Environment [19], which was appreciated
most by programmers with a background in theoretical computer
science.

cific, like pattern matching, backtracking and traversal
over large data-structures (see below).

More advanced users will appreciate the generic and
higher-order features or Rascal as well as closures. Such
features help in creating reusable libraries of data-
structures and algorithms.

3.2 Immutable abstract and concrete data

From functional programming we borrowed that all data
is immutable. The kinds of (collections of) algorithms
and inter-mediate data-structures that go with interest-
ing software analyses and transformations are compli-
cated. Well known issues with side-effects and referen-
tial integrity in mutable data-structures are avoided in
Rascal. By not allowing one part of a program to affect
the data that another part is working on, we hope to
provide a safe environment to experiment, as well as an
environment to construct stable tools.

By concrete data we mean that Rascal allows to de-
fine the syntax of programming languages. It generates
a parser for any context-free grammar, allows to disam-
biguate the syntax using any information and provides
ways to match and transform parse trees. This is all
meant to allow analysis and transformation to be ex-
pressed at the level of abstraction of the programming
language that is analyzed. An expert in the object pro-
gramming language at hand (say Java), should be able
to read a Rascal program that manipulates programs in
that language (say, a Java refactoring tool) quite easily.

By abstract data we mean the basic data types, such
as integers and strings. Also, we provide algebraic data-
types, to construct hierarchical models of software and
sets and n-ary relations to construct graph-like models
of software. You should think of abstract syntax trees,
control-flow graphs, data-dependency graphs, etc. Ras-
cal provides a library of reusable tools that can analyze
and transform such models, and it is very common to
write highly specific code that manipulates these.

Most Rascal programs follow the “EASY paradigm”:
Extract, Analyze, SYnthesize. Source code is first
parsed, or tokenized, then basic facts are extracted and
a model or models of it are constructed using the data
constructs mentioned above. Then we search and query
this data to extend it with aggregated or derived results
and finally we traverse, substitute and expand the data
to synthesize a new result (Figure 2).

3.3 Search and query

Any data in Rascal can be searched using pattern
matching expressions that include:

• First-order constructor matching, as in term rewrit-
ing

2
354

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

Figure 2: The EASY paradigm [15], from black box sys-
tem, via internal models, to improved source code, met-
rics or visualizations, using Extraction, Analysis and
Synthesis primitives.

• List patterns (matching modulo associativity), and
set patterns (matching modulo associativity, com-
mutativity and idempotence).

• Path (deep) matching, like in XPath2.

• Negative matching and alternative matching

Such patterns can be used in any control flow construct,
like if-then-else and switch. In these constructs the pat-
terns control the decision which control path to take: if
and only if a pattern matches it returns true.

In the function definitions the patterns guide which
function body is executed (dynamic dispatch) — when
all parameter patterns match the function body is ex-
ecuted. In both cases patterns bind variables that can
be used in the body of the conditional construct or the
body of an overloaded function. These feature makes
Rascal as powerful as any term rewriting language, such
as ASF+SDF [9].

Backtracking is an essential property of patterns, to
allow searching in a large data-space. All of Rascal’s
control flow and dispatch constructs allow explicit con-
trol of backtracking behavior without having to write
boilerplate code.

2http://www.w3.org/TR/xpath

A different way of query is the manipulation of sets
and relations using calculus. Rascal provides the ba-
sic relational calculus operators as primitives as well
as list, set, and map comprehensions. This expression
languages allows programmers to start from text-book
explanations of software analyses (e.g. from [1]), and
gradually expand them to more specific or more ad-
vanced versions. The application of relational calculus is
a proven method in software reverse engineering [12, 3].

3.4 Traversal, substitution and expansion

In general purpose programming languages the recur-
sive traversal of complex heterogeneous data-structures
is hard work. There are design patterns, like the Visitor
design pattern, to guide such solutions, but it remains
a lot of boilerplate work to implement them. Rascal,
like other meta programming systems, automates the
traversal of any data (abstract syntax trees, relational
models) in a type safe manner using a control-flow state-
ment called “visit”. Visit allows the programmer to
travel to any part of a data-structure using a pattern to
match it. Then she may trigger some code, or substitute
the part by a new part.

To be able to synthesize new source code or new mod-
els Rascal provides string templates (php-like), concrete
syntax templates and the aforementioned comprehen-
sions. The string templates have an auto-indent fea-
ture, simply because generated code often needs to be
read by programmers. The concrete syntax templates
ensure that any code that is generated will be syntacti-
cally correct.

3.5 Modularity and extensibility

There is a strong need for modular and extensible in
meta programs: There are dialects of programming lan-
guages, variants of algorithms, layered models of rep-
resentation etc. To be able to manage such variation,
Rascal has a module system. Modules may depend on
each other or extend each other.

Inside these modules all data and function definitions
are extensible (concrete syntax, abstract data, and func-
tion definitions), by simply adding alternative defini-
tions. When modules extend each-other definitions can
also be removed or overridden.

The net result of these modularity features is that
tools written in Rascal can be written to be easily adapt-
able to deal with different dialects of Cobol, Java or C.

4 Example applications

4.1 Refactoring to use generics

Contrary to the current paper, in [14] we did try
and evaluate the fitness of Rascal, in this case for con-

3
355

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

structing refactoring tools. The experiment was to re-
construct an existing refactoring tool for Featherweight
Generic Java [14] in Rascal and to compare its im-
plementation to published language specifications and
pseudocode. The goal of the tool is to find uses of
generic classes (such as List<X>), which do not bind
the type parameters. Then, the surrounding code is an-
alyzed to figure out what the type parameter should be
and finally the code is changed to use that type.

The use of generics makes code safer (less bugs), but
the move from code that does not use generics to code
that does is costly and perhaps not worth the effort.
Constructing such a refactoring is therefore one of the
ways to lower cost-of-ownership of software products.

This prototype was a proof-of-concept that is now
being generalized and extended to cover interesting Java
refactoring tools.

4.2 Refactoring from visitor design pattern to inter-
preter design pattern

In this study we were interested to learn the implications
of a design choice: to use the interpreter design pattern,
or to use the visitor design pattern? The book on design
patterns [10] explains us why in general a design pattern
should be good, but not how to pick between several
patterns that appear to be good but in different ways.

We constructed a tool to transform a large Java pro-
gram, and remove most applications of Visitor to replace
them later by Interpreter. The tool is semi-automatic
and requires an extensive analysis of the existing system
to compute preconditions and locations of change.

The result of the study showed, counter-intuitively,
that for longer-lived projects the Visitor design pattern
is probably the safest bet if you want more maintain-
able software. This is surprising because conceptually
Visitor is quite a bit more complex than the Interpreter
design pattern.

4.3 A compiler for Oberon-0

We joined in a competition between several meta pro-
gramming systems3. The goal is to construct a highly
modular and full-fledged compiler for the Oberon-0 lan-
guage. Using Rascal we also “generated” a reasonably
feature full Eclipse IDE plugin for Oberon-0 including
syntax highlighting, reference resolving, outline, folding,
etc.

A team of 7 researchers worked on the compiler and
the IDE for approximately two weeks, each working on
a separate part to construct this exercise. The result is
indeed a modular implementation. What is interesting
to note here is that some of these parts are clearly dif-

3For the international workshop on Language Descriptions
Tools and Applications (LDTA 2011)

ferent in style, as they are written by programmers with
different backgrounds.

Compilers are not per sé the intended application do-
main of Rascal, but compilers do analysis and trans-
formation of code and models just as any other meta
programming application does.

4.4 Domain specific languages

Rascal is also used to construct code generators and
other meta tooling for domain specific languages. We
did not emphasize this in the current paper, as there is
other material on that aspect of Rascal4. Example do-
mains that have been covered are Digital Forensics [18]
and Computational Auditing. We also participated in
the Language Workbench Competition 2011, to con-
struct and IDE for a simple textual modeling DSL5.

4.5 Extracting domain concepts from source code

A question in the application of domain specific lan-
guages to software construction is: ”which language
should we make?” One answer lies in analyzing exist-
ing software to see which concepts are represented and
how they relate. Especially older and successful soft-
ware may be trusted to “cover a domain”. In this study
we used techniques from information retrieval to rank
and filter identifiers that occur in source code. The goal
is to separate the merely technical concepts from the
concepts that are relevant from the problem domain.

Rascal is used in this exercise to manipulate the mod-
els for the input and the output of a tool called Formal
Concept Analysis (FCA). FCA can be used to detect la-
tent (implicit) relationships. Using a number of heuris-
tics that should be indicators for domain concepts the
output of FCA is ranked and filtered to get high accu-
racy in domain concept retrieval. The results are pub-
lished in a masters thesis [16].

From these results, which produce the names of the
most important domain concepts rather accurately, we
now need to continue to identify the relations between
them. A fully automatically extracted domain model
would indeed be a good starting point for the domain
analysis for new domain specific languages.

4.6 The quality of method names

In this study the relation between the contents of
method bodies (i.e. procedures) and their name was
studied. First we extract facts about the bodies and
their names from the source code using Rascal. Then
we use Formal Concept Analysis again. After post-
processing the output of FCA, the results can be used

4Another paper was submitted to ICT.OPEN to highlight this
application area of Rascal.

5http://www.languageworkbenches.net

4
356

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

to estimate whether a name of method is “strange” as
compared to other methods which have similar bodies.

Even if the results of such a study are hard to validate
in-the-large, it is worth investigating the usefulness of
such a tool. Our results show promising precision in
detecting bad names. Bad names have shown to be
an important factor in misunderstanding source code,
which can lead to subtle and expensive bugs in complex
software products. The results will be published in a
master thesis by the end of 2011.

4.7 Connecting to an existing program analysis
framework

In [11] we described how Rascal can be used to create a
front-end and an IDE for a programming language that
is otherwise interpreted by another meta programming
framework.

Using Maude [6] and the K framework one can con-
struct program analyses in a modular and formal fash-
ion. Rascal is strong in parsing and extracting facts
from real programs. To be able to link existing tools
with Rascal instead of having to redo things in Rascal
is an important design consideration that trades purity
for pragmatism.

4.8 Analyzing traces using attribute grammars

We constructed a tool [8] that allows the specification
of attribute grammars to define assertions on Java call
traces. The tool processes the specifications and gen-
erates code to implement the assertions using ANTLR
and weaves in the appropriate calls to tracing code into
Java programs.

This prototype is a parser, aspect weaver, and code
generator in a few hundred lines of code, which shows
the diversity of applications and Rascal’s ability of inte-
grating different technical domains into a single appli-
cation.

4.9 A DSL for visualization

This DSL, called Figure, is actually a standard library
component of Rascal. Its intended use is to construct
software and metric visualizations and reports, that can
be composed modularly and browsed inter-actively. The
library is written partly in Rascal and partly in Java to
integrate into SWT and Eclipse.

4.10 Observations

From the above applications we noticed that some of
the goals have been reached, while others are still far
away.

• Master students learn basic Rascal in a day or less,
so it is accessible to programmers from a broad
range of backgrounds.

• Some programmers write in ten lines what oth-
ers write in hundreds. Rascal provides very high-
level abstractions for pattern matching, backtrack-
ing, traversal and search, but since it has general
primitives as well they can be ignored by the novice
programmer.

• Our initial implementation as an interpreter in Ras-
cal is flexible for maintenance, but is not efficient
enough. We need to invest in optimization and re-
implementation.

• Pseudocode of algorithms from text-books and aca-
demic publications can be expressed almost liter-
ally in Rascal, or at least just as short [14].

• Applications written in Rascal are surprisingly
short, typically a number of pages, as compared
to their counter-parts written in Java or C. Nev-
ertheless, we also observe that constructing Rascal
programs requires a comparable intellectual effort:
the problem you are approaching using Rascal does
not become easier to solve, but it is much easier to
oversee and to experiment with on this level of ab-
straction.

• We have experimented with a wide range of differ-
ent kinds of meta programs, which is a good sign.

5 Acknowledgements

Rascal was inspired by our study and use of
many other (open-source) meta programming systems:
ASF+SDF [9], Stratego [20], ELAN [4], Grok [12], Cro-
copat [3], RScript [13], Maude [6], TXL [7], DMS [2],
Refine [17], etc.

We also thank the many students of the Master Soft-
ware Engineering at Universiteit van Amsterdam, who
have applied Rascal in their course on Software Evo-
lution and in some of their master projects. Christian
Köppe [16] and Jouke Stoel have worked on the appli-
cations for name analysis and domain concept recovery.

Two important caveats in the application of Rascal
are now that it is slow in some applications and that its
type-checker has not been integrated. Nevertheless, we
consider the current implementation of Rascal to be of
enough quality for proof-of-concept kind of applications.

Rascal is open-source software. Its IDE makes use
of the Eclipse IMP [5] platform6. The source code
of Rascal itself has been accepted for contribution to
Eclipse.org in 2011.

6 Conclusion

This paper provided a motivation, an overview and
some showcases of Rascal. It is a programming language

6http://www.eclipse.org/imp

5
357

ASCI – IPA – SIKS tracks, ICT.OPEN, Veldhoven, November 14–15, 2011

to help in software engineering and software engineering
research. We hope to have given enough detail to help
deciding to investigate it further or not.

We are interested in running case studies and con-
structing tools that are specific to industrial, govern-
mental or academic software. Specifically internships
for analyzing, transforming or visualizing software sys-
tems are welcome. Please contact us if you are inter-
ested: http://www.rascal-mpl.org.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers.
Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] I. Baxter, P. Pidgeon, and M. Mehlich. DMS R©:
Program Transformations for Practical Scalable
Software Evolution. In Proc. ICSE’04, pages 625–
634. IEEE, 2004.

[3] D. Beyer. Relational programming with Croco-
Pat. In Proc. ICSE’06, pages 807–810. ACM Press,
2006.

[4] P. Borovanský, C. Kirchner, H. Kirchner, P.-E.
Moreau, and C. Ringeissen. An overview of ELAN.
In Claude Kirchner and Hélène Kirchner, editors,
International Workshop on Rewriting Logic and its
Applications, volume 15 of Electronic Notes in The-
oretical Computer Science. Elsevier, 1998.

[5] Ph. Charles, R.M. Fuhrer, S.M. Sutton, Jr.,
E. Duesterwald, and J. Vinju. Accelerating the
creation of customized, language-specific IDEs in
Eclipse. SIGPLAN Not., 44:191–206, October
2009.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-
Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and programming in rewriting logic.
Theoretical Computer Science, 2001.

[7] J.R. Cordy. Excerpts from the TXL cookbook.
In Post-Proc. GTTSE’09, volume 6491 of LNCS,
pages 27–91. Springer, 2011.

[8] S. de Gouw, F. de Boer, and J.J. Vinju. Proto-
typing a tool environment for run-time assertion
checking in jml with communication histories. In
12th Workshop on Formal Techniques for Java-like
Programs, 2010.

[9] A. van Deursen, J. Heering, and P. Klint, editors.
Language Prototyping: An Algebraic Specification
Approach, volume 5 of AMAST Series in Comput-
ing. World Scientific, 1996.

[10] E. Gamma, R. Helm, R. E. Johnson, and J. Vlis-
sides. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[11] M. Hills, P. Klint, and J.J. Vinju. RLSRunner:
Linking Rascal with K for Program Analysis. In
Proceedings of the 4th International Conference on
Software Language Engineering (SLE’11), Lecture
Notes in Computer Science. Springer-Verlag, 2011.
To Appear.

[12] R.C. Holt. Grokking Software Architecture. In
Proc. WCRE’08, pages 5–14. IEEE, 2008.

[13] P. Klint. Using Rscript for software analysis. In
Working Session on Query Technologies and Ap-
plications for Program Comprehension (QTAPC
2008), 2008.

[14] P. Klint, T. van der Storm, and J.J. Vinju. RAS-
CAL: A Domain Specific Language for Source Code
Analysis and Manipulation. In Proc. SCAM’09,
pages 168–177. IEEE, 2009.

[15] P. Klint, T. van der Storm, and J.J. Vinju. EASY
Meta-programming with Rascal. In Post-Proc.
GTTSE’09, volume 6491 of LNCS, pages 222–289.
Springer, 2011.

[16] C. Köppe. Automated domain knowledge recovery
from source code using information retrieval tech-
niques. Master’s thesis, Universiteit van Amster-
dam, August 2011.

[17] Reasoning. Refine User’s Guide. Reasoning Sys-
tems Incorporated, 1994.

[18] J. van den Bos and T. van der Storm. Bringing
domain-specific languages to digital forensics. In
Proceedings of the 33rd International Conference
on Software Engineering (ICSE’11), pages 671–
680, 2011.

[19] M.G.J. van den Brand, M. Bruntink, G.R.
Economopoulos, H.A. de Jong, P. Klint,
T. Kooiker, T. van der Storm, and J.J. Vinju.
Using The Meta-environment for Maintenance and
Renovation. In Proc. CSMR’07, pages 331–332.
IEEE, 2007.

[20] E. Visser. Program transformation with Strat-
ego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016
of Lecture Notes in Computer Science, pages 216–
238. Spinger-Verlag, June 2004.

6
358

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 305.67, 19.53 Width 32.49 Height 18.57 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 305.6729 19.5295 32.4902 18.5658

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0b
 Quite Imposing Plus 3
 1

 1
 6
 5
 6

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 285.78, 16.88 Width 27.85 Height 18.57 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 285.7809 16.8772 27.8487 18.5658

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0b
 Quite Imposing Plus 3
 1

 1
 6
 5
 6

 1

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 12.0 point
 Origin: bottom centre
 Offset: horizontal 18.00 points, vertical 18.00 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 1
 0

 BC

 1
 353
 TR
 1
 0
 424
 316

 0
 1
 12.0000

 Both
 3
 AllDoc
 44

 CurrentAVDoc

 18.0000
 18.0000

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0b
 Quite Imposing Plus 3
 1

 0
 6
 5
 6

 1

 HistoryList_V1
 qi2base

