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Abstract 

The Bayesian approach to image processing based on Markov random fields is adapted to image 
analysis problems such as object recognition and edge detection. Here the input is a grey-scale 
or binary image and the desired output is a graphical pattern in continuous space, such as a list 
of geometric objects or a line drawing. The natural prior models are Markov point processes 
and random sets. We develop analogues of Besag's ICM algorithm and present relationships 
with existing techniques like the Hough transform and the erosion operator. 

1 Introduction 

Many image analysis tasks can be formulated as statistical parameter estimation problems. Ex
amples are the application of the E-M algorithm to tomographic reconstruction [25], stochastic 
annealing and ICM algorithms for segmentation, classification, edge detection and de-blurring 
[4, 5, 9], and deformable template annealing methods for shape recognition [13, 18, 21]. 

This paper develops a similar approach to object recognition, where a scene composed of 
overlapping objects is observed in the presence of blur and noise, and the task is to determine 
the number of objects and locate them. Applications include document reading and robot 
vision. Thus the input y is a digital image, and the desired output x is a graphical pattern 
in continuous space, such as a line drawing, list of filled polygons, or a wire frame model. We 
follow the template approach: objects are assumed to be specified by a few continuous real
valued parameters that determine size, shape and location. However the number of objects, 
their position, orientation and spatial relations are not fixed in advance, and the objects may 
overlap. 

The natural prior probability models for x come from stochastic geometry and spatial statis
tics [7, 19, 26]. The role played by Markov random fields is taken over by Markov random 
patterns [2, 20]. 

The deformable template models of Grenander and Keenan [13] and Ripley et al. [18, 21] 
describe a single object, composed of jointed pieces, with the angles and lengths of the joints 
forming a Markov chain. In our approach the Markov model describes the relative spatial 
positioning of objects (for example, it controls the probability of overlap). 

In the present paper we study deterministic algorithms which are formally analogous to 
Besag's ICM [5]. A sequel will consider stochastic algorithms analogous to stochastic annealing 
[9]. We show that the popular Hough transform [3, 6, 8, 14, 15, 24] is a special case of a likelihood 
ratio technique and the erosion operator of mathematical morphology [22, 23] is the MLE for 
a specific noise model. We show that pre-processing the grey level image before searching for 
objects is equivalent to assuming another model for the pixel noise. 

In the next section we establish some notation. The likelihood approach is developed in 
section 3, with some iterative algorithms in section 4. The Bayesian approach is then introduced 
in section 5. Section 6 compares the peformance of different recognition algorithms. 



2 Setup notation 

Assume the observed image y depends on 
Then objective is to estimate 

2.1 Data image y 

T ('image space'), and Yt denotes the 
set of possible pixel values for the data image 

Oto 255, or If y is binary (F = {O, l}) we identify 1 

·white', and write Y = { t E T : y1 = for the set of black pixels. 

2.2 Object configuration x 

The are to representable by a finite number of real pa-
possible parameter values ('object space'), so that a single 

u E U an ~ T. For example, discs can be identified by pairs ( x, r) 

where is the radius and x the centre point. so U = IR2 x (0, oo ); the attitude of an industrial 

where 

the angles at each joint. \Ve assume U is either a bounded region of 
space IRd ('continuous case'), or a finite set of points in IR.d ('discrete case'). 
configuration is an unordered list of objects 

Xi E U, i = 1, · · ·, n, n ~ 0. 

:\"ate that the of the list is variable, and the empty list 0 is allowed. The objects may be 
in any relation to each other. 

\Ve often associate the list x with the 'silhouette' scene S(x) formed by taking the union of 
the objects in the 

and 

2.3 Existing methods 

on 

space. 

image 

n 

S(x) = LJ R(xi) 

={ 

i=l 

1 if t E S(x) 
0 else 

for template matching is the Hough transform [3, 6, 8, 14, 15, 24]. 
space 

= L Yt' u E u 
tER(u) 

( 1) 

The Hough transform is often interpreted as a 'vote-counting' 
image 'votes' for all objects that contain that pixel. The 

by maxima of the Hough transform in object 
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Figure 1: Binary image representing centre points of discs with radius 4, digitized on a 98 x 98 
square grid with its induced silhouette. 

An alternative for binary images is to perform an erosion with respect to the template. If Y 
is the set of black pixels define the generalized erosion of Y by 

ER(Y) = {u: R(u) ~ Y} 

- { u : Yt = 1 for all t E R( u)} (2) 

i.e. accept only those positions u where every pixel in the template is white. This is a general
ization [23] of the classical erosion operator Ye R [22]. 

3 Likelihood approach 

In the likelihood approach [25] the true image x is assumed fixed (though unknown) and the 

probability distribution of the observed image y has a density f(ylx) that depends only on x. 
Given observation of y, the maximum likelihood estimator of x is 

x = argmaxxf(ylx). (3) 

if it exists. In this section we present several examples of stochastic models f (ylx) and methods 

for finding the MLE. 
We consider simple models which consist of a deterministic deformation of the image x into 

a 'blurred signal' g(x) followed by a noise process which is statistically independent between 

pixels, though not necessarily additive. Recall T is the pixel grid and V the set of possible pixel 
values. 

Definition 1 An independent noise model is a stochastic model for y given x in which pixel 

values Yt are conditionally independent given x, with joint probability density 

J(ylx) = II g(ytle(x)(t)). (4) 
tET 

Here {g(·l8) : e E 8} is a family of probability densities on V, indexed by a parameter 8 in an 

arbitrary set e, and the 'signal' e(x) ( t) is a function determined by x with values in 8. Thus 

the distribution of Yt depends on x only through g(x) ( t). 



Figure 2: Realization from model 1 with a= 50, e1 = 150 and eo = 100 conditional on Figure l. 

Note that no assertions are made about the way objects interact and that the model does 
not imply that the pixel values are (unconditionally) independent. 

For brevity, we will only discuss models which are blur-free, 

i.e. the distribution of Yt depends only on whether t belongs to S(x). 

Model 1: additive Gaussian white noise 

The pixel distribution is Gaussian with meanµ= e(x)(t) and fixed standard deviation a: 

g(yt\µ) = (2na2r112e-(Yt-µ)2/(2a2) 

This is equivalent to adding i.i.d. Gaussian noise to the signal. A simulation is shown in Figure 
2. 

Model 2: additive double exponential noise 

The pixel distribution is double exponential with meanµ= g(xl(t) and dispersion parameter.\ 
fixed: 

~ ( I ) (,,2 \ \J-1 -.A[yt-µ[ g Yt µ = \t0.1 e . 

Model 3: binary image, salt-and-pepper noise 

Here we convert the silhouette S(x) to a binary image and introduce noise by randomly flipping 
each pixel value with probability p independently of other pixels. Thus V = {O, 1}, 

g(yt!O) = ()Yt (l _ e)(l-yt) 

and 

eCxl(t) = { 1- p if t E S(x) 
p else 

with 0 < p < 1 fixed. 



Model 4: binary image, pepper noise 

This is similar to model 3 except that only background pixels are flipped, 

oCx)(t) = { 1 if t E S(x) 
p else 

Now consider computation of the MLE. In the blur-free case the MLE cannot be unique, because 
oCx)(t) depends on x only through S(x); two solutions x with the same silhouette S(x) have the 
same likelihood. 

Lemma 1 The MLE in Model 1 is the solution of the least squares regression of y on the class 
of functions {eCx)(t) : x = {x1 , ... , Xn}, Xi EU, n ~ O}. In model 2 the MLE is the solution of a 
least absolute deviation regression on the same class. 

This is not practically useful because of the combinatorial and geometric complexity of the 
functions 9(x) ( t). 

Lemma 2 For model 3 with 0 < p < 1/2, the MLE is 

x = argminx IS(x) /:::,,YI 

where /:::,, denotes the symmetric set difference ('exclusive-or') and I · I denotes number of pixels 
('area'). 

Computing the MLE is thus equivalent to an V optimization problem where p = 1 for 
models 2 and 3 , and p = 2 for model 1 . This should be compared to recent arguments in the 
literature [16, 17] in favour of using L1 filtering except when the noise is Gaussian. 

The next result shows a connection between maximum likelihood and mathematical mor
phology. 

Lemma 3 A maximum likelihood estimator for model 4 is 

xmax = ER(Y) = {u EU: R(u) ~ Y}, 

the generalized erosion defined in (2). This is the largest solution of the ML equations; the other 
solutions are the subsets x ~ Xmax with the same silhouette, S(x) = S(xmax). 

4 Iterative maximization of likelihood 

4.1 General add-and-delete algorithms 

Iterative maximization techniques can be used to find the MLE. The simplest form of iterative 
adjustment is to add or delete objects. We would thus add an object u E U to the list x, yielding 
x U { u}, if the log likelihood ratio 

f(y Ix u {u}) 
L(x U {u}; y) - L(x; y) =log f(y Ix) 

is sufficiently large; and we would delete one of the existing objects Xi E x to yield x \ { Xi} if 

f (y I x \ { xi}) 
L(x \ {xi}; y) - L(x; y) =log J(y Ix) 

is sufficiently large. Henceforth, w ~ 0 is a chosen threshold value. 
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Figure 3: MLE reconstructions using coordinatewise ascent with the local extrema of the Hough 
transform as initial state. Left: Algorithm l; right: Algorithm 3. 

Algorithm 1 (Coordinatewise optimization) Initialize x(O) = 0 or some other chosen ini
tial state. When the current reconstruction is x(m-l), visit every u E U sequentially in a 
predetermined order. If u rf. xlm-l) and L(x(m-l) U { u} ; y) - L(x(m-l) ; y) > w, then add u 
to the configuration, yielding x(m) = x(m-l) U {u}. If u = Xi E x and L(x(m-l) \ {xi} ; y) -
L(x(m-l) ; y) > w, then delete Xi yielding x(m) = xCm-l) \ {xi}· Update recursively until one 
complete scan of the image yields no changes. 

Algorithm 2 (Steepest ascent) Initialize xl0l = 0 or some other chosen initial state. Given 
x(k-l), compute 

and 

a= max {L(x(k-l) \ {xi}; y) - L(x(k-l) ; y)} 
XiEx(k-1) 

b =sup { L(xlk-l) U { u}; y) - L(x(k-l) ; y)}. 
uEU 

Ifmax{a,b} < w, then stop. Otherwise, ifb ~a, add the corresponding object, while if a> b, 
delete the corresponding object. 

There is a very strong analogy between the coordinatewise optimization rule and Besag's [5] 
ICM algorithm, since our rule effectively updates the state of each point of U by maximizing 
the conditional probability given information about all other points of U and given the data. 

Clearly these algorithms increase the likelihood at each step, f(y I x(k+l)) ~ f(y I x(kl). As 
there are only a finite number of possible configurations, convergence off (y I x(k)) is guaranteed 
and (if w = 0) we reach a local maximum of the likelihood function. At worst there is cycling 
between images of equal likelihood. The local maximum obtained will depend on the initial 
configuration x(o). 

4.2 Example 

For our synthetic example (Figure 1-2), Figure 3 shows the reconstructions obtained by the 
coordinatewise optimization algorithm with w = 0. The pixels were scanned in row major order 
and for the initial state we took the local maxima of log f(y I { u}) - log f(y I 0) where this was 
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Figure 4: MLE reconstructions using steepest ascent with the empty list as initial state. Left: 
Algorithm 2; right: Algorithm 4. 

non-negative. The algorithms perform reasonably well in regions with isolated objects, but fail 
when the discs overlap each other. 

Figure 4 shows reconstructions obtained using steepest ascent with w = 0 and empty initial 
state. Here it seems better to stop short of convergence, since when all the objects that are really 
present have been detected, the method keeps adding spurious ones. This can be counteracted 
by taking a higher threshold value. 

4.3 Connection with Hough transform 

The log likelihood ratios in Algorithms 1 and 2 can be interpreted as the differences in 'goodness
of-fit' attained by altering the list x. The following result shows that these are related to the 
Hough transform. 

Lemma 4 For any blur-free independent noise model (Definition 1) with g(·I·) > 0, the log 
likelihood ratio depends only on pixels inside the added object: 

L(xU{u}; y)-L(x; y)= (5) 
tER(u)\S(x) 

where 
') g(ytlB') 

h(yt, B, B =log g(YtlB) 

is the difference in 'goodness of fit' at pixel t. In particular the log likelihood ratio of a single 
object u against an empty scene 0 is 

L({u}; y) - L(0; y) = L h(yt,Bo,81). 
tER(u) 

(6) 

The right hand side of (6) is analogous to the Hough transform (1) in that it is a sum of 
pixel votes over the object R(u). Here, however, pixels can cast fractional or negative votes, a 
generalization which has been suggested ad hoe by some authors. 



The more general expression (5) may be regarded as a generalization of the Hough transform 
that calls for conditional summation only inside the mask T\S(x). However it is also expressible 
as the straightforward Hough transform 

L(xU{u}; y)-L(x; y)= I: et 
tER(u) 

of the 'residual likelihood' image et= (1- ls(x)(t))h(yt, 80, 81) =log g(Ytl81) - log g(Ytle(x)(t)). 

4.4 Relation to preprocessor filters 

Pre-processing of the data image before applying the Hough transform is typically equivalent 
to modifying the noise model. Consider any blur-free independent noise model (Definition 1), 
where the density g is a one-parameter exponential family 

g(Ytl8) = exp{A(8) + B(yt) + C(e) · D(yt)} 

Here A, Bare arbitrary real-valued functions and C, D are arbitrary real-valued or vector-valued 
functions ( · denoting inner product). Then 

L(x u {u}; y) - L(x; y) = (C(B1) - C(8o)) · 
tER(u)\S(x) 

+ (A(B1) - A(Bo)) IR(u) \ S(x)I 

where I . I again denotes number of pixels. Thus the algorithms 1 and 2 will add an object u iff 
the mean of 

Wt= (C(81) - C(eo)) · D(yt) 

over R(u) \ S(x) exceeds the threshold A(Bo) - A(B1). In particular for model 1 

µ1 - µo { '°"" µ1 + µo I ( ) \ ( } L(xu{u};y)-L(x;y)=-----2 - L,, Yt-----2-Ru Sx)i; 
er tER( u)\S(x) 

that is, the algorithm will add an object when the average y value over the masked object 
R(u) \ S(x) exceeds the average intensity (µ0 + µi)/2. Similarly, for model 3 with p fixed, the 
algorithm adds an object when more than half the pixels in R(u) \ S(x) are black. 

It can also be shown that clipping the data image values to a range [a, b] before applying the 
Hough transform is equivalent to assuming a double exponential model for the original image 
data. 

4.5 General add-delete-shift algorithms 

Another form of iterative adjustment is to change an existing object by moving, rotating or 
expanding it slightly. This should achieve a better optimum, and should accelerate convergence, 
since throwing away an incorrect object and replacing it by the right one can then be carried 
out in one single step. Write 

M(x, Xi, u) = x U {u} \ {xi} 

for the configuration obtained from x by moving the element Xi E x to a new position u. Let 
Q(x, Xi) be the set of all object points u for which this operation is permitted. Typically u will 
be required to be close to Xi but not equal to any Xj, say Q( x, xi) = N ( Xi) \ x where N ( Xi) is 
some neighbourhood of Xi. 

Then Algorithms 1 and 2 can be modified by allowing the following transitions from config
uration x: 



• deleting Xi from x yielding x \ {xi}; 

• if u ff. x, adding u to x giving x u {u}; 

• if u E Q(x,xi) for some Xi Ex, moving Xi to u giving M(x,Xi,u). 

The corresponding loglikelihood ratios are 

• L(x\{xi}; y)-L(x; y) 

• L(x U {xi}; y) - L(x; y) 

• L(M(x, Xi, u) ; y) - L(x; y) 

respectively. In Algorithm 3 (Coordinatewise optimization with shifts) we visit every u E 
U, consider every possible transition, and update whenever the log likelihood ratio exceeds the 
threshold w. In Algorithm 4 (Steepest ascent with shifts) we scan all possible transitions 
from a given x, and take that transition which has the maximum log likelihood ratio. 

These algorithms again increase the likelihood at every step and and are guaranteed to 
converge to a local maximum in finite time if w > 0. Here a 'local maximum' of the likelihood 
is a state x such that no neighbouring configuration x U { u} or x \ {xi} or M(x, Xi, u) has larger 
likelihood. This is a more stringent definition than for the previous algorithms, and one expects 
the results to be better. 

Interpretation of the algorithms is similar to the previous cases. The log likelihood ratio for 
a shift can be represented as 

L(M(x, Xi, u); y) - L(x; y) = [L(z U {u}; y) - L(z; y)] - [L(z U {xi}; y) - L(z; y)] 

where z = x\ {xi}· This is a difference of two values of the generalized Hough transform (Lemma 
4) for the configuration with Xi deleted. 

Reconstructions obtained by add-delete-shift algorithms are shown in Figures 3-4. 

5 Bayesian approach 

5.1 General 

In the Bayesian approach to image reconstruction [5, 9, 13, 18], the true image x is assumed to 
have been generated by a prior probability distribution with density p(x). Then the posterior 
distribution for x after observing data y is p(x!y) ex f (y!x)p(x) and the maximum a posteriori 
(MAP) estimator of x is 

x = argmaxxp(x!y) = argmaxxf(y!x)p(x). (7) 

Thus p(x) can also be regarded as a smoothing penalty attached to the optimization off, and x 
as a penalized maximum likelihood estimator. Suitable choices for p(x) will be discussed below. 

A strong motivation for Bayesian methods in our context is the experience (e.g. Figures 3 
- 4) that maximum likelihood solutions x tend to contain clusters of almost identical objects. 
This phenomenon is undesirable if the number of objects is important, or if it is known that 
objects cannot overlap, or if the number of objects is effectively fixed (say, if it is unlikely that 
there is more than one object). Further, MLE methods exhibit oversensitivity to the data and 
to the scanning order in image space. 



5.2 Iterative algorithms for MAP 

In our context (7) is an optimization over variable-length lists x of parameter points in the 
continuous space U. For example, in model 1 with prior p(x), the MAP equations require 
minimizing 

~ L (Yt - 9(x)(t) ) 2 
- logp(x); 

2a tET 

for model 4 , MAP requires constrained minimization of 

JS(x)J logp - logp(x) 

subject to S(x) ~ Y. We shall use iterative algorithms similar to those in section 4. 

Algorithm 3 (ICM in configuration space) Apply Algorithms 1, 2, 3 or 4 with f(yJx) re
placed by the posterior probability p( xJy). Thus we iteratively 

• add object u to list x iff logf(y J x U {u}) p(x U { u}) - log f(y I x) p(x) > w; 

• delete existing object Xi iff log f (y J x \ {xi}) p(x \ { Xi}) - log f (y I x) p(x) > w; 

•if permitted, shift Xi Ex to u iff u E Q(x,xi) and logf(y I M(x,xi,u)) -logj(y J x) 
>w. 

Similar statements about convergence hold for this new objective function. An alternative 
description of Algorithm 3 is that the static threshold value used in the likelihood ratio al
gorithms is replaced by one that depends on the current reconstruction and on a smoothing 
parameter. Algorithm 3 is completely analogous to Besag's ICM algorithm [5]. 

5.3 Prior model 

The appropriate analogues of Markov random fields are nearest-neighbour Markov random sets 
[2], generalizations of the Markov point processes of Ripley and Kelly [20]. Their essential 
property, that replaces the local interaction property of Markov random fields [5, 9], is that 
p(x U { u} )/p(x) depends only on local information. 

For brevity we discuss only one prior model, the Strauss overlapping object process. 
This is a generalization of the Strauss point process [2, 7, 20, 26], with density 

(8) 

where n(x) denotes number of objects in x and r(x) the number of pairs of overlapping objects. 
If object space U is discrete, then p(x) is simply the probability of configuration x. In general 

p is a density with respect to the Poisson process on U of unit rate. 
Interaction between objects is controlled by 'Y· If I < 1, there is repulsion between objects; 

indeed, if 'Y = 0, no objects are permitted to overlap. If I = 1 we get a Poisson process of 
intensity (3. For / > 1 the process is undefined since the density is not integrable. 

The Strauss process has a spatial Markov property 

log p(xp~x~u}) = log/3 + r(x, u) log/ (9) 

where r(x,u) = r(x U {u}) - r(x) is the number of Xi Ex such that R(xi) n R(u) =f:. 0. This 
depends only on the added object u and on those existing objects Xi that overlap it. 



5 .4 Relation to Hough transform 

If the Strauss model (8) is used as the prior, its parameter I' controls the tradeoff between 
goodness-of-fit to the data and 'complexity' of the solution x. Assume f3 = 1. For I' = 1 the 
MAP estimator is just the maximum likelihood estimator; while when I' = 0 the MAP estimator 
maximizes the likelihood subject to the constraint that no two objects overlap. 

Lemma 5 For any blur-free independent noise model (Definition 1) with g(-\·) > 0, and the 
Strauss process prior (8) with f' > 0, the log posterior likelihood ratio depends only on data 
pixels inside the added object R( u) and on the number of existing objects overlapping u: 

log nxl_)('._u { ~} )J!(x u _ _{_~}) __ logf3 + "'""" h( e e ) ( ) 1 ~ Yt, o, 1 + r x, u Ogf'. 
J(y \ x) p(x) tER(u)\S(x) 

Taking x = 0, this shows that thresholding the Hough transform of y at a fixed level is 
equivalent to performing for each possible object u a likelihood ratio test for { u} against 0 with 
a Poisson prior model (i.e. taking no interaction between objects). 

To recognise non-overlapping objects, for instance characters in text, a Strauss prior with 
interaction parameter I' = 0 ('hard core model' ) could be used. Then the log likelihood ratio 
is logf3 + .Z:tER(u) h(yt, Bo, 81) and a new object will be added iff the Hough transform exceeds 
some predetermined level and the candidate object does not overlap any existing one. 
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Figure 5: MAP reconstructions using coordinatewise ascent with the local extrema of the Hough 
transform as initial state. Left: only births and deaths; right: births, deaths and translations. 

Algorithm 3 is illustrated in Figures 5 and 6 using coordinatewise optimization and steepest 
ascent respectively. The initial configuration was the set of local extrema of the Hough transform. 
A Strauss prior model with f3 = .0025 and / = .25 was used. The steepest ascent version 
introduces fewer spurious discs. 



0 
0 oO 

0 
0 oO 

0 0 
0 

Oo 00 0 Oo 00 
oo co oO co 

0 0 0 0 m 0 0 co 0 0 
0 0 

Figure 6: MAP reconstructions using steepest ascent with the empty list as initial state. Left: 
only births and deaths; right: births, deaths and translations. 

6 Performance 

Algorithms 1 - 3 all have a recursive structure in which the current reconstruction x determines 
the conditional Hough transform (5) which is then optimized to determine how x shall be 
updated. After x is updated the corresponding update of the conditional Hough transform is 
'local', restricted to R(u) where u is the object just added or deleted. 

We tested Algorithms 1 - 3 on the simulated data of Figure 2 and measured performance 
using the log likelihood L(xCk) ; y) itself and Pratt's figure of merit [l]. 

Figure 7 graphs the performance of coordinatewise optimization iteration-by-iteration, start
ing with the local extrema of the Hough transform. MAP is superior to the MLE, both subjec
tively and in terms of the figure of merit. Obviously the graph of log likelihood for MAP need 
not (should not) be monotone. 

Steepest ascent behaves differently; see Figure 8. Steepest ascent from an empty initial 
image requires at least as many scans as there are objects in the image. New objects are added 
one-by-one, gradually improving the reconstruction quality, until all objects are detected; then 
the reconstructions deteriorate. This method however can yield more accurate reconstructions 
than coordinatewise optimization algorithms, especially in the non-Bayesian case. 

The popular technique of finding local extrema of the Hough transform performed relatively 
badly, as can be seen from the graphs in Figure 7 where the y intercept is the performance of 
the Hough extrema operator. 

The add-delete-shift algorithms are clearly superior to add-delete algorithms (Figure 8) and 
seem less sensitive to the initial state. Another advantage is that the number of scans needed 
for convergence (in steepest ascent) decreases. 

Sensitivity to noise was studied by simulating model 1 for several values of 0"2 . Recon
structions were obtained and the average quality calculated for Algorithms 1-3. The results 
are depicted in Figure 9. The MAP solutions are less sensitive to the noise variance than ML 
estimates. Steepest ascent is less sensitive than coordinatewise optimization. 



7 Discussion 

The results so far are mainly of theoretical interest, in that they unite various ad hoe techniques 
for object recognition under a single statistical framework. Although it might appear that 
applications are restricted to video images, the theory applies equally to other imaging modalities 
such as tomography and stereo vision. In real applications the 'true model' (object shapes, noise 
parameters) will be unknown; parameter estimation must be carried out simultaneously with 
recognition of objects. Maximum pseudolikelihood procedures suggested by Besag [5] can be 
adapted for use here. 
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Figure 7: Reconstruction quality at successive steps of coordinatewise ascent starting with the 
local maxima of the Hough transform. 
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Figure 8: Reconstruction quality for the successive reconstructions obtained using steepest ascent 
starting with a diagonally translated copy of the true configuration. 
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Figure 9: Average reconstruction quality for 10 independent realizations at different noise levels. 
Left: coordinatewise ascent; right: steepest ascent. 


