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Abstract: This paper proposes a new family of spatial point processes de­
fined by their density with respect to a Poisson process on a bounded window. 
The density will be specified in terms of functionals of shot noise processes 
with various influence functions, for example the coverage function. Stabil­
ity, Markov properties, stationary extensions and limit behaviour are studied. 
Examples and simulated realisations are given to indicate the applicability of 
shot noise weighted processes. 
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1. INTRODUCTION 

The simplest point pattern model is the Poisson process. Its lack of interaction 
between the points makes it a useful benchmark process. Indeed, rejecting a 
Poisson null hypothesis is often the first step in fitting a more realistic model 
to a given set of data. However, many point patterns do exhibit interactions 
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between the points which, for instance, can result in clustered or regular be­
haviour. 

A class of models designed to incorporate interaction is that of Markov 
point processes, introduced in the statistical literature by Ripley and Kelly 
[25]. Similar models are known in statistical physics under the name of Gibbs 
distributions [23, 27]. These models are defined by their density p(·) with 
respect to a Poisson process, typically of the form 

p(x) = a./3n(x)'Y-l/;(x) . (1.1) 

Here x is a finite set of unordered points (called a configuration) in a bounded 
set A c JRd, n ( x) is the number of points in x, and 'lj; ( ·) is a numerical functional 
governing the interaction structure. 

One of the first examples of (1.1) is the Strauss model [31] for which 'l/;(x) 
denotes the number of pairs of points not more than a given distance apart. 
Note that interactions occur between pairs of points only. Such models are 
suitable for regular point patterns, but probably not for clustered ones. See 
[10] and [19]. Indeed, the Strauss model is ill-defined for 'Y > 1. 

The lack of Markov models for clustered behaviour led to the development 
of area-interaction processes [2]. A special case had already been considered 
as a model of liquid vapour equilibrium in chemical physics [34]. For area­
interaction process, 'lj;(x) in (1.1) denotes the volume of the 'molecules' asso­
ciated to x, for instance the union of unit balls centred at the points of x. 
Several generalisations have been proposed recently, for instance those using 
functionals from convex geometry other than the volume ( cf. [l] or [20] in the 
discrete case). 

Another generalisation replaces the volume by integrals of a potential func­
tion depending on x. For instance, [2] mentioned models of the type 'lj;(x) = 
fAf(d(x,u))du, where d(x,u) =mini llxi - ul\ and f: [O,oo] H- (-00,00]. A 
similar idea leads to the concept of a shot noise weighted process, as proposed 
here. This class of models has 'lj;(x) = JA J(~x(u))du for additive function­
als ~x reminiscent of shot noise. The area-interaction model is a special case 
with ~x(u) counting the number of 'molecules' covering a point u, but distance 
based functionals are considered as well. 

The plan of this paper is as follows. In Section 2 we introduce shot noise 
weighted point processes. Section 3 considers existence, Ruelle stability and 
local Markov properties. Section 4 is devoted to examples and simulations. 
Some basic properties are derived in Section 5. 

2. SET-UP AND DEFINITIONS 

In this paper, we are concerned with point processes X on a locally compact 
complete separable metric space A. We will distinguish between finite and 
locally finite point processes, concentrating mostly on the former. 
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A finite point process X is a random element in the space 91! (A) of finite 
point configurations (or point measures) 

x = {x1, ... ,xn} 

where x;, i = 1, ... , n are elements of A and n = n(x) :?: 0 denotes the number 
of points in x. Note that the empty set and configurations with multiple 
points are allowed. Writing x 8 for x restricted to B ~ A, the a-algebra 
Nf (A) on iJlf (A) is the smallest a-algebra with respect to which the evaluation 
x i--+ n( XB) is measurable for every (bounded) Borel set B ~ A. For further 
details, consult [6] or [18]. 

Definition 2.1. An influence function is a non-negative Borel function 

r;,: Ax A--r [O,oo). 

The influence zone of r;, at a point b E A is 

ZK(b) ={a EA: r;,(a,b) > O}. 

With each finite point configuration x, associate a function ~x : A--+ [O, oo) by 

n(x) 

~x(a) = I: r;,(a, Xi). 
i=l 

If X is a finite point process, then fa(a), a EA, is said to be the shot noise 
process generated by X with influence function r;, [5, 14]. 

We list some obvious properties of influence functions that will be used 
later. 

Lemma 2.2. Let r;, : A x A --+ [O, oo) be an influence function. Then the 

following hold. 

1. Seen as a function on 91! (A) x A, ~x(a) is measurable with respect to 

the a-algebra NI (A)@ IB(A), where IB(A) denotes the Borel a-algebra 

on A. 

2. 0 ::; .;x(a) ::; n(x)}I";* for all x E 91f(A) and a E A, where r;,* = 

sup {r;,(a, b) : a, b E A}. 

3 . .;xuy(a) = .;x(a) + .;y(a) for all x, y E 91f(A), a EA. 

4. If r;,(b, a)= 0 for some a, b EA, then .;xu{a}(b) = ~x(b). 

Proof. The first statement can be proved as follows. For each t > 0, 
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{(x, a) : ~x(a) < t} = LJ {(x, a) : n(x) = n, ~x(a) < t} . 
n=O 

Each set {(x, a): n(x) = n,~x(a) < t} in the union above is a Borel set in 
Ai xA due to the fact that ~x(a) is measurable as a sum of measurable functions 
x:(a,xi)· Hence the result follows. 

Other statements can be verified by straightforward computation. D 

In many applications, A will be JRd and the influence function /\:( ·, ·) will 
depend on the difference between its arguments only, i.e. x:(a, x) = ,,;(a - x). 
In this case x; is said to be homogeneous and the associated influence zone at 
a point x reduces to 

Z"(x) = Z"(O) + x, 

the translation over x of the influence zone Z11:(0) of the origin. 

Example 2.3. (COVERAGE FUNCTION) Let A be a compact subset of Rd and 
set 

i\:(a,x) = l{lla-xll ~ r} 

Then x:(·, ·)is an influence function with Z11:(x) = B(x, r) n A, the ball in A of 
radius r centred at x. 

A configuration x = { x1, ..• , Xn} gives rise to 

n 

~x(a) = 2: 1 {a E Z(xi)}. (2.1) 
i=l 

Thus, ~x(a) counts the number of balls Z(xi) covering a. Later we denote ~x 
by Cx, the coverage function of x by balls of radius r. 

More generally, given a weakly measurable [33] function Z that maps A 
into the family K(A) of compact subsets of A, ,,;(a,x) = l{a E Z(x)} is an 
influence function. Note that Z11:(x) = Z(x). 

Influence functions can be used to define spatial point process distributions. 
As a motivating example, consider the image analysis problem of identifying 
objects parameterised by a function Z : A ~ K(A) in a noisy image. It is 
natural to assume that objects may interact when their intersection is non­
empty and that the more overlap, the stronger the interaction. Hence we 
are led to consider the coverage function (measuring the amount of overlap) 
combined with an inhibitory potential. 

Writing 11"µ for the distribution of a Poisson process on A with intensity 
measure µ(·) satisfying 0 < µ(A) < oo, we define new processes by their 
density (or Radon-Nikodym derivative) with respect to rrw 

Definition 2.4. A shot noise weighted process with potential function ](-) is 
a point process on A with density 
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(2.2) 

with respect to 7r µ- Here /3, ry > 0 are model parameters, v(-) a finite Borel 
measure and f : lR t-+ lR a Borel function with f (0) = 0. The normalising 
constant, Q, ensures that the integral of p(x) is equal to 1. 

Clearly, (2.2) is a particular case of (1.1). Conditions must be imposed 
to ensure that the model (2.2) is integrable, see Section 3. Examples and 
simulated realisations will be given in Section 4. 

Note that (2.2) is overparameterised: taking Ji(·) = cf(-) for some con­
stant c is equivalent to changing ry to ry1 = rye. However, if J(-) is absolutely 
integrable, this ambiguity can be overcome by requiring that the integral of 
f ( ·) is 1. The general set-up described above allows for multiple points. If this 
is undesirable, the reference measure µ( ·) must be diffuse. A generic example 
is taking for A a compact subset of JRd equipped with Lebesgue measureµ(·). 

3. EXISTENCE AND MARKOV PROPERTY 

The existence of a point process given in terms of its density p( ·) with respect 
to 'lfµ is ensured by Ruelle's stability condition [10, 27]. This condition requires 
that the energy E(x) = - log(p(x)/p(0)) has a lower bound that is linear in 
the number of points in x, i.e. 

E(x) ~ -Cn(x) (3.1) 

for some C > 0 and all x with p(x) > 0. When (3.1) holds, p(·) (or the 
corresponding energy) is called stable. In our case (Definition 2.4), Ruelle's 
condition requires a linear bound on IJAJ(~x(a))dv(a)J in terms of n(x). Thus, 
it is sufficient to require 

lf(~x(a))I S Cn(x), a EA, x E !Jtf(A), (3.2) 

for some C > 0. 
For instance, consider the coverage function ex( a) from Example 2.3. Since 

cx(a)::::; n(x) for all a E A,x E !Jtf(A), (3.2) is satisfied whenever 

lf(t)I S Ct, t E JR, (3.3) 

for some C > 0. Note that in the situation described in Example 2.3, f (-) can 
be represented as a sequence {f(n),n ~ 1} so that (3.3) needs to be checked 
for positive integers t only. 

We can ensure (3.2) in a more general setting by assuming (3.3) and 
SUPa,x "'(a, x) < oo. For arbitrary 11:(·, ·), if the potential function J(-) is 
bounded, (3.2) holds as well. For bounded potentials moreover, the distri­
bution of the shot noise weighted process is uniformly absolutely continuous 
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with respect to the distribution of a Poisson process 1rf3µ. with intensity measure 
(3µ(·), i.e. its Radon-Nikodym derivative is uniformly bounded in x. Exam­
ples of uniformly absolutely continuous processes include the standard area­
interaction model but also 'take it or leave it' type potentials with binary 
values. We come back to this later in Section 4. 

Note that by Lemma 2.2 and Fubini's theorem JA f(~x(a))dv(a) is Nf(A)­
measurable. Hence, the function p : 91! (A) -+ lR is measurable too. Sum­
marising we obtain the following result. 

Lemma 3.1. Under condition (3.2), density (2.2) is measurable and integrable 
for all values of /3, / > 0. 

From now on we will assume that the stability condition (3.2) holds. 
In order to describe the interaction behaviour of shot noise models, we need 

to define a neighbourhood relation ,...., on A. As in [2], let a ,...., b if and only if 
their influence zones overlap: 

Zl<(a) n Zl<(b) ¥: 0. (3.4) 

Following Ripley and Kelly [25], a point process given by its density p( ·) is 
said to be Markov with respect to ,...., if, for all configurations x E 'Jtf (A), 

(a) p(x) > 0 implies p(y) > 0 for ally~ x; 

(b) ifp(x) > 0, thenp(xU{u})/p(x) depends only on u and {xi Ex: u,...., xi}, 
the set of all points in x which are neighbours of u. 

For generalisations see [3]. Usually the influence zones will be small compared 
to the observation window; otherwise from a computational point of view far 
too many points will be neighbours (cf. Section 4). 

Theorem 3.2. The shot noise weighted process (Definition 2.4) is Ripley­
Kelly Markov with respect to the relation (3.4). 

Proof. Note that there are no zero-likelihood configurations, hence the density 
is hereditary (condition (a)). To check (b), write 

p(xp~x~u}) = (3exp [-(log'}') {l J(~xu{u}(a))dv(a) - l J(~x(a))dv(a) }] 
Split x in y U z where 

y = {xi Ex: Zl<(xi) n Z"(u) = 0} 

and z = x\y. By Lemma 2.2, for all a~ Zl<(u) we have that ~xu{u}(a) = ~x(a). 
On the other hand, for a E Zl<(u), 

~xu{u}(a) = :£ K(a, Yi)+:£ K(a, Zi) + x:(a, u) = 0 + ~z(a) + x:(a, u). 
y;Ey z;Ez 
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Similarly, ~x(a) = ~z(a) for a E ZK.(u). Hence 

p(x U {u}) ( ) 
p(x) 3.5 

= f3 exp [-(log 'Y) { h,.(u) [f (~z(a) + x;(a, u)) - f (~z(a))] dv(a)}] 

completing the proof. D 

One of the most important results for Markov point processes is the Ham­
mersley-Clifford theorem [25] stating that p(x), x E !Jtf(A), can be factorised 
as a product of clique interaction functions 

p(x) = l1 c/>(y). 
yi;:x 

y is a clique 

Here a clique is any configuration x for which all its members are neighbours 
(s ,_.,, t for alls, t Ex). The following result gives the interaction functions</>(·) 
for the shot noise model. 

Theorem 3.3. The interaction functions of a shot noise weighted process 
(2.2) are 

</>(0) = a, (3.6) 
</.i({u}) = {3-y-fA!(E{u}(a))dv(a), (3.7) 

</>(x) = exp {-(log'Y) 1 L (-1r(x\y) f(~y(a))dv(a)}, n(x) ~ 2. (3.8) 
Ayi;:x 

Proof. The proof is based on induction with respect to the number of points. 
The case n(x) = 0 is straightforward from the Hammersley-Clifford formula. 
For n(x) = 1, note that </>({u}) =p({u})/4>(0). 

If n(x) = 2, then for u =/= v E A, 

</J( { U V}) = p( { U, V}) = 'Y- JA (/(E{u,v}(a))-/({{u}(a))-/({{v}(a)) )dv(a) 

' </>(0)<P({u})</>({v}) 

in accordance with (3.8). 
Next assume that formula (3.8) holds for configurations with up ton ~ 2 

points and let x be such that n(x) = n. Then, writing 'c' for the proper 
subset ordering, 

<f>(x U {u}) = 
p(xu{u}) 

llycxu{u} <f>(y) 

= 'Y- JA [t({xu{u}(t))- L:ycxu{u} L:.c;;y(-l)n(y\z) f(Ez(t))] dv(t) • 
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Now 

L L(-lt(y\z) J(f.z(t)) = L: J(f.z(t)) (-l)n(y\z) 
yCxU{a} z~y zcxu{a} z~yCxU{a} 

= - L (-1r<xu{a}\z) J(f.z(t))' 
zcxu{a} 

where we have used that by Newton's binomium the inner sum in the penul­
timate formula above equals -( -1 )n(xu{ a} \z). Hence 

f(f.xu{a}(t)) - L 2:(-lt(y\z) f(f.z(t)) = L (-1r(xu{a}\z) J(f.z(t)) 
ycxu{a} z~y z~xU{a} 

and the proof is complete. D 

The highest n(x) with efJ(x) =f. 1 is said to be the order of interaction. In 
most cases shot noise weighted processes exhibit infinite order of interactions. 
Note that two such processes generated by the functions f ( t) and f ( t) + et for 
some e E JR. have the same order of interactions, so that the linear part of f is 
not important to determine interaction order. 

It is easy to verify that efJ(x) = 1 whenever x is not a clique: take u, v E x 
with u f v and rewrite the integrand in the exponent of (3.8) as 

E ( -1 r(x\y) [1 (Ey( a)) + t (f.yu{u,v} (a)) - 1 (f.yu{u} (a)) - 1 ( Eyu{v} (a))] . 
y~x\{u,v} 

Note that for a E Z(u), J(f,y(a)) = f(f.yu{v}(a)) and also J(f.yu{u}(a)) = 
f(f.yu{u,v}(a)); for a fJ. Z(u) on the other hand, J(f,y(a)) = J(f.yu{u}(a)) and 
f(f.yu{v}(a)) = /(f.yu{u,v}(a)). Hence c/J(x) = 1° = l. 

4. EXAMPLES AND INTERPRETATIONS 

In this Section we give some specific examples of shot noise weighted processes 
and suggestions on how to simulate them. 

Stationary Poisson process. If "f = 1, regardless of the choice of potential 
and influence function, the shot noise weighted model is a Poisson process with 
intensity measure f]µ(·). The interaction functions of order 2 and higher are 
identically 1, in accordance with the Poisson process' interpretation of 'spatial 
randomness' [7]. The lower order interaction functions are efJ(0) = e(l-.B)µ(A) 

and c/J( { u}) = f], u E A. 

Inhomogeneous Poisson process. If the potential function j(-) is linear, 
i.e. f(t) =et for all t E IR and some c E IR, (2.2) defines an (inhomogeneous) 
Poisson process with intensity measure fh-cvl<(·lµ(·), where 
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v"(x) = L r;,(a, :r)dv(a), x EA. 

Again, there are no interactions of orders higher than 1, 

</;(0) =exp [L (1 - ,81-cv"(a))dµ(a)] ' 

but now 1>( { u}) = ,e,-cv"(u) may be location dependent. 

Area-interaction process. An example that does exhibit interactions be­
tween the members in a configuration is the area-interaction model [2]. This 
model is obtained by taking the coverage function introduced in Example 2.3 
and a potential function with f (n) = 1 for all strictly positive integers, zero 
otherwise: 

p(x) = a,8n(x)1 -v(U(x)). 

The model produces clustered patterns for values of I > 1, regular ones for 
/ < 1. The special case r > 1, Z(x) = B(x, r ), a ball of fixed radius centred at 
x and Lebesgue measure for v(-) is the penetrable sphere model introduced in 
[34] for liquid-vapour equilibrium. These models have interactions of arbitrary 
large order, except in the Poisson case I= 1. For details, see [2, 13, 26, 34]. 

A typical realisation of the penetrable sphere model, obtained using the 
exact Gibbs sampler of [12] is given in Figure 4.1. Other simulated realisations 
can be found in [2, 12, 17]. 

Truncated at 1. Another example that can deal with clustering and inhi­
bition is again taking the framework of Example 2.3 but now truncating the 
binary potential function at 1, so that f ( n) = 1 { n = 1}, n ~ 1. Then 

p(x) = a,Bn(x),-v({a:cx(a)=l}). 

Note that p( ·) is integrable and uniformly absolutely continuous with respect 
to 7r (3µ, since If(-) I is bounded by 1 ( cf. Section 3). For r > 1 the model tends 
to have smallish I-covered regions, indicating clustering. For/ < 1 the model 
assigns most mass to configurations having largish I-covered regions,., hence 
inhibition. Like the area-interaction process, this model has interactions of 
infinite order. 

Direct simulation from p(.) is difficult due to the dimension and the nor­
malising constant a that cannot be evaluated explicitly. On the other hand, 
the conditional intensities (3.5) are 'local' and easy to compute provided the 
influence zones are not too large. This observation can be used to construct 
Markov chain Monte Carlo samplers whose transition probabilities are based 
on the likelihood ratio (3.5 ). For our shot noise process, we have used the 
Metropolis-Hastings sampler of [11]. Briefly, given an initial configuration xo, 
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Figure 4.1: Realisation of the (symmetric) penetrable sphere model with 
(3 = 50, 'Y = e50 and square influence zones of side .2 

with probability 1/2 propose adding a point ('birth'); with probability 1/2 
propose deleting one of the points in x if any ('death'). Births are proposed 
uniformly with respect toµ(·) on A and accepted with probability 

. {l p(xoU{u})µ(A)} 
mm 'p(xo)(n(xo) + 1) 

If the new point u is accepted, set x 1 = x 0 U{u}; otherwise x 1 = x 0 . Similarly, 
we delete Xi from xo = {x1, ... , Xn} with probability 1/n. The death of Xi is 
accepted with probability 

. {l p(xo\{xi})n(xo)} 
mm ' p(xo)µ(A) 
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and if so, x1 = xo \ {xi}· Otherwise x1 = x0. Continuing in this fashion, we 
obtain a sequence xk, k E N0 , which converges top(·) ask-+ oo. 

Some patterns generated this way are given in Figure 4.2. The time series 
of the sufficient statistics n(x) and v({a: cx(a) = 1}) are plotted in Figure 4.3. 

Truncated at k. More generally, consider the previous example but trun­
cate at k > 1, so that f(n) = 1 {n::;; k }, n ~ l. The corresponding density 

p(x) = a,Bn(x)'Y-v({a:cx(a):Sk}) 

allows some more overlap than for the case k = l. For ry < 1, likely configura­
tions contain m-tuples with m ::;; k. 

Pair coverage interaction. Consider the coverage function from Exam­
ple 2.3 with the potential function f(n) = 1 {n = 2}. Then JA f(~x(a))v(da) 
is the v-rneasure of the set U2 ( x) of points in A covered by exactly two sets 
Z(xi), i = 1, ... , n(x), and, therefore, 

p(x) = a,Bn(x)'Y-v(Th(x)). 

For / > 1 there tend to be many high order overlaps or no overlaps at all, 
while, for/ < 1, objects tend to come in pairs. 

Note that f ( ·) takes binary values. Hence the pair coverage interaction 
model is well-defined and uniformly absolutely continuous with respect to ,8µ(·) 
(Section 3). For simulation purposes, we used the Metropolis-Hasting,s sam­
pler described above for the truncation model. Some examples are shown in 
Figures 4.4-4.5. 

Odd and even. Again take the coverage function example with one of the 
following potential functions: 

l. f (2k - 1) = 1, f (2k) = 0, k::::: 1; 

2. f(2k - 1) = 2k - 1, f(2k) = 0, k ~ 1. 

In both cases X has interactions of infinite order. If ry > 1, then in both 
cases points tend to come in clusters with even numbers of points. For ry < 1 
the models tend to have odd coverage, model 2 particularly favouring high 
amounts of overlap. 

Now, j(-) is linearly bounded in absolute value. Thus, by Lemma 3.1, the 
odd and even model is well-defined. 

Distance influence function. Let us consider an example not related to 
the coverage function. Set K, (a, x) = 11 a - x 11, the distance between a and x in 
the observation window A C .IR.2. Furthermore, let v( ·) be Lebesgue measure 
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Figure 4.2: Samples of the 1-truncated model after 20000 steps of the 
Metropolis-Hastings algorithm for f3 = 50 and square influence zones of side 
.2; the values of 'Y are e50 (left) and e-50 (right). 

and set f(t) = 1 {t S l}. Then the associated density is well-defined and is of 
the form 

p(x) = aj3n(x)"(-v(M1(x)) 
1 

where M1 (x) = {a E A : 2=7l~) I la - x;j I S i}. If x contains at least two points 
at distance greater than 1, then v(M1 (x)) = 0, so that / > 1 makes such 
configurations more probable. On the contrary, for 'Y < 1 points tend to 
appear in one cluster which is contained within a ball of radius 1. For instance, 
if n(x) = 2, then M1(x) is an ellipse with foci x 1 and x2 . 

5. PROPERTIES 

In this Section we consider the behaviour of shot noise weighted point processes 
under some elementary operations, as well as their limit behaviour. 

First note that the family of shot noise weighted point processes is closed 
under taking Radon-Nikodym derivatives. This means that the densities of 
such a process with respect to another process from this family has the same 
form (2.2). 

If A, r;, and v are group-invariant (e.g., with respect to rotations), then X 
is distribution-invariant with respect to the same group. 
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Figure 4.3: Time series of the sufficient statistics of the I-truncated model 
over 20000 steps of the Metropolis-Hastings algorithm for j3 = 50 and square 
influence zones of side .2; the values of 'Y are e50 (left) and e-50 (right). 
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Figure 4.4: Samples of the pair coverage model after 20000 steps of the 
Metropolis-Hastings algorithm for /3 = 50 and square influence zones of side 
.2; the values of 'Y are e50 (left) and e-50 (right). 

If two independent point processes X1, X2 are absolutely continuous with 
respect to 7r µ with densities p1 (·) and p2 ( ·) respectively, then the superposition 
X1 U X2 is also absolutely continuous with respect tonµ and has density 

p(x) = e-µ(A) L P1(cp-1(l))P2(cp-1(2)) (5.1) 
cp:x--+{1,2} 

where the sum is over all ordered partitions of x E IJtf (A). In the case of two 
independent shot noise weighted processes, (5.1) reads 

p(x) = e-µ(A)cif3n(x) 

x L exp [-log{ l (!(~\0-1(i)(a)) + f(~\0-1(2)(a))) dv(a)] 
cp: x-t{l,2} 

Hence, in general, X1 U X2 is not a shot noise weighted process; it is for linear 
potential function !(·), a well-known property of Poisson processes [7, 30]. 

Next consider independent thinning: each point in a realisation of a point 
process is retained independently of every other point with probability p. Then 
the Janossy densities of the thinned shot noise weighted process (cf. [6, p. 122]) 
are given by 
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Figure 4.5: Time series of the sufficient statistics of pair coverage model over 
20000 steps of the Metropolis-Hastings algorithm for (3 = 50 and square influ­
ence zones of side .2; the values of 'Y are e50 (left) and e-50 (right). 
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Hence, the density of the thinned process with respect to 7r µ is 

pth(x) = o:(p,Br(x)eµ(A) { (,6(1 _ p))n(y)"f- fAf((xuy(a))dv(a)d'Tr (y). 
}1Jt!(A) µ 

Equivalently, the thinned process is absolutely continuous with respect to the 
original process with density 

P;~~~) = pn(x)eµ(A)E'.lfit [(,6(1 _ p))n(Y)'Y- L[f({xuy(a))-f(~x(a))]dv(a)] . (5.2) 

Again, if j ( ·) is a linear function (Poisson case), then the thinned process 
is Poisson with intensity measure p,6r"·O µ( ·) [30]. 

Let us study the convergence of the shot noise weighted point process as 
'Y-+ 0 or oo. 

Theorem 5.1. Let P/3,"t be the distribution of the shot noise weighted process 
with density (2.2) for given influence and potential functions. 

1. Assume that/(·) is bounded and let 

H = {x: i J(~x(a))dv(a) = m~x i J(~x(a))dv(a)} . 

Then, as 'Y -+ 0 for fixed ,6, P13 ,"f converges in distribution to a uniform 
process on H, i.e. a random configuration corresponding to the distribu­
tion n13µ on H. 

2. Suppose that ,6-+ 0 and 'Y-+ 0 in such a way that f3r-v~(a) --+((a) E 
(0, oo), a EA. If f is positive and sublinear, i.e. J(t + s) -S f(t) + J(s) 
for all s and t, then P13 ,1 converges in distribution to a Poisson process 
with intensity ((a)µ,(da) restricted to the set of configurations 

{ 
n(x) n(x) } 

HC = x: L f(~ "'(a, xi))dv(a) = ~ L f(r;,(a, Xi))dv(a) · 

3. If f is strictly positive except in 0, then as 'Y --+ oo with ,6 < oo fixed, 
P13 ,"'f converges to a process that is empty with probability 1. 

Proof. 

l. Write f* = maxxf J(~x(a))dv(a). Then 

J 'Yf'-f f((x(a))dv(a)d7r13µ(x)-+ n13µ(H) as 1--+ 0. 

Hence 
rvf'-J f({x(a)dv(a) 1 

( ) t xEH _,_ Q P/3 x - -+ -- as 'Y ---, , 
,"'f - J 'Yr-J f({x(a)dv(a)d'Trf3µ(x) nµµ(H) 

which is equivalent to the first assertion. 
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2. By sublinearity, 

1 JCL;; f(i<(a,x;))-t(i:; 1t(a,x;)))dv(a) ---+ 0 as "( ---+ 0. 

if x tj. H C. Hence 

P (x) ---+ TI7~~) ((xi) lxEHC 
{3,-y r n(x) ( 

JHC Tii=l ( X;) d7rµ(x) 
as f'-+0. 

3. Note that the density converges pointwise to zero unless the pattern is 
empty. D 

Note that the set HC in Theorem 5.1 contains at least all singletons and 
also point configurations which are similar to realisations of hard-core point 
processes [30]. 

Limit behaviour of a different kind occurs when the space A expands. Sup­
pose on each compact subset A of JR.d we have defined a shot noise weighted 
process by a fixed homogeneous influence function 11;(·, ·) with bounded zone 
ZK and with potential ](-). Provided that a stability condition similar to (3.2) 
is satisfied for each A, using methods of Preston [23] in the same way as it 
has been done in [2] (with evident changes) one can prove that there exists 
a stationary extension to the whole of JR.d. However, the extension need not 
be unique, i.e. there may be phase transition [23, p. 46]. Indeed, the area­
interaction process exhibits a phase transition [28]. Existence of a stationary 
extension is important with respect to edge effects, indicates that shot noise 
weighted models can be considered as the restriction to a bounded sampling 
window of a stationary point process and justifies estimation techniques such 
as the Takacs-Fiksel method (see below). 

Jensen [15] proved a central limit theorem for stationary Gibbs point pro­
cesses. Assuming again a homogeneous influence function with bounded zone 
and stability for each compact A c JR.d, it can be shown that the associated 
shot noise weighted process satisfies the conditions of Theorem 2.2 in [15]. In 
particular, this yields a central limit theorem for additive functionals such as 
the number of points. However, the integrated shot noise [14] 

l j(~x(a)) dv(a), 

in general is a non-additive functional of the observation window. 

Statistical estimation of the parameters f3 and f' of shot noise weighted 
processes can be performed by means of one of the following techniques. 

• maximum likelihood techniques using Markov chain Monte Carlo simula­
tions or stochastic approximation to evaluate the unknown normalisation 

parameter a [8, 21, 22]; 
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• the Takacs-Fiksel estimation method, see [9, 32] and [24, p. 54-55]; 

• solving the pseudo-likelihood equations [4, 16], which are of the same 
form as the pseudo-likelihood equations for the Strauss model [24, p. 53] 
and are a special case of the Takacs-Fiksel method, see [2, 8, 29]. 

The estimation of JO and r;,(·, ·) is a difficult non-parametric statistical prob­
lem. 
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