
CHAPTER 4 

Extrapolating and Interpolating 
Spatial Patterns 

M.N.M. van Lieshout A.J. Baddeley 

4.1 Introduction 

Observations of a spatial pattern are typically confined to a bounded re
gion of space, while the original pattern of interest can often be imagined 
to extend outside. Much attention has been paid to statistical inference for 
models of the pattern given only the partial observations in the sampling 
window. Less attention has been given to prediction or extrapolation of the 
process (i.e. of the same realisation of the process) beyond the window of 
observation, conditional on the partially observed realisation. A motivat
ing example is the charting of geological faults encountered during coal 
mining (Baddeley et al. 1993, Chiles 1989). It is of interest to predict the 
likely presence of geological faults outside the region mined so far, and 
thereby to choose between various mining strategies. Other examples may 
be found in image processing, for instance the problem of replicating a 
texture beyond the region where it has been observed as in the editing of 
a video image so that a foreground object is removed and replaced seam
lessly by the background texture (De Bonet 1997). Partial observation of 
a spatial pattern may also include effects such as aggregation by admin
istrative regions, deletion of part of the pattern, and the unobservability 
of a related pattern. Recovery of full information in this context might be 
called interpolation; it resembles a missing data problem. In the mining 
problem discussed above, mapped charts represent only those parts of ge
ological faults which were physically encountered. Gaps may arise because 
the mined region is not convex both at its outer boundary and within this 
boundary, because pillars of unmined material remain. Hence it is of in
terest to join observed line segments together and to interpret them as 
part of the same continuous fault zone, a process that is known as 'in
terpretation' by geologists. As another example, geostatistics deals with 
predicting values of a spatial random process (e.g. precipitation or pol
lution measurements) from observations at known locations (e.g. Journel 
and Huijbregts 1978, Cressie 1993, Stein 1999) and interpolation techniques 
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have been developed under the name of conditional simulation for Gaus
sian and other second-order random fields, as well as for discrete Markov 
random field models. Relatively few conditional simulation techniques have 
been developed for spatial processes of geometric features such as points, 
line segments and filled shapes. Those that exist are based largely on Pois
son processes and the associated Boolean models (Lantuejoul 1997, Kendall 
and Thonnes 1999, van Lieshout and van Zwet 2001). A major obstacle is 
the scarcity of spatial models that are both realistic and tractable for simu
lation. Some exceptions are the following. There has been much interest in 
the conditional simulation of oil-bearing reservoirs given data obtained from 
one or more exploration wells (Haldorsen 1983, Chessa 1995). The wells are 
essentially linear transects of the spatial pattern of reservoir sand bodies. 
Typically the sand bodies are idealised as rectangles with horizontal and 
vertical sides of independent random lengths, placed at random locations 
following a Poisson point process. For line segment processes, Chiles (1989) 
presents some stochastic models with particular application to modelling 
geological faults (based largely on Poisson processes), geostatistical infer
ence, and possibilities for conditional simulation; Hjort and Omre (1994) 
describe a pairwise interaction point process model for swarms of small 
faults in a fault zone, and Stoica et al. (2000,2001) study a line segment 
process for extracting linear networks from remote sensing images. Some 
of these authors have correctly noted the sampling bias effect attendant on 
observing a spatial pattern of geometric features within a bounded window 
(analogous to the 'bus paradox'). Techniques from stochastic geometry need 
to be enlisted to check the validity of simulation algorithms. Extrapolation 
or interpolation of a spatial pattern entails fitting a stochastic model to the 
observed data, and computing properties of the conditional distribution of 
this model given the observed data. We will discuss a variety of stochastic 
models for patterns of geometric objects, and treat typical issues such as 
edge effects, occlusion and prediction in some generality. Subsequently, we 
shall focus on the problem of identifying clusters in a spatial point pattern, 
which can be regarded as interpolation of a two-type point pattern from 
observations of points of one type only, the points of the other type being 
the cluster centres (Baddeley and van Lieshout 1993, Lawson 1993b, van 
Lieshout 1995, van Lieshout and Baddeley 1995). Applications may be 
found in epidemiology, forestry, archaeology, coal mining, animal territory 
research, and the removal of land mines. 

4.2 Formulation and Notation 

In this section we describe the general framework considered throughout. 
The spatial pattern is a random closed set (Matheron 1975, Stoyan et 
al. 1995) U in JRd, typically d = 2 or 3. The distribution of U is governed 
by a parameter B in some space e. 
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All models considered in this chapter are germ-grain models (Stoyan et 
al. 1995) constructed as follows. There is an underlying process X = 
{X;, i = 1, 2, ... } of germs in JR.d, each associated with a random com
pact set Z; (the 'grain') in JR.d specified by a parameter in some space Z. 
The 'complete data' process W = { (Xi, Zi)} consists of pairs of germs with 
their associated grains and hence can be seen as a marked point process. 
The union of the translated grains, U = Ui(Xi + Z;), forms the germ
grain model. We shall be concerned mostly with spatial cluster processes, 
which can be formulated as germ-grain models where the Xi are the clus
ter centres, Z; is the cluster of points or objects associated with centre Xi 
translated back to the origin (i.e. zi is a random finite set of geometric 
objects), and U is the union pattern. We will sometimes refer to the Xi as 
the parents and to xi + zi as the daughters or offspring of xi. If both the 
cluster centres and their offspring are points, Z is the space N consisting 
of all finite point patterns in Rd. The complete data W then consists of the 
patterns X and U together with information mapping each member of U 
to its cluster centre in X. Note that if X = {X;, i = 1, 2, ... } is a homoge
neous Poisson point process, and the Z; are i.i.d. the random closed set U 
is a Boolean model (see pp. 484-502 Serra 1982). The common distribution 
of Z; is called the distribution of the typical grain; the germs Xi play only 
an indirect role. In practice, one observes the intersection Y = U n A of 
U with a compact window A ~ JR.d. Mostly the window A is fixed and 
known. More generally, one may assume that A is an observable random 
set and condition on it, effectively implying A should be ancillary for () 
and independent of U. The requirement that A be observable excludes, 
for example, random thinning models (Cressie 1993, Stoyan et al. 1995). 
These are unidentifiable in the sense that one cannot distinguish between a 
point process of low intensity and a heavily thinned point process of higher 
intensity, without imposing further assumptions. 

4.2.2 Problem Statement 

The goal is, given data y = U n A, to obtain estimates of the conditional 
expectations of random variables associated with U or W. Note that in the 
latter case, W will contain grains Zj such that Xj + Zj hits the boundary 
of A. Hence, any extrapolation technique will have to extend Zj as well 
as locate germ-grain pairs not hitting A. It is important to realise that 
the individual objects X; + Z; in the germ-grain model are not assumed 
to be observable separately. They are merely an intermediate stage in the 
construction of the model for the random set U. For example, any object 
X; + Z; which is completely occluded, i.e. contained in the union of other 
objects, is not observable and may as well be absent. Consequently our 
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analysis must depend only on the union set U and n~t on the re~resentation 
of u as a union of objects X; + Z;. In other words, 1f the data image y can 
be represented in two different ways 

n m 

y=LJ(X;+Zi)nA= LJ(Xj+Zj)nA 
i=l j=l 

then inference based on either representation must yield identical results. 
This rules out mark-correlation techniques (Penttinen and Stoyan 1989). 
Specialising to spatial cluster analysis, inference focuses on the conditional 
expected number of clusters, the conditional mean number of points per 
cluster and the posterior distribution of centre locations as well as the 
strength of evidence for clustering. As for occlusion effects, the whole 
essence of the problem is that we do not know which data points be
long to the same cluster. Below, we adopt a Bayesian strategy and base 
inference on the posterior distribution of W given y. The parameter vec
tor () will be estimated by Monte Carlo maximum likelihood (Gelfand and 
Carlin 1993, Geyer 1999). 

4.2.3 Edge Effects and Sampling Bias 

Edge effects and sampling bias are bound to arise when a spatial pattern 
of unbounded extent is observed in a bounded frame (Baddeley 1999). 
In this section, we illustrate these problems for partial realisations of a 
Poisson process of geometric objects. Although the Poisson assumption 
allows for explicit computations, the essential complexities of the general 
problem are already present. Thus, assume that the germ process X = 
{X;} is a homogeneous Poisson point process in JRd with intensity A > 0, 
that the grains Z; are i.i.d. random compact sets, and that A ~ JR.d is a 
fixed, compact window. We wish to generate a realisation of Un A. The 
approach taken will be to sample those objects which wholly or partly 
intersect A, and to clip the resulting pattern to the window A. First, note 
that a translated grain X; + Z; intersects A if and only if X; E A EB Zi, 
where A EBB = {a+ b: a EA, b E B} is the Minkowski sum of two sets 
A, B ~ JRd and A = { -a : a E A} is the reflection of A about the origin 
(Matheron 1975, Serra 1982, Stoyan et al. 1995). Hence, the germ-grain 
pairs (X;, Zi) for which Xi + Z; hits A form an inhomogeneous Poisson 
process whose intensity measure has density>- l{x E A EB Z} with respect 
to the product of Lebesgue measure and the probability distribution of the 
grains. Write I · I for d-dimensional volume. Then the number of objects 
intersecting A is Poisson distributed with mean 

>-E(IAEB ZI) (4.1) 

where the expectation is with respect to the distribution of the typical 
grain Z, provided (4.1) is finite. Given n objects are present, they are i.i.d. 
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with density l{x E A E9 Z}/E(IA EB ZJ). Turning to the marginal grain 
distribution, it should be noted that the grains Z, corresponding to objects 
which intersect A are not a random sample from the distribution of the 
typical grain Z. Instead. their distribution is weighted in the sense that Z; 
are i.i.d. with distribution 

p (Z E ·) = E (l{Z E ·}I~ EB ZI) 
A E(JA EB Z!) 

( 4.2) 

where E denotes the expectation with respect to the distribution of the 
typical grain Z. Thus the sampling bias favours larger grains: a larger object 
is more likely than a smaller object to intersect A. The sampling bias also 
depends on the geometry and relative orientations of A and Z. For further 
information, see Serra (1982) or Stoyan et al. ( 1995). To simulate Un A, the 
properties just described can be used if the function f(Z) = IA E9 ZJ and 
the distribution ( 4.2) can be evaluated analytically. In two dimensions, if A 
is a disc of radius rand Z is almost surely convex with nonempty interior, 
then by Steiner's formula (page 200 Santal6 1976) 

IA EB ZI = IZI + rlength(aZ) + 7rr2 (4.3) 

almost surely, where length(aZ) denotes the length of the boundary of Z. 
Hence (4.2) is a mixture of the area-weighted, the length-weighted and the 
unweighted typical grain distribution. Of course, if Z is a cluster of points. 
it is not convex. However, if the diameter of Z is almost surely bounded 
by D (say), we can generate centres X; EA EB BD where BD is the disc of 
diameter D, form the associated Z; and clip Xi + Z; to A. Similarly, one can 
reduce to the case where A is convex, or even a disc, by simply enclosing 
A in a larger, convex region A+ such as the convex hull or circumcircle of 
A, generating a simulated realisation of U in A+, and clipping it to A. 

4. 2.4 Extrapolation 

When extending a germ-grain model beyond the observation window, two 
cases may be distinguished, namely 

(i) extending grains z; such that Xi + Zi hits the boundary of A based 
on Un A.; 

(ii) extending the pattern U beyond the window A based on Un A. 
Below we discuss several geometric aspects in some generality. Specific 

aspects related to spatial cluster processes will be treated in subsequent 
sections. For Poisson germ-grain models, the conditional distribution of 
{Xt + Z;* : i = l, 2, ... } given {(X;* + Zi) n A: i = 1, 2, ... } is such that 
the Xi + Zi are conditionally independent, and the conditional distri
bution of Xt + Zt depends only on (X;* + Zi) n A (Daley and Vere
Jones 1988, Last 1990, Kingman 1993, Reiss 1993). Note that this con
ditional distribution as well as the law of (Xt + Zt) n A may have atoms, 
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as for example if there is a non-zero probability that a single object X;* +zt 
covers A completely, or, in the conditional case, if a grain is specified fully 
by its restriction to A. Atoms need to be treated separately using integral
geometric factorisation techniques (Santal6 1976). If the distribution gov
erning X is not that of a Poisson point process, as for spatial clustering 
problems, the grains can no longer be extended independently of each other. 
Other obstacles arise from the unobservability of the individual objects in 
the pattern (cf. section 4.2.2), and we need to extend grains based on the 
union set Un A. Sometimes, Un A suffices to determine the individual sets 
(X;* + Zt) n A; more often it will not be possible to determine the compo
nents uniquely from U especially if the window A is not convex or if objects 
may occlude one another. Indeed, the identification of the offspring parti
tioning is the whole point of spatial clustering. To conclude this section, 
note that alternative classes of models include the various Poisson-based 
constructions described in Chiles (1989), chapter XIII in Serra (1982), and 
Arak-Surgailis-Clifford mosaics and random graphs in Arak et al. (1993). 
We use germ-grain models mainly because they are quite flexible while 
remaining relatively simple from a computational point of view: Markov 
chain Monte Carlo simulation methods are available by combining existing 
methods for point processes and for Poisson processes of geometric objects, 
and parametric and nonparametric inferential methods can be carried over 
from existing methods for spatial point processes. Moreover, in the alter
native models listed above, the geometric features may be connected (e.g. 
several line segments may have a common endpoint) in a fashion which is 
inappropriate to most of the applications considered here, although posi
tively desirable for other applications such as random tessellations. 

4.3 Spatial Cluster Processes 

The identification of centres of clustering is of interest in many areas of ap
plications, including archeology (Hodder and Orton 1976), mining (Chiles 
1989, Baddeley et al. 1993) and animal territory research (Blackwell 1998). 
In disease mapping the identification of cluster centres is of interest (Mar
shall 1991; see also Chapter 14 of this volume) and mine field detection relies 
on separating clusters of land mines from clutter of other kinds (Dasgupta 
and Raftery 1998, Cressie and Lawson 2000). Most traditional clustering 
approaches build a tree based on some similarity measure, for example, 
Mardia et al. (1979), Chatfield and Collins (1980), Kaufman and Rousseeuw 
(1990) or other textbooks on multivariate statistics (see also Chapter 1). 
From this tree, the number of clusters and the corresponding partition 
are decided in an ad hoe (and mostly subjective) manner. More recently, 
model based clustering techniques (Dasgupta and Raftery 1998, Deibolt 
and Robert 1994) consider finite mixture models. The number of groups is 
determined by a Bayes factors or AIC criterion, and given the number of 
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mixture components, model parameters are estimated by maximum like
lihood, often using a variant of the Eivl algorithm. Most applications also 
allow a 'do not know' class for outliers or noise. The cluster centres only 
play an implicit role - approximated by the centre of gravity, principal 
axis or other 'mean' of the detected clusters - if they appear at all. No
table exceptions are Lund et al. (1999) and Lund and Thonnes (2000) who 
model uncertainty in point locations by means of a cluster process consist
ing of at most a single point, and van Lieshout et al. (2001) who employ 
variational analysis in the space of intensity measures of the parent point 
process. In contrast, following up on earlier work (Baddeley et al. 1993, van 
Lieshout 1995, van Lieshout and Baddeley 1995), this chapter advocates the 
use of point process and germ-grain models (see Section 4.2.1). A virtue of 
this approach is that the number of clustern, the locations of their centres, 
and the grouping or labelling of observed points into clusters, are intrinsic 
aspects of the underlying process (rather than additional parameters) and 
are all treated simultaneously. The most general model we consider is the 
independent cluster process introduced in Section 4.3.1, but most attention 
will be focussed on the computationally convenient Cox cluster processes 
(Section 4.3.2). The cluster formation densities are derived in Section 4.3.3 
below. 

4. 3.1 Independent Cluster Processes 

Let X be a point process on JRd and associate with each X; a finite clus
ter Z; of points 'centred' at the origin of JRd. Throughout we will assume 
that the grains Z; are conditionally independent. The union of offspring 
U = U;(X; + Z;) is an independent duster process (pp. 236-238 in Daley 
and Vere-Jones 1988, pp. 75--81 and 148 ff. in Cox and Isham 1980). Tech
nical conditions of finiteness and mea:mrability must be satisfied for such 
a process to exist, see p. 236 in Daley and Vere-Jones (1988). The data 
consist of a realisation of Y = U n A in a compact window A ~ JRd of 
positive volume. Thus, 

Y = { Y1, · · · , Ym} , m > 0, y ~A 

is a configuration of daughters in A. The above formulation is quite flexible, 
in that it retains the possibility of locating putative cluster parents outside 
the window A to counteract sampling bias effects (see the discussion in 
Section 4.2.3) and of grain characteristics such as the daughter intensity 
or the spread of the cluster to be randomly and spatially varying. In order 
to be able to base inference on penalised likelihoods, we shall restrict the 
germ process to lie inside some compact set X ~ JRd of positive volume, 
and assume that its distribution is absolutely continuous with respect to 
a unit rate Poisson point process on X. For each ~ E X we are give~ 
the distribution Qr:. of a finite point process Ze, on a compact subset X 
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of . z~ represents the offspring of a parent ~ translated back to the 

origin to fit in the general germ-grain model of Section 4.2.1. We assume 

that Q~ is absolutely continuous with a densit)_'. g(-I~) with respect to the 

distribmion of a unit rate Poisson process on X. Thus Z = N = Nx, the 

family of finite point configurations in X. To ensure existence of U, we shall 

assume that the family of densities is jointly measurable ~een as a function 
g : X x /v __,. jR+. !\fore generally, we could have set X = JRd equipped 

with some finite diffuse intensity measure v( ·), with the assumption that 

Q~ is absolutely continuous with respect to the distribution of a Poisson 
process with intensity measure v( ·). It is of interest to note that when X 
is a Poisson process and we extend the process onto the whole of lRd, then 
Q may be almost surely reconstructed from a single joint observation of 

parents and daughters (Milne 1970, Bendrath 1974). Table 4.1 summarises 

standard nomenclature for special cases of the independent cluster model 

(Stoyan et al. 1995, Daley and Vere-Jones 1988). 

Parents X 

gene ml 
Poisson 
general 
Poisson 
Poisson (homogeneous) 
Poisson (homogeneous) 

Clusters Z 

general 
general 
Poisson 
Poisson 
Poisson (uniform in disc) 
Poisson (Gaussian) 

Name of process U 

Independent cluster process 
Poisson cluster process 
Cox cluster process 
Neyman-Scott process 
Matern cluster process 
Modified Thomas process 

Table 4.1 Standard nomenclature for independent cluster processes. 

4.3.2 Cox Cluster Processes 

For simplicity, most attention will be focussed on the Cox cluster process 
model, where each grain Z~, ~ E X, is a realisation of an inhomogenemLs 

Poisson point process on X with ·intensity function h(- +~I~) : X--+ [O, oo). 
In other words, a parent point ~ is replaced by a Poisson number of off

spring with mean H(~) = fx h(t +~I~) dt E (O,oo), and given the number 
of offspring their locations are independently and identically distributed 

with probability density f(·) = h(·l~)/H(~) on ~ + X (with respect to 
Lebesgue measure). We shall assume the intensity function h(·I·) to be 
jointly mea...:;urable in its arguments, as well as integrable so that H(~) < oo 

for all~ EA'. As in Dasgupta and Raftery (1998), van Lieshout (1995) and 
van Lieshout and Baddeley (1995), scatter noise and outliers - also known 
as orphans - are modelled by a Poisson point process of constant inten

sity £ > 0 independently of all ZE.. This fits into the germ-grain frame
work of Section 4.2.l by introducing an extra dummy or 'ghost' parent 

xo. We shall write h(-lxo) = E, and denote its integral over X ffi X by 
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[J . I3y the su1wrposition property of Poisson processes. com!itional 011 

.\ = x = { .r~ .... , .r,,}. the combined offspring form a Poisson point pro
cess 011 ,{' ·~· X \Vith intensity function 

>.(·Ix)= E + L h(· 
i=l 

with the convention that h(tia:;·) = 0 if t E. .r,·. + ,:\:'. i _ 1 Tl ..... II. le 

marginal distribution of U is that of a Cox point process et al. 
( 1995). Often, the intensity function h(tll;) will depend only on the di;;trmce 
d(~. t) bPtween l; and t. An example is 

h(tlO = { 6 ifd(l;.t):; R1i 
otherwise 

which. if X is also a Poisson process, is known as the Afa.tfrn clu8trr proce.s8 
(J\fatrm 1986). Another iuteresting special case is (ford= 2, sm·) 

h(tll;) = •) µ ·) e-d((.t)" /2a". 
_11cr 

According to ( 4.6), the daughters follow an isotropic Gaussian distribution 
with centre l;. Again if X is a Poisson process. the distribution of [J is called 
the mod·ified Thomas process. l\Iore generally, the spread CJ" may depend on 
~·For further details. consult Diggle (1983). Daley and Vere-Jones (1988). 
or Stoyan et al. (1995). For a Cox cluster process. conditional on X = 
x = { .r1 , ... ,:rn} and the number m of offspring, the points are drawn 
independently from a finite mixture distribution (Hand 1981, Titterington 
et al. 1985) with n + 1 component distributions determined by the .r 1 and 
weights 

i = O, ... , n. 

If the intensity function h is translation invariant in the sense that h(t + 
l;ll;) = h(tlO) for all~ E X a common assumption in our spatial context 
·- the weights are identical for all parents except the ghosL a rather unnat
ural restriction in the finite mixture context. Furthermore. the connection 
with mixture distributions is lost when the clusters are not Poissou pro
cesses. To conclude this section, note that some parents may be childless. 
In particular, if the clusters Zt, are Poisson processes. they have a positive 
probability of being empty. If in a particular application there is no interest 
in such parents, one could condition each Zt, on { Zt, # 0}, or consider only 
those parents having at least one daughter. 

4.3.3 Cluster Formation Densities 

In order to be able to draw inference about parents and cluster membership. 
we need the (posterior) distribution ofiV = { (:i:0 .Z0 ), ... ,(X,,,Z11)}, i.e. 
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of parents X.; marked by their associated grain Z;, i = 0 .... , n. We will 

take a Bayesian approach based on 

Pww( {(x1, z,J};::;n I u) :x P(zo, ... , Zn I xo, ... , Xn, u) Pxw(x I u) 

= c(u)P(z0 ..... znlxo, ... ,J.:n,u)pu1x(ulx)px(x), (4.7) 

the posterior density of H' with respect to a unit rate Poisson process 
on X marked at ~ E X by a label in P(u - 0 according to the uniform 
distribution on the power set of u translated back to the origin. The term 
px(x) is the prior density for X with respect to the distribution of a unit 
rate Poisson process on X. and c(u) a normalising constant depending on 
the ·data' u. If only the cluster centres are of interest, the posterior densitv 
of X (with respect. to the distribution of a unit rate Poisson process on X) 
may be used instead: 

Px1u(x I u) = c'(u)Pu1x(u Ix) Px(x). (4.8) 

We will discuss the choice of prior later on ancl here describe only the 
·forward terms' of cluster formation. Firstly, recall from Section 4.3.1 that 
conditional on X = x = {:r1, ... , :rn}, the grains Z1, ... , Zn associated 
with :r1, ... ,:r,, respectively are independent with distributions that are 
absolutely continuous with respect to a unit rate Poisson process on ,i?. 
Thus, the conditional joint density of ( Z1 , ... , Zn) equals 

n 

IT g(z;jx;) 
i=l 

with respect to then-fold product measure of unit rate Poisson processes on 
.Y. The orphans Z0 are modelled as a Poisson process of rate E > 0. Again 
conditioning on X = x, the superposition U is absolutely continuous with 
respect to the distribution of a unit rate Poisson process on X EB X. Its 
density at u = {u1, ... , um} can be found by summing over all partitions 
in sibling clusters 

( 4.9) 
n 

I>n(u,,-l({O}I) ITg(uip-'({i}) - x;jxi)l{u'P-l({'i}) - Xii;;:; X} 
i=l 

where the sum ranges over all possible offspring-to-parent assignment func
tions cp: { l, ... ,m} _,, {O, ... ,n}, uip-'({i}) = {uj: rp(j) = 'i} consists of 
those llJ ascribed to parent xi by i.p, and n( ·) denotes cardinality. Equation 
(4.9) is most readily derived using Janossy densities (page 122 Daley and 
Vere-Jones 1988). The details can be found in lemma 23 of van Lieshout 
(1995). Note that (4.9) can be expressed as 

n 

e(l-n-<)IXGXI "\"'"" n(u -l({O})) IT '( . j '.) 
~f. 9 g U'P-'({i}) - Xi X; 

'P i=l 
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where g'(· -::r:;\xi) = elXEllXl-IA:'lg(- -xilx;)l{- -:r; <:;; X} is a cbisity of the 
t~anslated typical grain with respect to a unit rate Poisson process on ,{' 
X. Next, consider the conditional distribution of the complete model given 
the cluster centres X1, ... , ;r;n. Since we already derived the conditional joint 
density of (Z1, ... , Zn), an identification 

(zn,?Tz,A) +-+ (Nxxz-~x.B) 

of grain vectors (z1, ... , Zn) E zn with the marked point configuration 
{ (x1,z1), ... ,(xn,Zn.)} E Nxxz is needed. Here Z = Af."t· is the grain 
space ( cf. Section 4.2.1) consisting of all finite point configurations, rr~ 
is the n-fold product measure of unit rate Poisson processes on ,:f, A ~ 
the usual Borel product u-algebra of the weak topology (Daley and Vere
Jones 1988), and B the Borel u-algebra of the weak topology ou marked 
point patterns. To do so, define a measurable bijection ix (in the sense that 
the complement of the range of ix has measure zero under ~x) depending 
on the parent pattern x = { x1 , ... , x,,} by 

'ix : ( Z1, . · . , Zn) f--7 { ( X1, Z1), ... ( Xn, Zn)} · 

Using the identification thus defined, the measure ~x is given by ~x(B) = 
rrz ( i; 1 (B)) for all B E B. Finally, the conditional distribution of W or 
equivalently the marks Zi given (X, U) is discrete, with probabilities 

P(zo, ... Zn I Xo, ... , Xn, u) = (4.10) 

fn(zo) f17=1 g(z;l:r;) 

I:;'P fn(u""_ 1 ll 0 J>) fl~~ 1 g(u'P-l({i}l - x;lxi)l{u"°-'({;}) - X; <:;; X} 

provided the union U;(:r; + z.;) equals u. If g(- - (I~) is hereditary (d. 
Section 4.4.1) for each~ E X, the sum in the denominator of (4.10) o\·er 
all functions i.p ascribing parents to each offspring, is non-zero. Otherwise. 
we have to impose the condition that the grain partition and (X, U) are 
compatible, in the sense that there exists at least one cp foE which the 
term fn(u,p- 1 ([0})) n;~l g(U<p-l({i}) - xJr;)l{U<p-l({i}) -:r; ~,,'\:'}is ::;trictly 
positive (Van Lieshout 1995, theorem 29). For Cox cluster processes, the 
formulae (4.7)·(4.10) can be greatly simplified. Since Z~ has density 

g(ziO =exp [L. (1 - h(t +~I~)) dt] ~ h(z + (i() 

with respect to a unit rate Poisson process on X, (4.9) reduces to 

Pu1x(u Ix) = exp [j~EJl.Y (1- :>..(t Ix)) clt] ;;= ftEu,1-t.i1 h(t\x;) 

= exp [JY(f)X (1 - A(t Ix)) dt] 11 A(uJ Ix) (4.11) 
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coding h(·l.ro) = E for the dummy parent Xo. Thus, (4.11) is in accordance 
with the fact that the independent superposition of Poisson processes is 
again a Poisson process, here with intensity >{ I x) ( cf. ( 4.4) and the 
discussion in Section 4.3.2). As for the offspring labelling, (4.10) for a Cox 
cluster process equals 

TI7=o fltEz; h(t + :r;l:r;) 
P(zo, ... 'Zn I Xo, ... 'Xn, u) = nm '(' . I ) (4.12) 

j=l A UJ X 

whenever U;(x; + z;) = u, see van Lieshout and Baddeley (1995) or corol
larv 30 in van Lieshout (1995). In terms of the label allocation function 
'P :. { 1, ... , m} ,.._, { O, 1, ... , n} allocating each daughter point to its parent, 
equation ( 4.12) implies that the daughters are ascribed to a cluster centre 
x 1 independently of one auother, with probabilities 

( ( . ) h('uj l:r: I) 
p 'P J) = I = >..(uJ I x). 

The analogue of this result for finite mixtures with m and n fixed was 
called the Random Imputation Principle by Deibolt and Robert (1994). 
It was taken as an assumption by Binder (1978) (see page 32). Note the 
statement holds only for Cox cluster processes, i.e. when the clusters are 
Poisson. 

4.4 Bayesian Cluster Analysis 

From Section 4.2.2, recall that the prime object of spatial dm;ter analysis 
is to evaluate conditional expectations of quantities such as the number of 
clusters and the mean number of points per cluster based on the posterior 
distribution ( 4. 7) of the complete data W given y. In the previous section, 
we derived the densities associated with duster formation. In Section 4.4.l 
below, we discuss the prior, and investigate properties of tlie posterior dis
tribution in Section 4.4.2. Then we turn to the prohlerns of geuerating real
isations of ( 4. 7) by Markov chain Monte Carlo methods, and of estimating 
the model parameters (Sections 4.4.3 4.4.4). In Sectiuu •1 .. US, we propose 
an adaptive coupling from the pa8t algorithm that yields (~xact samples 
from ( 4. 7). Throughout, the redwood data set (Strauss 107.S, Ripley 1977) 
is used as an illustration. 

4.4.1 Markov Point Processes 

In this section we focus on the prior term px(x) in (4.7), which we shall 
assume to be the density of a Markov point process (H 1wllc• l!)(HJ, Preston 
1976, Ripley 1977, Ripley 1D88, Baddeley and l\foller l !JH!J, van Lieshout 
2000). Following is a brief summary of the facts we nec·d. Let X be a point 
process on a compact subset X ~ JR<i of positive volunl<'. whos<! distribution 



BAYESIAN CLUSTER ANALYSIS 73 

is absolutely continuous with respect to a unit rate Poisson process on ..r. 
say with density Px (-). Then X is Afarkov at rauge R in the sense of Ripley 
(1977) if the ratio 

.\ (c. ) _ Px(xu {Ol 
x "" x - Px(x) (-L1:3) 

is well-defined for all .; E X (i.e. Px (x U { E}) = 0 implies Px (x) = 0: in this 
case we will also say that p x ( ·) is hereditary) and depends only on those 
.ri E x for which d(x:;, E) :::; R. l\fore generally. the fixed range dependence 
may be replaced by an arbitrary symmetric neighbourhood relation ,.._, (so 
that ( 4.13) depends on Xi '"'"' ( only). Even more general Markov point 
processes are considered by Baddeley and l\Ioller (1989), and the Marko
vianity of spatial cluster processes is studied in Baddeley et al. ( 1996). A 
(l\1arkov) point process defined by its density with respect to a unit rate 
Poisson process is said to be locally stable if its conditional intensity (4.13) 
is well-defined and uniformly bounded in both its arguments. To model 
patterns in which the points tend to avoid coming too close together, it is 
convenient to consider pairwise-interaction processes with densities of the 
form 

Px(x) =a II f3(x) II 1(x,x') ( 4.14) 
xEx X"""X'Ex 

where ,B: X-+ [O, oo) (the 'intrinsic activity') and 1: X x X-+ [O, oo) (the 
'pairwise interaction') are measurable functions, 'Y is symmetric, and a > 0 
is the normalising constant. This model is well-defined (i.e. the density is 
integrable) at least whenever ,6(·) is uniformly bounded and 'Y(·, ·) :::; 1. 

A standard example of (4.14) is the Strauss process (Strauss 1975) with 

3(-) = (3 > 0 and 

{ r if d(x,1:'):::; R 
[t(X, XJ) = l otherwise 

where 0::::: r::::: 1, which has density 

Px(x) = a,6n(x)l,s(x) 

(4.15) 

where n(x) is the number of points in x and s(x) is the number of pairs 
;r, x' with d(x, x') :::; R. The model favours realisations x that tend to have 
more points at distances larger than R than under the Poisson model, that 
is there is repulsion between the points. The special case / = 0 in which no 
R-close point pairs are permitted is known as the hard core process: / = 1 
corresponds to a Poisson process with intensity 6. More formally, a point 
process density p x (-) is called anti-monotone (or repulsive) if 

.\x(~;x') :C::: .\x((;x) 

for all ( whenever x c;;; x' and monotone (or attractive) if its conditional 

intensity satisfies 
.\x((; x') 2: .\x((; x). 
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The reader may verify that the Strauss process is repulsive for all 'Y ::; 1. 

4.4.2 Sampling Bias for Independent Cluster Processes 

Note that the restriction Y of an independent cluster process U to som1 
compact observation window A is itself an independent cluster process 
Indeed, 

Y=UnA= LJ(x+Zx)nA= LJ(x+(Zxn(A-x))). 
xEX xEX 

The distribution Q~,A of the grain Ze n (A - E) associated with E in thE 
A-clipped process has density 

9A(ziE) = f ~ j · · · 1- g(z U { v1, ... , vk} IE) dv1 ... dvk ( 4.16: 
k=O k! (X\(A-O)k 

with respect to a unit rate Poisson process on X. It follows that the pos· 
terior distribution of X given Y is analogous to (4.8), except for the fad 
that 9ACI·) features instead of g(·I·). As before, a ghost parent is added tc 
account for scatter noise. For Cox cluster processes, ( 4.16) simplifies to 

9A(zlO =exp[!- (1 - h(t + EIE) l{t EA - E}) dt] IT h(z + EIE) 
X zEz 

for z ~ A-E, the density of a Poisson point process with intensity function 
h(· + EIO 1{- EA- E}. Hence, conditionally on X = x = {x 1, ... ,xn}, Y 
is an inhomogeneous Poisson process on A with intensity function 

n 

>.(a Ix) = E + L h(alxi), a EA, 
i=l 

where E > 0 is the background clutter term (cf. Section 4.3.2). As for the 
prior, one could simply assume the parents to be distributed as a Poisson 
point process, but it seems more natural to incorporate repulsion at short 
range to avoid 'over fitting' in the sense of many close parents. Thus, one 
might take as prior for example a hard core process ( cf. Section 4.4.1) with 
density 

{ 
af3n(x) 

Px(x) = 0 
if d(xi,Xj) > R for all pairs 
otherwise (4.17) 

with respect to a unit rate Poisson process on X. Upon observing Y = y = 
{y1, · · . , Ym}, the analogue of ( 4.8) for the A-clipped process is 

Px1Y(x I Y) = c(y)px(x) exp Ll (1->..(a Ix)) da] Q >..(yj Ix) (4.18) 
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which has posterior conditional intensity 

-Xx1Y(~;x I y) = .\x(~;x)exp [-l h(al~)da] tl [1 +,\~~JI~)]· 
(4.19) 

If the prior density p x ( ·) is that of a repulsive Markov point process, the 
posterior distribution specified by ( 4.18) is hereditary and repulsive too. 
The posterior range of interaction depends on the support of the family 
h(·I~), ~EX, of intensity functions. If furthermore the prior density px(·) 
is locally stable with bound ,\ for its conditional intensity and h(·i·) is 
uniformly bounded in both its arguments by H, then AxlY(~;x I y) :::; 
.\(1 + H/E)"' implying local stability of (4.18). 

4.4.3 Spatial Birth-and-Death Processes 

In this section, we address the problem of sampling from the posterior dis
tribution of the complete data W given partial observations Y = Un A = 
{y1, ... , Ym} of a Cox cluster process U within some compact observa
tion window A. Note that since the offspring allocation labels are discrete 
and distributed according to (4.12), and by the Poisson assumption any 
daughters in Ac are conditionally independent of those in A, the problem 
reduces to sampling from the conditional distribution ( 4.18) of X given 
Y. Since direct sampling does not seem feasible, we apply Markov chain 
Monte Carlo techniques. Perhaps the oldest such technique is based on 
spatial birth-and-death processes (Preston 1977), continuous time Markov 
processes whose transitions are either births or deaths. The traditional 
choice (Ripley 1977, Baddeley and M0ller 1989, M0ller 1989) is to take a 
birth rate proportional to the posterior conditional intensity and a constant 
death rate. Under mild non-explosion conditions, this procedure converges 
to the target distribution and hence yields approximate samples if run for 
long enough (Preston 1977, M0ller 1989). A disadvantage is that the total 
birth rate is difficult to compute, and the product over data points in (4.19) 
may be very large. For these reasons, we prefer to work with the alternative 
birth rate 

( 4.20) 

which is less peaked than the posterior conditional intensity, while retaining 
the desirable property of placing most new-born points in the vicinity of 
points of y. In order to satisfy the detailed balance equations 

Px1Y(x I y) b(x,~) = Px1Y(xU {0 I y) d(xu {~} ,~), 
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the death rate for deleting ~ from configuration x U { 0 is 

d(x U {0, ~) = exp [JA h(al~)da] [1 + f h(yj I~)] · 
Ilrn [l + h(y1 I!;) ] . E 

j=I A(YJ Ix) J=l 

(4.21) 

Note that for any locally stable prior distribution for which Ax(~; x) :::; ,\ 
uniformly in x and~' and any h(·I·) that is uniformly bounded in both its 
arguments by H, the total birth rate 

B(x) ~ L b(x, E) d.; ,; A [1x1 + ~ t. L h(YJ 10 d.;] ~ B 

is bounded from above by a constant B :::; ,\IX I ( 1 + mH / E) that i8 eaHy to 
evaluate for typical choices of h(-1·) such as (4.5) or (4.6). The total death 
rate from parent configuration x 8atisfies 

D(x) = l:d(x,:r;) 2:: n(x)(l + H/E)-"'. 

Hence, by the Preston theorem (Preston 1977) (see e.g. Baddeley and 
J\;foJller 1989, M0ller 1989), there exists a unique spatial birth-and-death 
process with transition rates given by (4.20) and (4.21). It has unique equi
librium distribution Px1v(· I y), to which it converges in distribution from 
any initial state. From an algorithmic point of view, if the current state is 
x, after an exponentially distributed sojourn time of rate B + D(x), with 
probability D(x)/(B + D(x)) a point of x is deleted according to the dis
tribution d(x, xi)/ D(x); a birth is proposed with the complementary prob
ability B/(B + D(x)) by sampling a candidate~ from the mixture density 

ff [ 1 + 2=j=1 h(y: IO J, which is then accepted with probability >-x (E; x)/ ,\. 

Example: Redwood Seedlings 

Figure 4.1 shows the locations of 62 redwood seedlings in a square of side ap
proximately 23 m. The data were extracted by (Ripley 1977) from a larger 
data set in Strauss (1975). The K-function (Ripley 1979, Ripley 1981) for 
these data is given in Ripley (1977) and suggests aggregation. As noted 
by Strauss this is caused by the presence of stumps known to exist in the 
plot, but whose position has not been recorded. Previous analyses of this 
data set include that of Strauss (1975), who fitted a model later criticised 
by Kelly and Ripley (1976). Ripley (1977) concluded we should reject the 
Poisson hypothesis and remarked that there appears to be both cluster
ing and inhibition between clusters. Diggle (1983) fitted a Poisson cluster 
process of Thomas type and reported least squares estimates (25.6, 0.042) 
for the parent intensity and the standard deviation of daughter parent dis
tances. A goodness of fit test showed adequate fit, but, from a biological 
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.· ·: 

Figure 4.1 Positions of 62 redwood 
seedlings in a unit square 

77 

Figure 4.2 Empirical log posterior par
ent intensity surface based on a Cox
M atern cluster process with R1i = 0.061 
and on average 2.14 points per cluster, 
noise intensity€ = 10.0 and a hard core 
prior with R = 0.03 and {3 = 1.0 by 
spatial birth-and-death over 2.0 x 104 

time units. Black corresponds to high 
values, white to small ones 

point of view, a mean number of 26 stumps seems implausible. In Diggle 
(1978), a Poisson cluster process of Matern type was fitted with similar 
results (radius 0.061 and 29 clusters). None of the above have looked at 
cluster centre location. This was first studied in Baddeley and van Lieshout 
(1993) and by Lawson (1993a) who fitted a Poisson-Thomas cluster pro
cess and reported 16 parents. An approach based on variational methods 
can be found in Van Lieshout et al. (2001). In earlier work (Baddeley and 
van Lieshout 1993, van Lieshout 1995, van Lieshout and Baddeley 1995), 
we analysed the redwood data using a modified Thomas displacement 
function (4.6) and a Strauss prior (4.15) with interaction distance 0.084 
(Diggle 1983) and log/) = log -y = -10. Simulation was based on a con
stant death rate spatial birth-and-death process. Initialising with parame
ter values µ = 7, a= 0.042 and an empty list of cluster centres, we ran the 
birth-and-death process for 2 time units and found maximum likelihood 
estimates µ = 6.5 and a = 0.05. Here, we use the spatial birth-and-death 
process with rates (4.20)-(4.21) to sample from the posterior distribution of 
cluster centres for a Cox model with a Matern style intensity function given 
by (4.5) with Rh= 0.061 andµ= 2.14/(7rR~) as in Diggle (1978), orphan 
intensity € = 10.0, and a hard core prior with R = 0.03 and t3 = 1.0. The 
posterior intensity surface of parents in X = [-Rh, 1.0+ Rh] 2 over 2.0 x 104 

time units after a burn-in period of 200.0 units with empty initial state is 
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plotted in Figure 4.2; for the posterior histogram of the ~umber of cluster 
see Figure 4.3 (right). To indicate the effect of the chmce of ~arameter 
the posterior histogram for f3 = 0.052 and an average cluster .size ~f 4.3 
shown in Figure 4.3 (left). It can be seen that the latter choice shifts tl: 
posterior histogram towards fewer cluster centres . 

.... 

0 
;; 

;; 
~ 
0 

~ g 

" " 10 15 .. 

Figure 4.3 (Left) Posterior histogram for the number of parents given the data 
of Figure 4.1 based on a Cox-Matern cluster process with Rh = 0.061 and ori 
average 4.3 points per cluster, noise intensity € = 10.0 and a hard core prior with 
R = 0.03 and {3 = exp(4.3 + 2.0log(E/(€ + µ)) by spatial birth-and-death over 
2.0 x 105 time units and (right) for on average 2.14 points and f3 = 1.0 over 
2.0 x 104 time units as in Figure 4.2. 

4.4.4 Parameter Estimation 

In general, the independent cluster model g(·[·) will contain parameters () 
that must be estimated. For the Cox cluster model, the parameters are 
the clutter intensity € as well as parameters of the displacement function 
h(·I·) specifying the shape, the spread and the number of daughters in 
each cluster. Moreover, the prior model Px (-) also contains parameters, 
but since these are merely used as regularisation to avoid over fitting, we 
will treat these as fixed. We shall use the Monte Carlo maximum likelihood 
method for missing data models (Gelfand and Carlin 1993, Geyer 1999). 
In the context of detecting the centres in an independent cluster process, 
the observed data consists of a point pattern y, the combined offspring in 
the window A. The missing data are both the parents and their associated 
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grains. In terms of the cluster formation density derived in Section 4.3.3, 
the log likelihood ratio with respect to a fixed reference parameter Bo can 
be written as 

(4.22) 

by importance sampling theory. The Monte Carlo analogue lk(B) of ( 4.22) 
is obtained by replacing the expectation by the average in a sample W1 , ... , 

wk from the complete model under the conditional distribution with pa
rameter Bo. Differentiating with respect to B, the parameter of interest, we 
obtain 

( 4.23) 

where 

are the importance weights. The well-known EM algorithm (Dempster et 
al. 1977b) is an iterative procedure based on (4.23) that consists of two 
steps: the E-step computes the conditional log likelihood given the data 
and current estimates of the parameters, the M-step maximises the result 
with respect to the parameter. Thus, the importance weights reduce to 1, 
but resampling is needed at each step. For a critical evaluation of these 
and other parameter estimation methods, the reader is referred to Geyer 
(1999); see also Diggle et al. (1994), Geyer and M0ller (1994) and Huang 
and Ogata (2001). For Cox cluster processes, (4.22) simplifies to 

hence the Monte Carlo score vector (4.23) is 

where as before {Wj} is a sample of size k from the conditional distribution 
of the complete data given y under the reference parameter Bo, and Wj,Bo,B 

are the importance weights. 
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Example: Cox-Matern Cluster Process 

Consider the Cox-Matern cluster process on JR.2 with offspring governed 
by ( 4.5) and independent Poisson background clutter. Treating the range 
Rh as fixed, the parameter vector is e = (c, µ). The grain is a finite point 

- 2 • process on X = B(O,Rh), and H(~) = µrrRh for each genume parent 
~EX. For the dummy parent, H(xo) = clX E8 B(O, Rh)I- If X is a convex 
set, the Steiner formula may be used to find an explicit expression of this 
area, see Section 4.2.3. By differentiation with respect to the parameter 
vector, it follows that the components of 'illk(e) are the weighted averages 

of -IX EEl B(O, Rh)I + n(Zg)/c and -n(WJ) 7f R~ + L,~li;j) n(Zf )/µwhere 
n(Wj) denotes the number of genuine parents in Wj, and Z6 its orphan 
cluster. The EM-updates are easily derived: 

= 

= 

EIJ(n) [n(Zo) I Y = y]. 
IX E8 B(O, Rh)I ' 

E()(n) [ L:~l~) n(Zi) I Y = Y] 
Eg<nl [rrR~n(X) I Y = y] 

For the example on redwood seedlings (Section 4.4.3) with a unit rate 
hard core prior at range 0.03 and reference parameter vector (10.0, 183.06) 
as in Figure 4.2, the Monte Carlo log likelihood ratio for t E (5, 30) and 
µrrR~ E (1.14, 7.14) is given in Figure 4.4; the solution of the Monte Carlo 
score equations is (€100, P100) = (19.65, 354.15). For comparison, the Monte 
Carlo EM-updates would be t = 15.12 and µ = 311.61 corresponding to 
3.64 daughters on average in a cluster. 

4.4.5 Adaptive Coupling from the Past 

Remarkably, the spatial birth-and-death approach described in Section 
4.4.3 can be adapted to yield an exact sample from the desired posterior 
distribution using coupling from the past (Propp and Wilson 1996, Kendall 
and M(l)ller 2000). Such algorithms are particularly efficient when there is 
some monotonicity in the state space, and the sampler respects this order. 
In the context of this chapter, the prior distribution of X is a repulsive 
Markov point process. Whether the same is true for the posterior distri
bution depends on the grain distributions Qc,. However, for Cox cluster 
processes, we showed in Section 4.4.2 that the posterior distribution is re
pulsive and hereditary too. Moreover, (4.20)-(4.21) reverse the inclusion 
ordering in the sense that if x ~ x' then b(x, ~) ~ b(x', ~) for all ~ E X, 
while d(x, xi) $ d(x', Xi) for xi E x. Our proof can be found in Section 4.9.3 
of van Lieshout (2000). If the displacement functions h(-1·) are uniformly 
bounded by H, the posterior inherits local stability from the prior. Such 
properties are particularly pleasing for Bayesian analysis, as they imply 
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Figure 4.4 Monte Carlo log likelihood ratio surface as a function of the noise 
intensity E E (5, 30) and the mean cluster size µrr R~ E (1.14, 7.14) for the redwood 
seedlings data {Figure 4.1) based on a Cox-Matern cluster process with Rh = 
0.061 and reference parameter values such that the average number of points per 
cluster is 2.14, the noise intensity E = 10.0. We used a hard core prior with 
R = 0.03 and /3 = 1.0. One hundred realisations were subsampled from a run of 
a spatial birth-and-death process over 2.0 x 104 time units after burn-i.n. 

that the choice of prior is not crucial in these respects. Hence the coupling 
from the past algorithm of Kendall and M0ller (2000) for locally stable 
point processes in principle applies. Those authors presented their method 
for the constant death rate dynamics, with a dominating process that is 
Poisson with an upper bound to the conditional intensity of the distribu
tion to be sampled as intensity. In our context, such a method would be 
impractical, as in most cases the upper bound will be orders of magnitude 
too large. For this reason, we present an adaptive coupling from the past 
algorithm based on (4.20)-(4.21). Suppose a spatial birth-and-death pro
cess with transition rates b(·, ·) and d(·, ·) is available to sample from the 
posterior density of cluster centres PxjY(· [ y), and we have upper and 
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b(x, ,;) 

d(xu{O,,;) 

< b(,;) 
> g(xu{O,i;) 

(4.2L 

(4.2E 

holding for all configurations x and all ~ E X. Suppose furthermore 
unique probability density 7r(.) solving the detailed balance equations 

H(x)b(,;) = 7r(xU {,;})g(xU {0 ,,;) 

exists. For the classical constant death rate process, g(x U { 0 , ~) = 1, b( ~ 
is an upper bound to the posterior conditional intensity at ,; that doe 
not depend on the configuration to which ~ is added, an~ 7r( ·) defines ar 
inhomogeneous Poisson process with intensity function b( ·). The generi< 
adaptive choice in our context is 

b(<) ~A exp [- .l h(alE)da] fl; [ 1 + h(y; !<)] <; AD [1 + h(y; 10 J 

where .A is the prior local stability bound. If a uniform bound is required 
(Chapter 5), the right hand side above may be replaced by 

A:~~ D [1 + h(y~I~)] . 
Similarly, for the transition rates given by (4.20)-(4.21), generic bounds 
are 

and 

d(x U {(},() ~exp [.l h(alO da] [1 + ~ h(y; l<l] J D [ l+ h(y; 10 l · 
The corresponding equilibrium distribution is that of a Poisson procm;s with 
intensity function ,\e- .r A h(alO da n;:l [ 1 + h(y: I~)]. However, one may of

ten do better by exploiting specific model characteristics, as we shall il
lustrate in Section 4.4.6 below. If we couple the spatial birth-and-death 
process defined by b( ·) and g( ·, ·) to processes defined by b( ·, ·) and d( ·, ·) 
as in Kendall and M0ller (2000), we obtain the following algorithm. 

Algorithm 1 Let vt,i;, t :S 0, ,; EX, be a family of independent, uniformly 
distributed random variables on (0, 1). Initialise T = 1, and let D(O) be a 
sample from 7r(·). Repeat 

• extend D(-) backwards until t~me -T by means of a spatial birth-and
death process with birth rate b(-) and death rate g(-, . ) ; 
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• generate a lower process L-r(·) and an upper process U-r(·) on [-T, OJ 
as follows: 

- initialise L-r(-T) = 0, U_r(-T) = D(-T); 

- to each forward transition time t E (-T, OJ of D( ·) correspond updates 
of the upper and lower processes; 

- in case of a death (i.e. a backwards birth), say D(t) = D(t-) \ { d} 
where D(t-) denotes the state just prior to time t, the point d is 
deleted from L_r(t-) and U_r(t-) as well; 

- in case of a birth, say D(t) = D(t-) U {E}, the point Eis added to 
U _r(t-) only if 

< {b(x,E).d(xu{E},E). } 
Vt,e_max b(E)d(xU{E},E) .L-r(t-)~x~U-r(t-). 

similarly, Eis added to L_r(t-) only if Yt,e does not exceed the above 
expression with a minimum instead of a maximum; 

• if U-r(O) = L_r(O), return the common value U-r(O); otherwise set 
T:=2T; 

until the upper and lower processes have coalesced. 

The next theorem gives conditions for algorithm 1 to output unbiased 
samples from the posterior distribution of cluster centres. 

Theorem 1 Let Px(·) be an anti-monotone, locally stable Markov point 
process density with respect to a unit rate Poisson process on a compact 
set X ~ JRd, and h(·I·) a uniformly bounded displacement function of a 
Cox cluster process U observed in a bounded window A. Suppose the birth 
rates b( ·, ·) and death rates d( ·, ·) define a unique spatial birth-and-death 
process converging in distribution to the posterior density of cluster cen
tres Px1Y(· I y), and there exist upper and lower bounds (4.24)-(4.25) 
also defining a unique spatial birth-and-death process that converges in 
distribution to a probability density 7r(-) for which 7r(0) > 0 and detailed 
balance between births and deaths holds. Then the coupling from the past 
algorithm 1 almost surely terminates and outputs an unbiased sample from 
Px1y(· I y). 

The proof is an adaptation to the inhomogeneous case of the proof in 
Kendall and M!llller (2000). 

Proof. First, note that by assumption the dominating process D(·) is in 
equilibrium, its distribution being defined by 7r( ·). Clearly, for all T > 0, 

0 = L_r(-T) ~ U-r(-T) = D(-T) 
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and by construction the updates respect the inclusion order. Hence L _ r ( t) C 
U-T(t) for all t E [-T, 0]. Moreover, the processes funnel, i.e. 

( 4.26) 

whenever -S :::; -T :::; t :::; 0. The first inclusion can be verified by noting 
that L_r(-T) = 0 s;; L_s(-T) and recalling that the transitions respect 
the inclusion order. Since U_T(-T) = D(-T) "2 U_s(-T), the last in
clusion in (4.26) follows by the same argument. If L_T(to) = U-r(t0 ) for 
some to E [-T,O], as the processes are coupled, L-r(t) = U-r(t) for all 
t E [to, OJ. Next, set X_T(-T) = 0 and define a process X_r(·) on [-T, O] 
in analogy to the upper and lower processes, except that if X_r(t-) = x 
1 b. h, . f. . t C • • • t d "f u < b(x.t;) d(xU{!;},E) I } tie Irt at time to a pom .,, 1s accep e i vt,E _ 1,(0 d(xu{(},E) . not ier 

words, X_T(-) exhibits the dynamics of a spatial birth-and-death process 
with birth rate b(x, 0 = b(x, ~) ~~~~UUl and death rate d(x U { ~}, ~) = 
Q.(x U { O, ~). Thus, its cletaile~ balance equations coincide with those for 
b(·, ·)and d(., ·). Furthermore, b(-, ·) :::; b(·, ·),hence explosion is prevented 
so that the process converges in distribution to its equilibrium distribu
tion defined by Px1y(· I y). The inclusion properties derived above imply 
L_T(O) s;; x_T(O) s;; u_T(O), so that - provided the sampler terminates al
most surely - with probability 1 the limit lirnT...., 00 X_y(O) is well-defined. 
Since D(·) is in equilibrium, X_T(O) has the same distribution as if the 
X-process were run forward from time 0 (coupled to the dominating pro
cess as before) over a time period of length T, the limit distribution of 
which is Px1y(· [ y). We conclude that the algorithm outputs an unbiased 
sample from the posterior distribution of parents. It rernains to show that 
coalescence occurs almost surely. Recall that by assumption 7r(0) > 0. Set, 
for n E No, En = l{D(-n) -f. 0}. Now (En)n is an irreducible aperiodic 
Markov chain on {O, l} for which the equilibrium probability 7r(0) of state 0 
is strictly positive. Hence state 0 will be reached with probability 1, which 
implies that the dominating process D(t)t~o will almost surely be empty 
for some t. But then ( 4.26) and the coupling imply that the algorithm 
terminates almost surely, and the proof is complete. D 

4.4.6 Example: Cox-Matern Cluster Process 

To describe a tailor-made coupling from the past algorithm, consider a 
Cox cluster process with intensity function given by ( 4.4) ( 4.5) and prior 
density ( 4.17). For this model, the birth rate ( 4.20) satisfies 

( 4.27) 
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In order to derive a lower bound for the death rate (4.21), note that 

1 + h(YJ IEl < 1 + _µ_ < 2 
>.(yj I x) - € + µ -

if YJ E B(E, R,,) n Ux, where Ux = Ux;ExB(xi, R,,) denotes the union of 
balls centred at the points of x. It follows that the death rate d(x U { O, E) 
is bounded below by 

By the Preston theorem, the transition rates b(E) and g(x U { O , O define 

~ 
'B 

.· 

Figure 4.5 Realisation of extrapolated redwood seedling pattern on X EB B(O, Rh) 
from observations in unit square (box) and interpolated parent pattern ('P') based 
on a Cox-Matern cluster process with Rh = 0.061 and (€100,{lwo) obtained by 
coupling from the past. We used a hard core prior with R = 0.03 and (3 = 1.0. 

a unique spatial birth-and-death process, whose limit distribution is given 
by 

n(x) 
7r(x) ex 1-n(ynUx) TI (3(xi), (4.29) 

a generalised area-interaction process (Widom and Rowlinson 1970, Bad
deley and van Lieshout 1995, Kendall 1998, Haggstrom et al. 1999) with 
intensity function 

f3(E) = f3 exp [- l h(aJ.;) da] 2n(ynB(.;,Rh)) 
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and interaction parameter I=(~+ ~)-1 . Regarding the implementation 
of algorithm 1, note that 

b(x,~)d(xu{O,~)-l{d(tx)>R} IT (~+ µ ) 
b(~) d(x U {0 ~) - "' . 2 2)..(yj Ix) 

' J'YjEB(l;,,Rh)nUx 

is decreasing in x, so the sampler is anti-monotone, and the births in the 
upper and lower processes may be implemented by simply considering the 
current state of the other process at each transition; see Kendall (1998). We 
applied the above algorithm to the redwood seedlings data of Figure 4.1 
for the Matern parameter vector ( E, µ) equal to its Monte Carlo maximum 
likelihood estimate ( cf. Section 4.4.4) and a hard core prior with f3 = 1.0 and 
R = 0.03 as before. A typical realisation from the posterior distribution of 
parents can be seen in Figure 4.5 as well as an extrapolation of the redwood 
pattern to the set X EB B(O, Rh)· 

4.5 Summary and Conclusion 

We discussed issues arising when a spatial pattern is observed within some 
bounded region of space, and one wishes to predict the process outside of 
this region (extrapolation) as well as to perform inference on features of 
the pattern that cannot be observed (interpolation). We focused on spatial 
cluster analysis. Here the interpolation arises from the fact that the centres 
of clustering are not observed. We took a Bayesian approach with a repul
sive Markov prior, derived the posterior distribution of the complete data, 
i.e. cluster centres with associated offspring marks, and proposed an adap
tive coupling from the past algorithm to sample from this posterior. The 
approach was illustrated by means of the redwood data set (Ripley 1977). 
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