
Static, Lightweight Includes Resolution for PHP

Mark Hills1

1East Carolina University
Greenville, NC, USA

Paul Klint2, and Jurgen Vinju2,3

2Centrum Wiskunde & Informatica, Amsterdam,
The Netherlands

3INRIA Lille Nord Europe, Lille, France

ABSTRACT
Dynamic languages include a number of features that are
challenging to model properly in static analysis tools. In
PHP, one of these features is the include expression, where
an arbitrary expression provides the path of the file to include
at runtime. In this paper we present two complementary
analyses for statically resolving PHP includes, one that works
at the level of individual PHP files and one targeting PHP
programs, possibly consisting of multiple scripts. To evaluate
the effectiveness of these analyses we have applied the first
to a corpus of 20 open-source systems, totaling more than
4.5 million lines of PHP, and the second to a number of
programs from a subset of these systems. Our results show
that, in many cases, includes can be either resolved to a
specific file or a small subset of possible files, enabling better
IDE features and more advanced program analysis tools for
PHP.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program Analysis; D.3.3 [Pro-
gramming Languages]: Language Constructs and Fea-
tures

General Terms
Languages, Measurement, Experimentation

Keywords
Static analysis, dynamic language features, PHP

1. INTRODUCTION
PHP,1 invented by Rasmus Lerdorf in 1994, is an imper-

ative, object-oriented language focused on server-side ap-
plication development. It is now one of the most popular

1http://www.php.net

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM ...$15.00.

languages, as of April 2014 ranking 7th on the TIOBE pro-
gramming community index,2 used by 81.9 percent of all
websites whose server-side language can be determined,3 and
ranking as the 4th most popular language on GitHub by
repositories created in 2013.4 PHP is dynamically typed,
with a single-inheritance class model (including interfaces)
and a number of standard built-in types (e.g., strings, in-
tegers, floats). Type correctness is judged based on duck
typing, allowing values to be used whenever they can behave
like values of the expected type. For instance, adding the
strings "3" and "4" yields the number 7, while concate-
nating the numbers 3 and 4 yields the string "34". Along
with dynamic types, PHP includes a number of dynamic
language features also found in other dynamic languages
such as Ruby and Python, including an eval expression to
run dynamically-built code and special methods (referred to
as magic methods) that handle accesses of object fields and
uses of methods that are either not defined or not visible.

Although the popularity of PHP should have resulted in
a plethora of powerful development tools, so far this has
not been the case. We believe this is because the same
dynamic features that make PHP so flexible also make it
challenging for static analysis. This hinders the creation of
the static analyses needed as the foundation on which these
programmer tools are built, and also causes challenges for
static analysis tools used for tasks such as security analysis,
a topic we touch on briefly in Section 6.

In this paper, we focus on one specific example of a dynamic
feature which is problematic for static analysis: the PHP file
inclusion mechanism. In PHP, like in many other dynamic
languages, file inclusion is performed dynamically—the file to
be included is specified using an arbitrary expression which,
at runtime, evaluates to a file path. The file at this path
is then loaded, with some parts of the file brought in as
top-level definitions (e.g., classes and functions) and other
parts inserted directly at the point of the call and executed.
This provides an obvious challenge for static analysis—it may
not be possible to even determine the source code that needs
to be analyzed until runtime.

Is it really the case, though, that these dynamic includes
are truly dynamic, or is it possible to resolve many of them

2http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html
3http://w3techs.com/technologies/details/
pl-php/all/all
4The query for this is based on http://adambard.com/
blog/top-github-languages-for-2013-so-far/,
but including the entire year.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301638963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.php.net
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://w3techs.com/technologies/details/pl-php/all/all
http://w3techs.com/technologies/details/pl-php/all/all
http://adambard.com/blog/top-github-languages-for-2013-so-far/
http://adambard.com/blog/top-github-languages-for-2013-so-far/

Find Include
File

Path starts with
directory characters?

File Missing

File Found

Lookup File
Using Directory

Info

File found using
include path?

File found using
including script path?

File found using
current working

directory?

File located?

No

Yes

Yes

No

Yes Yes Yes

No No

No

Figure 1: The PHP File Inclusion Process.

statically? In prior work [6], we showed that the latter is
actually the case: many apparently dynamic includes are
in practice static. String building expressions used in these
includes are not often used in a truly dynamic fashion, where
the file that is included depends on a dynamic value. Instead
they are used for the mundane task of navigating the local
file system towards a single file, taking advantage of system
wide constants and functions for string concatenation and
directory navigation.

The main contributions presented in this paper are as
follows. First, taking advantage of the findings of our prior
work, we have developed two includes resolution algorithms.
The first analysis, dubbed FLRES, looks at a specific PHP file
in isolation, quickly determining which files could be included
by each include expression in that file. This analysis works
with any PHP file in the system, and is intended to provide
information for more precise analysis as well as support
for IDEs. The second analysis, dubbed PGRES, looks at a
specific PHP program—a page loaded from a server, or a
command-line program—and attempts to resolve all includes
for this program, even those that are loaded transitively by
already included files. This analysis is more precise, since
the context of the initial include expression is sometimes
required for correct resolution, and also models the possibility
that the file cannot be determined statically, such as in cases
where includes are used to load plugins.

To the best of our knowledge, these are the first published
algorithms for the static resolution of dynamic includes in
PHP. Determining the actual file or files that can be included
at runtime allows static analysis tools to get access to more
of the program source that will be executed, opening up
possibilities for more powerful analysis techniques to be
applied [18] and enabling more powerful developer tools,
including tools for finding errors, performing code refactoring,
detecting security violations, and supporting standard IDE
services such as “Jump to definition”.

Second, to ensure these algorithms works in practice, we
have validated them empirically. FLRES has been validated
against a corpus of 20 open-source systems, made up of 32,682
source files and 4,593,476 lines of code, while PGRES has been
validated against a number of programs from these systems.
This corpus includes a number of the most used PHP systems,
including well-known systems such as WordPress, Joomla,

and MediaWiki as well as frameworks such as Symfony.
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss PHP includes in more depth, describ-
ing the method used by PHP to resolve includes at run-
time, showing examples of both static and dynamic in-
cludes, and describing which cases we focus on in this pa-
per. Following this, in Section 3 we present FLRES, with
PGRES presented in Section 4. To show that the analy-
ses work in practice, Section 5 evaluates the effectiveness
of these algorithms using the corpus mentioned above. Fi-
nally, Section 6 describes related work, and Section 7 con-
cludes. All software used in this paper, including the cor-
pus used for the validation, is available for download at
https://github.com/cwi-swat/php-analysis.

2. OVERVIEW
Here we explain how includes work in PHP, the technical

context of our work, and the necessity of creating two distinct
algorithms for resolving includes.

2.1 PHP Include Semantics
In PHP, include expressions are used to include the

contents of one file into another at runtime. We list here what
the PHP interpreter normally does dynamically, and what
our two algorithms approximate statically in a conservative
fashion. The include expression takes a single operand; this
operand is expected to evaluate to a string containing the file
name, possibly including some information about the path
to the file. This operand can either be given statically, as a
string literal, or dynamically, using an arbitrary expression
that yields a string.

Once the operand is evaluated, the include mechanism
associates the string result (referred to below just as the file
name, although it may include path information as well) to an
actual file (referred to here as the target file), present either
in the system or in installed libraries. This file resolution
is normally done by the PHP interpreter according to the
dynamic process depicted in Figure 1. If the file name starts
with “directory characters”, e.g., \, /, ., or .., the target
file is looked up using this directory information. File names
beginning with \ or / are absolute paths, looked up from the
root (of the site for websites, or the file system for command-
line tools), while names beginning with . or .. are relative

https://github.com/cwi-swat/php-analysis

1 // 1. /includes/normal/Utf8Test.php, line 30
2 require_once ’UtfNormalDefines.php’;
3

4 // 2. /includes/UserMailer.php, line 240
5 require_once(’Mail.php’);
6

7 // 3. /maintenance/showStats.php, line 31
8 require_once(dirname(__FILE__)
9 . ’/Maintenance.php’);

10

11 // 4. /tests/jasmine/spec_makers/makeJqueryMsgSpec.php,
12 // lines 17 and 19
13 $maintenanceDir = dirname(dirname(dirname(dirname(
14 dirname(__FILE__))))).’/maintenance’;
15 require("$maintenanceDir/Maintenance.php");
16

17 // 5. From /includes/Skin.php, lines 151 to 154
18 $deps = "{$wgStyleDirectory}/{$skinName}.deps.php";
19 if (file_exists($deps)) {
20 include_once($deps);
21 }

Figure 2: Includes in MediaWiki 1.19.1.

paths, looked up starting in the directory containing the
script currently being executed.

Otherwise, the target file is computed using the following
process. First, the file name is looked up starting from each
directory given as part of the include path. The lookup stops
when the target file is found, even if other, later entries in the
include path have not been tried. The include path can hold
either absolute or relative paths—although it is discouraged,
the current directory . is often given in the include path.
Next, the current working directory, which may be different
from the directory containing the executing script, is checked
for the file. Finally, an attempt is made to find the target
file by looking it up in the directory containing the executing
script. If the file is not found in any of these locations, or
if the lookup based on absolute or relative paths discussed
above fails to find the file, the process ends in the“file missing”
node, meaning the include cannot be performed.

In summary, the semantics of dynamic includes are affected
by the given file name, the include path, and the location
and working directory of the script, and the file system is
searched in a well-defined order for the file being included.

When the include expression is evaluated, any functions,
classes, interfaces, and traits in the target file are included
into the current global scope. The other contents of the
included file are executed as part of evaluating the expression,
and inherit the current execution environment, meaning
they run as if they were inserted at the spot of the original
include. A return statement evaluated in the included
code will immediately return back to the point of the original
include expression, skipping the rest of the code that would
normally be evaluated. The value of an include expression
is FALSE in case of failure, and either 1 or the explicitly
returned value in the case of success.

If the file to be included does not exist, a standard include
expression will issue a warning, while a variant, require,
will produce a fatal error. If the file to be included has
already been included, it will be included again unless the
once variants—include_once and require_once—are
used. These variants ensure that the contents of a file are
included at most once. In the remainder of this paper we do
not bother to distinguish between these variants since they
do not influence the algorithm.

Several example include expressions from MediaWiki
1.19.1 are shown in Figure 2. In the first example, the in-

cluded file, UtfNormalDefines.php, is given statically,
and is found in the same directory as the file with the
include expression, Utf8Test.php. Since no path in-
formation is given, this file will be found by looking in the
include path (if one is given) and then in the directory of the
including script, by which point it will definitely be found.
In the second example, the included file, Mail.php, is also
given statically. However, Mail.php is not part of Media-
Wiki, but is instead part of the PEAR Mail package, and is
found by looking on the include path.

We classify the remaining three examples, and others like
them, as dynamic includes. In the third example, __FILE__
is a so-called “magic constant”; __FILE__ evaluates to the
full path, including file name, of the file which uses it.
dirname is a standard library function which returns the
parent directory of a file. Taken together, this will evaluate to
the absolute path of the /maintenance directory, with the
string concatenation operation (i.e., the dot operation) then
adding the file Maintenance.php to the end of the path.
The fourth example provides an alternate way of looking up
the same file: the starting directory is more deeply nested,
so more calls to dirname are used, with the result assigned
to variable $maintenanceDir. This is then used inside a
string built using string interpolation (the variable is replaced
by its value) and the name of the Maintenance.php file.
Finally, in the fifth example, the location of the file is built as
a string expression with two variables, one for the MediaWiki
style directory and one for the name of the “skin” used to
customize site appearance. The resulting file path is saved
into a variable; this variable is checked to see if the file exists
and, if so, the file is included. Of these three dynamic include
examples, we are currently able to resolve the first two to
unique target files using the techniques described below. The
last is truly dynamic, and cannot be resolved to a single
file—the best that can be done is to partially resolve it to
those files ending in deps.php.

2.2 The PHP AiR framework
To statically resolve such dynamic includes we analyze

PHP using Rascal as part of our ongoing work on PHP AiR,
a framework for PHP Analysis in Rascal [5]. Rascal [10] is
a meta-programming language for source code analysis and
transformation that uses a familiar Java-like syntax and is
based on immutable data (trees, relations, sets), term rewrit-
ing, and relational calculus primitives. All analysis performed
in this paper was performed using Rascal code, ensuring that
the results are reproducible and checkable. We also used
Rascal, and its string templating and IO facilities, to gener-
ate the LATEX for the tables in this paper that document the
corpus and the analysis results. All code is available online
at https://github.com/cwi-swat/php-analysis.

We are parsing PHP scripts using our fork5 of an open-
source PHP parser6, which itself is based on the grammar
used inside the Zend Engine, the scripting engine for PHP.
This parser generates ASTs as terms formed over Rascal’s
algebraic datatypes.

2.3 The Need for Two Algorithms
In this paper we present two includes resolution algorithms,

one for individual files and one for programs. The first,

5https://github.com/cwi-swat/PHP-Parser
6https://github.com/nikic/PHP-Parser/

https://github.com/cwi-swat/php-analysis
https://github.com/cwi-swat/PHP-Parser
https://github.com/nikic/PHP-Parser/

Input : sys, a PHP system, a mapping from file locations to abstract syntax trees
Input : toResolve, a location indicating the AST in sys to be analyzed
Input : baseLoc, a location indicating the root of system sys
Input : libs, a set of locations of known library includes used by sys
Output : A relation res, from the location of each include expression to the location(s) of possibly included files

1 iinfo ← include info cache for sys
2 ast ← the AST for file toResolve in sys
3 includes ← a set containing each include expression in ast
4 for each i ∈ includes do
5 i← normalizeExpr (replaceConstants (i,iinfo))
6 iloc← the location of i
7 ip← the operand used in i indicating the file to include
8 if ip is a literal string starting with / then
9 if sys contains a file at baseloc + ip then

10 add iloc × (baseloc + ip) to res
11 remove i from include, continue with next i

12 end

13 end
14 for each file f returned by matchIncludes (sys,i,baseLoc,libs) do
15 add iloc × (baseloc + ip) to res
16 end

17 end
Algorithm 1: PHP File-Level Includes Resolution Analysis (FLRES)

FLRES, for individual files, computes files that could be in-
cluded directly by a given file, and does not consider the
context of the include—the directory of the original script
being executed, the current working directory, or the in-
clude path. The second, PGRES, for programs, is “context-
sensitive”, considering all this information in order to more
precisely resolve the includes in the original file as well as
those brought in as part of the includes process.

Figure 3 illustrates one typical scenario where this dis-
tinction is critical. Here, two files, /A.php (for brevity,
just A below) and /admin/B.php (B), both include file
/includes/C.php (C). C includes file D.php (D), but
does not provide any path information. When looking at C
in isolation—without knowing it is being included by another
file—the analysis should indicate that either the file /D.php
(D1) or the file /admin/D.php (D2) could be loaded by the
include. Note that here this is not an over-approximation,
as each file could be loaded by this include expression.

The program-level analysis, PGRES, will instead look indi-
vidually at both A and B, two programs—scripts that can
be invoked directly—and will determine which files could be
included when either is executed. When C is included in A,
the code contained in C will be executed in the context of
A. When the include expression that includes D is exe-
cuted, this means it will not run in the context of C—in the
/includes directory—but will instead run in the context of
A. Since D1 is in the same directory as A it will be included
(following the solid line), and the ambiguity over which ver-
sion of D to include disappears. The same happens with
B—when C is included, the code in C runs in the context of
B, with D2 found in the same directory as B (the dashed
line), again making the file to be selected unambiguous.

The file-level includes analysis, FLRES, is described next
in Section 3. The program-level includes analysis, PGRES, is
described later in Section 4.

/A.php

...
include '/includes/C.php';
...

/admin/B.php

...
include '/includes/C.php';
...

/includes/C.php

...
include 'D.php';
...

/D.php

/admin/D.php

Figure 3: An Ambiguous File-Level Include.

3. FILE-LEVEL INCLUDES RESOLUTION
The FLRES algorithm (see Algorithm 1) takes as input

a representation of the PHP system under analysis (sys);
the location of the PHP file to analyze (toResolve); the root
location of the system under analysis (baseLoc); and in libs
the locations of all standard libraries used by sys. The sys
representation is a map from file names to ASTs for each file
(see Section 2). We need to assume that libs is a correct and
complete list of library dependencies; libs can be empty if
the system does not use any external libraries (those that
come with PHP, such as the standard MySQL libraries, do
not need to be explicitly included to use). iinfo is a cache,
similar to that maintained by IDEs, containing information
about the system under analysis, such as the locations of
defined constants. Currently extracted using Rascal, we
plan to integrate this with Eclipse to allow it to be updated
incrementally as files are edited.

The algorithm collects all instances of include expressions
in the AST for a script. It then performs two main steps to
find the files that could be included by each. First, the call
to replaceConstants replaces each constant in the include
expression by the value of the constant, under the conditions
that the constant is defined using a literal value, or an ex-
pression that can statically be converted to a literal value,
and that all definitions of the constant in sys are identical.

Second, the call to normalizeExpr performs a number of

Constant Name Replacement Value

FILE Absolute path including file name
DIR Absolute path, without file name
CLASS Name of the enclosing class
METHOD Name of the enclosing method
FUNCTION Name of the enclosing function
NAMESPACE Name of the enclosing namespace
TRAIT Name of the enclosing trait

Table 1: Magic Constants in PHP.

simplifications, including simulating the effects of common
functions for working with strings and directory names, re-
placing magic constants with their values (shown in Table 1),
and converting concatenations of string literals into a single
literal. This simplification process continues until no more
changes to the expression being simplified are found. A com-
mon example of how magic constants are used in include
expressions in combination with builtin functions is shown
in Figure 2 in the third example, where __FILE__ is used
in conjunction with the dirname function. This algebraic
simplification process is run repeatedly to take advantage of
new opportunities for replacements, until no more constant
expressions can be collapsed into literal expressions.

At this point, if the expression indicating what to include
(given as ip) is a literal string starting with / (or \), an
attempt is made to find the file in sys by adding ip to the
end of baseloc. If this file is found, we consider the include to
be resolved and add this mapping to res, which is a relation
from include locations to the locations of the files that could
be included at each location. We also skip the rest of this
iteration of the loop. If ip is not a literal string starting
with /, or if the file lookup failed, FLRES instead attempts
to use regular-expression matching to find possible matches,
converting ip into a regular expression and returning all files
in sys and in libs that match. In some cases, where ip is an
arbitrary expression, this could be all the files in both. A
pair, consisting of the location of i (given as iloc) end each
returned file f , is then added into res.

Soundness: FLRES provides a sound over-approximation
of the files that could be included by each include expression
in a file under two conditions. The first condition is that the
files given in sys and libs are actually all the files that could
be included. If, for some reason, additional libraries are being
used but are not included in libs, these files will be missed.
Files included using eval are also not detected (although
we are unaware of any code in the corpus that actually
does this). The second condition is that the constants used
in an include expression are actually visible at that point
in the code. For instance, when given an include path like
ROOT . ’myfile.php’, if there is a unique constant ROOT
defined as ’/base/’ FLRES assumes this constant is being
used. However, if a constant is not visible, the name of the
constant is instead treated as a string literal, meaning the
above should attempt to include file ROOTmyfile.php. We
are unaware of any cases where this specific scenario occurs
in practice (it is more likely that the include would just fail),
but it is a theoretical possibility.

In summary, FLRES is a fast, lightweight algorithm that
is based on straightforward algebraic simplification and con-
stant propagation. In Section 5 we will evaluate how accu-

rately it performs on real PHP systems.

4. PROGRAM-LEVEL RESOLUTION
The PGRES algorithm (see Algorithm 2) receives six inputs.

The first four are the same inputs given to FLRES. The
fifth parameter, ipath, represents the include path for PHP,
and is given as a list of locations. To remain sound, the
algorithm makes few assumptions about the include path;
PGRES assumes that the given include path is accurate, but
additional entries may be present if language features that
can alter the include path are reachable, something checked
in the body of the algorithm. The sixth argument, flres, is
the output of FLRES, which serves as a starting point for
PGRES. Part of this information is the include expression,
with the replaceConstants and normalizeExpr steps
already applied, meaning that this does not need to be done
again here. The iinfo on line 1 is the same cached system
information used in FLRES.

On line 2, the initial include graph, igraph is constructed,
using the already-computed information from FLRES in flres.
Starting from toResolve, a node is created for each script in
sys and each library in libs that is reachable based on the
(over-approximation) of what is included by each include
expression as given in flres. Edges are then added to mirror
this relation. Each edge includes the include expression
that induced it, again based on the already-simplified expres-
sion stored in flres, and also tracks the (unique) source node
and 0 or more target nodes.7

On line 3, setsIP is computed. This set contains the
locations of all reachable scripts that may set the PHP include
path or the PHP working directory at runtime. The include
path can be changed by calling the set_include_path
function or the ini_set function (although, for caveats, see
the discussion of soundness below) and supplying the new
include path. In both cases, the include path is changed
for the remainder of the script. In the case of ini_set, to
maintain soundness, we assume the call could set the include
path unless a string literal is used to name a different setting.
The working directory is modified by calling chdir. Once
this is done, line 4 then annotates all the nodes of the include
graph with information on the related script, specifically
which constants it defines and whether it sets the include
path or changes the working directory (i.e., is in setsIP).

After this, the loop on lines 5 through 18 continues while
the edge set of the include graph changes. In the first step,
on line 6, the include expressions on each edge are simplified
according to what is currently known about the includes
relation. This is similar to the simplification steps described
for FLRES, but also takes advantage of information about
which constant definitions are actually reachable. The same
constant can be given different values in different scripts,
which does occur in practice, but it may be the case that
only one definition of the constant is actually reachable.
This allows additional constant replacements beyond what
is possible in FLRES for the situations when the constants
are not unique throughout the entire system.

The inner loop, on lines 7 through 17, then iterates over
each edge e which does not already have a unique target file,
with the goal of updating the target node sets to account for

7This means we do not create one edge for each possible
source/target combination, which reduces the number of
edges and simplifies the algorithm.

Input : sys, a PHP system, a mapping from file locations to abstract syntax trees
Input : toResolve, a location indicating the AST in sys to be analyzed
Input : baseLoc, a location indicating the root of system sys
Input : libs, a set of locations of known library includes used by sys
Input : ipath, the include path, a list of locations
Input : flres, file-level resolve information from FLRES
Output : A relation res, from the location of each include expression to the location(s) of possibly included files

1 iinfo ← include info cache for sys
2 igraph ← build initial include graph based on FLRES results
3 setsIP ← reachable scripts that set the include path or change the working directory
4 igraph ← annotateNodes (iinfo,setsIP)
5 while the set of edges in the include graph changes do
6 igraph ← simplifyEdges (igraph,iinfo)
7 for e a non-unique edge do
8 i← the include expression for edge e
9 ip← the operand used in i indicating the file to include

10 if ip is a literal string then
11 changesIP ← a file that sets the include path or changes the working directory is reachable
12 e ← calculateLoc (toResolve,baseLoc,ipath,changesIP)

13 end
14 for each file f returned by matchIncludes (sys,i,baseLoc,libs) do
15 add iloc × (baseloc + ip) to res
16 end

17 end

18 end
19 res ← the relation, from include expressions to files, induced by igraph

Algorithm 2: PHP Program-Level Includes Resolution Analysis (PGRES)

any new information. If the file name given as an operand to
the include expression (assigned to ip) is a literal string,
calculateLoc is called to compute the actual include file
represented by the location.
calculateLoc identifies the file to be included by walking

a tree model of the files in sys, following the procedure laid
out in Figure 1. This also provides an increase in precision
over FLRES, since, unlike FLRES, PGRES knows the include
path and the directory of the executing script. Before the
call to calculateLoc, changesIP is first set to true if a
script that sets the include path or changes the working
directory is reachable in the include graph. If changesIP is
true, it will “short circuit” the process shown in Figure 1—
since it then may be the case that any directory is on the
include path, or any directory is the current directory, if no
directory characters are found at the start of the file name
calculateLoc will fail, leaving the information about the
target files for this include unchanged.

If, after this, edge e can still point to multiple nodes, the
same matching process used in FLRES is used here as well.
This is repeated since, as the number of reachable constants
decreases, more constant replacements may become available;
this allows the file names used in the matching process to
improve, making the match more precise over time.

On line 19, once no more changes occur in the include
graph, the result, res, is computed as the relation, from
include expressions to included files, induced by igraph.

Soundness: PGRES provides a sound over-approximation
of the files that could be included by each include expression
in a program under several common conditions. The first
two are identical to those for FLRES, and are discussed in
Section 3. Additionally, PGRES also assumes that the include

path and the working directory are not changed in obfuscated
ways, e.g., by invoking ini_set using a variable function or
inside eval. If this is done, it could cause the wrong file to
be found during the lookup process in calculateLoc. We
believe this would be highly unusual, though, and are not
aware of any real PHP code that actually does this.

5. EVALUATION
In this section we present the results of our evaluation of

the two includes resolution algorithms—FLRES and PGRES—
described, respectively, in Sections 3 and 4. First, we describe
the systems used in the evaluation. Then, the two algorithms
are evaluated separately. First FLRES, the file level resolution
algorithm, is evaluated on the entire corpus to measure its
capability of resolving includes to small sets of possible PHP
files. Then we evaluate the improvement of PGRES over
FLRES by applying it to a subset of the corpus focusing
just on actual PHP programs—scripts that can be executed
directly from a web server or the command line.

5.1 Corpus
As part of our prior work on PHP [6], we assembled a

corpus of 19 large open-source PHP systems, basing our
choice on popularity rankings provided by Ohloh8, a site
that tracks open-source projects. We have since extended
this with an additional system—Magento, a popular online
retail system—and updated all systems in the corpus to more
recent versions if available. The chosen systems are shown in
Table 2. Systems were generally selected just based on the
Ohloh ranking, although in some cases we skipped systems
if we already had several, more popular systems of the same

8http://www.ohloh.net/tags/php

http://www.ohloh.net/tags/php

System Version PHP Release Date File Count SLOC Description

CakePHP 2.4.4 5.2.8 12/24/13 661 148,335 Application Framework

CodeIgniter 2.1.4 5.1.6 7/8/13 147 24,382 Application Framework

Doctrine ORM 2.3.3 5.3.3 5/11/13 609 49,126 Object-Relational Mapping

Drupal 7.24 5.2.5 11/20/13 274 89,266 CMS

Gallery 3.0.9 5.2.3 6/28/13 505 39,087 Photo Management

Joomla 3.2.1 5.3.1 12/18/13 2,117 221,208 CMS

Kohana 3.3.1 5.3.3 9/1/13 468 29,257 Application Framework

Magento 1.8.1.0 5.2.13 12/12/13 8,086 632,924 Online Retail

MediaWiki 1.22.0 5.3.2 12/6/13 1,869 1,037,124 Wiki

Moodle 2.6 5.3.3 11/18/13 6,553 852,075 Online Learning

osCommerce 2.3.3.4 4.0.0 9/26/13 569 46,804 Online Retail

PEAR 1.9.4 4.4.0 7/7/11 74 31,257 Component Framework

phpBB 3.0.12 4.3.3 9/28/13 270 149,361 Bulletin Board

phpMyAdmin 4.1.3 5.3.0 12/31/13 455 138,842 Database Administration

SilverStripe 3.1.2 5.3.2 10/22/13 572 92,216 CMS

Smarty 3.1.16 5.2.0 12/17/13 126 15,904 Template Engine

Squirrel Mail 1.4.22 4.1.0 7/12/11 276 36,082 Webmail

Symfony 2.4.0 5.3.3 12/3/13 4,023 253,536 Application Framework

WordPress 3.8.1 5.2.4 1/23/14 482 132,877 Blog

The Zend Framework 1.12.3 5.2.11 3/13/13 4,546 573,813 Application Framework

The PHP versions listed above in column PHP are the minimum required versions. The File Count includes files with a .php
or an .inc extension. In total there are 20 systems consisting of 32,682 files with 4,593,476 total lines of source.

Table 2: The PHP Corpus.

type in the corpus. We used popularity, instead of actual
number of downloads or installed sites, since we have no way
to accurately compute these figures. In total, the corpus
consists of 32,682 PHP source files with 4,593,476 lines of
PHP source (counted using the cloc9 tool). The systems in
this corpus were used during development of the includes
resolution analysis, both as a test-bed, to check the results of
the analysis, and as a source of usage patterns that a realistic
analysis would need to handle.

5.2 Evaluating FLRES
FLRES is evaluated here based on the following questions:

(a) “How many includes in real PHP code can be resolved to
a small set of target files?”, (b) “How small are these sets?”
and (c) “How fast does the analysis usually run?”. Smaller
target file sets mean the algorithm is more precise, while a
faster run time means it is suitable for use in an IDE.

In terms of recall and precision, we know the algorithm
to have 100% recall since it is sound under assumptions
that hold within the corpus. Precision could be defined
per resolved include as 1/numberOfPossibleFiles, under the
assumption that only one specific file would be included at
run-time. However, such assumption is not reasonable since
some includes could indeed be designed to resolve to several
files. We therefore simply report the number of computed
candidates for each include.

5.2.1 Method
To evaluate the effectiveness of the FLRES algorithm, we

have applied it to all the PHP files in the corpus shown in

9http://cloc.sourceforge.net

Table 2, using a Rascal script to run the analysis and allow
for reproducibility. We use Rascal to gather the information
seen in Table 3. All include expressions are matched just
by matching any include expression node in the AST, while
dynamic includes are defined, for matching purposes, as any
include expression with an operand other than a string literal
(strings built using interpolation appear as so-called encapsed
strings instead of string literals).

Per PHP system in the corpus, we measure how many
include statements there are, how many of those have paths
built dynamically at runtime, which of the includes we can
resolve to a single unique file, to how many candidates an
include points after resolution, and how many can not be
resolved at all. A strong reduction of provided includes
(especially dynamic includes) to unique files, or at least a low
amount of left-over candidates, indicates success. Contrary, if
FLRES would not work, this method would show insignificant
amounts of resolved includes or high average left-over non-
determinism. Intuitively, we expected the larger part of
includes to be resolved by FLRES, i.e. > 80%.

5.2.2 Threats to Validity
We note the following threats to validity in our evaluation

of FLRES:

1. We focused mainly on large, well-maintained software
systems. It may be the case that these systems are
more careful, and consistent, in how they use includes
than other systems. However, we do not believe that
this is an issue: uses of dynamic includes vary widely
in the systems we have looked at, and the corpus con-
tains a broad selection of software from many different

http://cloc.sourceforge.net

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

Table 3: Results of running FLRES on the corpus.

domains.

2. We do not try to account for cases where part of one
system is used in another, which could skew our results.
This happens in Magento, for instance, which uses part
of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.
Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.

Figure 4 shows an overview of the running times per file
for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis
In many of the systems the number of unique includes

is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,

●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●
●●●●●●●
●●●●●●●●
●●●●●
●●●●
●
●
●●

●●

5
50

50
0

50
00

50
00

0

tim
e

(m
s)

, l
og

 s
ca

le

Figure 4: Boxplot detailing run-time in ms of FLRES
for all files in the corpus.

performance is also good. While we are investigating the
outliers to further improve performance, most files can be
analyzed in 5 to 50 ms.

There are several reasons that an include may not evaluate
to a Unique include, or may even evaluate to Any. First,
as was shown in Figure 3, in some cases the file possibly
included by the given include expression isn’t unique, at least
when the context isn’t known. Second, in some cases the
include relies on a constant which is given different values in
different files. The analysis then has to take account of the
inclusion relation between files to ensure the correct constant
is used. The PGRES algorithm takes account of both of these
limitations in FLRES, allowing it to improve the precision of
the analysis and give fewer possible files per include. Third,
in some cases a stronger analysis, such as a string analysis,
is needed. This is the case in phpBB, which uses variables
in every include expression. Finally, some of the includes
are specifically designed to support plugin architectures, and
use very general include expressions to facilitate this. It may
be possible for the user to annotate the expression somehow
to provide additional information, but in general it is not
possible for any static analysis to determine the possible files
to be included in this scenario.

5.3 Evaluating PGRES
PGRES is evaluated focusing on the following question: (a)

“How much improvement does the algorithm produce in the
size of the sets of candidates over FLRES?”. Again, smaller
candidate sets indicate a more precise algorithm, and can
also improve the precision of other analyses using the results
of PGRES. The definitions of recall and precision used here
are the same as for FLRES, given above.

5.3.1 Method
The method used to evaluate PGRES is similar to that used

for FLRES, except for the choice of files to analyze. Since
PGRES is targeted at PHP programs, only files that could
be directly invoked have been chosen. We have limited our
efforts to programs from the following systems: osCommerce,
WordPress, MediaWiki, phpMyAdmin, and CakePHP.

5.3.2 Threats to validity
Our evaluation of PGRES has the same threats to va-

lidity as FLRES, described above, but with the soundness

assumptions for PGRES described in Section 4. Most of these
soundness assumptions (e.g., setting the include path inside
eval) are very unlikely—in this case, eval is very rarely
used, and we have not seen this scenario in real code.

A threat unique to PGRES is that it may be the case that
what we identify as a program is actually not, but is instead
an include used in other files. Identifying which files can
be directly invoked, versus which can be included in other
files, is not trivial—the most obvious solution, to use files
that cannot be included by other files, would assume the
analysis we are implementing. Instead, this requires a deep
knowledge of each individual system, one of the reasons we
have restricted the number of systems evaluated using PGRES.
In the case where we have inadvertently selected an include
file, PGRES may resolve includes incorrectly, either missing
target files that should be present or giving incorrect target
files. Since PGRES uses the results from FLRES as a starting
point, PGRES will never return a set of candidates larger
than FLRES. When applying PGRES as a first analysis step
enabling another, say static taint analysis, we propose that
the top level files would be given as a manual configuration
parameter.

5.3.3 Results
PGRES was executed on a total of 408 programs: 137 from

MediaWiki, 91 from WordPress, 90 from phpMyAdmin, 88
from osCommerce, and 2 from CakePHP (which is a frame-
work, but includes a small sample application). PGRES was
not able to improve upon the results of FLRES for either
MediaWiki or WordPress, but improvements were seen with
the other three applications. The numbers below are com-
puted by looking at all includes identified as being reachable
by PGRES for a specific program, then, for each include, com-
puting the number of candidates returned by both FLRES
and PGRES. PGRES is more precise in those cases where
more include expressions have smaller candidate sets.

• In the case of phpMyAdmin, summing across all pro-
grams analyzed, PGRES was able to reduce the total
number of includes categorized as Any from 188 to 89.
PGRES was also able to reduce the number with a can-
didate set of 4 from 178 to 89, and of 2 from 267 to
178, while increasing the number with a unique match
from 73,425 to 73,692.

• In the case of CakePHP, across the 2 programs analyzed,
PGRES was able to reduce the total number of includes
with a candidate set of 6 from 20 to 0, of 4 from 2 to
0, and of 2 from 10 to 6, while increasing the number
with a unique match from 108 to 134.

• In the case of osCommerce, summing across all pro-
grams analyzed, PGRES was able to reduce the total
number of includes with a candidate set of 10 from
1232 to 0; of 9 from 704 to 0; of 8 from 176 to 0; of 7
from 88 to 0; of 6 from 1496 to 88; of 5 from 616 to
88; of 4 from 440 to 264; of 3 from 1848 to 88; and of 2
from 42,944 to 8,100. The number of includes with a
unique match went from 7,832 to 48,748.

The median execution time of PGRES over the 408 analyzed
programs was 17.483 seconds and the average was 20.962
seconds, with some programs analyzed almost immediately
and one taking 52.209 seconds.10

10A more detailed performance analysis will be included in

5.3.4 Analysis
The results of the analysis show that PGRES is quite effec-

tive specifically in those cases where contextual information
about the script is important, especially when the directory
of the including script or the values of reachable (versus
globally uniquely defined) constants determine which files
can be imported. In situations where this is not the case,
PGRES does not improve on the results computed by FLRES.
In both MediaWiki and WordPress, the includes that cannot
be further resolved are generally to support system exten-
sions (e.g., the final example in Figure 2, which supports
installable “skins” that can be selected by the user as part
of his/her preferences), with file names given in terms of
global variables, method parameters, method results, and
object fields, based on data from the site configuration or the
database. In some cases a stronger analysis might be able
to further reduce the target file sets, but one lesson learned
from this evaluation is that the chance of success may be low.
Since PGRES is slower than FLRES, it seems not suitable for
interactive use in an IDE setting. Instead PGRES would be
applied as part of other program analysis tools which require
higher accuracy.

6. RELATED WORK
The inability to resolve includes has been a challenge for

creating realistic PHP analysis tools. For instance, Huang et
al’s WebSSARI system [7] does not handle dynamic includes
at all, leading to a need to manually “resolve” the includes
and manually merge the included code. Jovanovic et al.’s
Pixy [9, 8] is able to resolve some dynamic includes, but this
resolution mechanism appears to fail in practice [2]. The
analysis used by Pixy for resolving dynamic includes appears
to not perform path matching as is done in our algorithm,
and also appears to assume the values of constants are known
in advance, instead of being dependent on which definition
of each constant is actually reachable based on file inclusion.
Finally, since Pixy only supports PHP 4, it does not handle
new PHP features, such as class constants, that can be used
in include path expressions.

Wassermann et al. [16, 17], extending earlier work by Mi-
namide [12], model string values and string operations in
PHP programs using context-free grammars and language
transducers, respectively. Although their analysis was fo-
cused on preventing injection attacks and cross-site scripting
vulnerabilities, they apparently also used their string analysis
to resolve dynamic includes, including using a path matching
technique which seems similar to ours. Unfortunately their
tool appears to no longer be available, making it challenging
to compare their results with ours.

Biggar [1], in his work on the phc compiler, looked at a
large corpus of 581 PHP code packages downloaded from
SourceForge, totaling 42, 523 files with 8, 130, 837 lines of
code (including blank lines and comments). He found fewer
dynamic includes in his dataset than we have in ours—only
15% of the includes in his corpus are dynamic. This may be
just a difference of classification—we consider any include
to be dynamic that has a non-literal operand, while Biggar
also considers include expressions built using string literals,
concatenation, and constants to be static (we do not for
the reason mentioned above—constant definitions are not
globally unique through the entire system). Zhao et al. [18],

the final version.

in their work on the Facebook HipHop compiler, instead
impose a requirement that all includes are statically known
at compile time, eliminating many of the legitimate uses
we have found for this technique (for instance, to support
installable plugins). The algorithm presented here would
loosen this requirement to allow includes that are static in
practice, while still allowing the flexibility of building the file
name to be included using common string-building operations
and reachable constant definitions.

Looking at other dynamic scripting languages with similar
features, Richards et al. [15] used trace analysis to examine
how the dynamic features of JavaScript are used in prac-
tice, specifically investigating whether the scenarios assumed
by static analysis tools (e.g., limited use of eval, limited
deletion of fields, use of functions that matches the provided
function signatures) are accurate. In a more focused study
over a larger corpus, Richards et al. [14] analyzed runtime
traces to find uses of eval; as part of this work, the authors
categorized these uses into a number of patterns. Meawad
et al. [11] then used these results to create a tool, Evalorizer,
that can be used to remove many uses of eval found in
JavaScript code. Although aimed at eliminating uses of
eval, not dynamic includes, this work has a goal similar to
ours.

This is also the case with the work of Furr et al. [4], who
used profiling of dynamic Ruby features, in conjunction with
provided test cases, to determine how the dynamic features
of a program are used in practice. They discovered that
these features are generally used in ways that are almost
static, allowing them to replace these dynamic features with
static versions that are then amenable to static type infer-
ence in a system such as DRuby [3]. A similar approach was
taken by Mulder [13] for PHP, where profiling information
was used to replace occurrences of call_user_func and
call_user_func_array, used to dynamically call func-
tions and methods by name, with actual calls to these func-
tions and methods.

7. CONCLUSIONS
PHP’s include expressions are an example of a dynamic

feature that has traditionally made static analysis of PHP
challenging. In this work we presented two algorithms, FLRES
and PGRES, for resolving include expressions at the level of
individual files and PHP programs, respectively. Evaluating
FLRES over a corpus of more than 4.5 million lines of PHP
code and more than 32,000 files, we showed that FLRES is
effective at producing small sets of candidate files for many
include expressions, and generally runs fast enough to be
used in PHP IDEs.
PGRES, evaluated over more than 400 PHP programs—

scripts designed to be executed directly—shows significant
improvements on the results of FLRES in some cases, with
little to no improvement in others. PGRES can be applied
when accuracy is more important than efficiency, for example
when analyzing the security of PHP programs.

In future work we plan to make use of both algorithms
in our ongoing work on the PHP AiR framework for PHP
program analysis. Finally, we plan to continue ongoing work
on integrating PHP analysis with the Eclipse IDE, with
the goal of providing IDE support to support developers in
developing, understanding, and refactoring large PHP code
bases.

8. REFERENCES
[1] P. Biggar. Design and Implementation of an

Ahead-of-Time Compiler for PHP. PhD thesis, Trinity
College Dublin, April 2010.

[2] N. L. de Poel. Automated Security Review of PHP
Web Applications with Static Code Analysis. Master’s
thesis, University of Groningen, 2010.

[3] M. Furr, J. An, J. S. Foster, and M. W. Hicks. Static
Type Inference for Ruby. In Proceedings of SAC’09,
pages 1859–1866. ACM, 2009.

[4] M. Furr, J. hoon (David) An, and J. S. Foster.
Profile-Guided Static Typing for Dynamic Scripting
Languages. In Proceedings of OOPSLA’09, pages
283–300. ACM, 2009.

[5] M. Hills and P. Klint. PHP AiR: Analyzing PHP
Systems with Rascal. In Proceedings of CSMR-WCRE
2014, pages 454–457. IEEE, 2014.

[6] M. Hills, P. Klint, and J. J. Vinju. An Empirical Study
of PHP Feature Usage: A Static Analysis Perspective.
In Proceedings of ISSTA’13, pages 325–335. ACM,
2013.

[7] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing Web Application Code by
Static Analysis and Runtime Protection. In Proceedings
of WWW’04, pages 40–52. ACM, 2004.

[8] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias
Analysis for Static Detection of Web Application
Vulnerabilities. In Proceedings of PLAS’06, pages 27–36.
ACM, 2006.

[9] N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application
Vulnerabilities (Short Paper). In IEEE Symposium on
Security and Privacy, pages 258–263, 2006.

[10] P. Klint, T. van der Storm, and J. J. Vinju. RASCAL:
A Domain Specific Language for Source Code Analysis
and Manipulation. In Proceedings of SCAM’09, pages
168–177. IEEE, 2009.

[11] F. Meawad, G. Richards, F. Morandat, and J. Vitek.
Eval Begone!: Semi-Automated Removal of Eval from
JavaScript Programs. In Proceedings of OOPSLA’12,
pages 607–620. ACM, 2012.

[12] Y. Minamide. Static Approximation of Dynamically
Generated Web Pages. In Proceedings of WWW 2005,
pages 432–441. ACM, 2005.

[13] C. Mulder. Reducing Dynamic Feature Usage in PHP
Code. Master’s thesis, University of Amsterdam, 2013.

[14] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
Eval That Men Do - A Large-Scale Study of the Use of
Eval in JavaScript Applications. In Proceedings of
ECOOP’11, volume 6813 of LNCS, pages 52–78.
Springer, 2011.

[15] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
Analysis of the Dynamic Behavior of JavaScript
Programs. In Proceedings of PLDI’10, pages 1–12.
ACM, 2010.

[16] G. Wassermann and Z. Su. Sound and Precise Analysis
of Web Applications for Injection Vulnerabilities. In
Proceedings of PLDI’07, pages 32–41. ACM, 2007.

[17] G. Wassermann and Z. Su. Static Detection of
Cross-Site Scripting Vulnerabilities. In Proceedings of
ICSE’08, pages 171–180. ACM, 2008.

[18] H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams,

Q. Gao, G. Ottoni, A. Paroski, S. MacVicar, J. Evans,
and S. Tu. The HipHop Compiler for PHP. In
Proceedings of OOPSLA’12, pages 575–586. ACM,
2012.

	Introduction
	Overview
	PHP Include Semantics
	The PHP AiR framework
	The Need for Two Algorithms

	File-Level Includes Resolution
	Program-Level Resolution
	Evaluation
	Corpus
	Evaluating FLRES
	Method
	Threats to Validity
	Results for FLRES
	Analysis

	Evaluating PGRES
	Method
	Threats to validity
	Results
	Analysis

	Related Work
	Conclusions
	References

