View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CW!I's Institutional Repository

Meerkat Parsers
General Top-down Parser Combinator Library

Anastasia Izmaylova'!, Ali Afroozeh!, Tijs van der Storm!

Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
anastasia.izmaylova@cwi.nl, ali.afroozeh@cwi.nl, storm@cwi.nl

Parser combinators are higher-order functions defined in terms of grammar con-
structs such as sequence and alternation. In this view of parsing, compared
to traditional parser generators, grammars are represented as executable code.
Parser combinators provide several benefits over parser generators. First, di-
rectly executable grammars eliminate the parser generation phase, making parser
combinators ideal for fast language prototyping and experimentation. Second,
integration with the host programming language enables easy composition and
extension.

Parser combinators have been popular in the Haskell community, most no-
tably the Parsec [I] combinator library. In recent years, with the popularity
of Scala as a mixed functional and object-oriented language, the Scala parser
combinator library [2] have gained attention as an attractive way of writing em-
bedded parsers. All existing parser combinator libraries are based on recursive-
descent parsing, as a result they all inherit its shortcomings. Naive backtracking
techniques that extend recursive-descent parsing have exponential worst-case
performance, and they cannot directly support left-recursion.

In this talk, we present Meerkat parsers, our Scala-based general top-down
parser combinators library that provides the flexibility and direct implementa-
tion of plain recursive descent parsing with the expressiveness and performance
guarantees of general parsing. Meerkat parsers are able to deal with any gram-
mar, including the ones with (indirect) left recursion, and produce a shared
packed parse forest (SPPF) in O(n?) time and space. The mechanism to deal
with left-recursion is based on Johnson’s continuation passing-style recogniz-
ers [3] and we produce Scott and Johnstone’s binarized SPPFs [4/5]. As such it
combines best of both worlds: the flexibility of parser combinator style parsing,
and the expressive power of state-of-the-art general parsing algorithms.

The focus of this talk is on introducing the Meerkat parsers as a parser combi-
nator library. More specifically we talk about the following features of Meerkat
parsers.

Syntax

Basic combinators

EBNF combinators

— Left recursive rules

Simple Grammars

— The Specification Grammar of Java


https://core.ac.uk/display/301639067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cwi.nl/sen1

Extensibility

— Disambiguation filters
— Data-dependent parsing

Performance results

— Parsing highly ambiguous grammars
— Parsing Java

References

1. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the real
world. Technical report (2001)

2. Moors, A., Piessens, F., Odersky, M.: Parser combinators in scala. Technical report,
Katholieke Universiteit Leuven (2008)

3. Johnson, M.: Memoization in top-down parsing. Comput. Linguist. 21(3) (Septem-
ber 1995) 405-417

4. Scott, E., Johnstone, A., Economopoulos, R.: BRNGLR: a cubic Tomita-style GLR
parsing algorithm. Acta informatica 44(6) (2007) 427-461

5. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Program-
ming 78(10) (October 2013) 1828-1844



	Meerkat ParsersGeneral Top-down Parser Combinator Library

