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Abstract 

We indicate how granulometries may be useful in the analysis of random sets. We define a suitable size distribution 
function as a tool in exploratory data analysis and give a new Hanisch style estimator for it. New Markov random sets 
are constructed which favour certain sizes above others. A size-biased random set model is fitted to a data set concerning 
the incidence of heather (Diggle, Biometrics 37 (1981) 531-539). © 1999 Pattern Recognition Society. Published by 
Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

One of the most basic properties of an object is its size. 
It is no wonder then that size measures have been used 
for a long time in the empirical sciences, and more re
cently in the analysis of (binary) images. For instance in 
classification problems, characteristics such as moments 
of the empirical size distribution may be used as features. 
See Vincent and Dougherty [l] for an overview as well as 
[2-4]. 

There are many other applications. To name a few, 
Serra [5] employs size distributions for shape and texture 
analysis, Maragos uses them for multiscale shape repres
entation [6], Haralick et al. [7,8] apply size distributions 
to shape filtering and restoration problems, Sivakumar 
[9] gives applications in texture classification and mor
phological filtering, while texture synthesis and analysis 
are considered by Sivakumar and Goutsias [10]. 

In this paper we illustrate how size distribution func
tions may be used in stochastic geometry both as a de-

*Corresponding author. Tel. + 31-20-592-4008; fax: + 31-
592-4199. 

E-mail address: colette@cwi.nl (M.N.M. van Lieshout) 

scriptive tool in exploratory data analysis [11] and to 
build new random set models. Section 2 reviews the basic 
morphological operators [5,12,13] and shows how they 
can be used to define a granulometry to measure size, 
while Section 3 provides some background in stochastic 
geometry [14]. In Section 4 we introduce the size distri
bution function [13] of a stationary random closed set. 
Section 5 focuses on the estimation of the size distribu
tion function, and proposes a new estimator in the spirit 
of Hanisch [15-17]. An application in exploratory data 
analysis is given in Section 6. New Markov random set 
models are constructed in Section 7 from a reference 
Boolean model by biasing towards certain sizes, general
ising the discrete morphologically constrained Gibbs 
models of Sivakumar and Goutsias [10,18]. Finally, in 
Section 8 a size-biased random set model is fitted to 
a data set concerning the incidence of heather [19]. 

2. Morphological granulometries 

Perhaps the oldest and most frequently used technique 
to quantify the size of solid particles in the empirical 
sciences is to use a series of sieves with varying mesh 
openings. Clearly, the particles that cannot pass through 
any given sieve are a subset of the total collection of 

0031-3203/99/$20.00 © 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved. 
Pll: S003 l-3203(99)00025-4 



1632 M.N.M. van Lieshout /Pattern Recognition 32 (1999) 1631-1644 

particles; ifthe sieve is solid, no particle can pass through 
it, and if a larger number of particles are considered then 
the residual after sieving will be larger too. Moreover, if 
we sieve the particles successively with two different mesh 
sizes, the result will be the same as using only the one 
with the biggest mesh opening. These simple but essential 
features of sieving (as well as of other 'sizing' methods, see 
[5]) underly the following axiomatic definition of 
Matheron [13]. 

Definition 1. A family of operators l/t, : &'(!Rd) -+&'(!Rd) on 
the power set &'(!Rd) of !Rd, indexed by r ~ 0 is 
a granulometry if for all X s;; !Rd 

(GO) l/t0(X) = X; 

(Gl) lft,(,X) s;; X for all r ~ O; 

(G2) if Y s;; X then lft,(,Y) s;; lft,(,X) for all r ~ O; 

(G3) lft,(,t/JJ_X)) = r/1.(1/t,(X)) = r/lraax<r.s>(X) for all r, s ~ 0. 

Condition (G3) is sometimes referred to as the sieving 
condition. Intuitively, r/J,(X) can be thought of as the 
subset of particles in X that remain after sieving with 
a mesh size r ~ 0. 

In this paper, we are interested in a special class of 
granulometries based on Euclidean openings. Let B be 
a fixed subset of !Rd. Write B = { - b : be B} for the 
reflection of B in the origin and use the subscript h for 
translation over the vector h. Then the Minkowski addi
tion of a set X s;; !Rd with structuring element B is defined 
by 

(2.1) 

and similarly the Minkowski subtraction is given by 

xeB = {he!Rd: Bh s;; X}. (2.2) 

Seen as operators on &'(!Rd), Eqs. (2.1) and (2.2) are 
referred to as dilation and erosion, respectively. The oper
ators are dual, that is dilating the complement xc of a set 
X amounts to eroding X itself: (X'$Br = (X8B). 

Compositions of Minkowski addition and subtraction 
define the opening 

X o B = (X8B)©B = LJ{Bh: he!Rd, Bh s;; X} (2.3) 

and the closing 

X • B = (X$B)8B = (X'oB)'. (2.4) 

For a comprehensive account on mathematical morpho
logy, see [5,12,13]. 

From now on, we will assume that the structuring 
element B is non-empty, convex and compact. Let 
rB = {rb: beB} (r ~ 0) and set 

rfl,(,X) = X o rB, r ~ 0. (2.5) 

Then (2.5) is a granulometry [13]. Indeed, properties 
(GO)-(G2) follow directly from definition (2.3). The siev
ing condition is a consequence of the assumptions on the 
structuring element B, see Chap. 1-5 in [13] or p. 334 in 
[5]. 

In summary, openings with structuring elements 
of varying 'mesh' can be used to quantify the size 
of a set X (see Section 4). By duality, the size of the 
empty space xc can be measured by the associated 
anti-granulometry 

lft,(,X<)< = (Xc 0 rBf = X • rB, 

based on closings with structuring elements r B, r ~ 0. 

3. Random sets and contact distributions 

Stochastic geometry [14] is concerned with the study 
of random closed sets. Random sets arise in a variety of 
fields. Examples include samples of minerals in material 
science, microscopic sections of cells in cytology or veg
etation maps such as Fig. 1 depicting the presence of 
heather [19]. 

Since a random closed set takes values in the family of 
all closed subsets of !Rd, its probability distribution is 
often untractable and lower-dimensional summary stat
istics are called for. Indeed, a statistical analysis usually 
starts with computing and plotting a few such statistics to 
'get a feel for the data'. The plots may suggest a suitable 
parametric form for a probability model. Moreover, sum
mary statistics may be used to estimate parameters and 
to perform a goodness-of-fit test. We will apply this 
approach to the data image of Fig. 1 in Sections 6 and 8. 
Details and more examples can be found in the textbooks 
[11,14]. 

Below we will assume that the random closed set X is 
stationary, i.e. its distribution is invariant under transla
tions. In order to exclude pathological cases, we assume 
that for each x e !Rd the coverage probability P(x e X) is 
strictly between 0 and 1. 

Fig. 1. Image heather [19). 
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A summary statistic commonly used to measure the 
'size' of the pores in x· is the empty space fanction 

Faf...r) = P(xexerlf) (3.1) 

or the related contact distribution function 

HJ..r) = P(x e X Ef:)r B!x t X) = F a(r) - F a(O) (3.2) 
1 - Fa(O) 

(r ~ 0). Because of the stationarity of X, these definitions 
do not depend on the choice of x, and by the assumption 
on the coverage probabilities the conditioning in (3.2) is 
valid. Both (3.1) and (3.2) involve a structuring element B. 
Typical choices include balls and squares, although non
isotropic structuring elements may be preferred when 
investigating directional effects. If Bis a compact convex 
set containing a neighbourhood of the origin, then Ha<.·) 
is a distribution function but this is not the case for 
general B (see [14]). Note that 1 - H,,C.r) can be inter· 
preted as the conditional probability that a copy of rB 
placed at a test point 0 is entirely contained in the 
background given that the test point itself does not fall in 
X. A similar interpretation holds for the empty space 
function F s(r). 

Definitions (3.1) and (3.2) can be seen as the stochastic 
counterparts of the granulometries defined in Section 2 
with particle size measured by 

l;,.(X) = (X•EerB)' = X6rB. 

However, although under our restrictions on B, t]i,( ·) 
satisfies (G0)-(02), in general the sieving condition does 
not hold. Thus, in the remainder of this paper, we will 
consider replacing the dilation in (3.1) and (3.2) by a clos
ing to obtain a proper granulometry. 

4. Size distribution functions 

In mathematical morphology (see eg. [15]~ the joint 
size distribution law of a stationary random closed set X is 
defined using granulometry (2.5) described in Section 2 as 

{
1 - P(xeX o rB), r ~ 0, 

G(r) = ~ 
1 - P(x e X • lrlB), r < 0. 

(4.1) 

By the stationarity of X, G(r) does not depend on 
the choice of xeR'. However, from a probabilistic point 
of view, G( ·)is not a proper distribution function, since it 
is semi-continuous from the left rather than from the 
right. This will prove to be undesirable in Section 7 where 
we define size-biased random sets by integrating with 
respect to size. For this reason, the following definition is 
preferred. 

Definition 2. Let X be a stationary random closed set 
and B a non-empty convex compact structuring element. 

Define the size distribution fanction of X by 

PJ..r) = {
P(xeX • rB~ r ~ 0, 

P(xeX o lr!B~ r < 0. 
(4.2) 

It is easily verified that P.a(O) = P(Oe X) - p, the cover
age fraction of the stationary random closed set X. More
over, having excluded degenerate cases where X is either 
the whole space or empty almost surely, Pa(r) approaches 
0 at - oo and tends to 1 for r ...... oo . 

At this point it is important to note that there is some 
ambiguous terminology in the literature. For instance, 
the size distribution function PJ.. ') is called the 
granulometrie bidimensionelle in metallurgy [11,20], in 
image processing the granulometries of Definition 1 are 
sometimes called size distributions [21], and the phrase 
pattern spectrum is used to denote the nonnalised empiri
cal size distribution of a single realisation of X. see 
Maragos [6]. Thus, the pattern spectrum can be seen as 
an estimator of (4.2). 

Lemma 1. Let X be a stationary random closed set and 
B a non-empty convex compact structuring element. Then 
Pil.. ·)is well-de.fined and does 1IQt depend on the choice of 
x e Rd. Seen as a fanction of r, P J.. ·)takes values in [O, I], is 
increasing and semi-continuous from the right. 

Proof. First note that since B .,,;. 0 is compact, 
XEerB, X6rB hence X o rB, X • rB(r ~ O)areclosed sets 
(seep. 19 in [13]). Since X is stationary, so are X o rB and 
X • rB implying that P,,C.r) is well-defined as the coverage 
fraction of the random closed set X • rB (for r ~ 0) or 
X o lr!B (for r < 0). In particular, P.a(r) does not depend 
on the choice of x in (4.2). 

To check that P.a( ·) is increasing, first consider 
r ~ s ~ 0. Then using well-known properties of the open
ing. 

X • rB = (X' o rB)' = ((X' o sB) o rBY 2 (X' 0 sB'f 

= X•sB, 

hence Pa(r) ~ P,J.s). Also, for r =$; s < 0, l/t1r1(X) = 
tP1rr(l/tr.1(X)) s;;; l/t1.1(X) since l/t, is a granulometry (using 
the notation of (25)). Finally, X 0 lrlB s;;; X implies 
P.a(r) =$; P,,C.O). 

The mapping (r, X) .-. X • rB is upper semi-continuous 
by properties 1-5-1 and 1-5-2 in [13] and increasing 
in r. Hence as r.!r ~ 0, X • r.B!X • rB. Thus P,J., ·) is 
right-continuous on [O, oo ). Similarly the mapping 
(r, X) ...... X o rB is upper semi-continuous and decreasing 
in r > O, hence 0 < r.tr implies X o r.B!X o rB. Thus, if 
O > s.!s, then 0 < - s,. t - s, and X 0 ls,.IBlX 0 lslB. We 
conclude that P,,C. ·)is right-continuous. 

Finally, since P,J ·)is defined in terms of probabilities, 
it takes its values in [0,1]. 0 
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Summarising, P ,/... ·) is a proper distribution function. 
Note that the empty-space function (3.1) is absolutely 
continuous except for an atom in 0 (see [17] or [16]) but 
that the size distribution function may have countably 
many discontinuities. 

Explicit expressions for P,/.._r) are hard to find with the 
notable exception of the linear size distribution functions 
[13,17]. The contact distribution function HJ...r) is avail
able in closed form for Boolean models [14] (but not for 
most other random set models!) and in this case, assum
ing the primary grain is convex, depends only on the 
moments of a few functionals of the grain. For instance in 
IR2 the mean grain perimeter determines HJ,,r), which, as 
pointed out by Ripley [11], may result in poor distin
guishing power as an exploratory data analysis tool. We 
will return to this point in Section 8. 

5. Estimation and edge effects 

In this section we discuss estimating the size distribu
tion function PJ...r) of a stationary random closed set 
X ( cf. Definition 2). As a first step, note that for any r ~ 0 
and any A £ !Rd of positive volume IAI > 0, 

El(X • rB)nAI 1 f ~ 
IAI = jAj _/(a EX• rB) da = P8 (r) (5.1) 

using the fact that X is stationary. Thus the volume 
fraction of X • rB (or X o lrlB for negative r) in any set 
A of positive volume yields a pointwise unbiased es
timator of Pa(r). 

In practice, however, a random set is not observed over 
the whole space, but within some compact window W of 
positive volume I WI (typically a square or rectangle). 
Thus, due to edge effects caused by parts of X outside 
W, X • rB and X o lrlB are not completely observable 
and the volume fraction estimator with A = W may be 
biased. 

To overcome this problem, a minus sampling es
timator 

{ 

l(X • rB)n(W 8(rBEBrB))J 

- IWG(rBEBrB)I ' 

P,/...r, X) = l(X 0 lrlB)n(W 8(irlBEBlr!B))I 

IW8(1rlBEBlrlB)I ' 

r~O, 

(5.2) 

r <0, 

has been proposed. This estimator is based on the local 
knowledge principle [5] for openings and closings stating 
that if the random set X is observed in the compact 
window W then X o rB and X • rB (r ~ 0) are observable 
within W G(rBEBrB) . More specifically, 

(X•rB)n(W 8(rBEBrB)) = ((X n W)•rB)n(W 8(rBEBrB)) 

with a similar formula for the opening. 

From (5.1) with A= W 8(rBEBrB) it follows easily that 
the minus sampling estimator in (5.2) is unbiased when
ever IW8(rBEBrB)I > 0. However, as both numerator 
and denominator in (5.2) depend on r, there is no guaran
tee that the minus sampling estimator is monotone in r. 
Nor is all available information used. 

To implement (5.2), one typically does not compute the 
areas but rather uses a grid T = { ti} of points in W and 
simply counts the number of tis falling in X • rB, X o rB 
and W G(rBEBrB). The resulting discretised estimator is 
defined for ranges r for which there are grid points in 
W 8(1rlBEBlr!B); it is still pointwise unbiased and in gen
eral suffers from the same lack of monotonicity as its 
area-based counterpart. 

For the empty space function (3.1), more refined 
estimators have been proposed recently. Hansen et al. 
[17] used survival analysis ideas for deriving a 
Kaplan-Meier-type estimator [22] for F B(r). 
Chiu and Stoyan [16] showed that the ideas underlying 
this Kaplan-Meier approach are very similar to 
those involved in the Hanisch estimator [15], ori
ginally proposed for certain point pattern statistics. 
In the remainder of this section, we will derive a 
Hanisch style estimator for the size distribution function 
(Definition 2). 

To do so, we need three local size measures: with 
respect to X, the background xc and the boundary. 
As before, let B be a non-empty convex compact 
structuring element and X a stationary random 
closed set observed in a compact observation window W. 
Set 

p(x, X) = 

{osup{r ~ 0: 3h such thatxe(rB)h £ X}, xEX 

xl{:X, 

{ inf{r~O:xeX•rB}, xif=X, 
Y/(x,X) = 

0 XEX, 

, (5.3) 

(5.4) 

{ 
inf{r ~ 0: (rBEBrB),n we =f. 0}, t E W, 

a~wi= ~~ 
0 tif=W. 

It is easy to see that XorB={xeX:p(x,X)~r} 
X•rB={xeRd:11(x,X)~r} and WG(rBEBrB)= 
{xe W: ((x, We)~ r}. Thus, p(x, A) measures the B-size 
of a point x in A. Note that for r > 0, the restriction to 
x e X may be omitted. Similarly, Yf(x, A) measures the 
B-size of voids at x left by A. We already saw that 
observed distances are occluded by the edges of the 
sampling window. Hence our final function ((x, W') 
measures the 'distance' from any point x in W to the 
window boundary. 
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The discretised minus sampling estimator can be ex
pressed in terms of p. I'/ and C as follows: 

# {i: l'/(ti. X) ~ r ~ W1. W')} 

# {i: C(t,, W') ;;i: r} 
f>Jr,X)= 

r;;i: 0, 

# {i: p(ti. X) < lrl; Wi. w•) ;;i: lrl} 
1 - {" ( } , r < 0. # 1 : C t1, W') ;;i: lrl 

(5.6) 

Estimator (5.6) is pointwise unbiased for those r for 
which the number of sampling points t1 at least a distance 
lrl away from we is positive, that is #{i: w,,w•) 
;;i: lrl} > 0. 

Note that (5.6) does not use all information contained 
in the data. In particular, if t1 ~W8(rB$rB), but 
l'/(t;, X) ~ C{t1, W') the correct void size at t1 is measured. 
Using this observation, one can define a Hanisch style 
estimator for PJ...r) (r ;;i: 0) by replacing the condition 
W1, W') ;;i: r by C(r,, W') ;;i: l'/(t1, X) with a similar adapta
tion for r < 0. 

Definition 3. Let X be a realisation of a stationary ran
dom closed set observed in a compact window W. Then 
for all r ;;i: 0 with # { i : Wi. W') ;;i: r} > 0, define 

/1(r, X) = L #{i: l'/(t1: X) = s ~ C(ti. W')} (5_7) 
,,., # {1: C(t,, W') ;;i: s} 

and for r < 0 with # {i: C(t1, W') ;;i: lrl} > 0, let 

/'f(r, X) = 1 _ L #{i: p(t,: X) = s ~ W1, W')} (5_8) 
•<lrl #{1:C(ti.W);;i:s} 

As we saw before, one of the disadvantages of the 
minus sampling estimator is that it is not necessarily 
increasing in r. The Hanisch style estimator does not 
suffer from this disadvantage and is pointwise unbiased 
too. 

Theorem 1. Let X be a stationary random closed set, ob
served in a compact window W. Let B be a non-empty 
convex compact structuring element. Then the Hanisch style 
estimator in Definition 3 is pointwise unbiased for PJ...r), 
increasing and semi-continuous from the right. 

Proof. First of all, consider the case r ;;i: 0. Then by 
stationarity of the random closed set X, 

Ef>f:(r, X) = E[ L # {i: (t1,. X) = s ~ Wi. W')}J 
,,., #{1:W1,W);;:i:s} 

= E[L l{l'/(t,, X). ~ r}l{t1e W8(1'/(t1, X)BEel'/(ti. X)B)}J 
,, # {;: t1E W 8(1'/(ti. X)B$1'/(t1, X)B)} 

= L E[l{l'/(ti. X>_ ~ r}l{t1E W8(1'/(t1, X)BEe,,(t,, X)B)}} 
,, # {; : t1e W 8(1'/(ti. X)B81'/(t1, X)B)} 

Since the expectation depends on the random closed set 
X only through the random variables l'/(ti. X), which have 
probability distribution function PJ... ·),we obtain 

Ef>f(r,X) = L r l{_t:e W8(sB$sB)} dPJ...s) 
,, Jco.r1#{;. t1E W8(sB$sB)} 

= Ps(_r). 

Similarly by duality, for r < 0, 

E/1(r, X) = 1 -

L E[l{p(t1, X) _< lrl}l{t1E W8(p(ti. X)B$p(ti. X)B)}J 
1, #{;: t1e W8(p(ti. X)B$p(t1, X)B)} 

= 1 - L r l~t,e W8(sB$sB)} dQs(s) 
,, J10.1r1>#J: t1E W8(sB$sB)} 

= P(p(O, X);;.: lrl) = P(OeX o lrlB) = Ps(r), 

writing Qs( ·) for the probability distribution of p(O, X). 
It is clear that both (5.7) and (5.8) are increasing and 

semi-continuous from the right. Furthermore, 

]. AH( X) 1 #{i:p(ti.X)=O} 
1m,y0 rs r, = - {. } 

# 1:t1eW 

#{i: p(ti. X) > O} #{i: t1eX} 
= :::::; ---------# { i: t, e W} #{i:t1W} 

= f>f(O,X). D 

Thus the Hanisch style estimator preserves many proper
ties of the size distribution function (cf. Lemma 1). How
ever, in contrast to Ps(r) itself, f>f:(r, X) may be negative 
and exceed 1. If this is undesirable, one can take 
R = sup{r > 0: #{i: t1e W8(rB$rB)} > O} and nor
malise the summands in (5.7) and (5.8) accordingly. The 
resulting estimator Pf(r, X) is ratio-unbiased, for in
stance for r ;;:: 0 

Ef>f(r, X) Ps(r) 

EPf(R, X) = Ps(R)" 

Similar techniques as in the proof of Theorem 1 can be 
employed to give an expression for the variance of 
P:J(r, X) (r ;;.: 0) in terms of integrals with respect to the 
covariance measure 

y(t1, tt, s, t) = P(t1 e X • sB; tt e X • tB) 

(and similarly for r < 0), but note that the variance de
pends on the choice of the grid T. 

6. Exploratory data analysis 

Usually, a statistical analysis of a binary image begins 
with plotting summary statistics such as the estimated 
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Fig. 2. Hanisch estimators of the size distribution function (solid line) and empty space function (broken line) for the left and right halves 
of heather. 

empty space (3-1) or contact distribution function (3.2). 
Ripley [11] proposed to look at the plots of the nor
malised opening and closing transforms as well to get 
a better feel for the data. Here we present some 
further examples using the size distribution function 
(4.2). 

Fig. 1 is a mapped pattern of heather (Ca/luna vulgaris), 
observed in a rectangle of 10 m x 20 m at Jiidrails, 
Sweden. The data were collected by G. Agren, T. Fager
strom and P.J. Diggle and reproduced here with kind 
permission. The digitisation is on a 100 x 200 pixel grid, 
which is deemed a realistic reflection of the accuracy in 
the field. For further details see [19]. No apparent spatial 
inhomogeneity seems present, hence we may assume the 
random set X representing the area occupied by heather 
to be stationary. 

In order to allow for cross validation, we will divide the 
data in to two equal square regions of side 10 m. Since 
bushes grow roughly spherical, a ball will be used as 
structuring element. To compute the distance measures 
p, rr and C, the 5-7 chamfer metric-based algorithm of 
Nacken [21] was used to approximate the Euclidean 
metric, with distances calculated using the method of 
Borgefors [23]. The normalised Hanisch style estimators 
thus obtained are given in Fig. 2. 

Note that the plots for the left and right halves of the 
field are similar, thus confirming the stationarity assump
tion. The coverage fraction is close to 1/2 and empty 
spaces measured by dilation are mostly smaller than 
40 cm. The graph of the estimated empty space function 
lies above the graph of the size distribution function, 
reflecting the fact that for a centred ball B the inclusion 

relationship X • rB s;; XEf)rB holds. The sizes of heather 
bushes and patches of background range up to about 
80cm. 

7. Size-biased Markov random sets 

Perhaps the best-known example of a random closed 
set is the Boolean model [13,14]. In this model, an en
semble random set is build from basic building blocks 
(the so-called grains) positioned at random locations (the 
germs) that are independently and uniformly scattered in 
space. More precisely, let W be a compact region in !Rd of 
positive volume. We require that 

• the number N of germs in W follow a Poisson distribu
tion, that is 

( _ ) _ -l1wi<J•IWD" _ 01 PN-n -e , n- ,, ... , 
n! 

the constant ,l > 0 is called the intensity; 

• given N = n, the germs X i. ... x., are independent and 
uniformly distributed on W; 

• at each germ X; = x; a (random) grain K; is placed 
independently of other grains according to some prob
ability distribution µ( ·) on the family of non-empty 
compact sets. 

Then the union u;(x;Ef)K1) is called a Boolean model. 
Note that the finite union of compact grains is indeed 
closed, as desired. 
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Other random closed set models may be obtained by 
weighting of a reference Boolean model (see [24] for 
technical details). In particular, a size distribution weight 
function can be used to bias towards certain sizes. The 
same idea underlies the morphologically constrained ran
dom field models on a discrete pixel grid, defined by 
Sivakumar and Goutsias [18] as 

P(X) =..!.exp[- I P;IX o iB\X 0 (i + l)BI 
Z i=O 

-J1 YilX. jB\X. u - l)BIJ. (7.1) 

where X is the set of foreground pixels in a binary image 
W and for any A s W, IAI denotes the number of pixels 
in A. The special case Pi. y1 = l had already been studied 
by Chen and Kelly [25]. It is worth noting that the 
exponent in (7.1) is based on volume fractions, thus 
failing to account for edge effects (cf. Section 5). Various 
extensions of morphologically constrained random fields 
have been considered; see [9,10] for details. 

In the remainder of this section we will extend (7.1) to 
continuous random set models observed in a compact 
window W of positive volume I WI > 0. 

Definition 4. A size-biased Markov random set is any 
random closed set whose density with respect to 
a Boolean model exists and is of the form 

p(X) = 4 ex{ - f f(s) d.fis(s, X)J. (7.2) 

where/: IR-+ IR is a bounded (measurable) function and 
fis( ·, X) is an estimator of the size distribution function 
(4.2) based on X. 

Some care has to be taken to ensure that (7.2) is well 
defined. In particular, the lack of monotonicity of the 
minus sampling estimator causes problems in defining 
the integral in the exponent of (7.2). However, by The
orem 1, for every X the Hanisch style estimator />:f( ·, X) 
can be normalised into a probability distribution func
tion and hence Jf(s) dP:f(s, X) is well defined for measur
able functions/(·). By similar arguments it can be shown 
that ifthe naive volume fraction estimator based on (5.1) 
is taken for Ps( ·, X), the exponent in (7.2) is well defined. 
A sufficient condition to avoid explosion, that is to en
sure that the normalising constant Z is finite, is Ruelle 
stability: 

f f(s) dPs(s, X) > - a - bn 

for some positive constants a and b (writing n for the 
number of grains in X). It follows that if f( ·) is bounded 
in absolute value, If (s)I ~ F, its integral with respect to 
the normalised Hanisch style estimator is bounded as 
well and hence (7.2) is well defined. Finally, the un-

normalised Hanisch style estimator (5.7)-(5.8) gives rise 
to a signed measure, bounded in absolute value by I TI, 
the number of sampling points in the grid T. Hence, 
under the same condition lf(s)I ~ F, (7.2) is well defined. 

Before turning to Markov properties of (7.2), we pres
ent some examples. 

7.1. Morphologically smooth random sets 

Let f (s) = IWll<- 1•0 -j..s) log y. Then, using the volume 
fraction estimator yields density 

p(_X) = 4 11 - JX\(X 0 Bll, (7.3) 

generalising the Chen-Kelly model [25] for binary ran
dom fields. Note that for y > 1, the most likely realisa
tions X are open with respect to the structuring element 
B. Thus sets built of approximately convex components 
are favoured over those with thin or elongated pieces, 
sharp edges or small isolated clutter. 

By duality, taking/(s) =I Wll<o. 1-j..s) log y yields 

1 • 
p(_X) = Z 11 -J(X • B)\XI, (7.4) 

favouring for y > 1 sets that are approximately closed 
with respect to B and discouraging small holes or rough 
edges. 

Both models are well defined for y ~ l too, for y < 1 
encouraging morphological roughness. 

Note that in (7.3) and (7.4), I· I denotes Lebesgue 
measure restricted to W and hence p(_ ·) is susceptible to 
edge effects. This can be alleviated by using the Hanisch 
style estimator. The resulting model influences the mor
phological smoothness of its realisations as described 
above. 

7.2. Morphological area-interaction random sets 

Let/(s)=IWll{s~ -1} logy and f>s(-,X) the vol
ume fraction estimator, yielding 

If B were the empty set, p( ·) would define an area
interaction random set [24,26]. Thus, for general B, p(_ ·) 
can be seen as an opening-smoothed area-interaction 
model. By duality.f(s) = - l{s > 1} log y, 

l . 
p(X) = z1'1-JX • Bl/IWI, 

defines a closing-smoothed area-interaction random set. 
Again, Hanisch style estimators may be employed to 
better account for edge effects. 
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Similar ideas may be used if the area measure in the 
exponent of y is replaced by the Euler characteristic or 
other quermass integral [27], but note that some care has 
to be taken to ensure that the model does not explode. 
However, since the closing operator removes small holes, 
the closing-smoothed Euler-interaction model may be 
integrable when the non-smoothed version is not. 

7.3. Size-symmetric random sets 

Letfbe the indicator function of ( - g, g], hence 

1 f' p(_X) = Z exp[ - y _
9 

dPs(,s, X)]. (7.5) 

For y > 0, particle and pore sizes exceeding g will 
be favoured, while for y < 0 the sizes tend to be smaller 
than g. 

The probabilistic model (7.2) (as well as (7.1)) involves 
a constant Z ensuring p( ·) integrates to 1. Due to the 
high dimensionality of the model, a closed-form expres
sion for Z is usually not available. Therefore from a prac
tical point of view, it would be particularly convenient if 
small changes to the set X would affect p(X) only locally. 
In that case, iterative algorithms can be designed that 
avoid Z and involve local computations only. 

First, consider the case where both the germs and the 
grains of which the random closed set X is composed are 
fully observable and write Y = {(x1, K1): i = 1, ... , N} for 
the collection of germ-grain pairs. Referring back to 
Fig. 1 this means that individual heather bushes would be 
observed instead of the area occupied by the heather. 
Writing X = u~x1EBK1) for the union of all germs, (7.2) 
can serve as a probability density for Y with respect to 
a Poisson 'grain-marked germ' process [14]. 

Suppose that addition of a grain K at u is considered. 
Then the likelihood ratio 

p(_XuKu) [ f ~ p(X) =exp - f(s) dPi/,.s, XuK.) 

+ f f(s)dPi/,.s,x)J (7.6) 

does not depend on the intractable constant Z (writing as 
before Ku for the translation of K over the vector u). If 
moreover f ( ·) is supported on [ - g, g], the log-likeli
hood ratio reduces to 

-f:f (s) dPi/..s, xuK.l + f:f <s) dPJ..s, X) (7.7) 

which involves only germ-grain pairs close' to (u, K). 
More precisely, define a neighbourhood relation by 

(u, K) - (v, L) <=> LvEB(gB$gB)nK.$(gB$gB) '# 0, 
(7.8) 

where u, ve Wand K, Lare non-empty compact sets. In 
the following theorem we will show that (7. 7) only de
pends on those (xi. K 1)e Y that are - -neigbours of 
(u, K), i.e. (xi. K 1) - (u, K). In mathematical parlance, this 
local dependence property means that in the fully observ
able case Y is Markov [28,29] with respect to the neigh
bourhood relation ,.., . 

Theorem 2. Let Y be a germ-grain model defined by its 
density (7.2) for some bounded function f ( ·) that is sup
ported on [ - g, g](g > 0). Then Y is Markov with respect to 

,.., for Pi/,.·, X) either the naive estimator (5.1) or the 
Hanisch style estimator (5.7) and (5.8). 

Proof. We start with proving that if x fi KuEe(gBEBgB), 
then for all s~g,xe(XuK.)osB<=>xeXosBand 

xe(XuK.) • sB <=> x e X • sB. 
To see this, let xe(XuK.) o sB. Then 3h such that 

xe(sB)h s;; XuKu. and, in particular, we can write 
x = h + sb for some be B. Now if (sB)hn Ku '# 0, then 
h + sb' e K. for some b' e B and hence 
x = h + sb = h + sb' + (sb - sb') e K.EB(sB$sB) s;; Ku 
EB(gBEegB) using the convexity of the structuring ele
ment B. This contradicts the assumption that 
xf:KuEB(gBEBgB) and hence x e (sB)h s;; X, that is 
xeX o sB. 

Similarly for the closing, let x e(XuK.) • sB. Then by 
duality x fi (Xu K.)• o sB and hence for any h such that 
xe(sB)h the intersection (sB)hn(XuKu) must be non
empty. By the previous argument, K. cannot be intersec
ted and hence (sB)hnX '# 0. Thus x e X • sB. 

Secondly, for xf:K.EB(gBff)gB), suppose that 
17(x, XuK.) ~g. Then xe(XuK.) • gB, hence by the 
above x e X • gB or equivalently 17(x, X) ~ g. Also 
17(x, XuK.) = inf{s ~ 0: x e (XuK.) • sB = inf{O ~ s ~ 
g: xe(XuK.) • sB} = inf{O ~ s ~ g: xeX • sB = 17(x, X). 
Dually, suppose that p(x, X) < g. Then by x fi X o gB 
hence by the above x fi (XuK.) o gB or p(x, X) <g. Also 
p(x, X) = sup{s ~ 0: xeX o sB} = sup{O ~ s ~ g: xeX 
o sB} = sup{O ~ s ~ g: xe(XuK.) o sB} = p(x, XuK.). 

Hence for se [ - g, g], P(s, XuK.) - P(s, X) depends 
only on grid points t1 e KuEB(gBEBgB). By the local know
ledge principle [5] 

l(X • gB)n(A9(gBEBgB))I 

= l((X nA) • gB)n(A 9(gBEBgB))I 

(similarly for openings) with A = K.Ef)(gBEBgB)EB 
(gBEBgB) and noting that A9(gB$gB) 2 KuEB(gB$gB) 
only knowledge of Y in so far as it intersects A is needed. 
The result follows. D 

If grains are not individually observable, note that if 
X = X 1 u · · · uX k is partitioned into its connected com
ponents X i. • • ·, X k. the opening X o B = u{ Bh s;; X} 
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also partitions, as the convexity of B implies that Bh must 
fall entirely in one of the Xj. Thus, both the volume 
fraction (5.1) and Hanisch style (5.8) estimators satisfy 
P,J..s, X) = Lf= 1[PJ...s, X1)] for s < 0. Similarly, X • iJ 
partitions over the connected components of W\X and 
hence 

k I 

p(X) = TI </>(X1) TI cp(Xf). 
i=l f=l 

Thus, altering X will only affect the connected compo
nents that are modified, a state-dependent Markov prop
erty as introduced by Baddeley and M01ler [29]. See also 
[24,30). 

8. Application 

In Section 6, a binary image of a species of heather was 
considered (cf. Fig. 1). It is well known to biologists that 
Calluna vulgaris grows from seedlings into roughly circu
lar bushes, reaching a maximum radius of about 50 cm 
in some 20-25 years. As they grow, the branches inter
mingle and overlapping areas of the field are occupied. 
Thus it is that in maps such as Fig. 1 no individual bushes 
can be observed. The particular field depicted in Fig. 1 is 
25 years old. 

The above considerations motivated Diggle [19] to fit 
a Boolean model (see Section 7) with circular grains. The 
radius distribution was taken to be of the form c + W 
where c is a fixed constant and W a Weibull distributed 
random variable. Although the model is plausible on 
biological grounds and fits well using a test based on the 
empty space distribution function (3.1), it was found that 
realisations of the fitted model contained more isolated 
patches than the data (cf. Figs. 1-3). Further discussion 
can be found in Ripley [11], who compared the graphs of 
normalised opening and closing transforms for data and 
fitted model. Hall [31] discusses counting methods, Cres
sie and Laslett (32] estimate the mean number of heather 
bushes per unit area using marker points and Baddeley 
and Gill [33] consider a statistic derived from the empty 
space distribution. 

Below we will fit a size-biased Markov random set 
model (Definition 4). In order to suggest a weight func
tion f ( · ), the plots of the estimated size distribution 
function P:/(r, X) for the data are compared to that of 
a realisation of the Boolean model fitted by Diggle (19]. 
Identifying the left half-field with the unit square (19], 
found the following estimates: the intensity is A.= 221, 
the minimal radius 0.0281 and the Weibull parameters 
are (0.8471, 355.2). A typical realisation is given in Fig. 3. 
The normalised Hanisch style estimators of the size dis
tribution function are given in Fig. 4 (broken lines), using 
again a ball for the structuring element B. In order to 

Fig. 3. Realisation of Boolean model with circular grains. 

-20 0 20 

Fig. 4. Upper and lower envelopes of the estimated si7.e distribu
tion function based on 19 simulations of a Boolean model (solid 
lines) compared to those for the left and right halves of heather 
(broken lines). 

assess the variability, upper and lower envelopes based 
on 19 independent realisations are plotted as well (corre
sponding to a significance level of 5%). 

The minimal grain size shows up clearly in the fiat 
pieces of the envelopes. Moreover, the data curves for 
r less than about - 40 cm lie above the upper simulation 
envelope, indicating that the fitted model has too few 
large grains. Thus, a goodness-of-fit test based on Euclid
ean openings would reject the Boolean model. A possible 
explanation of the greater discriminating power of size 
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distribution functions compared to the empty space func
tion (3.1) is that for Boolean models with circular grains, 
F Jl..r) is a function of the mean grain area and perimeter 
only (see Section 3). 

For larger positiver, the empirical curve of the left half 
of Fig. 1 is near the upper envelope, suggesting that the 
pores are somewhat too large as well (although since 
parameters were estimated from the left half of the data, 
to determine the fit the estimated size distribution func
tion of the right half should be considered). Hence, to 
favour larger particles and smaller pores, consider the 
size-biased model 

1 -n -n 
p(X) = z exp[ - 1'1 + ')'1Ps( - g, X) + Y2Ps(g, X)] 

(8.1) 

parametrised by 'Yi. y2 ;:.. 0. The Boolean model corres
ponds to ')' 1 = y2 = 0. 

In contrast to [19] which used a least-squared-error 
approach, we will estimate the parameter vector 
y = (/'i. y2) by the maximum likelihood approach out
lined by Geyer [34]. Writing hy(X) = Zp(_X), the log 
likelihood l(y) with respect to a fixed reference value 
.P;:.. 0 equals 

h7(X) Z(y) 
l(y) = log h"'(X) - log Z(t/lf (8.2) 

Here, the fixed .P terms do not affect the modes of l(y) and 
a maximum likelihood estimator can, in principle, be 
found by optimising (8.2) over y. A complication is that 
the term log Z(y)/Z(l/I) is not known in closed form. 
However, since Z is a normalising constant, 
Z(y)/Z(l/I) = E"'hy(X)/h"'(X) and therefore the log likeli
hood l(y) can be approximated by 

(8.3) 

where X i. ... x. are samples from (8.1) under parameter 
value l/J. Thus, given a data image X = x and samples 
xi. .. ., x., y is obtained by optimising (8.3) with respect 
toy. Provided the covariance matrix of (P:f( - g, X) - 1, 
P:f(g,X)) is non-singular, any solution to the maximum 
likelihood equations is necessarily unique. For details see 
[34]. 

The simulations needed in (8.3) are performed using 
the Metropolis-Hastings sampler of Geyer and M111ller 
[35], a special case of Green's reversible jump technique 
[36]. This is an iterative procedure based on successive 
additions and deletions of a grain (see the discussion 
preceding Theorem 2). Given an initial set of germ-grain 
pairs Y 0 = {(x1, K1)} with associated set X 0 = 
Ulx1EBKi), with probability 1/2 propose adding a grain 
('birth'); with probability 1/2 propose deleting one of the 

grains in Y 0 if any ('death'). A new germ is proposed 
uniformly with a grain drawn from µ( • ). To ensure the 
correct distribution in the long run, the proposal (u, K) is 
accepted with probability 

. { p(XouK.) llWI } 
mm 1' p(_X 0) n(Y 0) + 1 ' 

where n( Y 0) denotes the number of elements of Y 0• If the 
new grain K at u is accepted, set Y 1 = Y 0u{(u, K)}, 
X 1 = X 0uK.; otherwise Y 1 = Y 0 and X 1 = X 0• Sim
ilarly, select grain K1 at x1 for deletion from Y 0 with 
probability 1/n( Y 0). The proposal is accepted with prob
ability 

. {l p(X0 \(K1),J n(Y0)} 

mm ' p(Xo) llWI 

and if so, Y 1 = Yo \{(xi.K1)}, X 1 = X 0 \(K1)x, Otherwise 
Y 1 = Y 0 and X 1 = X 0• Continuing in this fashion, we 
obtain a sequence Xk, k e "11 0, whose distribution con
verges in total variation to p( ·) as k -+ ro (from almost 
all initial states). For details see [38,39]. 

We applied this strategy to the model (8.1). As ob
served above, for the fitted Boolean model, P:f(r, X) is 
significantly too small for r less than - 40 cm. Recalling 
that a pixel represents a square of side 10 cm, to favour 
larger particles, we choose g = 5 pixels. The reference 
vector "1 was taken to be (100, 100). In order to check 
whether the Metropolis-Hastings sampler has con
verged, time series of the sufficient statistics P:f (g, X) and 
PH( - g, X) - 1 are plotted in Fig. 5 over 200 OOO iter
ations. The sampler appears to be mixing, thus there 
seems no reason to doubt convergence. 

As for the parameters, the maximum likelihood ap
proach outlined above was used, deleting the first 100 OOO 
samples to allow for burn-in of the Metropolis-Hastings 
chain. The estimates are h = 117 and Yi = 84. Thus, the 
sizes of heather bushes are influenced more strongly than 
those of the background spaces. Typical samples (with 
the same resolution as the data) are given in Fig. 6. Note 
that the similarity to Fig. 1 seems greater than for the 
Boolean model, and that, in particular, the tendency of 
bushes to intermingle has increased. 

To assess the goodness of fit, Fig. 7 plots the nor
malised Hanisch estimator P:f (r, X) for the right half of 
the heather data (broken line) and the envelopes based on 
19 (dependent) samples of the fitted size-biased random 
set model (8.1) taken every 5000 steps after a burn-in 
time of 100000 steps. In comparison to Fig. 4, note 
that for r > 0 (as for the reference Boolean model) 
the estimated size distribution of the right half of the data 
lies within the simulation envelopes, but that for r < 0 
the fit is much better than for a Boolean model. 
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Fig. 5. Time series of the sufficient statistics P:f( - g, X) - 1 (left) and P:f (g, X) (right) over 200000 Metropolis-Hastings steps of (8.1) 
with g = 5 pixels and y1 =Yi= 100. 

Fig. 6. Realisations of (8.1) with g = 5 pixels and y1 = 117, Yi = 842 after 100000 (left) and 130000 (right) Metropolis-Hastings steps. 

Nevertheless, further improvements may be obtained by 
relaxing the minimal grain size assumption and finer 
discretisation. 

9. Conclusions 

In stochastic geometry, one of the trends in recent 
years has been the development of Markov models 
for simple point and object patterns [28,29,37] and 

the development of the computational tools to deal 
with them [35,36,38]. Some models can be adapted to 
random closed sets [24], but nevertheless explicit 
random set models defined in likelihood terms are scarce 
[39]. 

As a step in the direction of the development of more 
flexible and genuinely set-based models, this paper intro
duced size-biased Markov random set models, generalis
ing the discrete morphologically constrained random 
fields [18]. These were obtained by biasing a Boolean 
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Fig. 7. Upper and lower envelopes of the estimated size distribu
tion function based on 19 simulations of (8.1) with g = 5 pixels 
and y1 = 117, y2 = 84 (solid line) compared to that of the right 
half of heather (broken line). 

model towards certain sizes, and include smoothed ver
sions of quermass-interaction random sets [24,27]. It was 
shown that the models are well defined and under mild 
regularity conditions satisfy a Markov property. 

From a statistical point of view, inference for random 
sets is predominantly non-parametric in nature, based on 
summary statistics such as the empty space function and 
on least squares or method of moments techniques (see 
[14] for an overview). In [34], Geyer advocates likeli
hood-based inference in the context of spatial point 
processes. In this paper, we show that Monte Carlo 
maximum likelihood techniques are also feasible for 
random set models. 

It should be noted that exact simulation of size-biased 
Markov random set models based on the Propp
Wilson coupling from the past idea [40] is theoretically 
possible [38]. However, since tight upper and lower 
bounds on the likelihood ratio based on the current state 
of the algorithm would have to be computed at every 
iteration, we preferred to use the computationally easier 
(but only asymptotically exact) Metropolis-Hastings 
method in fitting a size-biased random set to a binary 
image. 

Finally, it is important to recognise that most prob
lems involving spatial data are hampered by edge effects 
due to parts of the image extending beyond the observa
tion window. Thus, a Hanisch style estimator for the size 
distribution function of stationary random closed sets 
was developed and shown to be unbiased. 

10. Summary 

In this paper, size distribution functions were con
sidered, both as an exploratory tool and as an ingredient 
for modelling random closed sets. 

After a brief review of basic notions from mathematical 
morphology, a size distribution function Ps(r), re IR, was 
defined for stationary random closed sets and compared 
to other summary statistics such as the empty space 
function and the contact distribution function. A Hanisch 
style estimator for PIJ{r) based on a partial observation of 
the random set within a bounded sampling window was 
derived. We proved that this estimator is pointwise un
biased, monotonically increasing and semi-continuous 
from the right implying that it can be normalised into 
a probability distribution function, in contrast to the com
monly used minus sampling estimator. 

Random set models were constructed by biasing a ref
erence Boolean model towards certain sizes. Examples 
include morphologically smooth random sets and mor
phologically constrained area-interaction models. It was 
shown that under mild conditions the resulting models 
are well defined and possess a Markov property. From 
a practical point of view, Markov properties are useful in 
considerably reducing the computational burden in
herent in working with random sets, and allow for likeli
hood-based inference using Markov chain Monte Carlo 
techniques. 

As an illustration, a mapped pattern of heather 
was analysed. Fitting a Boolean model (representing 
spatial independence between the individual bushes) 
resulted in an underrepresentation of larger bushes. 
Thus, a size-biased model was suggested which gave 
a better fit. 
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