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ABSTRACT

We give a brief introduction to sequential spatial processes. We discuss their definition, formulate a Markov
property, and indicate why such processes are natural toolsin tackling high level vision problems. We focus
on the problem of tracking a variable number of moving objects through a video stream, and discuss the
relationship with the popular Hough transform. A list of pointers to the literature concludes the paper.
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INTRODUCTION

Since the early 1990s, stochastic geometric
models, in particular Markov marked point processes
(Daley and Vere–Jones, 2003; Lieshout, 2000) have
been successfully applied to image interpretation
problems. The idea is to parametrise the objects that
are present in an image or sequence of images by
their location, shape, and colour parameters. Clearly,
the parametrisation depends on the context, ranging
from simple geometric shapes (Baddeley and Lieshout,
1992; Lieshout, 1994; 1995) through deformable
template models (Amitet al., 1991; Hansenet al.,
2002; Hurn, 1998; Mardiaet al., 1997; Pievatolo and
Green, 1998; Rue and Hurn, 1999; Rue and Husby,
1998) to the complex ensembles of simple shapes
studied by Lacosteet al. (2005), Ortneret al. (2007),
and Stoicaet al. (2002; 2004; 2007).

Such methods are especially useful for images
of a scene in which the objects do not overlap or
have a similar appearance. The purpose of this work
is to describe a class of models that can overcome
such limitations, namely sequential spatial processes
(Lieshout, 2006a;b), and discuss how such models
can be applied to the problem of tracking a variable
number of moving objects in video data (Lieshout,
2008).

DEFINITIONS

In this section we recall the definition of sequential
spatial processes. See (Lieshout, 2006a;b) for further
details.

Configurations We assume that the objects that
constitute the images we consider are completely
described by a reference point that specifies its
location, and some parametric features. Under this

assumption, the object space is a Cartesian product of
the formD×M, whereD is a compact set in the plane
with non-empty interior for the object location, andM
is some Polish space for the object features.

As each image may contain multiple objects, we
need to consider ensembles. Generally, one does not
know how many objects are contained in each frame
of some video stream. Moreover, objects may overlap,
and even occlude each other. Thus, we are led to define
an object configuration as a vector

~x = (x1, . . . ,xn) = ((d1,m1), . . . ,(dn,mn)),

with xi = (di,mi) ∈ D × M. Here n, the number of
components, is allowed to range throughN0, with
n = 0 corresponding to an empty scene without any
objects whatsoever. The objects are ordered in terms
of proximity to the camera.

Dominating measure The basic reference model
for an object configuration is the Poisson object
process. Under this model, the sequence length is
Poisson distributed, and objects are independent and
identically distributed. More formally, ifµ is Lebesgue
measure on(D,BD), with µ(D) > 0, andµM a Borel
probability measure on the space of object features
(M,BM), write

ν(F) =
∞

∑
n=0

e−µ(D)

n!

∫

· · ·
∫

(D×M)n
1{(x1, . . . ,xn) ∈ F}

d(µ ×µM)(x1) · · ·d(µ ×µM)(xn)

for F in the σ -algebra on the configuration space
generated by the product Borelσ -fields on(D×M)n.
The term forn = 0 should be read as

exp[−µ(D)]1{ /0∈ F} .

Sequential spatial processes are defined by
giving their Radon–Nikodym derivative (density) with
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respect toν . In this form, they first appeared in the
context of local scaling (Hahnet al., 2003). In the next
section, we present two further examples.

EXAMPLES

Random sequential adsorption modelIn many
physical and biological processes, objects (e.g.
monomers, animals, or proteins) arrive in some region
and select a position for themselves according to some
fixed distribution. If there would be no overlap with
an established object, the object is adsorbed at the
selected location, otherwise it leaves the system. The
process could be run until there is no room left for
any object as in the original formulation by Rényi
(1958). Alternatively, the number of adsorbed particles
could be stochastic, and follow some probability
mass function. Such models were dubbed simple
sequential inhibition processes in the spatial statistics
literature (Diggle et al., 1976) and are known
as random sequential adsorption amongst physicists
(Evans, 1993), who use them to describe the deposition
of colloidal particles onto a substrate.

More specifically, consider the pure jump process
on D with empty initial state, time horizonθ ≥ 0, and
birth rate

b(u,~x) = π(u)1{d(u,~x) > r}

where π(·) is the position selection probability
distribution andd a metric onD. Note that in this
example, the separation distance is fixed. In other
words, no marks are attached to locations.

In Figure 1, a realisation in the unit squareD =
[0,1]2 with π(u) = π(z1,z2) given by

λ 2

4
exp

[

−λ
(
∣

∣

∣

∣

z1−
1
2

∣

∣

∣

∣

+

∣

∣

∣

∣

z2−
1
2

∣

∣

∣

∣

)]

for λ = 25,θ = 1,000, andr = 0.03 is presented.

The colour map is such that low indices are
represented by a dark colour. Note that the squares
cannot overlap. Dark squares dominate the centre of
the picture whereas light ones are relatively often
found on the outskirts of the point cloud.

Fig. 1.Sample from a sequential adsorption process in
the unit square with Laplacian location selection with
dispersion parameterλ = 25.0, time horizon1,000.0,
and hard core distance r= 0.030in both coordinates.

It should be noted that the total birth rate
∫

D
b(u,~x)du

depends on the geometry of~x, which implies that
a meaningful spatial Markov property cannot be
expected to hold.

Sequential soft core modelAn important family
of (classic) marked point processes is formed by
the pairwise interaction processes, see e.g. (Lieshout,
2000), whose density factorises as a product of terms
associated with pairs of neighbouring objects.

An example of a sequential analogue is the soft
core model onD×R

+ defined by f (~x) proportional
to

exp

[

∑
i

(

log(β )+ log(γ) ∑
j<i

1
{

||di −d j || ≤ mj
}

)]

with respect to the distribution of a sequence of
Poisson length with independent components of which
the position is uniformly distributed and the mark
exponentially. Hereβ > 0 is an intensity parameter,
and 0< γ < 1 reflects the strength of interaction, the
smallerγ , the stronger the inhibition.

A realisation withβ = 100, γ = 0.611, and the
intensity parameter ofµM equal to 0.05 is presented
in Figure 2. Again a small index is represented by a
dark colour. The radii are equal to the mark. Note that
light balls tend to avoid being centred in darker ones,
but such overlap is not prohibited altogether.
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Fig. 2.Sample from a sequential soft core model with
β = 100, γ = 0.611, and mean radius0.050.

Note that the ratio

f (~x,(d,m))

f (~x)
= β exp

[

log(γ)∑
j

1
{

||d−d j || ≤ mj
}

]

depends only on thosex j = (d j ,mj) for which ||d−
d j || ≤ mj . We say thatf (·) is Markov with respect to
the relation

(d1,m1) ∼ (d2,m2) ⇔ ||d1−d2|| ≤ m2.

By adding objects one at a time to /0, it follows that
β−n f is proportional to the product of

ϕ((di,mi),(d j ,mj)) = γ1{||di−d j ||≤mj}

over pairs of neighbours(di,mi) ∼ (d j ,mj ) for object
configurations of lengthn.

The sequential soft core model forms a two-
parameter exponential family with sufficient statistics
n(~x), the length of the sequence, and

∑∑
j<i

1{||di −d j || ≤ mj}.

For such models, Monte Carlo maximum likelihood
estimation methods developed for classic spatial point
processes, as reviewed for example by Geyer (1999)
or Møller and Waagepetersen (2004), carry over
immediately.

Remark Clearly, any sequential spatial process
immediately defines a classic object process by
ignoring the permutation (Daley and Vere–Jones,
2003; Hahnet al., 2003). The interesting dual property
that any finite sequential spatial process can be derived
as the time-ordered vector of points in a classic spatio-
temporal marked point process can be shown to hold
as well. For further details, see (Lieshout, 2006b).

MOTION ANALYSIS

Motion is a prime source of semantic information.
Indeed, when objects pass each other, their image
projections overlap and their relative distance to the
camera can be determined and propagated over frames.

The classical approach to motion tracking is to
break the problem up into easier to handle sub-
problems (Goodmanet al., 1997; Stoneet al., 1999;
Vihola, 2004). One decides on the number of objects
to be tracked, either ad hoc or by some tailor
made expert system, and estimates the geokinematic
coordinates, that is, position and velocity, by a Kalman
filter (Eubank, 2006; Kalman, 1960) and/or Hough
transform approach (Hough, 1962; Illingworth and
Kittler, 1988). Although the Kalman filter is optimal
for the prediction of the unobserved state of a linear
system under Gaussian noise, it may not be so for
the features extracted from video data. The Hough
transform is robust against noise and occlusion but its
implementation may require a lot of memory space.
More recently, particle filters (Gordonet al., 1993)
were proposed. This approach, however, suffers from
initialisation problems when the number of objects to
be tracked does not remain constant over time (Hueet
al., 2002; Vihola, 2004), and does not seem capable
of capturing interactions between the objects (Khanet
al., 2005).

Below, we shall apply sequential spatial models
to the problem of tracking a variable number
of interacting objects over video frames, which
enables us to implement the sub-tasks outlined above
simultaneously, and take into account varying object
shapes and sizes, spatio-temporal relationships, and
occlusion.

METHODOLOGY

A stochastic model for tracking consists of several
ingredients.

Data We model a video sequence as a vector of
images

y = (yi; i = 1, . . . , I),

I ∈ N. In turn, each imageyi is determined by the
values it takes on a set of pixelsT. In other words,

yi = (yi
t ; t ∈ T).

The setT is usually a finite rectangular grid. The
observed valuesyi

t range overV = {0,1, . . . ,255}d

with d = 1 for grey level andd = 3 for colour images.
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Objects The object model strongly depends on
the application at hand. Here, as before we shall use
the generic notationx for a single object, and assume
that each object leaves a footprintR(x) ⊆ T in image
space, which we call its template. The pixel values in
the setR(x) are denoted byθt(x), t ∈ R(x).

Signal image The signal image is defined as the
footprint left by an object configuration rather than
a single object in image spaceT. It is a function of
the object templates that takes into account occlusion.
More specifically, let

θt(~x) =

{

θt(x j) if t ∈ R(x j)\∪k< jR(xk)
θ0 if t ∈ T \∪R(x j)

Here θ0 is the background value. Thus, among the
objects whose template occupies a given pixel, the one
with the smallest index, that is, the object closest to
the camera, is the one that determines the signal (the
lightest in terms of Figure 2). One may think of the
signal as an idealised image, the one seen when there
were no blur or noise.

Thus, the model explicitly and elegantly accounts
for occlusion, in contrast to unordered object processes
(Baddeley and Lieshout, 1993; Khanet al., 2005) and
in a simpler way than in (Mardiaet al., 1997).

Inference Motion analysis aims at inferring a
sequence of object configurationsx = (~x1, . . . ,~xI ) from
a given video stream. We shall take a statistical
approach, and treatx as a parameter to be estimated.
In order to do so, we need a probability model forx.
An advantage of such an approach over deterministic
methods is that the degree of uncertainty about an
obtained solution can be quantified.

Hamiltonian Under the Poisson modelν ,
conditionally given a scene containsn objects, they
are independently and uniformly located inD with
independently attributed features distributed according
to µM. Interaction can be introduced by means of a
Hamiltonian or energy functionU . More precisely, we
consider random sequences whose density (Radon–
Nikodym derivative) atx = (~x1, . . . ,~xI ) is of the form

f (x) ∝ exp[−U(x)] (1)

with respect to theI -fold product measureν I .

REGRESSION MODEL

In the least absolute deviation regression model,

U(x) =
I

∑
i=1

∑
t∈T

|yi
t −θt(~xi)|. (2)

The objective is to seek, for data footagey, to
maximise (1) or, equivalently, to minimise (2). In
general, there is no unique solution, as the addition of
extra objects ‘behind’ the signal of those closer to the
camera does not affectU and hencef .

Markov property The potential energy required
for adding some objectu to, say, configuration~xi ,
giving u 6∈~xi the highest index, is given by

∑
t∈R(u)\∪kR(xi

k)

[

|yi
t −θt(u)|− |yi

t −θ0|
]

and depends only on the pixel values in the template
R(u) of u and those inR(xi

k) that overlapR(u).
Hence, the single frame energy function defines a
Markov sequential object process with respect to the
overlapping objects relation

u∼ v⇔ R(u)∩R(v) 6= /0.

Hough interpretation Given a grey scale image
y, the (generalised) Hough transform is an integer-
valued function on the object space

Hy(u) = ∑
t∈R(u)

yt

that assigns to each objectu the total intensity in its
template. The Hough transform may be interpreted as
follows: each pixelt votes with vigouryt for all the
objects that contain that pixel in their template. Good
matches could then be located by finding local maxima
of the Hough transform (Illingworth and Kittler, 1988).
The intensityyt may be replaced byψ(yt) for some
appropriate functionψ : V → R.

Consider the track of a newly arrived object against
an empty background. Writeb for its birth frame,d for
its death frame,ui for the object in framei = b, . . . ,d,
and(vi)

d−1
i=b for the translation vectors between frames.

The track thus parametrised will be denoted by ˜u.
Furthermore, suppose that the template and signal are
translation invariant, so thatR(u+ ∆) = R(u)+ ∆ and
θt(u+ ∆) = θt−∆(u) for all pixels t,∆ with t −∆ ∈ T.
Then, the difference in energyU( /0)−U(ũ) is given by

∑
t∈R(ub)

[

|yb
t −θ0|− |yb

t −θt(ub)|
]

+
d−1

∑
i=b

∑
t∈R(ui)

[

|yi+1
t+vi

−θ0|− |yi+1
t+vi

−θt(ui)|
]

.

The first term corresponds to a Hough transform for
detecting the initial presence of an object by letting
each pixel vote for the objects that contain it with
strength|yb

t − θ0| − |yb
t − θt(ub)|; the second term is
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a recursive Hough transform voting for the movement
from ui by vi with strength

|yi+1
t+vi

−θ0|− |yi+1
t+vi

−θt(ui)|

for each pair of pixels(t, t +vi) with t ∈ R(ui).

DISCUSSION

In a recent study the ideas described above were
applied to sports sequences in which the objects of
interest can be described mathematically by geometric
objects such as ellipses. In order to avoid over fitting,
a regularisation energy was included in the model. It
was designed to prevent too much overlap between
objects in a single image, to encourage cohesion
between objects in adjacent frames, and to include
object identifiers in order to keep track of an object’s
identity as it moves across the frames.

More formally, we introduced a regularisation
term that is the sum of two energy functions: the
first a purely inhibitive pairwise interaction Markov
model with respect to the overlapping objects relation
(Baddeley and Lieshout, 1992), the second a Markov
chain in ‘frame time’ inspired by (Lundet al., 1999).
The latter’s effect is three fold. It penalises objects that
are unmatched in the sense of not being identified with
objects in adjacent frames, it forces matched objects to
have a similar template, and it propagates information
on relative proximity to the camera gathered when
objects overlap on to adjacent image frames.

Optimisation was carried out by simulated
annealing within the Metropolis–Hastings framework
(Møller and Waagepetersen, 2004). The method was
implemented in theC++ librarySEQ-MPPLIB at CWI
by Steenbeek and Van Lieshout.

The approach proved very successful and was able
to capture simultaneously a variable number of objects,
occlusion, depth, and spatial and temporal coherence.
For further details, the reader is referred to (Lieshout,
2008).
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