
K 2011

KRunner: Linking Rascal with K

Mark Hills1 Paul Klint2 Jurgen J. Vinju3

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

INRIA Lille Nord Europe
Lille, France

Using the K framework [6,15], it is possible to define the semantics of
programming languages and language calculii. This includes the semantics
of a number of “real-world” or paradigmatic languages and language subsets,
such as Verilog [12], KOOL [8], SILF [6,9], and KERNELC [14], a core of
the C language. These definitions have been used for a number of purposes,
including to provide semantics-based interpreters, program analysis tools, and
verification environments such as matching logic [13].

Like most semantics frameworks, K focuses on assigning semantics to the
abstract syntax of a program, not to its concrete syntax. Because of this,
the current K tool suite [5,1] provides very little support for language front-
ends, instead assuming that programs will be given in (or transformed into)
a format easily consumed by Maude [4]. Front-ends are then created on an
ad-hoc basis, using a number of different lexers, parsers, and pretty-printers.
Graphical front-ends are also not directly supported, meaning that the typical
user of a definition either uses Maude directly, uses some other console-based
tool (such as an execution script), or uses a custom graphical front-end. This
leads to a potentially poor user experience where, for instance, the user needs
to work backwards from the given error messages, potentially through the
generated version of the program, back to her original program, in order to
find the actual source of an error message. This also leads to difficulties in
distributing language definitions, which may require a number of tools to be

1 Email: Mark.Hills@cwi.nl
2 Email: Paul.Klint@cwi.nl
3 Email: Jurgen.Vinju@cwi.nl



Hills, Klint, and Vinju

bundled with the definition or installed separately.

The solution explored in this abstract is to provide the language front-
end and user interface integration using the Rascal meta-programming lan-
guage [11,10]. Rascal provides a number of features needed to build front-ends
that can work with K language specifications. For lexing and parsing, Rascal
provides a grammar notation which can be used to generate scannerless GLL-
based parsers. Generated parse trees can then be manipulated using matching
over concrete syntax patterns and standard (not parsing-specific) features of
Rascal, including structure-shy traversals, string interpolations, rich built-in
data types (e.g., sets, relations, lists, and tuples), pattern matching, user-
defined algebraic data types, and higher-order functions. Rascal integration
with the Eclipse IDE via IMP [3,2] provides an IDE for source programs in
the defined language as well as interactive features for running and analyzing
programs and for displaying results (output values, discovered errors, etc).

This work is based on the RLSRunner tool [7], which focused on providing
support for K (or earlier, K-style) definitions running directly in Maude. The
tool described here is similar to RLSRunner, but is intended to instead work
directly with K language definitions, instead of only working with definitions
already converted into Maude format. This should make it easier to take
advantage of current work on K, including (potentially) execution engines
outside of Maude.

References

[1] http://code.google.com/p/k-framework/.

[2] P. Charles, R. M. Fuhrer, S. M. S. Jr., E. Duesterwald, and J. J. Vinju. Accelerating the
Creation of Customized, Language-Specific IDEs in Eclipse. In Proceedings of OOPSLA’09,
pages 191–206. ACM, 2009.

[3] P. Charles, R. M. Fuhrer, and S. M. Sutton. IMP: A Meta-Tooling Platform for Creating
Language-Specific IDEs in Eclipse. In Proceedings of ASE’07, pages 485–488. ACM Press,
2007.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott, editors.
All About Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, volume 4350 of LNCS. Springer-Verlag, 2007.

[5] T. F. Şerbănuţă and G. Roşu. K-Maude: A Rewriting Based Tool for Semantics of
Programming Languages. In Proceedings of WRLA 2010, volume 6381 of LNCS, pages 104–
122. Springer-Verlag, 2010.

[6] M. Hills, T. F. Şerbănuţă, and G. Roşu. A Rewrite Framework for Language Definitions and
for Generation of Efficient Interpreters. In Proceedings of WRLA’06, volume 176(4) of ENTCS,
pages 215–231. Elsevier, 2007.

[7] M. Hills, P. Klint, and J. Vinju. RLSRunner: Linking Rascal with K for Program Analysis. In
Proceedings of SLE’11, LNCS. Springer-Verlag, 2011. To Appear.

[8] M. Hills and G. Roşu. KOOL: An Application of Rewriting Logic to Language Prototyping and
Analysis. In Proceedings of RTA’07, volume 4533 of LNCS, pages 246–256. Springer-Verlag,
2007.

2



Hills, Klint, and Vinju

[9] M. Hills and G. Roşu. A Rewriting Logic Semantics Approach To Modular Program Analysis.
In Proceedings of RTA’10, volume 6 of Leibniz International Proceedings in Informatics, pages
151 – 160. Schloss Dagstuhl - Leibniz Center of Informatics, 2010.

[10] P. Klint, T. van der Storm, and J. Vinju. RASCAL: A Domain Specific Language for Source
Code Analysis and Manipulation. In Proceedings of SCAM’09, pages 168–177. IEEE, 2009.

[11] P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with Rascal. In Post-
Proceedings of GTTSE’09, volume 6491 of LNCS, pages 222–289. Springer-Verlag, 2011.

[12] P. O. Meredith, M. Katelman, J. Meseguer, and G. Roşu. A formal executable semantics of
verilog. In Proceedings of MEMOCODE 2010, pages 179–188. IEEE Computer Society, 2010.

[13] G. Roşu, C. Ellison, and W. Schulte. Matching Logic: An Alternative to Hoare/Floyd Logic.
In Proceedings of AMAST’10, volume 6486 of LNCS, pages 142–162. Springer-Verlag, 2011.

[14] G. Roşu, W. Schulte, and T. F. Şerbănuţă. Runtime Verification of C Memory Safety. In
Proceedings of RV 2009, volume 5779 of LNCS, pages 132–151. Springer-Verlag, 2009.

[15] G. Roşu and T. Şerbănuţă. An Overview of the K Semantic Framework. Journal of Logic and
Algebraic Programming, 79(6):397–434, 2010.

3


