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1 Introduction 

The identification of centres of clustering is of 
iuterest in many areas of applications, for instance 
.. dge detector output has to be grouped into mean
ingful curves. In this paper we argue that stochas
r 1c geometry models are helpful both in providing 
ruodels for clustering and as a prior distribution 
to combat overestimation of the number of clusters 
and to improve robustness. 

The general idea in connection with object 
recognition was proposed by Baddeley and Van 
Lieshout [1]. See also Van Lieshout [13]. Inde
pendently, in an epidemiological context, a differ
Pllt Gibbs sampler technique for detection of cluster 
centres in a Cox process was developed by Lawson 
[11). Earlier attempts include [3, 5, 14, 15). For 
1·xt.ensions and more examples see Lawson et al. 
[12). 

2 Cluster processes 

The data consist of a set of 'events' y = 
{y1 , ... , Ym} ~ T, where T ~ IR-2 (say) is the win
dow of observation and it is required to determine 
r lie locations of an unspecified number of cluster 
centres x = {x1 , •. • ,xn} ~ U, n:::: 0. In the sim
plest case, U = T or a somewhat larger set to ac
,·nunt for edge effects, but note that U may be a 
different space as in Section 5 below. In probabil
ity theory, a set of points such as x or y are real
isat.ions of a random point process. An arbitrary 
dummy centre xo is introduced both for technical 
reasons, and to allow for events not belonging to 
anv cluster . 

• The mathematical model we adopt is an inde
pendent cluster model (see eg. [19]) where, condi
tional on x = { x 0, . ... Xn}, the observations result 
from the superposition of independent, finite point 
processes 

y = LJzx,· 
i=O 

For simplicity, we confine ourselves here to the case 
where each set of 'daughters' Zu, u E U, is a real-
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isation of an inhomogenous Poisson process on T 
with intensity function h( · I tt) : T --+ [O, oo). By 
the superposition property, the combined offspring 
form a Poisson process with intensity function 

n 

,\(-1 x) = Lh(·- x;). 
i=O 

In other words, given a fixed, finite refer
ence measure µ on T, representing determinis
tic but spatially varying factors, the number of 
events n(y) in y is Poisson distributed with mean 
fr >.(t I x) dµ(t) and conditionally on n(y) = m 
the events have joint density 

D.i=1 >.(yj Ix) 
fm(Y Ix)= (JT ,\(t Ix) dµ(t))"' 

with respect to µm. 

3 Detection of cluster centres 

We interpret the identification of centres of clus
tering as a statistical estimation problem. The 
unknown configuration of centres is regarded as a 
model parameter, and upon observation of y, has 
likelihood l(x I y) = f(y I x). A maximum likeli
hood estimator solves 

x = argmax xf(y Ix), 

but note that there is no guarantee these <"quations 
have a solution, nor that a solution is unique. In
deed, a maximum likelihood estimator of x may run 
into difficulties similar to those encountered in the 
context of object recognition [l]. If his smooth and 
almost flat near its maximum, and the dat.a pattern 
is 'dense', the ma.ximum likelihood estimate tends 
to contain multiple responses to each true cluster. 

To overcome these problems we propose a prior 
distribution to penalise scenes that contain too 
many 'similar' centres. A suit.able choice is a 
Markov spatial process [2, 17). For brevity, we con
sider only pairwise interactions models, defined by 
their density 

(1) 



(with respect to a unit rate Poisson model). Here, 
a- is the normalising constant, f3 > 0 a model pa
rameter. The product ranges over all pairs of sim
ilar objects x; ,..., Xj and g(-,-) : U x U - [O, oo) 
is the interact.ion function. The case g = 1 is a 
Poisson process with rate f3; for g(-, . ) < l, config
urations with many similar centres are unlikely. 

An important property of (1), and of Markov 
models in general, is that the likelihood ratio 

p(xU{u})_aIT (. ) 
(x) - fJ g x,, u 

P x;-u 

depends only on those Xi E x that are similar to 
u, signifying that all interaction is 'local'. In the 
statistical physics interpretation, - log p(xU { u}) + 
logp(x) is the energy required to add.a new point 
u to an existing configuration x; in probabilistic 
terms >.(u;x) = p(xU {u})/p(x) is the Papan
gelou conditional intensity at u given the rest of the 
pattern x on U \ {u}, see (6]. Roughly speaking, 
>.(u; x)du is the conditional probability of a point 
in the infinitesimal region du centred at u given the 
configuration agrees with x outside this region. 

After collection of the data, the posterior density 
of x is 

p(x I y) ex f(y I x)p(x) 

by an application of Bayes' formula. However, due 
to the normalising constant, this distribution tends 
to be rather intractable and we have to resort to 
Markov chain Monte Carlo methods [4] for opti
misation and sampling. The basic idea is to build 
a Markov chain (or in continuous time, a Markov 
process) with the target distribution p(x J y) as 
equilibrium and transitions that are 'easy' to per-
form. · 

The classical approach in a point process context 
is via spatial birth-and-death processes [2, 16, 18] 
but other methods such as Metropolis-Hastings [9], 
simulated tempering or annealing can be used as 
well. Furthermore, functionals of the posterior dis
tribution such as the distribution of the number of 
clusters, the probability that there is no cluster in 
a particular region, and the first-order intensity of 
cluster locations can be estimated. 

All these techniques iteratively update the clus
ter centre configuration by addition and deletion, 
with transition criteria based on the posterior like
lihood ratios. For instance, a spatial birth-and
death process is a continuous time Markov process 
for which the only transitions are the birth of a new 
object (instantaneous transition from x to x U { u}) 
or the death of an existing one (transition from x 
to x \ { x;}). Transitions are governed by death rate 
D(-., ·) and birth rate B(., ·) as follows. 

• the probability of a death x - x \ { x;} 
during a time interval (t, t + h), h - 0, is 
D(x \ {x;}, x;)h + o(h); 
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• the probability of a birth x - x U { u} during 
time (t, t + h), where u lies in a given subset 
F ~ U, is B(x, F)h + o(h); 

• the probability of more than one transition 
during (t, t + h) is o(h). 

We will assume that B(x,·) has a density b(x,·) 
with respect to some finite reference measure v on 
U, so that intuitively b(x, u) is the transition rate 
for a birth x - x U { u}. 

Good choices for the transition rates are 

b( ) =p(xU{u}Jy) 
x,u p(xJy) 

and, writing n(x) for the number of non-dummy 
centres in x, D(x\{x;}, x;) = 1/n(x), which results 
in detailed balance between births and deaths: 

b(x, u)p(x J y) = D(x, u)p(x U {u} I y). 

To avoid explosion, i.e. an infinite number of 
transitions occurring in finite time, the rates have 
to satisfy certain assumptions [16]. Typically in 
this context we need an inhibitory prior g( ·, ·) 5 1 
and an upper bound on the daughter intensity h(-) 
[13]. 

The Metropolis-Hastings method is a two-step 
discrete time chain, which proposes to change the 
current state x to a new candidate state x', ran
domly sampled from a probability density q(x, ·). 
The proposal x' is accepted with probability 

A( ') _ . {l p(x' I y) q(x', x)} 
x, x - mm , ( I ) ( , ) . p X y q X,X 

It is easily verified that transitions out of state x 
are belanced by transitions into x: 

p(x' J y)q(x',x)A(x',x) = p(x I y)q(x,x')A(x,x'). 

The transition densities q(-, ·) are built as fol
lows: 

• with probability q(x) generate a new point u 
from a density b(x, u) with respect to 11; 

• otherwise (with probability 1 - q(x)) delete a 
point x; E x at random; 

The simplest choices for b(-, -) and q( ·) are 

1 1 
q(-) = 2' b(·,·):: v(U)' 

but this may tend to generate too many proposals 
with low acceptance probabilities. Another possi
bility resembling spatial birth-and-death processes 
is to set 

b(x,u)= /(yJxU{u})p(xU{u}) 1 
f(y I x) p(x) B(x) 



and 

where 

x _ B(x) 
q( ) - n(x) + B(x)' 

B(x) = f p(x u {u} I y) dv(u) 
lu p(x!y) 

or some other density that tends to select proposals. 
u where p(xu {u} I y) is large. 

Under mild conditions, the resulting Markov 
chains converge to p(x I y) [9]. 

From a computational point of view, to (say) 
add u E U to x we need to evaluate 

f(y I xUx{u}) = H(u) IT [i + nh(YJ I u) ] , 
J(y I ! J=l I:i=O h(YJ I Xi) 

where H(u) =exp {-fr h(t I u) dµ(t) }, and 

p(xu {u}) 
p(x) 

(2) 

(3) 

Ratios (2) are straightforward to calculate and 
can be compared to the Hough transform [10] in 
the sense that each point YJ votes with variable 
strength for a cluster centre at point u. Ratios of 
the form ( 3) are easy to compute if p( ·) is a nearest
neighbour Markov point process (1). In particular, 
the intractable normalising constant cancels out. 

Parameters in f and p can be estimated in ad
vance or during iteration. Alternatively, a Gibbs 
sampler can be specified but note that this ap
proach requires an extra set of prior distributions, 
one for each parameter. 

4 Offspring labelling 

So far, we concentrated on estimating the pro
cess x of cluster centres, but it might well be of 
interest to label the observed events by the cluster 
they belong to. This opens the possibility to esti
mate functionals such as the probability that two 
data points are siblings, or the distribution func
tion of offspring displacements. 

In order to be able to do inference on cluster 
membership, we need the full distribution of w = 
{(xo,Z:r0 ), ••• ,(xn),Zx,.)}, parents {x1, ... ,xn} 
marked by their offspring Z:r,, i = 0, ... , n. 

Recall that (in contrast to e.g. the analysis of fi
nite mixture models [7]) the number of points in the 
pattern is not fixed in advance. This is quite cru
cial, as it implies the impossibility to build a Gibbs 
sampler, alternatingly sampling the marks (or cen
tres) given data and centers (or marks). We pro
pose a two-step Metropolis-Hastings algorithm (13], 
where the transitions consist of births and deaths 
of centres, followed by an adjustment of the marks, 
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by drawing from the conditional distribution of off
spring. It is important to note that, when a new 
configuration x' is generated from the current x 
and offspring Z, x' does not have to conform to Z 
( eg. x' could have one point fewer than x). We then 
update the daughter sets to Z' and require confor
mity with x'. Specifically, we have the following 
algorithm. Given an initial paren~ configuration x, 
a labelling Zx = (Z:r,)~~~) and data y, alternate 
between a Metropolis-Hastings and an adjustment 
step as follows. 

1. given w = {(xo,Z:r0 ), ... ,(xn,Zz,J} and y, 
. perform a Metropolis-Hastings step for x only, 
independent of the marks Zx, yielding the new 
configuration x'; 

2. given x', y reallocate the offspring by a Gibbs 
step, sampling Z~, from the conditional dis
tribution P(Z~, I x', y). Replace x by x', Zx 
by Z~, and return to step 1. 

The detailed balance equations reduce to those 
for the centres only (see Section 3) and hence con

. vergence of the Markov process to p( w I y) follows 
under similar conditions. 

In step 2, an assignment of data to clusters can 
be interpreted as an ordered partition </> : y - x 
of the data. The labels t/J( ·) ascribing each obser
vation to a cluster centre are independent, with 
probabilities 

h(YJ I Xq,(y;)) 

I:i h(yj I Xi). 

Hence, simulation of the mark process is easy. 
The independence of labels provides a justifica

tion for the nearest-parent classifier [11]. Given a 
set of sites y = {Y1, ... , Ym} and a set of parents 
x = {xo, ... , xn}, suppose the task is to assign to 
each Yi a label <P(j) E {O, ... , n} corresponding to 
centre xr/>(fr By independence, a maximum likeli
hood classifier is 

~(j) = argmax i=O, ... ,nh(y; I Xi), (4) 

which assigns each point to the closest centre if 
h(y; I Xi) is a decreasing function of llY; - Xiii 

To conclude this section, if one considers un
ordered partitions of the data instead of unordered 
ones, a Gibbs sampler [4] can be developed. In
tuitively, these unordered partition elements corre
spond to 'sibling sets' generated by a common, if 
unspecified, parent. Then, by allowing parents not 
having any offspring at all, the number of cluster 
centres can be changed, but the conditional distri
butions involved are rather awkward [13]. 



5 Applications 

The simplest examples arise in spatial statistics 
where T <;;;; U are bounded regions in the plane. 
Typical applications include forestry, where the 
task is to reconstruct the ancestors of the current 
generation of trees in a wood or the epidemiological 
analysis of rare diseases. 

As an illustration, Figure 1 shows the locations 
of 62 redwood seedlings in a square of side approx
imately 23 m. The data was extracted by Ripley 
[18] from a larger data set in Strauss [20]. A biolog
ical explanation [20] for the apparent clustering is 
the presence of stumps known to exist in the plot, 
but whose position has not been recorded. Our 
goal is to reconstruct these centres of clustering. 

·. 
I 

. . · . 

. . . 

... 

. . . 

.· • I 

. . . 

Figure 1: Positions of 62 redwood seedlings in a 
unit square (Ripley 197(). 

Previous analyses of this data set include Strauss 
[20] who attempted to fit a pairwise interaction 
Markov model, Ripley [18], Diggle [8] and Lawson 
[11]. From a biological point of view, the above 
works tend to find an implausibly large number of 
stumps (clusters); 25 in [8] and 16 in [11], mak
ing a case for a Bayesian analysis with a prior dis
tribution penalising configurations with too many 
stumps close together. The analysis below is taken 
from Van Lieshout [13]. 

Following [8, 11] we assume the number of 
daughters per parent is Poisson and seedlings follow 
a radially symmetric Gaussian distribution around 
their ancestor. In contrast to the aforementioned 
papers, a pairwise interaction Markov prior ( 1) 
with strict inhibition g :: I < 1 is introduced. We 
used an interaction distance 1· = .084 [8], that is 
u ~ v if and only if u and v are less than r apart. 

Using a spatial birth-and-death sampler, a real
isation from the posterior distribution of stumps is 
shown in Figure 2. Figure 3 displays the estimated 
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posterior intensity, roughly speaking the posterior 
'probability' that a point u belongs to x. For rea
sons of clarity, here black corresponds to high val
ues. 

> 

' 

. : 
~ 

. . 

. ' . 

.. 

. . . 

Figure 2: Realisation from the posterior distribu
tion taken after 2 time units (black), for a gaussian 
model with µ = 6.5, CT = .05 and a prior with 
log,B = log/ = -10, r = .084. The data is dis
played in grey . 

. :: 

.·.:--> . 

Figure 3: Posterior intensity of redwood seedlings 
(Ripley) estimated over 50 time units, for a gaus
sian model with µ = 6.5, CT = .05 and a prior witli 
log ,B = log/ = -10, r = .084. 

For an analysis of the full data [20] see (13]. 
As another example [1], suppose that the data 

again consist of a point pattern in a bounded region 
T <;;;; IR.2, but that the points are believed to lif' 
close to a curve and the objective is to estimate 
the curves. This includes the image analysis task of 
joining a dot pattern into a curvilinear boundary, 



but also eg. the identification of ancient roads or 
trade routes given information about the location 
of archaeological finds such as pottery or coins [19, 
p. 139], or the analysis of earthquake occurrences 
in relation to geographical fault patterns. 

Our final example is the problem of identifying 
large scale edges in a scene using the output of a 
low-level edge detector. The 'data' y consist of 
a pattern of line segments and the objective is to 
cluster them around a small number of larger line 
segments [14]. 

Let T denote the set of possible outputs of the 
low-level edge detector. For example these may be 
line segments restricted to have unit length (= 1 
pixel width) and orientation which is a multiple of 
45 degrees. The space U of objects we are looking 
for in this case also contains line segments, but of 
unrestricted length and orientation. 

Hence, y is a superposition of conditionally in
dependent line segment processes Zx, associated 
with each true line segment Xi- Typically the ex
pected number of segments in Zx, will depend on 
the length of Xi. The benefits of a prior model for 
x include the ability to encourage long lines and 
continuity between lines, and to penalise lines that 
cross one another. 
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