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Abstract

The hash trie data structure is a common part in standard collection
libraries of JVM programming languages such as Clojure and
Scala. It enables fast immutable implementations of maps, sets,
and vectors, but it requires considerably more memory than an
equivalent array-based data structure. This hinders the scalability
of functional programs and the further adoption of this otherwise
attractive style of programming.

In this paper we present a product family of hash tries. We gen-
erate Java source code to specialize them using knowledge of JVM
object memory layout. The number of possible specializations is
exponential. The optimization challenge is thus to find a minimal set
of variants which lead to a maximal loss in memory footprint on any
given data. Using a set of experiments we measured the distribution
of internal tree node sizes in hash tries. We used the results as a
guidance to decide which variants of the family to generate and
which variants should be left to the generic implementation.

A preliminary validating experiment on the implementation of
sets and maps shows that this technique leads to a median decrease
of 55% in memory footprint for maps (and 78% for sets), while
still maintaining comparable performance. Our combination of data
analysis and code specialization proved to be effective.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code generation, Optimization; E.1 [Data
Structures]: Trees

General Terms Experimentation, Measurement, Performance

Keywords Code generation, Specialization, Hash trie, Persistent
data structure, Immutability, Performance, Memory optimization

1. Introduction

Trie data structures have been studied since more than 55 years,
yet major performance improvements in memory usage are still
possible using generative programming. Tries are used to implement
efficient persistent set and map data structures [5, 9]. They were
originally invented by Briandais [4] and named a year later by
Fredkin [6]. Persistency —in this context— means a functional,
immutable data structure that is incrementally built by referencing
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its previous states; the previous state is what is persistent. In 2001
Bagwell [1] described a Hash Array Mapped Trie (HAMT), a space-
efficient trie that encodes common hash code prefixes of elements,
while preserving an upper bound in O(log32(n)) on lookup, insert,
and delete operations. Bagwell’s contribution is a corner stone for
immutable collection libraries of modern programming languages
that run on the Java Virtual Machine, such as Clojure and Scala.

The hash trie design space. Firstly, the current versions of the
aforementioned collections libraries can be considered to be quite
optimized, yet we need better memory behavior from a HAMT
implementation for the sake of scalability. This is one reason
why we explored generative programming for specializing the
implementation of a HAMT’s internal nodes. Secondly there exist
a number of very similar uses of HAMT implementation strategies
for different kinds of data structures which cannot be modeled using
Java generic programming techniques without loss of efficiency.

Hash tries exist in many variations in standard collection libraries
of programming languages. These are the variation points:

• Update semantics: Hash tries can have immutable semantics,
mutable semantics, or staged mutability.

• Processing semantics: sequentially, concurrent, or in parallel.

• Data type semantics: sets (element 7→ boolean), maps
(key 7→ value), and vectors (index 7→ element).

• Shape of internal nodes: Hash trie nodes are n-ary, where n
commonly defaults to 32.

The Scala collection library is split by the following dimensions:
mutable/immutable and sequential/parallel/concurrent. Within these
categories there exist distinct data types for set/map/vector seman-
tics. The Clojure library contains one implementation for hash trie-
based maps and one for hash trie-based vectors, while sets are imple-
mented as wrappers for maps (key 7→ boolean). Wrapping enables
reuse, but at the cost of memory efficiency. These choices illustrate
the (common) problem with the family: any manual decomposi-
tion of one dimension will make variation in the other dimension
impractical or even infeasible.

In other words, the hash trie data structure seems like an ideal
case for generative programming in the traditional sense [2, 3, 8].
We expect to both specialize for better efficiency and to factor
the common code for ease-of-maintenance. On the other hand,
especially the shape of the internal nodes makes the size of the
product family very large. Generating the code, loading it, “jitting”
it and keeping it in the CPU’s caches would all be hard and lead
to performance penalty. Instead, we should find a way to limit
the number of specializations necessary to achieve better memory
behavior without too much losing run-time performance. This is the
technical challenge of this work; code generation is an enabler here,
but it requires careful design to benefit from it.
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Figure 1. Inserting numbers into a trie (array indices in top-left).

Contributions

• Statistical analysis of the shape and distribution of hash trie
nodes in practice. This evidence guides the selection of product
family members to specialize.

• A hash trie specialization layout that reduces the amount of
possible specializations from exponential to quadratic. Incorpo-
rating results from our analyses, we show how to further restrict
the amount of useful specializations.

• Early experimental evidence that the above techniques do de-
crease memory usage of immutable sets by 78% and maps by
55%, while maintaining comparable performance.

The resulting hash trie family that we can generate appears to
significantly outperform the current state-of-the-art implementations
in terms of memory consumption.

2. Introduction into Hash Tries

A general trie is a lookup structure for finite strings that looks and
acts like a finite automaton (DFA) without any loops: the transitions
are the elements of the strings, the internal nodes encode prefix
sharing, and the accept nodes may point to values associated with
the strings. In a hash trie, the strings are the bits of a hash-code of
the elements stored in the trie. We use lazily created hash tries, in
the sense that internal nodes are only created when two hash-code
prefixes would collide, leading to internal nodes with values and
references to further “states” stored along.

For example, we sequentially insert objects with the following
32-bit hash-codes into a set: 32, 2, 4098, 34. Figure 1 visualizes the
(intermediate) hash trie states as these values are inserted. A hash
trie distinguishes elements by their (binary) hash-code prefixes1:

32 : . . . 00000 00001 000002 = . . . 0 1 032

2 : . . . 00000 00000 000102 = . . . 0 0 232

4098 : . . . 00100 00000 000102 = . . . 4 0 232

34 : . . . 00000 00001 000102 = . . . 0 1 232

We have hash tries with a maximal arity of 32 (n-ary trees, with
n = 32). To select the path sequence that indicates where a value
is inserted, we first separate a hash code in chunks of 5 bits (values
ranging between 0 and 31).

We expand the tree structure until every prefix can be unambigu-
ously stored. In our example: number 32 is inserted at the root node;
number 2 as well (because they do not share a common prefix).
Number 4098 shares the prefix path →2→0 with number 2, conse-
quently it is placed unambiguously on level 3. Number 32 shares the

1 We use “prefix” here for consistency with the literature, but we are looking
at the least significant bits first so on a little endian PC its the postfix.

1 abstract class TrieSet implements java.util.Set {
2 TrieNode root; int size;
3 class TrieNode {
4 int bitmap; Object[] contentAndSubTries;
5 }
6 }

Listing 1. Skeleton of a hash trie-based set data structure in Java.

1 abstract class TrieSet implements java.util.Set {
2 TrieNode root; int size;
3

4 interface TrieNode { ... }
5 ...
6 class NodeNode extends TrieNode {
7 byte pos1; TrieNode nodeAtPos1;
8 byte pos2; TrieNode nodeAtPos2;
9 }

10 class ElementNode extends TrieNode {
11 byte pos1; Object keyAtPos1;
12 byte pos2; TrieNode nodeAtPos2;
13 }
14 class NodeElement extends TrieNode {
15 byte pos1; TrieNode nodeAtPos1;
16 byte pos2; Object keyAtPos2;
17 }
18 class ElementElement extends TrieNode {
19 byte pos1; Object keyAtPos1;
20 byte pos2; Object keyAtPos2;
21 }
22 ...
23 }

Listing 2. Skeleton of a specialized hash trie-based set in Java.

prefix path →2 with numbers 2 and 4098, but can be differentiated
from both on level 2.

Listing 1 shows a class skeleton of a hash trie implementation for
a set data structure, where the container class, the TrieSet contains
size information and a reference to the root node of the trie. The
nested TrieNode class encodes the possible n = 32 sub-tries as a
compacted sparse array; the 32-bit integer bitmap signals which
of the branches are used (for value or child nodes). The size of the
array is equal to the number of 1’s in the bitmap.

The contentAndSubTries array is of type Object to either
store set elements or references to sub-tries. This compaction
technique obviates extra leaf nodes by pulling them up one level.
Listing 1 closely resembles Clojure’s hash trie implementations.

Both the bitmap and the array are candidates for specialization
because they introduce overhead. Here, all possible specializations
would lead to thousands of classes. Which classes do we generate
for maximum effect on footprint with minimal loss on efficiency?

3. Hash Trie Node Arity Frequency

To answer that question we measure the distribution of node arities.
Specialization should focus on the most frequent node arities. The
distribution of arities is governed only by the hash-codes. We can
assume a uniform hash distribution, because if the hash-codes in
a real application do not approximate a uniform distribution, the
trie’s efficiency would degenerate anyway due to collisions, and our
optimizations would be less relevant.

To generate representative data sets, we use the Java pseudo-
random number generator. First, we generated 4096 integers be-
tween 0–8M, which we used as target sizes for set data structures.2

For each size we then generated a random sequence of integers to
be inserted. Note that in Java the hash-code for an integer equals

2 Bagwell’s data set for evaluation included maps up to 8M. For the sake of
comparability, we benchmarked the same data points [1].
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Table 1. Frequencies and cumulative summed frequencies of tree nodes by arity.

Arity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

% 1.44 63.14 14.26 3.27 1.24 0.94 0.93 0.96 1.00 1.05 1.11 1.17 1.23 1.28 1.32 1.33∑
% 1.44 64.58 78.84 82.10 83.34 84.29 85.21 86.17 87.17 88.22 89.32 90.49 91.72 92.99 94.31 95.65

Arity 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

% 1.28 1.09 0.75 0.40 0.15 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.61∑
% 96.93 98.01 98.76 99.16 99.32 99.36 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.38 99.39 100

its value. The results in Table 1 show how a uniform distribution of
hash-codes does lead to a non-uniform distribution in node arities.
Similar distributions appear every time we vary the sizes of the sets.

It can be seen that the smaller arities (2–4) account for more than
80% of all nodes. In sum, all node combinations with arities 0–4
account for 82% of all nodes, arities 0–8 for 86%, and arities 0–12
for 90.5%. After this there is a long tail of sizes with a an almost
uniform distribution to make up for the last 9.5%.

This data suggests the number of specializations can be reduced
to 31, while still achieving an impact on 82% of the nodes. Yet we
still need to answer two questions. First, how do the impact numbers
translate to real memory savings? Second, should we go beyond
arities 0–4 with specializing?

4. Modeling and Measuring Memory

Measuring JVM memory consumption precisely takes quite some
time and energy. To optimize our experiments, instead we accurately
model the memory consumption of hash tries, calibrate the model
once, and then continue to optimize using the predictive model. We
model these two properties:

1. the footprint of trie nodes, following JVM’s memory alignment.

2. the overhead of trie nodes compared to real data stored in nodes.

In Java every object is 8-byte memory aligned, allowing for
memory compaction techniques [7]. Consequently, if an object’s
header together with the size of all fields do not sum to a multiple of
eight, your object will be aligned to the nearest 8-byte boundary and
consume more memory than strictly necessary. Note that Oracle’s
HotSpot JVM uses 12-byte object headers in 32-bit mode and 16-
byte headers in 64-bit mode. References consume four bytes in a 32-
bit JVM, and eight bytes in a 64-bit JVM. Based on this knowledge
we model the footprint (fp) of hash trie nodes in formulas.

fp
32
(n) = ⌈(12 + 4 + 4)/8⌉ ∗ 8 + ⌈(12 + 4 + 4 ∗ n)/8⌉ ∗ 8

fp
64
(n) = ⌈(16 + 4 + 8)/8⌉ ∗ 8 + ⌈(16 + 4 + 8 ∗ n)/8⌉ ∗ 8

The parameter n is the arity of the node. The first part of each
formula calculates the footprint of a tree node which consists of
the class header, the size of the integer bitmap and the reference to
the array. The second part of the formula describes the layout of an
array, containing an integer length field with value n, and n slots for
references.

We validated the correctness of both formulas on JVM 1.7.0u55,
on OS X 10.9.3. To measure the exact footprints of internal trie
nodes, we use memory-measurer.3

In order to put the numbers obtained from the formulas into
perspective, we put them into relation to the theoretical minimum
amount of data that has to be stored per node, i.e. the number of
references to data/sub-tries. Figure 2 shows the overhead per refer-
ence a node stores, for each possible arity in 32-bits.4 It is visible

3 https://code.google.com/p/memory-measurer/
4 The picture is comparable for 64-bit mode.
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Figure 2. Memory overhead per node arity in 32-bit mode.

that the sparse-array implementation (cf. TreeNode in Listing 1)
has a significant overhead at small arities and negligible overhead
for the larger arities.

This analysis illustrates how trie nodes usually have low arity
with a high overhead. Due to the uniformity of hash-codes, there
are low chances of sharing prefixes if there are few elements. When
the trie fills up, more and more prefixes are shared, lowering the
overhead per element. This is another strong argument in favor of
only specializing the classes in the lower ranges.5

Our goal is to achieve a worst-case per-reference overhead of 16
bytes in 32-bit mode and 24 bytes in 64-bit mode, even for small
numbers of elements. For tries, where nodes are represented as
objects, this seems a reasonable target since an object with a single
reference to it would consume 12 + 4 = 16 or 16 + 8 = 24 bytes
in 32-bit and 64-bit mode, respectively.

5. Specialized Low Arity Trie Nodes

Listing 2 contains a Java source code skeleton that shows all
specializations for arity 2.6 Instead of a single bitmap we now store
the 5-bit chunk of the hash-code for each branch in a byte and the
reference to either a child or value node in a field.

The following formula models the footprints for these class
layouts, yielding our target 24 bytes for size 2 (which was 48 before):

fp
s

32
(n) = ⌈(12 + 1 ∗ n+ 4 ∗ n)/8⌉ ∗ 8

fp
s

64
(n) = ⌈(16 + 1 ∗ n+ 8 ∗ n)/8⌉ ∗ 8

Given the previous analysis of arity distribution, we save 50% of
the memory on at least 80% of the nodes. Figure 2 shows how the
overhead drops radically for the smaller factors.

The generated code contains specialized implementations of
insert and delete methods, such that we scale incrementally to
different specialized classes and eventually escalate into the generic
implementation. This is the reason that the fields are ordered and
we generated, for example, both ElementNode and NodeElement.
The number of specializations necessary for each arity is the number
of permutations: 31 for 4, 511 for 8 and 8191 for 12.

5 An optimal, uniform hash distribution results in the worst memory perfor-

mance of hash tries, on the JVM.
6 We used Rascal’s auto-indenting recursive templates for code generation.
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Figure 3. Relative footprints of 32-bit sets and maps compared
against our generic implementation (i.e., the zero line).
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Figure 4. Relative run-times for lookup and insert in maps
compared against our generic implementation (i.e., the zero line).

6. Not Generating Permutations

We know we may save about half of the memory, but at the cost of
generating too many classes. A quick experiment showed that this
generates too much of an efficiency overhead. Many of the permuta-
tion classes we generate have the exact same types and numbers of
fields. If we only generate classes for unique combinations of values
and internal nodes, then the number of classes would go down to
quadratic, or more precisely to

∑

n

i=1

(

2+i−1

i

)

classes.
We only store how for a certain arity the node splits into content

elements and sub-tries. This yields 15 classes (0–4), 45 classes (0–8),
and 91 classes (0–12), and all possible specializations would yield
561 classes (0–32). For example, in Listing 2 classes ElementNode
and NodeElement would collapse to a single class.

We achieve this complexity reduction by dropping the total
ordering of elements within in a specialized node. The cost of this
optimization is that we need to dynamically sort the entries when
we escalate from a specialized representation to the generic trie
node. This only happens for nodes with low numbers of elements,
necessarily, so the run-time overhead is expected to be very low,
especially given that it only happens at the boundary.

7. Evaluation

Here we evaluate memory and run-time efficiency. The goal is to
position the memory behavior of the resulting tries to the current
Clojure and Scala collections, and we report the effect of specializa-
tion. The costs of specialization in terms of run-time overhead are
also measured.

We used the following versions: clojure-1.6.0.jar, scala-library-
2.10.4.jar, and a research branch of pdb.values-0.4.1.jar, our cur-
rent library. We compared Clojure’s PersistentHash{Set,Map},
Scala’s immutable Hash{Set,Map} and our generic set and map
against specialized versions with arities up to 4, 8 and 12.

Memory We used the same experimental setup for evaluating the
space savings, as we used in Section 3 for obtaining frequency
statistics. We used the first 256 pseudo-randomly generated target
sizes and performed a single experiment for every version. Figure 3
shows the results obtained for 32-bit. Our generic trie-map uses
less memory than the Scala and Clojure implementations, but the
specialized versions still improve on it up to 55% for maps and 78%
for sets. The 64-bit measurements are the same, always 5% below
the 32-bit results, but exhibit the same magnitude of savings.

Run-time Experiments were run with a 64-bit JVM, version
1.7.0u55, running on an Intel Core i7 3720QM CPU under Mac
OS X 10.9.3. We used Caliper7 to run all measurements. We report
the median of the 15 last repetitions of each microbenchmark, after
Caliper has warmed up the JVM.

For microbenchmarking we reused the earlier setup to generate
random sets and maps. For lookup and insert we tested with a

7 https://code.google.com/p/caliper/

sequence of 8 randomly generated examples. The results in Figure 4
show how insertion time is not affected much by the postponed
sorting and that our implementation performs the same as the Scala
and Clojure implementations. For lookup the Scala code is 20%
better than our generic implementation, and our specializations cost
between 20% and 40% run-time overhead due to the unordered
storage of node elements. We still perform faster lookups than the
Clojure implementation though.

Specialization range 0–8 yields best performance characteristics
while keeping the number of classes necessary low. It performs
better than range 0–4 and equally well as range 0–12.

8. Conclusion

We reduced the memory footprint of hash trie-based set and map
implementations by 55–78% by (one-time) generating specializa-
tions of hash trie nodes at the cost of a 40% slow-down in lookup
efficiency and no loss in efficiency of insertion.

A side-effect was the generation of a product family for the entire
multi-dimensional design space for hash trie implementations of
collections. The presented library is currently used in the run-time
of the Rascal meta-programming language.

As future work we intend to study and evaluate a number of
additional optimizations to the current design, mainly focusing
on run-time efficiency. This would also include a more in-depth
evaluation based on wider and more realistic benchmarks.
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