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The area-interaction process and the continuum random-cluster model are characterized in terms of 
certain functional forms of their respective conditional intensities. In certain cases, these two point 
process models can be derived from a bivariate point process model which in many respects is simpler 
to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which 
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1. Introduction 

One of the most popular classes of models for spatial point patterns exhibiting interactions 
between the points is that of Markov point processes (Ripley and Kelly 1977); the similar 
concept of a Gibbs point process is heavily used in statistical physics (Ruelle 1969). Initially, 
attention was focused on the special case of pairwise interaction models, defined in terms of 
a simple interaction function on pairs of points that are less than a certain distance apart. 
These models are appealing since they are easy to interpret - they usually form an 
exponential family whose sufficient statistics are related to natural interaction potentials -
and they are by their nature particularly amenable to Markov chain Monte Carlo (MCMC) 
simulation and other iterative statistical techniques (see, for example Besag and Green 1993; 
Geyer 1998; Geyer and Meller 1994; or Meller 1999; and the references therein). However, 
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be interpreted as the conditional probability of having a point in the infinitesimal region du 
centred at u given the rest of the pattern is x. 

For modelling purposes it may thus be useful to establish characterization results in terms 
of A,*(-, ·). Strauss (1975) and Kelly and Ripley (1976) considered the Strauss process 

(2.2) 

where a is the normalizing constant, f3 > 0 and y E [O, 1] are model parameters, and s(x) 
denotes the number of pairs of points s, rJ E x such that s ,.,_, YJ. Any symmetric relation ""' 
(defined on an arbitrary space) may be considered here, but usually s ,.,_, YJ if and only if 
11£ - 1111 ~ R (for some R > 0 fixed in advance). Then, if y = 0, (2.2) defines a hard core 
process where no points are allowed to be within distance R of each other. Assuming that A 
contains pairwise distinct points;, r;, s1, s2, ... satisfying s'"" r; and s'"" s1, YJ f s1, s,....., 1;;2, 
17f1;;2, .. . , the proof of Theorem 1 in Kelly and Ripley (1976) can be modified to the 
present situation (where we have excluded the case of multiple points), whereby the Strauss 
process is seen to be uniquely characterized by two properties: its density is hereditary, and 
the conditional intensity is of the form 

A.* (x, u) = g(n(x n Bu)) (2.3) 

for all x E QA and u E A\x, where g: No__, [O, oo) and Bu denotes the closed ball centred 
at u with radius R. 

Strauss (1975) suggested (2.2) with y > 1 as a model for the clustering of Californian 
redwood seedlings around older stumps but, as pointed out by Kelly and Ripley (1976), 
(2.2) is only well defined for 0 ~ y ~ 1. Note that the model exhibits interactions between 
pairs of points only. Pairwise interaction models appear to be a useful and flexible class of 
models for regular patterns, but probably not so for clustered patterns (Diggle et al. 1994; 
Gates and Westcott 1986; and M01ler 1999). 

A more promising way of modelling attraction between points in a spatial pattern is to 
allow interaction terms of higher order as in Baddeley and van Lieshout ( 1995), Geyer 
(1999) and M0ller (1999), or to generalize the Markov property to depend on the 
configuration as in the definition of nearest-neighbour Markov point processes ( cf. Baddeley 
and M0ller 1989). More precisely, we shall consider nearest-neighbour Markov point 
processes defined with respect to the connected component relation ,.__, on x E QA given by 

S ""' 17 ~ S = Xj rv Xz rv • • · rv Xm = rJ 
x 

x 

(2.4) 

for some subconfiguration {xi, ... xm} c;;;; x and where rv is a given symmetric relation on A. 
Then, as shown in Baddeley et al. ( 1996), the general definition of a nearest-neighbour point 
process is equivalent to having a density of the form 

j(x) = a IT <l>(y), (2.5) 
yEC(x) 

where a> 0 is a normalizing constant, C(x) is the set of (maximal) connected components 
defined by x and <l>O ~ 0 satisfies certain regularity conditions (if /(-) > O then strict 
positivity of <I>(·) is the only condition). 
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The Ripley and Kelly ( 1977) Markov point processes as well as certain Poisson cluster 
processes (Daley and Vere-Jones 1988) are special cases of(2.5); cf. Baddeley et al. (1996). 
Lattice processes with a density similar in form to (2.5) have recently been studied in 
M0ller and Waagepetersen ( 1998), where among other things characterization results similar 
to those below are discussed. 

For specificity, we henceforth let u rv v in (2.4) be the usual relation: u rv v if and only if 
llu - vii ~ R, where R > 0 is given. 

In the rest of this section we consider two models of the form (2.5) with respectively 
<l>(y) = 13n(y) /y and <l>(y) = 13n(Yly-I u,1, where Uy = UiB Y• and I· I denotes Lebesgue 
measure. In both cases, the densities are well defined for all /3, y > 0 and the models 
exhibit regularity for 0 < y < 1 and clustering for y > 1. The hard core process may be 
considered as a limiting case of both models. 

First, consider the continuum random-cluster model which has <l>(y) = 13n<yl /y and 
density 

(2.6) 

where c(x) denotes the number of connected components in U,. This model seems to have 
been rediscovered many times, for example in Chayes et al. (1995) and M011er ( 1994); the 
earliest appearance in the literature we are aware of is in Klein ( 1982). We use the name 
'continuum random-cluster model' because of the strong analogy with the random-cluster 
representation of the Ising-Potts models introduced by Fortuin and Kasteleyn ( 1972); see 
Borgs and Cha yes ( 1996) and Grimm et ( 1995) for recent reviews. We have the following 
characterization result. 

Theorem 1. A density/(·) is a continuum random-cluster process if and only if 
A. *(x, u) = g(c(x u { u}) - c(x)) (2.7) 

for all x E QA, u E A\x and a function g: 71..-> (0, oo). 

Note that 

c(x, u) = 1 + c(x) - c(x U {u}) 

is the number of 'clusters' Uy, y E C(x), generated by x which are intersected by the disc 
associated with u, so (2.7) is equivalent to /(x U { u} )/ /(x) = g( c(x, u)). 

Note also that the result still holds if the fixed range relation rv is replaced by any other 
symmetric relation defined on a finite measure space; see M011er ( 1999). For instance, one 
may consider configurations of path-connected sets such as discs, where two discs are 
related if and only if they overlap each other. 

Moreover, the positivity condition on A.*(-,-) is necessary: if g(n) = /H{n = l} then 
(2.7) gives a hard core process (all llxi - xJll ~ 2R). 

Proof Clearly, if f (.) belongs to the family of continuum random-cluster processes, its 
conditional intensity is of the form specified in (2.7). On the other hand, assuming (2.7) 
holds, we proceed to prove that f(-) is a continuum random-cluster process by induction with 
respect to n(x), the number of points. Setting 
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g(O) 
f3 = g(O) and y = g(l), (2.8) 

then (2.6) holds for n(x) ~ 1. Assuming the statement holds for configurations with up to 

n(x) = n points and writing k = c(x U { u}) - c(x), 

/(x U { u}) = f(X)A *(x, u) = af3ny-c(x) g(k). 

We can always arrange the points in the configuration y = x U { u} so that either k = 0 or 

k = 1. If k = 0, then 

If k = 1, then 

D 

Next turn to the model specified by <I>(y) = ,8n(yly-1Uyl or, equivalently, by density 

/(x) = a,Bn(xly-IU·I (2.9) 

This is the area-interaction model studied by Baddeley and van Lieshout ( 1995), a 

generalization of the penetrable sphere model - introduced by Widom and Rowlinson ( 1970) 

in statistical physics - where y > 1. Contrary to the continuum random-cluster model, (2.9) is 

Markov in the Ripley and Kelly (1977) sense but it has interactions of arbitrarily high order; 

see Baddeley and van Lieshout (1995). In the one-dimensional case, it can also be presented 

as a painvise interaction sequential neighbours Markov process (Baddeley and M0ller 1989), 

since 

n-1 

/(x) = ay-2 Rf3n exp[-(logy) L min(x;+ 1 - x,, 2R)] 
i=I 

for x = {xi, ... , Xn}, with XJ <x2 < ... <xn. 

Theorem 2. Given a bounded Borel set A C IR2 contamzng an open ball of radius 3R, a 

density f : QA --+ (0, oo) is an area-interaction density if and only if 

J.*(x, u) = g(IBu n Uxll 

for all x E QA, u E A\x and a left-continuous Junction g: [O, nR2]-+ (0, oo). 

Note that although the characterization Theorem 2 is stated for the planar case only, 

generalizations to higher dimensions are straightforward. Clearly, we need the positivity 

condition g() > 0, since the conditional intensity of a hard core process 

/(x) = a,Bn(xlt{iJx; - xjll ~ 2R for all i =I j} 

can be written as 

A.*(x, u) = /31{p(u, x) ~ 2R} = (3I{IBu n Uxl = O}. 
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The hard core process does not fall within the class of area-interaction processes, although it 
can be seen as a limiting case. 

As noted in the introduction, Theorem 2 has implications for applications in, for 
example, computer vision and biology where a spatial model is required whose conditional 
intensity is a function g of the volume of overlap. If the function g is positive and left
continuous, then an area-interaction model is the only possible choice. 

In order to prove Theorem 2 we need the following lemma. 

Lemma 1. If g : [O, rrR2] ___, (0, oo) is lefi-continuous and g(s + t)g(O)/(g(s)g(t)) = 1 for 
all s, t E [O, rrR2] such that s + t E [O, rrR2], then g(s) = g(O)ys for some y > 0 and all 
s E [O, rrR2]. 

Proof. Without loss of generality, take R = 1 and extend the function g(-) onto the whole of 
(0, oo) as follows: 

( g(rr)) k 
g(krr + s) = g(O) g(s), s E (0, rr], k EN. 

Then g(·) is left-continuous on (0, oo). Moreover, for s, t E [O, rr] with s + t> rr, 

g(O)g(s + t) 
g(s)g(t) 

g(Jt)g(s + t - rr) 

g(s)g( t) 

Now choose ci, c2 > 0 such that s - c1rr ~ 0, t - c2rc ~ 0, and c1 + c2 = 1. Then 

g(O)g(s + t) 
g(s)g(t) 

g(rc)g(s - c 1 rr)g( t - c2rc) 

g(s)g(t)g(O) 

g(rc)g(s - c1rc)g(t- c2rc)g(O)g(O) 

g(O)g(c1rc)g(s - c1rr)g(c2rr)g(t- c2rc) 

g(rr)g(O) 

g( C1 Jt)g( C2Jt) 

The latter expression equals 1 by assumption, since c1 +c2 =1. Hence, g(t) = g(O)e-" 1 

where A = ( -1 /rr)log(g(rc)/ g(O)). In particular, for all s E [O, re], 

g(s) = g(O)y'", y = (~~~;) 1111 > 0. 0 

Proof of Theorem 2. If f (-) is an area-interaction process, 

f(xf~x~u}) =/3y-IBul+IBunU,I = g(IBun Uxl) 

for the continuous function (g(t) = 13y- 11 R2 y 1• 

To prove the reverse statement, take s, t E [O, rrR2] such that s + t E [O, rrR2]. We will 
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show that g(s + t)g(O) = g(s)g(t), so assume without loss of generality that s # 0 and 
t t 0. 

Choose e > 0. Since A contains a ball B of radius 3R, there exist u (the centre of B) and 
v EA, y E QA, such that IB,, n Bui = s and IDI = t' E [t - e, t], where D = Bv n Uy and 
llY; - uil = 2R for all y; E y. Here we use the Heine-Borel theorem to ensure that the 
configuration y is finite and Uy covers an area t of Bv up to the given precision e without 
covering any area of Bu. Now 

(s) (t') =f({u, u} Uy) f({v} Uy) 
g g f({v}Uy) f(y) 

=f({u, u} Uy) f({u}Uy) = g(s+ t')g(O). 
j({u}Uy) f(y) 

As £10, t'-> t. Since t' ~ t, by left continuity g(s + t)g(O) = g(s)g(t). 
Consequently, by Lemma 1, g(s) = g(O)ys, for some y>O. Now, letting f3 = g(O)ynR2 = 

g(:rr:R2), we obtain g(s) = f3ys-rcR2 and hence 

f( { u}) = f(0)g(0) = af3y-rr.R2 = af3y-IU1u1I. 

By induction with respect to the number of points n(x) = n, 

f(x u {u}) = g(IBu n Ux)l)f(x) 

3. Relationship to a mixture model and Gibbs sampling 

D 

The area-interaction model and a particular case of the continuum random-cluster model are 
both related to Widom and Rowlinson's (1970) penetrable spheres mixture model as 
described below. So far this correspondence has mainly been used for studying phase 
transition behaviour; we return to this in Section 4. In the present section we shall investigate 
the relationships for the purpose of simulation: we propose a two-component Gibbs sampler 
which is also used in the exact simulation procedure discussed in Section 4. 

The mixture model is a bivariate point process (X, Y), where X and Y refer to two 
different types of point configurations. The joint density of (X, Y) at (x, y) with respect to 
the product measure of two independent unit-rate Poisson processes is 

(3 .1) 

where amix is the normalizing constant, /3 1, /Ji > 0 are model parameters, and d(x, y) is the 
shortest distance between a point in x and a point in y. In other words, only points of 
different types interact and they are not allowed to be within a distance R of each other. 
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Hence the conditional distribution of X given Y is a homogeneous Poisson process on A\ Ur 

with intensity /31 (see Widom and Rowlinson 1970). 

Writing :re for the distribution of a unit-rate Poisson process on A and integrating out the 

second component, the marginal density of X with respect to n is 

/(x) = J arnixf3~(x) f3;(y)1 { d(x, y) > R} dn(y) 

= Jarnixf3~cxJ13;cyll{y n Ux = 0} dn(y) 

= amixf3~(x)expl/hlA\U,\- IAI]. 

Provided I U x \ is redefined as the Lebesgue measure on A, or alternatively, A is rectangular 

with periodic boundary conditions (making A into a torus) and balls B11 are redefined with 

respect to geodesic distance 11-11, we find that 

/(x) = aif3~(x)(efl2)-IUxl, 

where a 1 = arnixe-Cl-/JzJIAI_ Hence X is a penetrable sphere or attractive area-interaction 

model with parameters (jJ 1, eP2 ) E (0, oo) X (!, oo). Similarly, Y is an area-interaction model 

with parameters (/32 , efl1 ) E (0, oo) X (1, oo) and normalizing constant a 2 = amixe-< 1-/lillAI_ 

Turning attention to the superposition Z =XU Y, its density (with respect to n) can be 

written as 

- e-IAla . """'f3n(z1)13n(z2)l{d(z z) > R} 
- mix L-t - I 2 1, 2 ' 

where the sum is over all ordered partitions of z into two groups z1 and Zz. In the symmetric 

case /3 1 = (32 = /3 this reduces to 

fs(z) = amixe-IAl13n(z) N(z) 

where N(z) denotes the number of partitions such that 

(U,1EZ, B(YJ, R/2)) n (Ui;Ez, B(~, R/2)) = 0. 

Since N(z) = 2c(z), the superposition density is a continuum random-cluster model with radii 

R/2 and parameters f3 and y =~-This relation is exploited by Georgii and Haggstrom (1996) 

in order to understand the phase transition of the mixture model in percolation terms. 

This construction can be straightforwardly extended to the case of a multitype point 

process cxo>, ... ' x<k)) with density proportional to 

(3.2) 

for z = x(l>u . -. ux<k>. The superposition is then a continuum random-cluster model but 

with y = 1 / k. However, for k ;;;: 3, xuJ is not an area-interaction process. 
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For simulating the area-interaction model X or the continuum random-cluster model Z, it 

is tempting to apply MCMC methods to the mixture model (X, Y) of (3.1), since this 

avoids calculation of the areas of overlapping balls in Ux. Since the conditional distribution 

of one type of points given the others is particularly easy to sample from, we opted for a 

Gibbs sampler approach. In the bivariate case this is given by alternating between the 

conditional distribution of Xj Y and YjX: initialize with any Yo, for example from a Poisson 

process (rate /32). Then the sweeps of the two-component Gibbs sampler are given by the 
following steps for each k = 0, 1, ... : 

1. Xk+l,....., Poisson(/3i) on A\Uyk; 
2. Yk+l,....., Poisson(/32) on A\Uxk+i· 

The Poisson processes in steps I and 2 above are easily implemented by thinning a Poisson 

process in the whole window A (that is, just delete those points lying in Uyk or Uxk+t ). 
In fact it is possible to specify a similar two-component Gibbs sampler for the inhibitory 

case of the area-interaction process. In the first step X\ Y = y is Poisson(,81) restricted to the 

event H,,y = { U, 2 y}. Note that this may be too slow in practice, so it would be 
preferable to replace this step with a single point updating procedure. The other step, where 

Y\X = x is a Poisson(/32) process on Ux, is easily performed by thinning. The equilibrium 
density becomes 

and arguments similar to those above give the marginal density for X as 

f(x) = Ctmixe-IAlj3~(x)(e-fi2)-IU,I, (3.3) 

again writing I Ux! for the Lebesgue measure of Ux either restricted to A or in the geodesic 
sense. Hence X (but not Y!) is an inhibitory area-interaction model. 

4. Exact simulation 

We now combine Propp and Wilson's (1996) ideas of exact simulation based on coupling 

Markov chains from the past with the two-component Gibbs sampler introduced in Section 3. 

Our set-up differs from that in Propp and Wilson (1996) mainly in two respects. Firstly, 
the state space in Propp and Wilson (1996) is finite, while ours is infinite. Secondly, our 
state space does not have any maximal (or minimal) element with respect to the partial 

order introduced below. The first difference turns out to be inconsequential, but the second 
requires special treatment. 

Introduce a partial order ::5 on the space Q~ = QA X QA of mixed configurations, given 
by (x, y) ::5 (x', y') (or (x', y') t (x, y)) if x i;;; x' and y ;:2 y'. In order to be able to adapt 

the Propp-Wilson ideas we verify first that the two-component Gibbs sampler respects the 
partial order ::5. Let ::5 d denote stochastic domination with respect to -<· that is two Q 2 -

_, ' A 
valued random elements (X, Y) and (X', Y') satisfy (X, Y) ::5 d (X', Y') if there exists a 
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coupling of (X, Y) and (X', Y') such that (X, Y) :::S (X', Y') almost surely (for a general 
discussion of coupling and stochastic domination, see Lindvall 1992). 

Lemma 2. Fix (x, y), (x', y') E Q~ such that (x, y) :::S (x', y'). Let, for i = 0, 1, ... , (X;, Y;) 
be the Q~-valued random element obtained by starting with (X0, Yo)= (x, y) and running i 
iterations of the two-component Gibbs sampler in Section 3, and define (Xj, Yi) similarly. 
Then (X;, Y;) :::S d (Xi, Yi) for all i. 

Proof. The case i = 0 is trivial. To prove the case i = 1 we consider the following coupling. 
Let Z1,x and Z1,y be two independent Poisson processes on A with rates {31 and fh, 
respectively. Let X1 = Z1,x\Ur0 and X\ = Z1,x\Ur6, and then let Y1 = Z1,y\Ux, and 
Y\ = Z1,y \ U x{. Clearly, this gives the right marginal distributions of (Xi. Yi) and (Xj, YI). 
Since Yo 2 Yb we obtain Uy0 2 Ur0 whence X1 <:;; X\. This in tum implies Ux, <:;; Ux1 so 
that Y1 2 Y\, and we have (Xi. Yi) :S (X\, Y\). The cases i = 2, 3, ... follow similarly by 
induction. 0 

We call an element (x, y) E Q~ quasimaximal if y = 0 and Ux 2 A. Similarly, (x, y) is 
called quasiminimal if x = 0 and Uy 2 A. 

Lemma 3. Fix (x, y) E Q~, and for i = 0, l, .. ., let (X;, Y;) be the Q~-valued random 
element obtained by taking (X0, Yo) = (x, y) and running i iterations of the two-component 
Gibbs sampler. Define (Xj, Yi) similarly, with an arbitrary distribution of (Xo, Y0). If (x, y) 
is quasimaximal, then 

(X;, Y;) t d (Xj, Yi) 

for all i ;;?: 1. while if (x, y) is quasiminimal, then 

(X;, Y;) :S d (Xj, Yi) 

for all i;;?: l. 

Proof. We only need to prove the lemma for i = I, as the general case follows using Lemma 
2. However, the case i = 1 follows directly if we use the same coupling as in the proof of 
Lemma 2. 0 

We are now ready to describe the algorithm for exact simulation. For i = 0, -1, -2, ... , 
let Z;,x and Z;,y be independent Poisson processes on A with respective intensities /3 1 and 
{32• Let k1, k2, ••. be a strictly increasing sequence of positive integers, and let (x, y) and 
(x', y') be fixed elements of Q~ such that (x, y) is quasiminimal and (x', y') is 
quasimaximal. Then, for i = 1, 2, ... , we generate two coupled Markov chains m 
accordance to the two-component Gibbs sampler by setting 

and for j= 1, ... , k;, 
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Clearly exJ-k,, ;yJ-k,) :5 ex)-k,, ;Y}-k,) for all j = 0, ... , k;. Letting I= 
inf{iEN: exo,;Yo)=eXb,;Yb)}, (taking inf0=oo), we show below that l<oo 
almost surely. We stop when i =I and set (Xo, Yo)= e Xo, I Yo). 

Theorem 3. The above algorithm terminates almost surely, and the distribution of the 
obtained sample (X0, Yo) is given by (3.1). 

Proof. Note that, for any m ~ 0, if 

Z-m-1,y = 0 (4.1) 

then for any i such that k; ~ m we obtain ex-m, if_m) = exi_m, iy'_m) and hence also 
(;Xo, ;Yo)= (Xb, iY0). That l<oo almost surely now follows from the observation that 
with probability 1, (4.1) occurs for some m. Let M denote the smallest such m. Moreover, 
define Markov chains exJ-k,, ;YJ-k,), j = 0, ... , k;, i = 1, 2, ... , in exactly the same way 
as the chains (;X, ;Y) and (X', if') except that (;X~k,, iy~k,) = (X, Y), where (X, Y) 
foll-0ws the stationary distribution (3.1). Then, for k; ~ M, we have that ; X-M = 
;X'-M = ;X~M = Z-M,x· It follows then from Lemmas 2 and 3 and the coupling construction 
that (Xo, Yo)= exo, ;Yo)= (Xo, ;Yo)= ex{f, ;Y6') when k; ~ M, so (Xo, Yo)= 
lim;....:x;(; X 0, ; Y 6') almost surely. Hence the distribution of (X o, Yo) is given by the stationary 
distribution (3.1). D 

Propp and Wilson give an argument for preferring the sequence k; = 2;, and we have 
used the same in our simulation studies. 

Fixing R > 0 and the dimension d ~ 2, let us say d = 2, it is known that phase transition 
behaviour occurs in the penetrable sphere model in the symmetric case f3 = log y, whenever 
/3 is very large, and does not occur when f3 is very small. This is a consequence of the 
phase transition behaviour in the mixture model (3 .1 ), which was demonstrated by Ruelle 
(1971) and later by Chayes et al. ( 1995) and Georgii and Haggstrom ( 1996) using 
percolation arguments analogous to the random-cluster derivation (see, for example, Borgs 
and Chayes 1996) of the phase transition occurring in Ising and Potts models. Similarly to 
the Ising and Potts models, phase transition means that infinite-volume limits fail to be 
unique. In particular, realizations tend, even for large systems, to be dominated by a single 
type of point (despite the symmetry of the model). 

It is widely believed that the occurrence of phase transition is monotone in {3, in which 
case there exists a /3c (depending on d and R) such that 

{ (3 > f3c :::? phase transition, 
(3 < f3c :::? no phase transition, (4.2) 

but this is not known. In statistical physics, this is sometimes referred to as the 'sharpness of 
the phase transition problem'. Of course, (4.2) is a statement about infinite-volume limits, but 
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the effect should already be visible for moderately large A. A measure of the amount of 
consensus is the fraction <P of pairs of points that are of the same type, 

( ~l) + ( ~2) 
<P= (~) ' 

where n; is the number of points of type i, and n = n 1 + n2. Note that <P is undefined when 
n = 0, 1, in which cases we will arbitrarily set <P = 0. For large systems, one expects the 
following behaviour; <P should be close to ! with high probability if f3 < f3c, it should start 
increasing rapidly as f3 approaches f3c, and tend to 1 as f3---> oo. 

We have simulated independent samples from the symmetric mixture model using our exact 
simulation procedure for various values of f3 and R. We took A = [O, 1 ]2 with the restricted 
Lebesgue measure. Here it is important to note that reducing the interaction radius is equivalent 
to enlarging the size of the window A. Hence any phase transition behaviour for given R that is 
visible in a large enough window A is also apparent in [O, 1]2 for small enough R. 

Figure 1 depicts the simulated mean of <P over 100 simulations against the canonical 
parameter () = logf3 of the mixture distribution (considered as an exponential family). It can 
be seen that the Monte Carlo approximation of Ee<P is indeed close to 1 /2 for small values 
of (), while it increases to 1 as () increases. The rapid increase becomes more apparent 
when the interaction range is smaller - or equivalently, the window size is bigger. 

The phase transition behaviour can also be observed from plots of the fraction 
p = max(n1, n2)/(n1 + n2) of points of the most frequent type. Plots of the Monte Carlo 
mean of p (Figure 1) look very similar to the plots for rp, and with increasing (), the 
histograms of p (which we omit) become bimodal, due to the fact that realizations tend to 
consist predominantly of one type. We have included the 0.05, 0.25, 0.75 and 0.95 Monte 
Carlo quantiles for p and <P to indicate the variability. 

Examples of simulated realizations of point patterns for () = log(30), log(80) at radius 
R = 0.2 and for () = log(IOO), log(200) at radius R = 0.1 can be seen in Figure 2. This 
figure also shows that for larger (), one of the components dominates. 

Finally, in Figure 3 we plot Monte Carlo estimates based on 100 simulations of Eel, the 
expected number of steps until coalescence. The plot demonstrates the feasibility of exact 
simulation: for small to moderate e, convergence is reached in only a few steps. However, 
as () approaches phase transition, the number of steps needed to obtain coalescence 
increases rapidly and it would not be computationally feasible to use many more than the 
I 00 samples used in Figures 1 and 3 or to increase the window size (or reduce R) much 
further. One may hope that this will be practicable in the future, with faster computers and 
perhaps more ingenious implementations of the algorithm. 

5. A Swendsen-Wang type algorithm 

In this section we present an algorithm which is similar to one of Swendsen and Wang 
(1987). This algorithm has independently been discovered by Chayes and Machta ( 1998). 
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Figure 1. Monte Carlo estimates of the means of <jJ (left) and p (right) as a function of e (solid line) 
at interaction radius R = 0.2 (top) and R = 0.1 (bottom). The dotted lines denote the 0.05, 0.25, 0.75 
and 0.95 quantiles 

The algorithm works for the important symmetric case /J 1 = f32 = (3 of the mixture model 
(and hence also for the area-interaction model with y = ef3 and for the continuum random
cluster process with y = !). Initializing with any (x, y), an iteration of the algorithm consists 
of the following steps: 

l. Choose a new value of (x, y) according to its conditional distribution given x Uy, that 
is, flip a fair coin independently for each connected component of Uxuy to determine 
whether the points should be of the first or the second type. 

2. Replace y by a Poisson(/J) process on A\ Ux. 
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Figure 2. Realization of the mixture model with fJ = 30, R = 0.2 (top left), f3 = 80, R = 0.2 (top 

right), fJ = 100, R = 0.1 (bottom left) and fJ = 200, R = 0.1 (bottom right) 

It is immediate that the mixture measure given by (3.1) is invariant under step I of this 

algorithm, and we have already seen in Section 3 that it is invariant under step 2. The 

algorithm can also be extended to the case of a multitype point process (3.2), and also to 

the y < 1 case of the continuum random-cluster model, even when y- 1 is not an integer. In 

the latter case, the algorithm goes as follows. First paint the points of each connected 

component red with probability y (independently for different connected components), and 

then replace all the red connected components by a Poisson(,B) process on the part of A not 

occupied by the remaining connected components. 
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Figure 3. Monte Carlo estimates of Eel as a function of e at interaction radius R = 0.2 (solid) and 
R = 0.1 (dashed) 

We believe (although we have no rigorous justification) that this algorithm approaches 
stationarity much faster and mixes better than the two-component Gibbs sampler when /3 is 
large (that is, in the phase transition region of the parameter space). The reason should be 
that when the Gibbs sampler starts with a configuration with mostly points of the first (or 
second) type, then it will tend to stay in this state for an astronomical amount of time 
provided that /3 is large and A is large compared to a disc with radius R, while the 
Swendsen-Wang type algorithm will jump back and forth between the two states. One 
might suggest that the slowness of the Gibbs sampler could be solved by allowing x and y 
to change places occasionally, but this is presumably not the case, the reason being the 
following. Suppose /3 is large and A = [-M, M] 2, where M ~ R, and we start with a 
'dense' crowd of points of type I in [-M, M] X [-M, O] and a similar crowd of points of 
type 2 in [-M, M] X [O, M]. This highly improbable type of configuration will remain for 
a long time using the modified Gibbs sampler (although the two types will sometimes 
interchange regions), while on the other hand the Swendsen-Wang type algorithm does not 
seem to exhibit such a phenomenon. 

It would be very nice if the Swendsen-Wang type algorithm could be combined with the 
ideas of the previous section in order to obtain exact samples, but unfortunately it seems 
very difficult to find any useful monotonicity property of the algorithm. Propp and Wilson 
(1996) make a similar remark about the original Swendsen-Wang algorithm. They are still 
able to obtain exact samples in reasonable time also in the phase transition regime by 
simulating the Fortuin-Kasteleyn random-cluster model rather than the Ising-Potts models 
directly. The corresponding thing to do here would be first to simulate the continuum 
random-cluster model and then to update the components as in step 1 in our Swendsen
Wang type algorithm but, in the absence of any simple monotonicity property in the 
continuum random-cluster model, we do not at present see any suitable way of doing it. 
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