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STOCHASTIC ANNEALING FOR NEAREST-NEIGHBOUR 
POINT PROCESSES WITH APPLICATION TO OBJECT 
RECOGNITION 

M. N. M. VAN LIESHOUT, *University of Warwick 

Abstract 

We study convergence in total vanat1on of non-stationary Markov chains in 
continuous time and apply the results to the image analysis problem of object 
recognition. The input is a grey-scale or binary image and the desired output is a 
graphical pattern in continuous space, such as a list of geometric objects or a line 
drawing. The natural prior models arc Markov point processes found in stochastic 
geometry. We construct well-defined spatial birth-and-death processes that converge 
weakly to the posterior distribution. A simulated annealing algorithm involving a 
sequence of spatial birth-and-death processes is developed and shown to converge in 
total variation to a uniform distribution on the set of posterior mode solutions. The 
method is demonstrated on a tame example. 
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Introduction 

Baddeley and Van Lieshout [3], [4], [5] developed a statistical approach to the 
problem of object recognition in image analysis. A scene composed of possibly 
overlapping objects is observed subject to blur and noise, and the task is to 
determine the number of objects and to locate them. Applications include document 
reading and robot vision. Their approach is formally similar to the well-known 
Bayesian formulation of low-level image segmentation and classification problems 
due to Besag [7] and Geman and Geman [9], but differs in that pixel-based Markov 
random fields are replaced by continuous-space Markov spatial processes borrowed 
from stochastic geometry [28], [1 ]. The latter models combine spatial information 
globally, and are better suited to high-level image interpretation. 

The deterministic algorithms presented in [4] are strongly analogous to Besag's 
ICM method [7]. An obvious question is whether there is also an analogue of 
stochastic annealing [9], [11] in this context. The present paper explores the 
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existence and convergence of certain spatial birth-and-death processes which are the 
counterparts of stochastic annealing algorithms (see also [3]). Similar questions in 
autoradiography are apparently studied by Miller et al. [23]. 

The plan of the paper is as follows. The first section gives detailed background 
and notation. Convergence in total variation of inhomogeneous Markov processes is 
the subject of Section 2, while Section 3 studies existence and convergence of spatial 
birth-and-death processes. The results are used in Section 4 to develop analogues of 
simulated annealing in object recognition. Finally, Section 5 gives a simple concrete 
example. 

1. Preliminaries 

This section gives an overview of notation and the main concepts to be used 
throughout the paper. For a more detailed description and examples we refer to [3], 
[4]. 

1.1. Notation. The experimental data consist of an image y = (y,; t E T) where the 
image space T is an arbitrary finite set. Apart from the usual two-dimensional 
rectangular grids, T could be a pair of grids (carrying left and right stereo images), a 
temporal sequence, etc. The observed value y, at pixel t E T ranges over a 
non-empty set V, typically {O, 1} or {O, 1, · · · , 255}. 

The class U of possible objects is an arbitrary set (object space), ranging from 
simple geometrical figures (lines, discs) specified by a few parameters to completely 
general closed sets. U is treated as a space in its own right, so that objects are 
regarded as points u in U, each determining a subset R ( u) <;;;; T of image space 
'occupied' by the object. 

A configuration is simply a finite set of distinct objects x = {x 1, • • • , x,,} where 
X; E U, i = 1, · · ·, n, n ~ 0. The objects may be in any spatial relation to each other; 
the number of objects, n(x), is variable and may be zero. A configuration x is often 
associated with its 'silhouette' scene S(x) = U; R(x;) in image space. 

The goal is to extract the unobserved underlying pattern x from a given data 
image y. 

1.2. Independent noise models. The 'true' configuration x gives rise to the 
observed image y through a known probability distribution with density f(y Ix). 
This density incorporates both the deterministic influence of x and the stochastic 
noise inherent in observing y. We assume that the values y, are conditionally 
independent given x and (without loss of generality) that these conditional 
distributions belong to a family {g(. I 8): () E e} of probability densities indexed by a 
parameter space e. Hence 

f(y Ix)= TI g(y, I e(x)<r)). 
!ET 
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The parameter values e(x>(t) form a 8-valued image called the signal, which depends 
deterministically on x. If the signal ecx>(t) at site t depends only on whether t belongs 
to the silhouette S(x) or not, the model is called blur-free. 

1.3. The Bayesian approach. A strong motivation for adopting a Bayesian 
approach in this context is that the MLE tends to contain clusters of almost identical 
objects, i.e. there is 'multiple response' to each true object. Specifically, in the 
blur-free case, configurations with equal silhouette cannot be distinguished in 
likelihood, causing problems when objects occlude each other. Clearly, multiple 
response is undesirable if it is important to correctly determine the number of 
objects, or if it is believed that objects do not lie extremely close to one another. For 
instance in document reading it is known in advance that characters cannot overlap. 

In the Bayesian approach, the problem can be solved using a prior model which 
assigns low probability to configurations in which objects are close to one another. 
Denoting the prior density by p, the posterior probability for x after observation of 
data image y is p(x I y) ex f(y I x)p(x). A maximum a posteriori (MAP) estimator of 
x solves 

(1) x = argmaxxf(y I x)p(x). 

The prior p(x) can be viewed as a penalty assigned to the optimization: because of 
this interpretation MAP estimation is also known as penalized maximum likelihood 
estimation. 

1.4. Nearest-neighbour Markov object processes. The basic reference model will 
be a Poisson process on U with a finite, non-atomic intensity measure µ, 

0 < µ,( U) < oo. We define a prior model on the set of configurations .Q by its density 
p with respect to the Poisson process. Note that .Q is hereditary in the sense that 
x e .Q implies y e .Q for all subsets y s;;; x and has probability 1 under the Poisson 
model. 

Natural priors belong to the class of nearest-neighbour Markov point processes 
introduced by Baddeley and M~ller [1 ]. Their essential property is that objects in a 
given context interact only with their nearest neighbours. Formally, assume that for 
each x e n there is a symmetric reflexive relation - defined on x. Related objects 

x 

are called x-neighbours; a subset y sx is called a clique in x iff every pair of objects 
in y are x-neighbours. 

Definition 1. A nearest-neighbour Markov object process with respect to -; is a 
stochastic point process whose probability density p(-) on .Q satisfies 
(Ml) p(x) > 0 implies p(y) > 0 for ally sx; 
(M2) for each x e Q with p(x) > 0 and each u e U\x, 

p(x U {u}) 
p(x) 
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depends only on u, N(u Ix U {u}) = {x; E x:x; - l u} and the restrictions of 
xU{u x 

- to N(u Ix U {u}). 
xU{u} 

Whenever - does not depend on x the definition is equivalent to that of a 
x 

Ripley-Kelly process [28]. A useful example of this type is the class of Markov 
overlapping object processes [3), [6]. These are Markov object processes with respect 
to the relation defined by 

u-u'<::>R(u)nR(u')¥-0. 

An example where - does depend on the context is for instance the Dirichlet 
x 

object process for translation models where 

u -u'~C(u jx) and C(u' jx) share a common edge. 
x 

Here C(u Ix) denotes the Voronoi cell of u in configuration x. 
An equivalent definition in terms of interactions between objects can be obtained 

from an analogue of the Hammersley-Clifford theorem ([1], Theorem 4.13). 

1.5. Connection with Hough transform. As (1.1) is an optimization problem over 
lists of variable length and additionally the prior is only known up to a normalizing 
constant, it is generally impossible to compute the MAP estimator analytically. Both 
the iterative methods in [4] and the alternatives based on spatial birth-and-death 
processes add and delete objects using log likelihood ratios that can be interpreted 
as the differences in 'goodness-of-fit' attained by altering the list. 

Computing these log likelihood ratios usually involves only pixels 'local' to the 
altered object. More precisely, for blur-free independent noise models with 
g(- I ·) > o 

(2) L(xU{u}:y)- L(x:y) = 
t ER(u)\S(x) 

where L(x :y) = logf(y Ix) and 

h( ) g(y, I e1) 
y,, eo, e1 =log < I . 

g y, 80) 

The right-hand side of (2) is a generalization of the Hough transform [19], [20] used 
in image processing for detecting simple objects ([14], §4.3). 
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2. Convergence of inhomogeneous Markov chains 

2.1. Definitions. Let µ and v be probability measures on a common measurable 

space (Y', sti). Their total variation distance is defined as the maximal difference in 

mass on measurable subsets A E s4 

llJL - v[[ =sup [JL(A) - v(A)[. 
AEsl 

If [9'1<00 

llJL - v[[ = ~ ~ [µ(i) - v(i)[. 
i E,Y 

Similarly in the continuous case, if both µ and v are absolutely continuous with 

respect to some measure m with Radon-Nikodym derivatives fµ and fv, 

[[µ - v[[ = ~ L[fµ(s) - fv(s)[ m(ds). 

Definition 2. For a transition probability function (stochastic matrix) P(-, ·) on 

(Y', Jli), Dobrushin's contraction coefficient c(P) is defined by 

c(P) = sup [[P(x, -)- P(y, ·)[[. 
x,yeH' 

We list some properties that are used subsequently (see Dobrushin [8], 
Section 3). 

Lemma 1. Let A be the set of all probability measures on ( Y', Jli). Then for all 

transition probability functions P and Q and for all µ.,, v E A the following hold: 
(i) c(P) ;2 1; 

(ii) [[µP - vP[[ ;2 c(P) llJL - v[[; 

(iii) c(PQ) ;2 c(P)c(Q). 

2.2. Limit theorems. The main theorem of this section states sufficient conditions 

under which a sequence of Markov processes converges in total variation to a 

well-defined limit. The discrete-time case has been studied in [18], (30]. 

Recall that the transition semi-group (Q,),~0 of a Markov process (Y,),""0 in 

continuous time is the semi-group of probability kernels representing its conditional 

distributions, 

Q,(y, F) = P(Y, E FI~]= y). 

Theorem 2. Let (X,),~0 be a non-stationary Markov process on a measurable space 

(9', Jli), defined by a sequence of transition semi-groups (Qn)nEN· The process follows 

the transition rules Q,, in the time period [tm t,,+ 1), that is 

P(Xs E F [ Xr = y) = (Q,,)s-r(J, F) 
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for tn ~ r < s < tn + 1• Here t,, /' oo as n - oo. Assume that for each n E f:\:J, Qn has an 
invariant measure f.Lm i.e. 

J (Qn),(x, F)µ,,,(dx) = µ,,,(F) 
y 

for all F E sd and t?;; 0. Assume moreover that the following hold: 

(C) 

(D) 

"' L llJLn - f.Ln+1 II< 00 

n=l 

where Pu·(X, F) = IFD(X1• E FI X1 = x). Then µ,"" = lim f.Ln exists and vP01 - µ,,. in total 
variation as t- oo, uniformly in the initial distribution v. 

Proof Condition (C) implies that (µ,,,) is a Cauchy sequence in II· II and hence 
converges in total variation to JLcc, say. 

Define n(t) =sup {n: t,, ~ t} and choose 0~t<t,,<rJ+ 1 < t' < oo. Then 

JLxPu' - f.Lx = (JLx - µn(t))Pu' + JLn(t)Pu' - f.Lx 

= (JLx - JLn(r))Pu' + f.Ln(r)Pun(t)+tpln1r1+1t' - µ,,,.. 

Since µn(r) is an invariant measure one sees that 

Hence 

f.Lx.Ptt' - µ"'=(µ,x - µn(r))Ptt' + f.Ln(t)ptn(t1+tl' - f.Lx 
11(1')-l 

= (µ,x - JL,,(ti)Ptt' + L (µ,k - f.Lk+1)P,,. 11• + /-Ln(t') - /-Lx· 
k=n(t) 

11µ,-,Pu· - µ,,.II~ IIµ"' - µ,,,<nll c(Pu·) 
n(t')-l 

+ L llJLk - /-Lk+1ll c(P,,+JI.) + llµn(t') - µxii 
k=n(t) 

x 

~2 sup llJLk - /-Lxll + L 11µ,k - /-Lk+1ll 
kii;n(t) k=n(t) 

~o(t- oo). 

Let E > 0. Choose t such that 11µ,,.Pu' - f.Lxll < e/2 for all t' > t,.<rl+ 1• Next observe 
that 

llvPor' - µ,,,II= ll(vf\lr - f.Lx)Pu' +µ,,,Pu' - µ,,,,II 

~ llvf\11 - JLxll c(Pu·) + llµxPu' - µ°"II 

~ c(P".) + 11µ,xPu· - f.Lxll· 

Use condition (D) to choose t' such that c(P".) < e/4. Summarizing, we obtain 

II vf\i, - µ,,.11-0 uniformly in v(t- oo). 

A sufficient condition for (D) is given by the next result. It is easier to work with, 
since only stationary Markov chains have to be considered. 
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Lemma 3. Use the same notation as in the previous theorem. If c(P ) ~ 1 - l/n 
fi l lnln+l 

oral n ~ 2, the Dobrushin condition (D) holds. 

Proof Write Pn = P,,,,n+i· Then 

Thus 
x x 1 

- L log c(Pn) ~ L - = oo 
n=2 n=2 n 

or equivalently 

" 
IT c(P,,)~o (N~ oo). 
n=2 

Fix t. Then for t' > t,,<r>+z 

c(P ,) = c(P P · · · P ) 
ft lln(t)+I l11{r)+1fn(l)-;.2 lnu·)t' 

[ 
n(ITl')-1 ] 

~ c(P""w,) c(P;) c(Pinu·,r·) 
i=n(t)+ l 

n(l')-1 

~ IT c(P;)~O(t' ~ x). 
i=n(t)+ l 

3. Fixed temperature sampling 

3.1. Spatial birth-and-death process. In the context described in Section I, the 

natural analogue of the Gibbs sampler [9] is a spatial birth-and-death process [26], 

(24]. This is a continuous-time, pure jump Markov process, whose states are 

configurations x E Q, and for which the only transitions are the birth of a new object 

(instantaneous transition from x to x U {u}) or the death of an existing one 

(transition from x to x\{x;}). Formally, write g/,J for the (Borel) er-algebra on U and 

let D(-, ·):nx u~[o, oo) be a measurable function and B(·, ·):QxgJ,J~[o, oo) a 

finite kernel, i.e. B(x, ·) is a finite measure on ( U, g/,J) and B(-, F) is a measurable 

function on Q. These are called the death rate and birth rate. The reason is clear 

from the following. Given the state x at time t, 

• the probability of a death X-7 x\{x;} during a time interval (t, t + h ), h -7 0, is 

D(x\{x;}, x;)h + o(h); 
• the probability of a birth x -7 x U {u} during time (t, t + h ), where u lies in a 

given measurable subset F <;; U, is B(x, F)h + o(h); 

• the probability of more than one transition during (t, t + h) is o(h ). 

We will assume that B(x, ·)has a density b(x,-) with respect toµ, on U, so that 

intuitively b(x, u) is the transition rate for a birth x -7 x U {u }. Write 

B(x) = Lb(x, u) dµ,(u) 
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for the total birth rate, and similarly define 

D(x) = L D(x\{x;}, x;). 
X;EX 

To avoid explosion, an infinite number of transitions occurring in finite time, the 
rates have to satisfy certain regularity assumptions. Preston ([26], Proposition 5.1, 
Theorem 7.1) gave sufficient conditions under which there exists a unique spatial 
birth-and-death process with given rates solving Kolmogorov's backward equations 

d 
dt IP(X1 E FI X 0 = x) = -[B(x) + D(x)]IP(X1 E FI X 0 = x) 

+ J IP(X1 E FI Xu= z)R(x, dz) 

with 

R(x, F) = B(x, {u E U:x U {u} E F}) + L l{x\{x;} E F}D(x\{x;}, x;) 
x,ex 

the total rate from pattern x into F. For a given process (X1 ) he also found 
conditions for the existence of a unique invariant probability measure and 
convergence in distribution (i.e. convergence of IP>(X, E F I X 0 = x) ). 

Theorem 4. For each n = 0, 1, · · · define Kn= SUPn<x)=n B(x) and Sn= 

inf11 c..->=n D(x). Assume S,, > 0 for all n ~ l. If either (a) Kn= 0 for all sufficiently large 
n ~ 0, or (b) Kn > 0 for all n ~ 0 and both the following hold: 

~ Ko"""Kn-1 
Li----<oo 
n=I 81 · · · 8n 

then there exists a unique spatial birth-and-death process for which B(-) and D(·) are 
the transition rates; this process has a unique equilibrium distribution to which it 
converges in distribution from any initial state. 

A slightly stronger result given by M0iler [24] includes the case Ko= 0, K,, > 0 for 
all n ~ 1 and both 

~ Kt ••• Kn-I 
Li----<oo 
n=2 S1 · · · 5n 

still assuming all S11 positive for n ~ 1. 

and L"' 81 ···Sn 
---=oo 

' n=I K1 • • " Kn 

3.2. Construction. Suppose we want to sample from the temperature modified 
posterior distribution 

(3) Pu(x I y) ex: {f(y I x)p(x)}1m. 
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The purpose of introducing a temperature parameter is to sharpen peaks in 

posterior probability. For small H > 0, configurations with large posterior density 

are favoured, while others are suppressed. Indeed, if object space U is discretized, 

PH(" I y) converges pointwise to a uniform distribution on the set of MAP solutions 
as H tends to zero. 

Consider any blur-free independent noise model (Section 1.3) with g(· I ·) > 0 and 

a nearest-neighbour Markov object prior. The former assumption is needed so that 

the class K = {x :f (y I x)p(x) > O} is hereditary. For some fixed k E [O, 1] set 

{(
f(y jxU{u})p(xU{u}))kiH 

bH(x, u) = f(y I x)p(x) 

0 

(4) 

for u ft. x and death rate 

{ 
( f(y I x)p(x) )<k-1)1H 

(5) DH(x\{u}, u) = f(y I x\{u})p(x\{u}) 

8~/n 

if f(y I x)p(x) > 0 

if f(y I x)p(x) = 0 

ifj(y jx)p(x)>O 

if f(y I x)p(x) = 0, n(x) = n. 

Here o~=inf{Lx,exDH(x\{x;},x;) lf(y lx)p(x)>O, n(x)=n}. By convention, the 
infimum of the empty set equals oo. Note that by this definition 8~ = oni where 8,, is 

defined as in Theorem 4. The boundary cases k = 0 ('constant birth rate') and k = 1 
('constant death rate') are well known in spatial statistics, to obtain realizations of a 

point process. It is widely argued (e.g. [27]) that the constant death rate procedure 

should be preferred, as under the constant birth rate process there is a high 

probability that a newly added object will have a large death rate and thus be rapidly 
deleted again. 

For a nearest-neighbour Markov prior the above expressions are typically easy to 
evaluate, since the normalizing constant is eliminated. Moreover the 'detailed 
balance' equations 

(6) 

are satisfied whenever f (y Ix U {u} )p(x U {u}) > 0. Given a spatial birth-and-death 
process with rates satisfying ( 6), Ripley [27] remarked that the process is necessarily 

time reversible and pH(· I y) is the density of its unique invariant probability 

measure. For each application, however, one should verify that the process just 

described is well-defined. For instance, the following corollary of Theorem 4 holds. 

Corollary 5. Let y and H > 0 be fixed. For any blur-free independent noise model 
with g(· I ·) > 0, and any nearest-neighbour Markov object process p( ·) with 
uniformly bounded likelihood ratios 

p(x U {u}) 
----~[3<00 

p(x) 
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there exists a unique spatial birth-and-death process for which (4) and (5) are the 
transition rates. The process has unique equilibrium distribution pH(· I y) and it 
converges in distribution to p u( · I y) from any initial state. 

Proof We will prove the following properties: 
1. Dn > 0, for n ~ 1; 
2. If Kn 0 = 0 for some n 0 ~ 1, then Kn = 0 Vn ~ n 0 ; 

3. if Kn> 0 for all n, then condition (b) of Theorem 4 holds. 

Property 1. Use the representation of the log likelihood ratio as a generalized 
Hough transform (1.2). Since T is finite, we have upper and lower bounds on the 
goodness of fit, say lh(y,, 80 , 81)1 ~a for all t. Hence 

IL(x U {u }; y) - L(x; y )I~ an(R(u )) ~ an(T) 

where n denotes the number of pixels. For p(·) we have by assumption (p(x U {u}))/ 
p(x) ~ {3. If p(x) > 0 this implies that 

Du(x\{u}, u) = ( 
f(y Ix) p(x) )Ck-1Jm 

f(y jx\{u})p(x\{u}) 

[ k - 1 J ~exp H (IL(x\{u};y) - L(x;y)I +log /3) 

~exp [ k ~ 1 (an(T) +log /3) J 

=:8 >0. 

Suppose p(x) = 0. If p(z) = 0 for all z with n(z) = n(x), then Dfl(x\{u}, u) = :xi ~ 8. 
Otherwise n(x)DH(x\{u},u)=inf{DH(z)jn(z)=n(x), p(z)>O}. By the above ar­
gument DH(z\{z;},z;)~8 for all such z and Z;EZ. Hence DH(z)~8n(x) and 
DH(x\{u}, u) ~ 8. Therefore Du(x) ~ 8n(x) for all patterns x, and hence 8,, ~ 8n > 0 
for n;:::;;: 1. 

Property 2. Use the fact that K = {x:f(y I x)p(x) > O} is hereditary. 

Property 3. The birth rates are also bounded. For p(x) > 0 

b ( ) _ (f(y Ix U {u})p(x U {u}))klH 
H X, U -

f(y Ix) p(x) 

~exp [~ (an(T) +log /3) J 

=:K>O. 

For p(x) = 0, again bH(x, u) = 0 ~ K. Hence BH(x) ~ KJ.L(U) and so K,, ~ Kµ,(U). 
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Using these bounds, one obtains 

Ko···Kn i<Knµ(U)" 

81 · · · 8,, - n! 8" · 

Since µ( U) is finite by assumption, the first assertion follows. Similarly 

81···8n n!8" --->---
K1 ... Kn Knµ(U)" 
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which does not converge to zero as n--'> x. The corollary is proved if we combine 
these properties with Theorem 4. 

If the state space is digitized, the situation is easier. Recall that any Markov chain 
on a finite state space is uniquely defined by its transition rates and if for an 
irreducible Markov chain with rates R(i. j), i =!" j, n is a probability measure 
satisfying the detailed balance equations 

(7) R(i. j)n(i) = R(j, i)n(j) 

then the chain is time reversible and has unique limit distribution TC (see for instance 
[25], pp. 277-278). Hence, if f(y Ix)> 0 for all x the class K is hereditary due to the 
Markov property (Ml) of p( · ). It follows that the birth-and-death process defined 
above restricted to K is irreducible. 

3.3. Simulation and practical considerations. To simulate the spatial birth-and­
death process we generate the successive states X 1k 1 and the sojourn times ru. i as 
follows. Given x<k) = x<kl, T(k) is exponentially distributed with mean l/(DH(x1k 1) + 
B H(x<k>), independent of other sojourn times and of past states. The next state 
transition is a death with probability DH(x1k 1)/(Du(x1'-l) + Bfl(xv-i)), obtained by 
deleting one of the existing points X; with probability 

DH(x1k1\{:t;}, x,) 

Du(xlkl) 

Otherwise the transition is a birth generated by choosing one of the points 11 11' x'" 1 

with probability density 
bu(Xlkl, 11) 

BH(x<kl) 

with respect to µ and adding u to the state. The process described above is run for a 
'large' time period C to obtain a realization x<L> where 

I k } L = ruin {k = 0, 1, 2, · · · 12: tu1 > C . 
l=O 

The computational effort per transition is mainly in sampling from bn(x, ·)/B(x). 
Since the birth rate b H(x, u) is an exponential function of the Hough transform 



292 M. N. M. YAN LIESHOUT 

(2), it tends to have sharp peaks as a function of u when H is small or when x is far 
from an MAP solution. There is then a high probability that the next transition will 
add a new object u at one of the locations. This suggests incorporating a search 
operation. When the dimension of U is large, multiresolution strategies can be used. 

For more details, see (6). 
The main advantage of sampling techniques compared to deterministic methods 

[4) is the ability to estimate any functional of the (modified) posterior distribution by 
taking a sufficient number of independent realizations. Examples of useful function­
als are: the distribution (mean, variance) of the number of objects; the probability 
that there is no object in a given subregion of the image and the first-order intensity 
(29]. In the discrete case the first-order intensity at u is simply the (posterior) 
probability that u belongs to x; it can be regarded as an alternative to the Hough 
transform. 

4. Stochastic annealing for point processes 

Instead of making probability statements (probabilities, expectations, functionals) 
one is sometimes interested in the modes of the posterior distribution. Here we 
present a technique for solving the MAP equations (1), using the results of Section 
2. Assuming the conditions of Lemma 5, for each fixed H we can construct a spatial 
birth-and-death process with equilibrium distribution pH(- I y ). Our proposal there­
fore is to use a stochastic annealing algorithm that simulates these processes 
consecutively with H gradually dropping to zero. 

In the superficially similar context of image segmentation, a simulated annealing 
algorithm was developed by Geman and Geman [9]. However, the Markov 
processes involved are rather different. Since in segmentation problems both object 
and image space are finite pixel grids, a discrete-time Markov chain changing each 
pixel label in turn suffices. 

4.1. The summability condition. First we consider the summability condition (C). 

Lemma 6. Let Hn \,.0 (n ~ oc) and consider the sequence of Hn-modified posterior 
distributions with densities 

PHn(x iy)oc{f(y lx)p(x)} 11H" 

with respect to the reference measure m on Q (counting measure or law of Poisson 

process). Assume that m(.M) >0, where .M denotes the set of solutions to the MAP 
equations (1.1). Then the sequence PH" converges in total variation to a uniform 
distribution on .M. Moreover the sequence satisfies condition ( C). 

Proof Since m(.M) > 0, 3x# attaining the maximum. Denote 

I X = ( f(y I x)p(x) )l!Hn 
n( ) f(y I x#)p(x#) ' Z,, = Ll,,(x)dm(x). 
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It is easily seen that ln(x)~ l{x E JU}, (n ~ oo ), and 

lim Zn = J lim ln(x)dm(x) = J l{x e .;f,,f,}dm(x) = m(.;f,,f,) 
n-x nn-x n 

by the dominated convergence theorem. Moreover, Zn ! m(.;f,,f,), sup Zn = Z 1 ~ 
m(.Q) < oo. 

To prove condition (C), suppress the dependence on x and consider 

l ~-h1- -I z z - (ZnZn+I) \/nZn+I - ln+IZn\ 
n n+I 

Therefore 

~ (ZnZn+1)- 1{ln+I I Zn+l - Znl + Zn+I I 111+! - /nl} 

1 
~ m(.;f,,f,)2 {Zn+1Un - l,.+1) + ln+1(Z" - Zn+1)} 

m(Q) 
~ m(.;f,,f,)2 {In - ln+1 + Zn - Z11 + 1}. 

N-1 m(Q) f 
~ L ( u)2 {/,.(x) - l,.+1(x) + z/I - Z11+d dm(x) 

n=I m .!VL Q 

m(Q) f N-1 
= c.1.1)2 L {ln(x)-l11+1(x)+Zn-Z11+1}dm(x) 

m.1vi nn=l 

m(Q) J = m(.;f,,f,)2 n {l1(x) - IN(x) + Z 1 - ZN} dm(x) 

m(Q) 
= m(.;f,,f,)2 (1 +m(Q))(Z1 - ZN). 

Letting N ~ oo the right-hand side converges to 

;;;(~;2 (1 + m(Q))(Z1 - m(.;f,,f,)) <co. 

A more restricted version, n11 ex: exp [-f / Hn] for a bounded, measurable function f 
was proved in Theorem 3.3a of [18]. The assumption m(.;f,,f,) > 0 is needed; if 
m(.;f,,f,) = 0 the sequence of modified posterior distributions will not converge in total 
variation (cf. [18]). 

4.2. The Dobrushin condition. From now on let f be a blur-free independent 
noise model with g(· j ·) > 0. Again, let Hn \.0 and consider the family (X<"l)neN of 
spatial birth-and-death processes on K = {x:f(y I x)p(x) >0} defined by (4) and (5). 
As K is closed and irreducible, the processes are well-defined and converge to the 
unique limit PH(· I y) (see SectiQn 3). 
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Recall the following result by M111ller [24], a generalization of earlier work by 

Lotwick and Silverman [22]. 

Theorem 7. Let X, be a spatial birth-and-death process and define Km Bn as in 
Theorem 4. Assume moreover that Bn > 0 for all n ~ 1 and Kn = 0 for all n > n 0 

(condition (a)). Then for all fixed to> 0 

sup II Pi(x, ·) - Pi(y, ·)II ;;? 2( 1 - K (to) )(1''0)-1 
x,y 

for all t > t0 . The supremum is taken over all initial states x, y containing at most n 0 

objects. 

Here 

(8) 

Bm = min 8; + Bj; 
i,j:i+j=m 

Km = max K; + Kj; 
i,j:i+j=m 

K 0(n, to)= IT K1 (j, !_Q); 
j=I n 

K(t0) = min K 0(n, t0). 
n:an0 

Therefore, by Lemma 3 we can construct an annealing schedule satisfying 
condition (D) by requiring 

or equivalently 

(9) 

1 
2(1 - K(to))<''10l-I ;§! 1- -

n 

> ( +log (~(1- (1/n)))) 
t =to 1 log (1 - K(to)) . 

Under the assumption in Lemma 6, condition (C) also holds and by Theorem 2 the 
sequence of birth-and-death processes constructed this way converges in total 
variation to a uniform distribution on the set of global maxima of the posterior 
distribution, regardless of the initial state. 

4.3. Extensions. Generalizations to diffusing objects are possible. In the finite cae 
IUI < oo, write 

M(x,x;, u) 

far the configuration obtained from x by replacing X; by u. The set of u E U for 
which this operation is allowed is denoted by Q(x, x;). Typically it consists of 
unoccupied objects close but not identical to X;. Suppose the diffusion rates are also 
powers of the log likelihood ratios 

(10) ( ) -{f(y I M(x,x;, u))p(M(x, X;, u))}klfl 
CH X X· U -

' " f(y I x)p(x) · 
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If detailed balance is required to hold as well, necessarily k = ~-
The Markov chain on K with rates given by (4), (5) and (10) is clearly irreducible, 

time reversible and has unique equilibrium distribution PH(- I y). Writing CH(x) for 
the total diffusion rate from state x; 

"/; = max CH(x); 
n(x)=i 

'Y m = max "/; + yj; 
i,j:i+j=m 

and K 1 , K0 , K as in (8), for all fixed !0 > 0 and t > t0 

max llP,(x, ·)-P,(y, ·)II ~2(1- K(t0))u110H. 
x,y 

This can be proved by coupling arguments as in [22], pp. 157-158, using that 

IFD(next event in Z occurs before time t and is a death I Z 0)?; K 1(m + n, t). 

In the continuous case, n objects can perform a diffusion on U" 

dx, = V logpH(x I y) dt +Viii. dB, 

at least if pH(· I y) is strictly positive and infinitely differentiable ([27], p. 178). See 
also [10], [23). 

5. Example 

Baddeley and Van Lieshout [4] studied a simple example where a scene composed 
of discs with fixed radius was observed after addition of white Gaussian noise 
(Figure 1). In the Bayesian approach a Strauss process served as prior distribution 
on disc configurations. To enable comparison, the same parameter values are used 
below . 

• • •* • • •• • • •• • • . : - • Figure 1. Binary silhouette scene of discs with radius 4 and realization from Gaussian model with CT = 50, 
8 1 = 150 and 80 = 100 digitized on a 98 X 98 square grid 
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Figure 2. Log posterior likelihood against time for a geometric, cooling schedule starting at H = 4·0 of 
rate 0·5 and a Strauss prior with f3 = 0·0025 and y = 0·25. 

In practice, the theoretical temperature schedule (9) is too slow and one resorts to 
'feasible' schemes. Here we chose a geometric cooling of rate 1 /2 and initial 
temperature H = 4·0. The log posterior likelihood as a function of time is given in 
Figure 2; Figure 3 graphs the number of objects against time. Finally a typical 
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"' 

0 

0 5 10 15 20 25 

time 

Figure 3. Number of objects against time for a geometric cooling schedule starting at H = 4·0 of rate 0·5 
and a Strauss prior with f3 = 0·0025 and y = 0·25 
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Figure 4. Sample taken at time 25 for a geometric cooling schedule starting at H = 4·0 of rate 0·5 and a 
Strauss prior with p = 0·0025 and y = 0·25 
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Figure 5. Sample from the posterior distribution using a Strauss prior with p = 0·0025 and y = 0·25 

F'gure 6. Posterior intensity surfaces at temperature 4·0, l ·O and 0·25 (from left to right). 
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Figure 7 . .:i.c distance between reconstructed and true pattern as a function of time. The cutoff value is 4 

reconstruction sampled at time unit 25 and H = 0·25 is given in Figure 4. 
Throughout, the constant death rate method was used. 

In contrast to ICM, stochastic annealing results in a global maximum, regardless 
of the initial state. Experiments with several initial states are in accordance with the 
theory in that similar reconstructions were obtained. One has to be careful though, 
since too fast a cooling schedule was used. For a discussion on the implications of 
such ad hoe choices, see [13]. 

A good compromise between ICM and stochastic annealing is to sample at a fixed 
'low' temperature (see also [12]). A reconstruction obtained by running the constant 
death rate procedure at H = 1 is given in Figure 5. Using constant birth rate instead 
was found to behave worse. The latter method tends to add an unlikely object and 
immediately delete it again. This confirms experience reported in the literature [24], 
[27]. 

Estimates of the posterior intensity surface (Figure 6) suggest that the posterior 
distribution is rather peaked and can be used as an approximation to MAP 
estimation, apart from being interesting in its own right. 

Typical runs of the constant death rate method are illustrated in Figure 7, where 
the ~2 distance [2] to the 'true' pattern is graphed against time. Starting from an 
empty scene, objects are immediately added to form a plausible reconstruction 
followed by deletion and immediate reading of one of the objects. Note that the 
results obtained this way are comparable to steepest ascent reconstructions [ 4]. 
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