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Abstract. We indicate how granulometries may be useful in the analysis of random sets. After 
defining a size distribution function which may be used as a summary statistic in exploratory data 
analysis, we propose a Hanisch-type estimator and construct new Markov random set models which 
favour certain sizes above others. The models are illustrated by simulated realisations. 
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1. Introduction 

Stochastic geometry [29] is concerned with the study of random closed sets (rcs). 
Roughly speaking, an rcs is a mapping X from a probability space into the family 
of closed subsets of Rd such that {X n K =f. 0} and {X n G = 0} are measurable 
for all compact sets K and all open sets G. The probability distribution of X is 
completely specified by its capacity functional 

T(K) = P(X n K =f. 0) (1) 

with K ranging over the class of compact sets, which plays a role comparable to that 
of the distribution function of a real-valued random variable. However, the collection 
of test sets K is huge, and lower-dimensional summary statistics are called for. 
Typically these are obtained from the capacity functional (1) by restricting the choice 
of K. For instance, allowing only singletons results in the coverage probabilities 
p(x) = P(x EX), x E Rd. 

Below we will assume that the random closed set X is stationary, i.e. its distri
bution is invariant under translations. In that case, the coverage probabilities p(x) 
do not depend on the argument x, and p(x) = p = EIX n UI, the expected volume 
covered within any set U of unit volume IUI = 1. To exclude degenerate cases, it is 
assumed that 0 < p < 1. 

A summary statistic for assessing the 'size' of pores left open by a stationary rcs 
is the empty space function Fs(·) defined by taking K = rB (r ~ O) in (1), that is 

FB(r)=P(OEX$rB). (2) 

The related contact distribution function is defined as 

- Fs(r) - FB(O) 
Hs(r) = P(O EX$ rB I 0 ft X) = 1 _ FB(O) (3) 

• This research was partially carried out while the author was at the University of Warwick, 
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for r ;::: O. Both (2) and (3) depend on a structuring element B, usually assumed to 
be a compact convex set containing an environment of the origin. Typical choices 
include balls and squares, although non-isotropic structuring elements may be pre
ferred when investigating directional effects. Under these conditions, HB(·) is a 
distribution function but this is not the case for general B (see [29]). Note that 
1- H 8 (r) can be interpreted as the conditional probability that a copy of r B placed 
at a test point 0 lies entirely in the empty space left by X given that the test point 
itself does not fall in X. A similar interpretation holds for the empty space function 
FB(r). 

The particle size operator underlying (2)-(3) is 'l/'.lr(Y) = (Ye EB rfJ)c = Y 8 r.B. 
However, although under our restrictions on B, 'l/'.lrO is anti-extensive and increasing, 
in general the sieving condition 

't/Jr('l/'.ls(Y)} = 't/Js('l/'.lr(Y)) = 'l/'.lmax(r,s)(Y) 

for all r, s 2 0 does not hold and hence ( 'l/'.lr )r>o is not a granulometry [21]. Thus, 
in the remainder of this paper, we will conside°i- replacing the dilation in (2)-(3) by 
a closing. 

2. Size distribution functions 

In mathematical morphology, a size distribution law of a stationary random closed 
set X may be defined using a granulometry 'l/'.lr(X) = X o rB (r ;::: 0) based on Eu
clidean openings with a non-empty convex compact structuring element B. Indeed, 
set [28, p. 335] 

P(x EX orB) 
G1(r)=l-P(xEXorBixEX)=l- P(xEX), r2'.:0 

for the size distribution law of the particles, and similarly 

Go(r) = P(x EX erB Ix</. X) = 1- 1 - P(x EX• rB) r;::: o 
1- P(x EX) ' 

for the pores. By the stationarity of X, the definitions do not depend on the choice 
of x E Rd. Intuitively, G1(r) will be the conditional probability that a point in X is 
eliminated by opening with r B ( r > 0), i.e. the probability that the B-size of X is 
less than r. Similarly, Go(r) is the conditional probability that a point from xc is 
included by closing with r B, hence that the B-size of the complement is less than 
or equal tor. By allowing r to vary over (-oo, oo), the joint size distribution law 

Gr _ { 1 - P(x EX o rB) 
( ) - 1 - P(x E X • lrjB) 

of pores and particles is obtained. 

r;:::o 
r<O (4) 

Size distribution laws have been used for a long time in the empirical sciences, 
and more recently in the analysis of (binary) images. For instance Serra [28] em
ploys size distribution laws for shape and texture analysis, Maragos [20] uses them 
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for multiscale shape representation, [16, 25] apply size distributions to shape fil
tering and restoration problems, while Sivakumar [27] gives applications in texture 
classification and morphological filtering. See also [9]. 

However, from a probabilistic point of view, G(·) (and G1 (-)) is not a proper 
distribution function, as it is semi-continuous from the left rather than from the 
right. For this reason we prefer the following definition. 

Definition 1 Let X be a stationary random closed set and B a non-empty convex 
compact structuring element. Define the size distribution function of X by 

p (r) = { P(x EX• rB) 
B P(x E X o JrJB) 

r?: 0 
r < 0 

(5) 

The function PB(·) is called the granulometrie bidimensionelle in metallurgi [10]. 
It is easily verified that PB (0) = p, the coverage fraction of the stationary random 
closed set X. 

The size distribution function PB(-) is well-defined and does not depend on the 
choice of x E Rd. In contrast to G(·), it is a proper distribution function. Compared 
to the empty-space function (2), note that the latter is absolutely continuous except 
in 0 (see Hansen et al. [15]) but that this property does not generally hold for the 
size distribution which may have countably many discontinuities. 

Explicit expressions for size distributions may be hard to find, being related to 
covering probabilities [13]. The contact distribution function is available in closed 
form for Boolean models [29] (but not for most other random set models!) and, if 
the primary grain is convex, depends only on the moments of a few functionals of 
the grain. For instance, in R 2 the mean perimeter determines the whole of HB(r), 
which, as pointed out in Ripley [23], may result in poor distinguishing power as an 
exploratory data analysis tool. 

3. Estimation and edge effects 

In this section we discuss estimating the size distribution function Ps ( r) of a sta
tionary rcs X (cf. Definition 1). Since in practice X is only observed within some 
compact window W of positive volume IWI, due to edge effects caused by parts of 
X outside W, the volume fraction estimator 

{ 
JWn(XerB)J 

A IWI 
PB(r) = 1wn(XoJrlB)I 

1w1 

r?: 0 

r<O 
(6) 

may be biased. To overcome this problem, a minus sampling estimator [23, 29] has 
been proposed. Briefly, this is just the volume fraction estimator with W replaced 
by We ( r B ffi r B). By the local knowledge principle [28], this estimator is point wise 
unbiased. However, it is not necessarily monotone in r, nor is all available infor
mation used. More refined techniques based on survival analysis ideas have been 
suggested by Hansen et al. [15] for deriving a Kaplan-Meier type estimator [1] for 
the empty space function (2). Chiu and Stoyan [8] showed that the ideas underlying 
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the Kaplan-.1\Ieier approach are very similar to those involved in the Hanisch esti
mator [14]. In the remainder of this section, we will derive a Hanisch-type estimator 
for the size distribution function (Definition 1). 

To do so. we need three local size measures: with respect to X, its empty spaces 
and the boundary. As before, let B be a non-empty convex compact structuring 
element and X a stationary random closed set observed in a compact observation 
window W. Set 

__ { s
0
up{r 2: 0: :Jh such that x E (rB)h ~ X} 

p(x,X) 

7)(x,X) {inf{r2:0:xEX•rB} xrf.X 
= 0 x EX 

((t, we) = { ionf{r 2 0: (rB EB r B)t n we =I 0} t E w 
t rt. w 

x EX 
xr/.X 

(7) 

(8) 

(9) 

It is easy to see that X o rB = {x E X : p(x, X) 2: r }, X • rB = {x E Rd : 
·r1(x,X) :Sr} and W 8 (rB EBrB) = {t E W: ((t, we) 2 r}. 

Discretising over a sampling grid T = {ti} ~ W, the minus sampling estimator 
of Ps(r) can be written in terms of p, 77, (as 

r 2: 0 

r<O 
(10) 

Note that (10) does not use all information contained in the data. In particular, 
if t; rf. W 8 (r B ffir B), but ry(t;, X) :S (( t;, we) the correct void size at t; is measured. 
Using this observation, one can define a Hanisch-type estimator for Ps(r) (r 2: 0). 

Definition 2 Let X be a realisation of a stationary random closed set observed in 
a compact window W. Then for all r 2: 0 with # { i : ( ( t;, we) 2: r} > 0, define 

Pff (r) = L #{i: ry(t~,X) = s ~ ((t;, we)} 
s:Sr #{i: ((t;, W) 2: s} 

(11) 

and for r < 0 with #{i: ((t;, we) 2 lrl} > 0, let 

P!J(r) = 1- """ #{i: p(t;,X) = s:::; ((t;, we)} 
L., #{i: ((t· we)> s} 
s<lrl " -

(12) 

The Hanisch-type estimator FfJ(r) is pointwise unbiased for P8 (r). It is increas
ing and semi-continuous from the right. However, it may be non-negative and exceed 
l. If this is undesirable, one can take R = sup{r > 0 : #{ i : t; E We(r BEBr B)} > O} 
and normalise the summ::nds in (11) and (12) by Ffj(R) and PJ! (-R) respectively. 
The resulting estimator P!f (r) is ratio-unbiased. Details can be found in [19), which 
also provides examples on the use of P!J (-) in exploratory data analysis. 
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4. Size-biased Markov random sets 

Except from being helpful statistics in exploratory data analysis, size distributions 
can be used to define new models for random sets observed in a compact window 
W. Similar ideas for finite random fields have been suggested by Chen and Kelly 
[6, 7] and Sivakumar and Goutsias [26]. 

Since the cardinality of the set X is no longer finite, we have to proceed by spec
ifying a density p( ·) with respect to some reference process, eg a Boolean model on 
W. This is a random closed set defined in two steps: first a Poisson process of germs 
is generated (with intensity ,\ > O); then to each of the germs Xi, a random com
pact grain Ki is assigned according to probability distribution µ(.), independently of 
other grains. The union LJJxi EB Ki) is called a Boolean model. Details on random 
set densities can be found in [18]. 

In analogy to [7, 26], set 

p(X) =a exp [- j f(s)df>x(s)] (13) 

where j : R-+ R is a bounded (measurable) function, f>x(-) is an estimator of the 
size distribution function (5) based on X and a is the normalising constant ensuring 
that p(·) integrates to l. It can be shown that for both the naive estimator (6) 
and the normalised or unnormalised Hanisch-type estimator (Definition 2), (13) is 
well-defined. 

Statistical inference for complex random set models usually relies on iterative pro
cedures making 'local' changes to the random set. First, consider the case were both 
the germs and the grains of which the random set is composed are fully observable. 
In that case, Y = { (xi, Ki)} is a germ-grain process and (13) with X = Ui(Xi EB Ki) 
is its density with respect to a Poisson marked point process with intensity measure 
.\ leb(.) x µ(-) (where leb denotes Lebesgue measure, ,\ is the point intensity and 
µ(.) the mark distribution of the grains). Suppose that addition of a grain K at u 
is considered and the function f (-) is supported on [-G, G]. Then the log likelihood 
ratio depends on X through 

{G JG 
- }_

0 
f(s)df>xuKu (s) + -G f(s)d.f>x(s), (14) 

writing Ku= u EB K. 
It can be shown that (14) only depends on those (x;, Ki) E Y for which 

(u, K) "' (x;, Ki) {:} (Ki)x, EB (GB EB GB) n Ku EB (GB EB GB):/; 0. 

Hence, seen as a grain-marked point process, Y is Markov [24, 3] with respect to the 
neighbourhood relation "'· 

If grains are not individually observable, note that if X = X1 U · · · U Xk is 
partitioned into its connected components X 1 , ... , Xk, the opening X oB = U{Bh ~ 
X} also partitions, as the convexity of B implies that Bh must fall entirely in one of 
the Xi· Thus, the naive and Hanisch-type estimators satisfy f>x(s) = I:;=l he (s) 
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for 8 < o. Similarlv, X • B factorises over the connected components of W \ X and 

hence p( ·) is of the form 

k l 

p(X) = II ef;(X;) II ef;(Xf). 
i=l i=l 

Thus. altering X will only affect the connected components that are modified, a 
state-dependent Markov property as introduced by Baddeley and M0ller [3]. See 

also [18, 22]. 

4.1. )vfORPHOLOGICALLY SMOOTH RANDOM SETS 

Let f(s) = IW\log~f 1(-i,o] (s). Then, using the volume fraction estimator (6) yields 
density 

p(X) = O:')'-IX\(XoB)f, (15) 

generalising the Chen-Kelly model [7] for binary random fields. Note that for'/> 1, 
the most likely realisations X are open with respect to the structuring element B. 
Thus sets build of approximately convex components are favoured over those with 
thin or elongated pieces, sharp edges or small isolated clutter. 

By duality, taking f(s) = IWllog')'l(o, 11(s) yields 

(16) 

favouring for /' > 1 sets that are approximately closed with respect to B and dis
i''luraging small holes or rough edges. 

Both models are well-defined for /' s; 1 too, for /' < 1 encouraging morphological 
roughness. 

Note that in (15)-(16), I· I denotes Lebesgue measure restricted to W and hence 
p( ·) is susceptible to edge effects. This can be alleviated by using the Hanisch-type 
estimator. The resulting model also influences the morphological smoothness of its 
realisations. 

4.2. :t\lORPllOLOGICAL AREA-INTERACTION RANDOM SETS 

Let f(s) = lffl log')' l{s S -1} and Fx(·) given by (6). Then 

p(X) = Cl'.')'-fXoBf, 

an opening-smoothed version of the area-interaction process in [2, 18]. Similarly, for 
f ( s) = - log ')' 1 { s > 1} , 

p(X) = Cl'.')'1-fX•Bl/IWI, 

a closing-smoothed area-interaction process. Again, Hanisch-type estimators may 
be employed to better account for edge effects. 

Similar ideas may be used if the area measure in the exponent of r is replaced by 
the Euler characteristic or other quermass integral [4]. Moreover, since the closing 
operator removes small holes, the closing-smoothed Euler-interaction process may 
be integrable when the non-smoothed version is not. 
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4.3. SIZE-SYMMETRIC RANDOM SETS 

Let f be the indicator function of (-G, G], hence 

p(X) =a exp[- 1_: 1dFf (s)]. (17) 

For "! > 0, particle and pore sizes exceeding G will be favoured, while for "! < O the 
sizes tend to be smaller than G. 

Typical samples from (17) using the Metropolis-Hastings sampler of [11, 12] are 
displayed in Figure 1. The basic idea is that although the normalising constant a in 
(17) is not available in closed form, the log likelihood ratios (14) do not depend on the 
normalisation constant and are 'local'. Hence one can run a Markov chain having 
equilibrium distribution (17) with transition probabilities based on the likelihood 
ratio for a sufficiently long time. 

For ease of computation, we consider a simple square for our structuring element 
of three by three pixels. Then 17(·, X), the size measure of voids, can be computed 
using the distance transform algorithm [5] for the 'square' metric on R2 defined by 

d((p1,P2), (q1,q2)) = max{IP1 - qi!, IP2 - q2l}-

By duality, p(·, X) can be computed by reversing the fore- and background. The 
reference Boolean model has intensity parameter >. = 1000 and square primary 
grains with radius r distributed according to a geometric distribution with parameter 
c5 = .2. Finally, G = 5 and hi = 2500 and P!j is as in Definition 2. It is apparent 
that the scale in the left image h = 2500) is larger than that in the right image 
( "( = -2500). 

Fig. l. Samples after 200000 Metropolis-Hastings steps for (17) with G = 5 in a 512x512 image 
for/= 2500.0 (left) and I= -2500.0 (right). 

Exact simulation of size-biased Markov random set models is theoretically pos
sible [17], since its log likelihood ratios are uniformly bounded. However, since (14) 
is not in general monotone in X (not even for the morphological area-interaction 
models in Section 4.2), upper and lower bounds based on the current state of the 
sampler would have to be computed at every iteration. For this reason, we prefer to 
use the computationally easier Metropolis-Hastings method. 
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