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ABSTRACT
We discuss issues arising when a spatial pattern is observed within some bounded region of
space, and one wishes to predict the process outside of this region (extrapolation) as well as
to perform inference on features of the pattern that cannot be observed (interpolation). We
focus on spatial cluster analysis. Here the interpolation arises from the fact that the centres
of clustering are not observed. We take a Bayesian approach with a repulsive Markov prior,
derive the posterior distribution of the complete data, i.e. cluster centres with associated
o�spring marks, and propose an adaptive coupling from the past algorithm to sample from
this posterior. The approach is illustrated by means of the redwood data set (Ripley, 1977).
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1. Introduction

Observations of a spatial pattern are typically con�ned to a bounded region of space, while
the original pattern of interest can often be imagined to extend outside. Much attention has
been paid to statistical inference for models of the pattern given only the partial observations
in the sampling window. Less attention has been given to prediction or extrapolation of
the process (i.e. of the same realisation of the process) beyond the window of observation,
conditional on the partially observed realisation.
A motivating example is the charting of geological faults encountered during coal mining

[5, 16]. It is of interest to predict the likely presence of geological faults outside the region
mined so far, and thereby to choose between various mining strategies. Other examples may
be found in image processing, for instance the problem of replicating a texture beyond the
region where it has been observed [22] as in the editing of a video image so that a foreground
object is removed and replaced seamlessly by the background texture.
Partial observation of a spatial pattern may also include e�ects such as aggregation by

administrative regions, deletion of part of the pattern, and the unobservability of a related
pattern. Recovery of full information in this context might be called interpolation; it resem-
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bles a missing data problem. In the mining problem discussed above, mapped charts represent
only those parts of geological faults which were physically encountered. Gaps may arise be-
cause the mined region is not convex both at its outer boundary and within this boundary,
because pillars of unmined material remain. Hence it is of interest to join observed line seg-
ments together and to interpret them as part of the same continuous fault zone, a process
that is known as `interpretation' by geologists. As another example, geostatistics deals with
predicting values of a spatial random process (e.g. precipitation or pollution measurements)
from observations at known locations (see e.g. [18, pp. 207{209, 356{379], [41, 81], [40, 42]),
and interpolation techniques have been developed under the name of conditional simulation
for Gaussian [40] and other second-order random �elds [41, pp. 494 �.], [42], as well as for
discrete Markov random �eld models [11].
Relatively few conditional simulation techniques have been developed for spatial processes

of geometric features such as points, line segments and �lled shapes. Those that exist are
based largely on Poisson processes and the associated Boolean models [47, 49, 57, 86]. A major
obstacle is the scarcity of spatial models that are both realistic and tractable for simulation.
Some exceptions are the following. There has been much interest in the conditional simulation
of oil-bearing reservoirs given data obtained from one or more exploration wells [15, 33].
The wells are essentially linear transects of the spatial pattern of reservoir sand bodies.
Typically the sand bodies are idealised as rectangles with horizontal and vertical sides of
independent random lengths, placed at random locations following a Poisson point process.
For line segment processes, [16] presents some stochastic models with particular application
to modelling geological faults (based largely on Poisson processes), geostatistical inference,
and possibilities for conditional simulation; [36] describe a pairwise interaction point process
model for swarms of small faults in a fault zone, and [82, 83, 56] study a line segment
process for extracting linear networks from remote sensing images. Some of these authors
have correctly noted the sampling bias e�ect attendant on observing a spatial pattern of
geometric features within a bounded window (analogous to the `bus paradox'). Techniques
from stochastic geometry need to be enlisted to check the validity of simulation algorithms.
Extrapolation or interpolation of a spatial pattern entails �tting a stochastic model to

the observed data, and computing properties of the conditional distribution of this model
given the observed data. We will discuss a variety of stochastic models for patterns of
geometric objects, and treat typical issues such as edge e�ects, occlusion and prediction in
some generality. Subsequently, we shall focus on the problem of identifying clusters in a
spatial point pattern, which can be regarded as interpolation of a two-type point pattern
from observations of points of one type only, the points of the other type being the cluster
centres [6, 51, 52, 54]. Applications may be found in epidemiology, forestry, archaeology, coal
mining, animal territory research, and the removal of land mines.

2. Formulation and notation

In this section we describe the general framework considered throughout. The spatial pattern
is a random closed set [63, 84] U in Rd , typically d = 2 or 3. The distribution of U is governed
by a parameter � in some space �.
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2.1 Germ{grain models

All models considered in this paper are germ{grain models [84, p. 186 �.] constructed as
follows. There is an underlying processX = fXi; i = 1; 2; : : : g of germs in Rd , each associated
with a random compact set Zi (the `grain') in R

d speci�ed by a parameter in some space Z.
The `complete data' process W = f(Xi; Zi)g consists of pairs of germs with their associated
grains and hence can be seen as a marked point process. The union of the translated grains,
U =

S
i(Xi + Zi), forms the germ-grain model.

We shall be concerned mostly with spatial cluster processes, which can be formulated as
germ-grain models where the Xi are the cluster centres, Zi is the cluster of points or objects
associated with centre Xi translated back to the origin (i.e. Zi is a random �nite set of
geometric objects), and U is the union pattern. We will sometimes refer to the Xi as the
parents and to Xi + Zi as the daughters or o�spring of Xi. If both the cluster centres and
their o�spring are points, Z is the space N consisting of all �nite point patterns in R

d . The
complete data W then consists of the patterns X and U together with information mapping
each member of U to its cluster centre in X.
Note that if X = fXi; i = 1; 2; : : : g is a homogeneous Poisson point process, and the Zi are

i.i.d. the random closed set U is a Boolean model [80, pp. 484{502]. The common distribution
of Zi is called the distribution of the typical grain; the germs Xi play only an indirect role.
In practice, one observes the intersection Y = U \A of U with a compact window A � R

d .
Mostly the window A is �xed and known. More generally, one may assume that A is an
observable random set and condition on it, e�ectively implying A should be ancillary for �
and independent of U . The requirement that A be observable excludes, for example, random
thinning models [84, pp. 132{136], [18, pp. 689 �.]. These are unidenti�able in the sense that
one cannot distinguish between a point process of low intensity and a heavily thinned point
process of higher intensity, without imposing further assumptions.

2.2 Problem statement

The goal is, given data y = U \ A, to obtain estimates of the conditional expectations of
random variables associated with U or W . Note that in the latter case, W will contain grains
Z�i such that X�

i +Z�i hits the boundary of A. Hence, any extrapolation technique will have
to extend Z�i as well as locate germ-grain pairs not hitting A.
It is important to realise that the individual objects Xi + Zi in the germ-grain model

are not assumed to be observable separately. They are merely an intermediate stage in the
construction of the model for the random set U . For example, any object Xi + Zi which is
completely occluded, i.e. contained in the union of other objects, is not observable and may
as well be absent. Consequently our analysis must depend only on the union set U and not
on the representation of U as a union of objects Xi + Zi. In other words, if the data image
y can be represented in two di�erent ways

y =

n[
i=1

(Xi + Zi) \A =

m[
j=1

(X 0
j + Z 0j) \A

then inference based on either representation must yield identical results. This rules out
mark-correlation techniques [67].
Specialising to spatial cluster analysis, inference focuses on the conditional expected num-

ber of clusters, the conditional mean number of points per cluster and the posterior distri-
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bution of centre locations as well as the strength of evidence for clustering. As for occlusion
e�ects, the whole essence of the problem is that we do not know which data points belong
to the same cluster. Below, we adopt a Bayesian strategy and base inference on the poste-
rior distribution of W given y. The parameter vector � will be estimated by Monte Carlo
maximum likelihood [29, 30].

2.3 Edge e�ects and sampling bias

Edge e�ects and sampling bias are bound to arise when a spatial pattern of unbounded extent
is observed in a bounded frame [4]. In this section, we illustrate these problems for partial
realisations of a Poisson process of geometric objects. Although the Poisson assumption
allows for explicit computations, the essential complexities of the general problem are already
present.
Thus, assume that the germ process X = fXig is a homogeneous Poisson point process in

R
d with intensity � > 0, that the grains Zi are i.i.d. random compact sets, and that A � R

d

is a �xed, compact window. We wish to generate a realisation of U \A. The approach taken
will be to sample those objects which wholly or partly intersect A, and to clip the resulting
pattern to the window A.
First, note that a translated grain Xi + Zi intersects A if and only if Xi 2 A � �Zi, where

A � B = fa + b : a 2 A; b 2 Bg is the Minkowski sum of two sets A;B � R
d and �A =

f�a : a 2 Ag is the re
ection of A about the origin [63, 80, 84]. Hence, the germ-grain pairs
(Xi; Zi) for which Xi + Zi hits A form an inhomogeneous Poisson process whose intensity
measure has density �1fx 2 A � �Zg with respect to the product of Lebesgue measure and
the probability distribution of the grains. Write j � j for d-dimensional volume. Then the
number of objects intersecting A is Poisson distributed with mean

�E jA � �Zj (2.1)

where the expectation is with respect to the distribution of the typical grain Z, provided (2.1)
is �nite. Given n objects are present, they are i.i.d. with density 1fx 2 A � �Zg=E jA � �Zj.
Turning to the marginal grain distribution, it should be noted that the grains Zi corresponding
to objects which intersect A are not a random sample from the distribution of the typical
grain Z. Instead, their distribution is weighted in the sense that Zi are i.i.d. with distribution

PA(Z 2 �) =
E
�
1fZ 2 �g jA� �Zj

�
E jA � �Zj

(2.2)

where E denotes the expectation with respect to the distribution of the typical grain Z. Thus
the sampling bias favours larger grains: a larger object is more likely than a smaller object
to intersect A. The sampling bias also depends on the geometry and relative orientations of
A and Z. For further information see [80, 84].
To simulate U \A, the properties just described can be used if the function f(Z) = jA� �Zj

and the distribution (2.2) can be evaluated analytically. In two dimensions, if A is a disc of
radius r and Z is a.s. convex with nonempty interior, then by Steiner's formula [79, p. 220]

jA� �Zj = jZj+ r length(@Z) + �r2 (2.3)

a.s., where length(@Z) denotes the length of the boundary of Z. Hence (2.2) is a mixture of
the area-weighted, the length-weighted and the unweighted typical grain distribution.
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Of course, if Z is a cluster of points, it is not convex. However, if the diameter of Z is
almost surely bounded by D (say), we can generate centres Xi 2 A � BD where BD is the
disc of diameter D, form the associated Zi and clip Xi + Zi to A. Similarly, one can reduce
to the case where A is convex, or even a disc, by simply enclosing A in a larger, convex region
A+ such as the convex hull or circumcircle of A, generating a simulated realisation of U in
A+, and clipping it to A.

2.4 Extrapolation

When extending a germ-grain model beyond the observation window, two cases may be
distinguished, namely

(i) extending grains Z�i such that X�
i + Z�i hits the boundary of A based on U \A;

(ii) extending the pattern U beyond the window A based on U \A.

Below we discuss several geometric aspects in some generality. Speci�c aspects related to
spatial cluster processes will be treated in subsequent sections.
For Poisson germ-grain models, the conditional distribution of fX�

i + Z�i : i = 1; 2; : : :g
given f(X�

i + Z�i ) \A : i = 1; 2; : : :g is such that the X�
i + Z�i are conditionally independent,

and the conditional distribution of X�
i + Z�i depends only on (X�

i + Z�i ) \A [20, 48, 50, 71].
Note that this conditional distribution as well as the law of (X�

i +Z�i )\A may have atoms, as
for example if there is a non-zero probability that a single object X�

i +Z�i covers A completely
or in the conditional case, if a grain is speci�ed fully by its restriction to A. Atoms need to
be treated separately using integral-geometric factorisation techniques [79].
If the distribution governing X is not that of a Poisson point process, as for spatial clus-

tering problems, the grains can no longer be extended independently of each other. Other
obstacles arise from the unobservability of the individual objects in the pattern (cf. sec-
tion 2.2), and we need to extend grains based on the union set U \ A. Sometimes, U \ A
su�ces to determine the individual sets (X�

i + Z�i ) \ A; more often it will not be possible
to determine the components uniquely from U especially if the window A is not convex or
if objects may occlude one another. Indeed, the identi�cation of the o�spring partitioning is
the whole point of spatial clustering.
To conclude this section, note that alternative classes of models include the various Poisson-

based constructions described in [16], [80, chap. XIII], and Arak-Surgailis-Cli�ord mosaics
and random graphs [1, 2, 3]. We use germ-grain models mainly because they are quite

exible while still remaining relatively simple from a computational point of view: Markov
chain Monte Carlo simulation methods are available by combining existing methods for point
processes and for Poisson processes of geometric objects, and parametric and nonparametric
inferential methods can be carried over from existing methods for spatial point processes.
Moreover, in the alternative models listed above, the geometric features may be connected
(e.g. several line segments may have a common endpoint) in a fashion which is inappropriate to
most of the applications considered here, although positively desirable for other applications
such as random tessellations.

3. Spatial cluster processes

The identi�cation of centres of clustering is of interest in many areas of applications, including
archeology [37], mining [5, 16] and animal territory research [13]. In disease mapping the
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identi�cation of cluster centres is of prime interest [62] and mine �eld detection relies on
separating clusters of land mines from clutter of other kinds [19, 21].
Most traditional clustering approaches build a tree based on some similarity measure (see

e.g. [14, 28, 35, 39, 43, 61] or other textbooks on multivariate statistics). From this tree,
the number of clusters and the corresponding partition is decided in an ad hoc (and mostly
subjective) manner. More recently, model based clustering techniques [21, 24] consider �nite
mixture models. The number of groups is determined by a Bayes factors or AIC criterium,
and given the number of mixture components, model parameters are estimated by maximum
likelihood, often using a variant of the EM algorithm. Most applications also allow a `do not
know' class for outliers or noise. The cluster centres only play an implicit role { approximated
by the centre of gravity, principal axis or other `mean' of the detected clusters { if they appear
at all. Notable exceptions are [58, 59, 60] who model uncertainty in point locations by means
of a cluster process consisting of at most a single point, and [55] who employ variational
analysis in the space of intensity measures of the parent point process.
In contrast, following up on earlier work [6, 54, 52], this paper advocates the use of point

process and germ-grain models (see section 2.1). A virtue of this approach is that the number
of clusters, the locations of their centres, and the grouping or labelling of observed points into
clusters, are intrinsic aspects of the underlying process (rather than additional parameters)
and are all treated simultaneously. The most general model we consider is the independent
cluster process introduced in section 3.1, but most attention will be focussed on the compu-
tationally convenient Cox cluster processes (section 3.2). The cluster formation densities are
derived in section 3.3 below.

3.1 Independent cluster processes

Let X be a point process on R
d and associate with each Xi a �nite cluster Zi of points

`centred' at the origin of Rd . Throughout we will assume that the grains Zi are conditionally
independent. The union of o�spring U = [i(Xi + Zi) is an independent cluster process [20,
pp. 236{238], [17, pp. 75{81, 148 �.]. Technical conditions of �niteness and measurability
must be satis�ed for such a process to exist, see [20, p. 236].
The data consist of a realisation of Y = U \ A in a compact window A � R

d of positive
volume. Thus,

y = fy1; : : : ; ymg ; m > 0; y � A

is a con�guration of daughters in A. The above formulation is quite 
exible, in that it
retains the possibility of locating putative cluster parents outside the window A to counteract
sampling bias e�ects (see the discussion in section 2.3) and of grain characteristics such as
the daughter intensity or the spread of the cluster to be randomly and spatially varying.
In order to be able to base inference on penalised likelihoods, we shall restrict the germ

process to lie inside some compact set X � R
d of positive volume, and assume that its

distribution is absolutely continuous with respect to a unit rate Poisson point process on X .
For each � 2 X we are given the distribution Q� of a �nite point process Z� on a compact
subset ~X of Rd ; Z� represents the o�spring of a parent � translated back to the origin to �t
in the general germ-grain model of section 2.1. We assume that Q� is absolutely continuous
with a density g(�j�) with respect to the distribution of a unit rate Poisson process on ~X .
Thus Z = N = N ~X , the family of �nite point con�gurations in ~X . To ensure existence
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of U , we shall assume that the family of densities is jointly measurable seen as a function
g : X �N ! R

+ .
More generally, we could have set ~X = R

d equipped with some �nite di�use intensity
measure �(�), with the assumption that Q� is absolutely continuous with respect to the
distribution of a Poisson process with intensity measure �(�). It is of interest to note that
when X is a Poisson process and we extend the process onto the whole of Rd , then Q may be
almost surely reconstructed from a single joint observation of parents and daughters [10, 65].
Table 3.1 summarises standard nomenclature for special cases of the independent cluster

model [20, 84].

Parents X Clusters Z Name of process U

general general Independent cluster process
Poisson general Poisson cluster process
general Poisson Cox cluster process
Poisson Poisson Neyman-Scott process
Poisson (homogeneous) Poisson (uniform in disc) Mat�ern cluster process
Poisson (homogeneous) Poisson (Gaussian) modi�ed Thomas process

Table 1: Standard nomenclature for independent cluster processes.

3.2 Cox cluster processes

For simplicity, most attention will be focussed on the Cox cluster process model, where each
grain Z�, � 2 X , is a realisation of an inhomogeneous Poisson point process on ~X with
intensity function h(� + �j�) : ~X ! [0;1). In other words, a parent point � is replaced
by a Poisson number of o�spring with mean H(�) =

R
~X h(t + �j�)dt 2 (0;1), and given

the number of o�spring their locations are independently and identically distributed with
probability density f(�) = h(�j�)=H(�) on � + ~X (with respect to Lebesgue measure). We
shall assume the intensity function h(�j�) to be jointly measurable in its arguments, as well
as integrable so that H(�) <1 for all � 2 X . As in [21, 52, 54], scatter noise and outliers {
also known as orphans { are modelled by a Poisson point process of constant intensity � > 0
independently of all Z�. This �ts into the germ-grain framework of section 2.1 by introducing
an extra dummy or `ghost' parent x0. We shall write h(�jx0) � �, and denote its integral over
X � ~X by H(x0).
By the superposition property of Poisson processes, conditional on X = x = fx1; : : : ; xng,

the combined o�spring form a Poisson point process on X � ~X with intensity function

�(� j x) = �+

nX
i=1

h(�jxi) (3.1)

with the convention that h(tjxi) = 0 if t 62 xi + ~X , i = 1; : : : ; n. The marginal distribution of
U is that of a Cox point process [84, p. 144].
Often, the intensity function h(tj�) will depend only on the distance d(�; t) between � and
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t. An example is

h(tj�) =

�
� if d(�; t) � Rh

0 otherwise
(3.2)

which, if X is also a Poisson process, is known as the Mat�ern cluster process [64]. Another
interesting special case is (for d = 2, say)

h(tj�) =
�

2��2
e�d(�;t)

2=2�2 : (3.3)

According to (3.3), the daughters follow an isotropic Gaussian distribution with centre �.
Again if X is a Poisson process, the distribution of U is called the modi�ed Thomas process.
More generally, the spread � may depend on �. For further details, consult [20, 26] or [84].
For a Cox cluster process, conditional on X = x = fx1; : : : ; xng and the number m of

o�spring, the points are drawn independently from a �nite mixture distribution [34, 87] with
n+ 1 component distributions determined by the xi and weights

pi =
H(xi)Pn
i=0H(xi)

; i = 0; : : : ; n:

If the intensity function h is translation invariant in the sense that h(t+ �j�) = h(tj0) for all
� 2 X { a common assumption in our spatial context { the weights are identical for all parents
except the ghost, a rather unnatural restriction in the �nite mixture context. Furthermore,
the connection with mixture distributions is lost when the clusters are no Poisson processes.
To conclude this section, note that some parents may be childless. In particular, if the

clusters Z� are Poisson processes, they have a positive probability of being empty. If in a
particular application there is no interest in such parents, one could condition each Z� on
fZ� 6= ;g, or consider only those parents having at least one daughter.

3.3 Cluster formation densities

In order to be able to draw inference about parents and cluster membership, we need the
(posterior) distribution of W = f(x0; Z0); : : : ; (Xn; Zn)g, i.e. of parents Xi marked by their
associated grain Zi, i = 0; : : : ; n. We will take a Bayesian approach based on

pW jU(f(xi; zi)gi�n j u) / P (z0; : : : ; zn j x0; : : : ; xn;u) pXjU (x j u)

= c(u)P (z0; : : : ; zn j x0; : : : ; xn;u) pU jX(u j x) pX(x); (3.4)

the posterior density of W with respect to a unit rate Poisson process on X marked at � 2 X
by a label in P(u� �) according to the uniform distribution on the power set of u translated
back to the origin. The term pX(x) is the prior density for X with respect to the distribution
of a unit rate Poisson process on X , and c(u) a normalising constant depending on the `data'
u. If only the cluster centres are of interest, the posterior density of X (with respect to the
distribution of a unit rate Poisson process on X ) may be used instead:

pXjU (x j u) = c0(u) pU jX(u j x) pX(x): (3.5)

We will discuss the choice of prior later on and here describe only the `forward terms' of
cluster formation.
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Firstly, recall from section 3.1 that conditional on X = x = fx1; : : : ; xng, the grains
Z1; : : : ; Zn associated with x1; : : : ; xn respectively are independent with distributions that
are absolutely continuous with respect to a unit rate Poisson process on ~X . Thus, the
conditional joint density of (Z1; : : : ; Zn) equals

nY
i=1

g(zijxi)

with respect to the n-fold product measure of unit rate Poisson processes on ~X . The orphans
Z0 are modelled as a Poisson process of rate � > 0. Again conditioning on X = x, the
superpositionU is absolutely continuous with respect to the distribution of a unit rate Poisson
process on X� ~X . Its density at u = fu1; : : : ; umg can be found by summing over all partitions
in sibling clusters

pU jX(u j x) = (3.6)

e(1��)jX�
~X j�nj ~Xj

X
'

�
n(u'�1(f0g))

nY
i=1

g(u'�1(fig) � xijxi)1fu'�1(fig) � xi � ~Xg

where the sum ranges over all possible o�spring-to-parent assignment functions ' : f1; : : : ;mg
! f0; : : : ; ng, u'�1(fig) = fuj : '(j) = ig consists of those uj ascribed to parent xi by ', and
n(�) denotes cardinality. Equation (3.6) is most readily derived using Janossy densities [20,
p. 122]. The details can be found in [52, Lemma 23]. Note that (3.6) can be expressed as

e(1�n��)jX�
~Xj
X
'

�
n(u'�1(f0g))

nY
i=1

g0(u'�1(fig) � xijxi)

where g0(��xijxi) = ejX�
~Xj�j ~Xjg(��xijxi)1f��xi � ~Xg is a density of the translated typical

grain with respect to a unit rate Poisson process on X � ~X .
Next, consider the conditional distribution of the complete model given the cluster cen-

tres x1; : : : ; xn. Since we already derived the conditional joint density of (Z1; : : : ; Zn), an
identi�cation

(Zn; �nZ ;A)$ (NX�Z ; �x;B)

of grain vectors (z1; : : : ; zn) 2 Zn with the marked point con�guration f(x1; z1); : : : ; (xn; zn)g
2 NX�Z is needed. Here Z = N ~X is the grain space (cf. section 2.1) consisting of all �nite

point con�gurations, �nZ is the n-fold product measure of unit rate Poisson processes on ~X ,
A is the usual Borel product �-algebra of the weak topology [20], and B the Borel �-algebra
of the weak topology on marked point patterns. To do so, de�ne a measurable bijection ix
(in the sense that the complement of the range of ix has measure zero under �x) depending
on the parent pattern x = fx1; : : : ; xng by

ix : (z1; : : : ; zn) 7! f(x1; z1); :::(xn; zn)g :

Using the identi�cation thus de�ned, the measure �x is given by �x(B) = �nZ(i
�1
x
(B)) for all

B 2 B.
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Finally, the conditional distribution of W or equivalently the marks Zi given (X;U) is
discrete, with probabilities

P (z0; : : : zn j x0; : : : ; xn;u) = (3.7)

�n(z0)
Qn

i=1 g(zijxi)P
' �

n(u'�1(f0g))
Qn

i=1 g(u'�1(fig) � xijxi)1fu'�1(fig) � xi � ~Xg

provided the union [i(xi + zi) equals u. If g(� � �j�) is hereditary (cf. section 4.1) for each
� 2 X , the sum in the denominator of (3.7) over all functions ' ascribing parents to each
o�spring, is non-zero. Otherwise, we have to impose the condition that the grain partition
and (X;U) are compatible, in the sense that there exists at least one ' for which the term

�
n(u'�1(f0g))

Qn
i=1 g(u'�1(fig)�xijxi)1fu'�1(fig)�xi � ~Xg is strictly positive [52, Theorem 29].

For Cox cluster processes, the formulae (3.4){(3.7) can be greatly simpli�ed. Since Z� has
density

g(zj�) = exp

�Z
~X
(1� h(t+ �j�)) dt

� Y
z2z

h(z + �j�)

with respect to a unit rate Poisson process on ~X , (3.6) reduces to

pU jX(u j x) = exp

�Z
X� ~X

(1� �(t j x)) dt

�X
'

nY
i=0

Y
t2u

'�1(fig)

h(tjxi)

= exp

�Z
X� ~X

(1� �(t j x)) dt

� mY
j=1

�(uj j x) (3.8)

coding h(�jx0) � � for the dummy parent x0. Thus, (3.8) is in accordance with the fact
that the independent superposition of Poisson processes is again a Poisson process, here with
intensity �(� j x) (cf. (3.1) and the discussion in section 3.2).
As for the o�spring labelling, (3.7) for a Cox cluster process equals

P (z0; : : : ; zn j x0; : : : ; xn;u) =

Qn
i=0

Q
t2zi

h(t+ xijxi)Qm
j=1 �(uj j x)

(3.9)

whenever [i(xi + zi) = u, see [54] or [52, Corollary 30].
In terms of the label allocation function ' : f1; : : : ;mg 7! f0; 1; : : : ; ng allocating each

daughter point to its parent, equation (3.9) implies that the daughters are ascribed to a
cluster centre xI independently of one another, with probabilities

P ('(j) = I) =
h(uj jxI)

�(uj j x)
:

The analogue of this result for �nite mixtures with m and n �xed was called the Random
Imputation Principle by Diebolt and Robert [24]. It was taken as an assumption by Binder
[12, p. 32, above (2.1)]. Note the statement holds only for Cox cluster processes, i.e. when
the clusters are Poisson.
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4. Bayesian cluster analysis

From section 2.2, recall that the prime object of spatial cluster analysis is to evaluate con-
ditional expectations of quantities such as the number of clusters and the mean number of
points per cluster based on the posterior distribution (3.4) of the complete data W given
y. In the previous section, we derived the densities associated with cluster formation. In
section 4.1 below, we discuss the prior, and investigate properties of the posterior distribu-
tion in section 4.2. Then we turn to the the problems of generating realisations of (3.4) by
Markov chain Monte Carlo methods, and of estimating the model parameters (sections 4.3{
section 4.4). In section 4.5, we propose an adaptive coupling from the past algorithm that
yields exact samples from (3.4). Throughout, the redwood data set [72, 85] is used as an
illustration.

4.1 Markov point processes

In this section we focus on the prior term pX(x) in (3.4), which we shall assume to be the
density of a Markov point process. Accessible introductions to Markov point processes can
be found in [17, pp. 155{159] and [76]. Theory and properties are set out in [20, pp. 124-125,
573 �.], [71, pp. 189{193], [9, 68, 75, 77, 78]. A recent textbook is [53]. Following is a brief
summary of the facts we need.
Let X be a point process on a compact subset X � R

d of positive volume, whose distri-
bution is absolutely continuous with respect to a unit rate Poisson process on X , say with
density pX(�). Then X is Markov at range R in the sense of Ripley and Kelly [77] if the ratio

�X(�;x) =
pX(x [ f�g)

pX(x)
(4.1)

is well-de�ned for all � 2 X (i.e. pX(x [ f�g) = 0 implies pX(x) = 0; in this case we will
also say that pX(�) is hereditary) and depends only on those xi 2 x for which d(xi; �) � R.
More generally, the �xed range dependence may be replaced by an arbitrary symmetric
neighbourhood relation � (so that (4.1) depends on xi � � only). Even more general Markov
point processes are considered in [9], and the Markovianity of spatial cluster processes is
studied in [8]. A (Markov) point process de�ned by its density with respect to a unit rate
Poisson process is said to be locally stable if its conditional intensity (4.1) is well-de�ned and
uniformly bounded in both its arguments.
To model patterns in which the points tend to avoid coming too close together, it is

convenient to consider pairwise-interaction processes with densities of the form

pX(x) = �
Y
x2x

�(x)
Y

x�x02x


(x; x0) (4.2)

where � : X ! [0;1) (the `intrinsic activity') and 
 : X � X ! [0;1) (the `pairwise
interaction') are measurable functions, 
 is symmetric, and � > 0 is the normalising constant.
This model is well-de�ned (i.e. the density is integrable) at least whenever �(�) is uniformly
bounded and 
(�; �) � 1.
A standard example of (4.2) is the Strauss process [85] with �(�) � � > 0 and


(x; x0) =

�

 if d(x; x0) � R
1 otherwise

(4.3)
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where 0 � 
 � 1, which has density

pX(x) = ��n(x)
s(x)

where n(x) is the number of points in x and s(x) is the number of pairs x; x0 with d(x; x0) � R.
The model favours realisations x that tend to have more points at distances larger than R
than under the Poisson model, that is there is repulsion between the points. The special case

 = 0 in which no R-close point pairs are permitted is known as the hard core process; 
 = 1
corresponds to a Poisson process with intensity �.
More formally, a point process density pX(�) is called anti-monotone (or repulsive) if

�X(�;x
0) � �X(�;x)

for all � whenever x � x0 and monotone (or attractive) if its conditional intensity satis�es

�X(�;x
0) � �X(�;x):

The reader may verify that the Strauss process is repulsive for all 
 � 1.

4.2 Sampling bias for independent cluster processes

Note that the restriction Y of an independent cluster process U to some compact observation
window A is itself an independent cluster process. Indeed,

Y = U \A =
[
x2X

(x+ Zx) \A =
[
x2X

(x+ (Zx \ (A� x))):

The distribution Q�;A of the grain Z� \ (A� �) associated to � in the A-clipped process has
density

gA(zj�) =
1X
k=0

1

k!

Z
� � �

Z
( ~Xn(A��))k

g(z [ fv1; : : : ; vkgj�) dv1 : : : dvk (4.4)

with respect to a unit rate Poisson process on ~X . It follows that the posterior distribution
of X given Y is analogous to (3.5), except for the fact that gA(�j�) features instead of g(�j�).
As before, a ghost parent is added to account for scatter noise.
For Cox cluster processes, (4.4) simpli�es to

gA(zj�) = exp

�Z
~X
(1� h(t+ �j�)1ft 2 A� �g) dt

� Y
z2z

h(z + �j�)

for z � A� �, the density of a Poisson point process with intensity function h(� + �j�)1f� 2
A � �g: Hence, conditionally on X = x = fx1; : : : ; xng, Y is an inhomogeneous Poisson
process on A with intensity function

�(a j x) = �+

nX
i=1

h(ajxi); a 2 A;

where � > 0 is the background clutter term (cf. section 3.2). As for the prior, one could
simply assume the parents to be distributed as a Poisson point process, but it seems more
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natural to incorporate repulsion at short range to avoid `over �tting' in the sense of many
close parents. Thus, one might take as prior for example a hard core process (cf. section 4.1)
with density

pX(x) =

�
��n(x) if d(xi; xj) > R for all pairs
0 otherwise

(4.5)

with respect to a unit rate Poisson process on X .
Upon observing Y = y = fy1; : : : ; ymg, the analogue of (3.5) for the A-clipped process is

pXjY (x j y) = c(y) pX (x) exp

�Z
A
(1� �(a j x)) da

� mY
j=1

�(yj j x) (4.6)

which has posterior conditional intensity

�XjY (�;x j y) = �X(�;x) exp

�
�

Z
A
h(aj�) da

� mY
j=1

�
1 +

h(yj j�)

�(yj j x)

�
: (4.7)

If the prior density pX(�) is that of a repulsive Markov point process, the posterior distri-
bution speci�ed by (4.6) is hereditary and repulsive too. The posterior range of interaction
depends on the supports of the family h(�j�), � 2 X , of intensity functions. If furthermore
the prior density pX(�) is locally stable with bound � for its conditional intensity and h(�j�) is
uniformly bounded in both its arguments by H, then �XjY (�;x j y) � �(1 +H=�)m implying
local stability of (4.6).

4.3 Spatial birth-and-death processes

In this section, we address the problem of sampling from the posterior distribution of the
complete dataW given partial observations Y = U\A = fy1; : : : ; ymg of a Cox cluster process
U within some compact observation window A. Note that since the o�spring allocation labels
are discrete and distributed according to (3.9), and by the Poisson assumption any daughters
in Ac are conditionally independent of those in A, the problem reduces to sampling from the
conditional distribution (4.6) of X given Y . Since direct sampling does not seem feasible, we
apply Markov chain Monte Carlo techniques. Perhaps the oldest such technique is based on
spatial birth-and-death processes [69], continuous time Markov processes whose transitions are
either births or deaths. The traditional choice [9, 66, 72] is to take a birth rate proportional
to the posterior conditional intensity and a constant death rate. Under mild non-explosion
conditions, this procedure converges to the target distribution and hence yields approximate
samples if run for long enough [66, 69]. A disadvantage is that the total birth rate is di�cult
to compute, and the product over data points in (4.7) may be very large. For these reasons,
we prefer to work with the alternative birth rate

b(x; �) = �X(�;x)

2
41 +

mX
j=1

h(yj j�)

�

3
5 (4.8)

which is less peaked than the posterior conditional intensity, while retaining the desirable
property of placing most new-born points in the vicinity of points of y. In order to satisfy
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the detailed balance equations

pXjY (x j y) b(x; �) = pXjY (x [ f�g j y) d(x [ f�g; �);

the death rate for deleting � from con�guration x [ f�g is

d(x [ f�g; �) =
exp

�R
A h(aj�) da

�
Qm

j=1

h
1 +

h(yj j�)
�(yj jx)

i
2
41 +

mX
j=1

h(yj j �)

�

3
5 : (4.9)

Note that for any locally stable prior distribution for which �X(�;x) � � uniformly in x

and �, and any h(�j�) that is uniformly bounded in both its arguments by H, the total birth
rate

B(x) =

Z
X
b(x; �) d� � �

2
4jX j+ 1

�

mX
j=1

Z
X
h(yj j�) d�

3
5 := B

is bounded from above by a constant B � �jX j(1+mH=�) that is easy to evaluate for typical
choices of h(�j�) such as (3.2) or (3.3). The total death rate from parent con�guration x

satis�es

D(x) =
X
i

d(x; xi) � n(x)(1 +H=�)�m:

Hence, by the Preston theorem [68] (see e.g. [9, 66]), there exists a unique spatial birth-
and-death process with transition rates given by (4.8) and (4.9). It has unique equilibrium
distribution pXjY (� j y), to which it converges in distribution from any initial state.
From an algorithmic point of view, if the current state is x, after an exponentially dis-

tributed sojourn time of rate B + D(x), with probability D(x)=(B + D(x)) a point of x
is deleted according to the distribution d(x; xi)=D(x); a birth is proposed with the com-
plementary probability B=(B +D(x)) by sampling a candidate � from the mixture density
�
B

h
1 +

Pm
j=1

h(yj j�)
�

i
, which is then accepted with probability �X(�;x)=�.

4.3.1 Example: redwood seedlings Figure 1 (left) shows the locations of 62 redwood seedlings
in a square of side approximately 23 m. The data were extracted by Ripley [72] from a larger
data set in Strauss [85]. The K-function [73, 74] for these data is given in [72] and suggests
aggregation. As noted by Strauss this is caused by the presence of stumps known to exist in
the plot, but whose position has not been recorded.
Previous analyses of this data set include that of Strauss, who �tted a model later criticised

by Kelly and Ripley [44]. Ripley [72] concluded we should reject the Poisson hypothesis and
remarked that there appears to be both clustering and inhibition between clusters.
Diggle [26] �tted a Poisson cluster process of Thomas type and reported least squares

estimates (25.6 , 0.042) for the parent intensity and the standard deviation of daughter{
parent distances. A goodness of �t test showed adequate �t, but, from a biological point
of view, a mean number of 26 stumps seems implausible. In [25], a Poisson cluster process
of Mat�ern type was �tted with similar results (radius 0.061 and 29 clusters). None of the
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Figure 1: (Left) Positions of 62 redwood seedlings in a unit square and (right) log posterior
parent intensity surface based on a Cox{Mat�ern cluster process with Rh = 0:061 and on
average 2:14 points per cluster, noise intensity � = 10:0 and a hard core prior with R = 0:03
and � = 1:0 by spatial birth-and-death over 2:0� 104 time units.

above have looked at cluster centre location. This was �rst studied in [6] and by Lawson [51]
who �tted a Poisson{Thomas cluster process and reported 16 parents. An approach based
on variational methods can be found in [55].
In earlier work [6, 52, 54], we analysed the redwood data using a modi�ed Thomas dis-

placement function (3.3) and a Strauss prior (4.3) with interaction distance 0.084 [26] and
log � = log 
 = �10. Simulation was based on a constant death rate spatial birth-and-death
process. Initialising with parameter values � = 7, � = 0:042 and an empty list of cluster
centres, we ran the birth-and-death process for 2 time units and found maximum likelihood
estimates � = 6:5 and � = 0:05.
Here, we use the spatial birth-and-death process with rates (4.8){(4.9) to sample from the

posterior distribution of cluster centres for a Cox model with a Mat�ern style intensity function
given by (3.2) with Rh = 0:061 and � = 2:14=(�R2

h) as in [25], orphan intensity � = 10:0,
and a hard core prior with R = 0:03 and � = 1:0. The posterior intensity surface of parents
in X = [�Rh; 1:0 +Rh]

2 over 2:0 � 104 time units after a burn-in period of 200:0 units with
empty initial state is plotted in �gure 1 (right); for the posterior histogram of the number of
clusters, see �gure 2 (right). To indicate the e�ect of the choice of parameters, the posterior
histogram for � = 0:052 and an average cluster size of 4:3 is shown in �gure 2 (left). It can
be seen that the latter choice shifts the posterior histogram towards fewer cluster centres.
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Figure 2: (Left) Posterior histogram for the number of parents given the data of �gure 1 (left)
based on a Cox{Mat�ern cluster process with Rh = 0:061 and on average 4:3 points per cluster,
noise intensity � = 10:0 and a hard core prior withR = 0:03 and � = exp(4:3+2:0 log(�=(�+�))
by spatial birth-and-death over 2:0 � 105 time units and (right) for on average 2:14 points
and � = 1:0 over 2:0 � 104 time units as in �gure 1 (right).

4.4 Parameter estimation

In general, the independent cluster model g(�j�) will contain parameters � that must be es-
timated. For the Cox cluster model, the parameters are the clutter intensity � as well as
parameters of the displacement function h(�j�) specifying the shape, the spread and the num-
ber of daughters in each cluster. Moreover, the prior model pX(�) also contains parameters,
but since these are merely used as regularisation to avoid over �tting, we will treat these as
�xed.
We shall use the Monte Carlo maximum likelihood method for missing data models [29],

see also [30]. In the context of detecting the centres in an independent cluster process,
the observed data consists of a point pattern y, the combined o�spring in the window A.
The missing data are both the parents and their associated grains. In terms of the cluster
formation density derived in section 3.3, the log likelihood ratio with respect to a �xed
reference parameter �0 can be written as

l(�) = logE�0

2
4n(X)Y

i=0

g�(ZijXi)

g�0(ZijXi)

������ Y = y

3
5 (4.10)

by importance sampling theory. The Monte Carlo analogue lk(�) of (4.10) is obtained by
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replacing the expectation by the average in a sample W1; : : : ;Wk from the complete model
under the conditional distribution with parameter �0. Di�erentiating with respect to �, the
parameter of interest, we obtain

rlk(�) =
1

k

kX
j=1

wj;�0;�

r
hQ

(Xi;Zi)2Wj
g�(ZijXi)

i
Q

(Xi;Zi)2Wj
g�(ZijXi)

(4.11)

where wj;�0;� =
�Q

(Xi;Zi)2Wj

g�(ZijXi)
g�0 (ZijXi)

�
=
�
1
k

Pk
j=1

Q
(Xi;Zi)2Wj

g�(ZijXi)
g�0 (ZijXi)

�
are the importance

weights. The well-known EM algorithm [23] is an iterative procedure based on (4.11) that
consists of two steps: the E-step computes the conditional log likelihood given the data and
current estimates of the parameters, the M-step maximises the result with respect to the
parameter. Thus, the importance weights reduce to 1, but resampling is needed at each
step. For a critical evaluation of these and other parameter estimation methods, the reader
is referred to [30], see also [27, 31, 38].

For Cox cluster processes, (4.10) simpli�es to

l(�) = logE�0

2
4ePn(X)

i=0 (H�0
(Xi)�H�(Xi))

n(X)Y
i=0

Y
t2Xi+Zi

h�(tjXi)

h�0(tjXi)

������Y = y

3
5

hence the Monte Carlo score vector (4.11) is

rlk(�) =
1

k

kX
j=1

8<
:wj;�0;�

X
(Xi;Zi)2Wj

[�rH�(Xi) +
X

t2Xi+Zi

r log h�(tjXi)]

9=
;

where as before Wj is a sample of size k from the conditional distribution of the complete
data given y under the reference parameter �0, and wj;�0;� are the importance weights.

4.4.1 Example: Cox{Mat�ern cluster process Consider the Cox{Mat�ern cluster process on
R
2 with o�spring governed by (3.2) and independent Poisson background clutter. Treating

the range Rh as �xed, the parameter vector is � = (�; �). The grain is a �nite point process
on ~X = B(0; Rh), and H(�) = ��R2

h for each genuine parent � 2 X . For the dummy parent,
H(x0) = �jX � B(0; Rh)j. If X is a convex set, the Steiner formula may be used to �nd
an explicit expression of this area, see section 2.3. By di�erentiation with respect to the
parameter vector, it follows that the components of rlk(�) are the weighted averages of

�jX � B(0; Rh)j + n(Zj
0)=� and �n(Wj)� R

2
h +

Pn(Wj)
i=1 n(Zj

i )=� where n(Wj) denotes the

number of genuine parents in Wj, and Zj
0 its orphan cluster. The EM-updates are easily

derived:

�(n+1) =
E�(n) [n(Z0) j Y = y]

jX �B(0; Rh)j
;

�(n+1) =
E�(n)

hPn(X)
i=1 n(Zi) j Y = y

i
E�(n)

�
�R2

hn(X) j Y = y
� :
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Figure 3: Monte Carlo log likelihood ratio surface as a function of the noise intensity � 2
(5; 30) and the mean cluster size ��R2

h 2 (1:14; 7:14) for the redwood seedlings data (�gure 1
(left)) based on a Cox{Mat�ern cluster process with Rh = 0:061 and reference parameter
values such that the average number of points per cluster is 2:14, the noise intensity � = 10:0.
We used a hard core prior with R = 0:03 and � = 1:0. One hundred realisations were
subsampled from a run of a spatial birth-and-death process over 2:0 � 104 time units after
burn-in.

For the example on redwood seedlings (section 4.3.1) with a unit rate hard core prior at
range 0:03 and reference parameter vector (10:0; 183:06) as in �gure 1 (right), the Monte
Carlo log likelihood ratio for � 2 (5; 30) and ��R2

h 2 (1:14; 7:14) is given in �gure 3; the
solution of the Monte Carlo score equations is (�̂100; �̂100) = (19:65; 354:15). For comparison,
the Monte Carlo EM-updates would be � = 15:12 and � = 311:61 corresponding to 3:64
daughters on average in a cluster.

4.5 Adaptive coupling from the past

Remarkably, the spatial birth and death approach described in section 4.3 can be adapted to
yield an exact sample from the desired posterior distribution using coupling from the past
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[70, 46]. Such algorithms are particularly e�cient when there is some monotonicity in the
state space, and the sampler respects this order.
In the context of this paper, the prior distribution of X is a repulsive Markov point process.

Whether the same is true for the posterior distribution depends on the grain distributionsQ�.
However, for Cox cluster processes, we showed in section 4.2 that the posterior distribution
is repulsive and hereditary too. Moreover, (4.8){(4.9) reverse the inclusion ordering in the
sense that if x � x0 then b(x; �) � b(x0; �) for all � 2 X , while d(x; xi) � d(x0; xi) for
xi 2 x. Our proof can be found in [53, Section 4.9.3]. If the displacement functions h(�j�) are
uniformly bounded by H, the posterior inherits local stability from the prior. Such properties
are particularly pleasing for Bayesian analysis, as they imply that the choice of prior is not
crucial in these respects. Hence the coupling from the past algorithm of Kendall and M�ller for
locally stable point processes in principle applies [46]. Those authors presented their method
for the constant death rate dynamics, with a dominating process that is Poisson with an
upper bound to the conditional intensity of the distribution to be sampled as intensity. In
our context, such a method would be impractical, as in most cases the upper bound will be
orders of magnitude too large. For this reason, we present an adaptive coupling from the
past algorithm based on (4.8){(4.9).

Suppose a spatial birth-and-death process with transition rates b(�; �) and d(�; �) is available
to sample from the posterior density of cluster centres pXjY (� j y), and we have upper and
lower bounds

b(x; �) � �b(�) (4.12)

d(x [ f�g; �) � d(x [ f�g; �) (4.13)

holding for all con�gurations x and all � 2 X . Suppose furthermore a unique probability
density �(�) solving the detailed balance equations

�(x)�b(�) = �(x [ f�g) d(x [ f�g; �)

exists. For the classical constant death rate process, d(x[f�g; �) � 1, �b(�) is an upper bound
to the posterior conditional intensity at � that does not depend on the con�guration to which
� is added, and �(�) de�nes an inhomogeneous Poisson process with intensity function �b(�).
The generic adaptive choice in our context is

�b(�) = � exp

�
�

Z
A
h(aj�)da

� mY
j=1

�
1 +

h(yj j�)

�

�
� �

mY
j=1

�
1 +

h(yj j�)

�

�

where � is the prior local stability bound. If a uniform bound is required McKeague chapter? ,

the right hand side above may be replaced by � sup�2X
Qm

j=1

h
1 +

h(yj j�)
�

i
: Similarly, for the

transition rates given by (4.8){(4.9), generic bounds are

�b(�) = �

2
41 +

mX
j=1

h(yj j�)

�

3
5
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and

d(x [ f�g; �) = exp

�Z
A
h(aj�) da

� 241 +
mX
j=1

h(yj j�)

�

3
5 =

mY
j=1

�
1 +

h(yj j�)

�

�
:

The corresponding equilibriumdistribution is that of a Poisson process with intensity function

�e�
R
A
h(aj�) da

Qm
j=1

h
1 +

h(yj j�)
�

i
. However, one may often do better by exploiting speci�c

model characteristics, as we shall illustrate in section 4.6 below.
If we couple the spatial birth-and-death process de�ned by �b(�) and d(�; �) to processes

de�ned by b(�; �) and d(�; �) as in [46], we obtain the following algorithm.

Algorithm 1 Let Vt;�, t � 0, � 2 X , be a family of independent, uniformly distributed

random variables on (0; 1). Initialise T = 1, and let D(0) be a sample from �(�). Repeat

� extend D(�) backwards until time �T by means of a spatial birth-and-death process with

birth rate �b(�) and death rate d(�; �);

� generate a lower process L�T (�) and an upper process U�T (�) on [�T; 0] as follows:

{ initialise L�T (�T ) = ;, U�T (�T ) = D(�T );

{ to each forward transition time t 2 (�T; 0] of D(�) correspond updates of the upper

and lower processes;

{ in case of a death (i.e. a backwards birth), say D(t) = D(t�) n fdg where D(t�)
denotes the state just prior to time t, the point d is deleted from L�T (t�) and

U�T (t�) as well;

{ in case of a birth, say D(t) = D(t�) [ f�g, the point � is added to U�T (t�) only
if

Vt;� � max

�
b(x; �) d(x [ f�g; �)
�b(�) d(x [ f�g; �)

: L�T (t�) � x � U�T (t�)

�
:

similarly, � is added to L�T (t�) only if Vt;� does not exceed the above expression

with a minimum instead of a maximum;

� if U�T (0) = L�T (0), return the common value U�T (0); otherwise set T := 2T ;

until the upper and lower processes have coalesced.

The next theorem gives conditions for algorithm 1 to output unbiased samples from the
posterior distribution of cluster centres.

Theorem 1 Let pX(�) be an anti-monotone, locally stable Markov point process density with
respect to a unit rate Poisson process on a compact set X � R

d , and h(�j�) a uniformly

bounded displacement fuction of a Cox cluster process U observed in a bounded window A.
Suppose the birth rates b(�; �) and death rates d(�; �) de�ne a unique spatial birth-and-death

process converging in distribution to the posterior density of cluster centres pXjY (� j y), and



4. Bayesian cluster analysis 21

there exist upper and lower bounds (4.12){(4.13) also de�ning a unique spatial birth-and-

death process that converges in distribution to a probability density �(�) for which �(;) > 0
and detailed balance between births and deaths holds.
Then the coupling from the past algorithm 1 almost surely terminates and outputs an un-

biased sample from pXjY (� j y).

The proof is an adaptation to the inhomogeneous case of the proof in [46].

Proof : First, note that by assumption the dominating process D(�) is in equilibrium, its
distribution being de�ned by �(�). Clearly, for all T > 0,

; = L�T (�T ) � U�T (�T ) = D(�T )

and by construction the updates respect the inclusion order. Hence L�T (t) � U�T (t) for all
t 2 [�T; 0]. Moreover, the processes funnel, i.e.

L�T (t) � L�S(t) � U�S(t) � U�T (t) (4.14)

whenever �S � �T � t � 0. The �rst inclusion can be veri�ed by noting that L�T (�T ) =
; � L�S(�T ) and recalling that the transitions respect the inclusion order. Since U�T (�T ) =
D(�T ) � U�S(�T ), the last inclusion in (4.14) follows by the same argument. If L�T (t0) =
U�T (t0) for some t0 2 [�T; 0], as the processes are coupled, L�T (t) = U�T (t) for all t 2 [t0; 0].
Next, set X�T (�T ) = ; and de�ne a process X�T (�) on [�T; 0] in analogy to the upper

and lower processes, except that if X�T (t�) = x the birth at time t of a point � is accepted

if Vt;� �
b(x;�) d(x[f�g;�)
�b(�) d(x[f�g;�)

. In other words, X�T (�) exhibits the dynamics of a spatial birth-

and-death process with birth rate ~b(x; �) = b(x; �)d(x[f�g;�)d(x[f�g;�) and death rate ~d(x [ f�g; �) =

d(x [ f�g; �). Thus, its detailed balance equations coincide with those for b(�; �) and d(�; �).
Furthermore, ~b(�; �) � b(�; �), hence explosion is prevented so that the process converges in
distribution to its equilibrium distribution de�ned by pXjY (� j y). The inclusion properties
derived above imply L�T (0) � X�T (0) � U�T (0), so that { provided the sampler terminates
almost surely { with probability 1 the limit limT!1X�T (0) is well-de�ned. Since D(�) is
in equilibrium, X�T (0) has the same distribution as if the X-process were run forward from
time 0 (coupled to the dominating process as before) over a time period of length T , the limit
distribution of which is pXjY (� j y). We conclude that the algorithm outputs an unbiased
sample from the posterior distribution of parents.
It remains to show that coalescence occurs almost surely. Recall that by assumption

�(;) > 0. Set, for n 2 N0 , En = 1fD(�n) 6= ;g. Now (En)n is an irreducible aperiodic
Markov chain on f0; 1g for which the equilibrium probability �(;) of state 0 is strictly pos-
itive. Hence state 0 will be reached with probability 1, which implies that the dominating
process D(t)t�0 will almost surely be empty for some t. But then (4.14) and the coupling
imply that the algorithm terminates almost surely, and the proof is complete. 2

4.6 Example: Cox{Mat�ern cluster process

To describe a tailor-made coupling from the past algorithm, consider a Cox cluster process
with intensity function given by (3.1){(3.2) and prior density (4.5). For this model, the birth
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rate (4.8) satis�es

b(x; �) � �

2
41 +

mX
j=1

h(yj j�)

�

3
5 = �b(�): (4.15)

In order to derive a lower bound for the death rate (4.9), note that

1 +
h(yj j�)

�(yj j x)
� 1 +

�

�+ �
� 2

if yj 2 B(�;Rh) \ Ux, where Ux = [xi2xB(xi; Rh) denotes the union of balls centred at the
points of x. It follows that the death rate d(x [ f�g; �) is bounded below by

d(x [ f�g; �) = d(x [ f�g; �)
Y

j:yj2B(�;Rh)\Ux

�
1

2
+

�

2�(yj j x)

�
: (4.16)
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Figure 4: Realisation of extrapolated redwood seedling pattern on X �B(0; Rh) from obser-
vations in unit square (box) and interpolated parent pattern (`P') based on a Cox{Mat�ern
cluster process with Rh = 0:061 and (�̂100; �̂100) obtained by coupling from the past. We used
a hard core prior with R = 0:03 and � = 1:0.
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By the Preston theorem, the transition rates �b(�) and d(x[ f�g ; �) de�ne a unique spatial
birth-and-death process, whose limit distribution is given by

�(x) / 
�n(y\Ux)
n(x)Y
i=1

�(xi); (4.17)

a generalised area-interaction process [7, 32, 45, 88] with intensity function

�(�) = � exp

�
�

Z
A
h(aj�) da

�
2n(y\B(�;Rh))

and interaction parameter 
 = (12 +
�
2�)

�1.
Regarding the implementation of algorithm 1, note that

b(x; �) d(x [ f�g; �)
�b(�) d(x [ f�g; �)

= 1fd(�;x) > Rg
Y

j:yj2B(�;Rh)\Ux

�
1

2
+

�

2�(yj j x)

�

is decreasing in x, so the sampler is anti-monotone, and the births in the upper and lower
processes may be implemented by simply considering the current state of the other process
at each transition, see [45].
We applied the above algorithm to the redwood seedlings data of �gure 1 (left) for the

Mat�ern parameter vector (�; �) equal to its Monte Carlo maximum likelihood estimate (cf.
section 4.4.1) and a hard core prior with � = 1:0 and R = 0:03 as before. A typical realisation
from the posterior distribution of parents can be seen in �gure 4 as well as an extrapolation
of the redwood pattern to the set X �B(0; Rh).
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