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Abstract In this paper we review techniques for estimating the intensity function of
a spatial point process. We present a unified framework of mass preserving general
weight function estimators that encompasses both kernel and tessellation based
estimators. We give explicit expressions for the first two moments of these estimators
in terms of their product densities, and pay special attention to Poisson processes.
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1 Introduction

Throughout this paper, consider a simple point process � on R
d. We are interested in

its first order moment measure defined as follows. Let A ⊂ R
d be a bounded Borel

set and denote by N(A) the random variable that counts the number of points of
� that fall in A. If the expectation M(A) = EN(A) is finite for all bounded Borel
sets A, the set function M can be extended uniquely to a σ -finite measure on the
d-dimensional Borel sets, the f irst order moment measure � (see e.g. Daley and
Vere-Jones 2003/2008 or Van Lieshout 2000 for further details). Make the further
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assumption that � is absolutely continuous with respect to Lebesgue measure on R
d,

so that

�(A) =
∫

A
λ(x) dx

for some measurable function λ(x) ≥ 0.
Upon observation of a realisation of � in some bounded window, it is of interest to

estimate the intensity function. Sometimes the scientific context or the data suggest
a parametric form for the intensity function. In this case, likelihood based methods
may be applied. For an overview of the state of the art, the user is referred to the
recent handbook of spatial statistics (Gelfand et al. 2010) and the references therein.
More often, non-parametric estimation is called for. In this paper, we shall review
several estimators of λ given an observation of the point process � in some open,
convex and bounded Borel set A �= ∅ and interpret them as general weight function
estimators of the form

λ̂(x0) =
∑

x∈�∩A

g(x0; x, � ∩ A) (1)

for some measurable weight function g ≥ 0 that may depend on the point process as
well as on x0 ∈ A and is assumed to integrate to unity, that is,

∫
A

g(x0; x, � ∩ A) dx0 = 1.

For such estimators∫
A

λ̂(x0) dx0 =
∑

x∈�∩A

∫
A

g(x0; x, � ∩ A) dx0 = N(A),

so that λ̂(x0) is mass preserving.
The plan of this paper is as follows. First, in Section 2, we focus on kernel

estimators and modify the widely used Berman–Diggle estimator so as to make it
mass preserving. In Section 3 we study tessellation based estimators and show that
they can be seen as adaptive kernel estimators. Then we concentrate on Poisson
processes in Section 4 and present some examples. The paper closes with a brief
discussion of alternative Bayesian approaches.

2 Mass Preserving Kernel Estimation

In the absence of specific information on the intensity function λ, it is natural to
apply ideas from density estimation theory, as in the classic and widely used Berman–
Diggle estimator (Diggle 1985; Berman and Diggle 1989)

̂λBD(x0) = N(b(x0, h) ∩ A)

|b(x0, h) ∩ A| (2)

for x0 ∈ A. Here b(x0, h) denotes the open ball around x0 with radius h > 0 and the
notation | · | is used for Lebesgue mass (d-dimensional volume). The bandwidth h
controls the amount of smoothing. Note that as A is open, one never divides by zero.
In the sequel, we assume that the point locations are not subject to measurement
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error. However, Eq. 2 can be adapted to noisy observations by means of deconvolu-
tion (Cucala 2008).

Another approach is based on the distance r(x0, k) of a point x0 ∈ A to its
k-th nearest neighbour in � ∩ A, assuming there is one. Note that the closed ball
b(x0, r(x0, k)) around x0 contains exactly k points of � ∩ A. This observation leads
to the estimator

̂λNN(x0) = k
|b(x0, r(x0, k)) ∩ A| , (3)

cf. Silverman (1986). In order to increase robustness against outliers, one may prefer
to combine k-th nearest neighbour distances for several values of k (Granville 1998).

Although Eqs. 2 and 3 define natural estimators, they do not necessarily preserve
the total mass in A, nor are they based on a general weight function. However, note
that the Berman–Diggle estimator (2) may be written as

∑
x∈�∩A

1{||x − x0|| < h}
|b(x0, h) ∩ A| .

Thus, each point x of � that falls in A ∩ b(x0, h) is given a weight |b(x0, h) ∩ A|−1.
If x0 is close to the boundary of A, the weight is larger than the reciprocal Lebesgue
mass of a ball of radius h to compensate for the relative shortage of h-close points in
� ∩ A. This form of edge correction is ‘global’ as |b(x0, h) ∩ A| does not depend on
x. Using a ‘local’ edge correction instead suggests the estimator

λ̂K(x0) =
∑

x∈�∩A

1{||x − x0|| < h}
|b(x,h) ∩ A| (4)

for x0 ∈ A. Note that (4) is well-defined and coincides with (2) for x0 such that
b(x0, 2h) ⊆ A. In contrast to Eq. 2, however, Eq. 4 is based on a proper weight
function g(x0; x, � ∩ A) = 1{||x − x0|| < h}/|b(x,h) ∩ A|, cf. Eq. 1, which does not
depend on �. Consequently, the estimator defined by Eq. 4 is mass preserving.

In order to compute the moments of the estimator defined by Eq. 4, note that

E

[ ∑
x∈�∩A

1{||x − x0|| < h}
|b(x,h) ∩ A|

]
=

∫
b(x0,h)∩A

λ(x)

|b(x, h) ∩ A| dx

by the Campbell–Mecke formula (see Daley and Vere-Jones 2003/2008 or Stoyan
et al. 1995). For the second moment of λ̂K(x0), write

E

[
λ̂K(x0)

2
]

= E

⎡
⎣ �=∑

x,y∈�∩A

[
1{||x − x0|| < h}

|b(x, h) ∩ A|
1{||y − x0|| < h}

|b(y, h) ∩ A|
]⎤
⎦

+ E

[ ∑
x∈�∩A

1{||x − x0|| < h}
|b(x, h) ∩ A|2

]
,

where the first term on the right hand side of the above equation is over pairs of
different points, the second term over identical ones. The expectation of the second
term in the right hand side can be expressed as an integral as before. To proceed,
assume the second order factorial moment measure of � exists as a locally finite
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measure that is absolutely continuous with respect to the product Lebesgue measure
with Radon–Nikodym derivative ρ(2). Heuristically speaking, ρ(2)(x, y) is the joint
probability of � placing a point in each of two infinitesimal regions centred at x and
y, respectively. Then the expected value of the sum over pairs of different points in
the formula for the second moment can be expressed as

∫∫
(b(x0,h)∩A)2

ρ(2)(x, y)

|b(x, h) ∩ A| |b(y, h) ∩ A| dx dy.

In summary, the first two moments of (4) are given by

E

[
λ̂K(x0)

]
=

∫
b(x0,h)∩A

λ(x)

|b(x, h) ∩ A| dx;

E

[
λ̂K(x0)

2
]

=
∫∫

(b(x0,h)∩A)2

ρ(2)(x, y)

|b(x, h) ∩ A| |b(y, h) ∩ A| dx dy

+
∫

b(x0,h)∩A

λ(x)

|b(x, h) ∩ A|2 dx.

Obviously, the spherical kernel in Eq. 4 may be replaced by any other kernel that
integrates to unity.

Neither Eq. 2 nor 4 is universally better in terms of integrated mean squared error
than its competitor. To see this, first consider a homogeneous Poisson process � with
intensity λ > 0. Then, the integrated variance of the estimators defined both Eqs. 2
and 4 is equal to λ

∫
A |b(x, h) ∩ A|−1 dx. The bias of the Berman–Diggle estimator

is zero, whereas the estimator defined by Eq. 4 is biased unless
∫

b(x0,h)∩A |b(x, h) ∩
A|−1 dx = 1. So, in general, the estimator defined by Eq. 2 will be preferred.

Next, let � be a Poisson process on A with intensity function λ(x) = λ |b(x, h) ∩
A|, for some λ > 0. Then, the estimator defined by Eq. 4 is unbiased with integrated
variance λ |A|. Write

m(x0) =
∫

b(x0,h)∩A

|b(x, h) ∩ A|
|b(x0, h) ∩ A|2 dx.

Then, E

[
̂λBD(x0)

]
can be expressed as λ(x0) m(x0), so its integrated squared bias is

zero if and only if m(x0) = 1 for almost all x0 ∈ A. The integrated variance of the
estimator defined by Eq. 2 is λ

∫
A m(x0) dx0 which reduces to λ |A| if m(x0) = 1 for

almost all x0 ∈ A so that the estimators are indistinguishable. Otherwise, the mass
preserving kernel estimator should be preferred since

∫
A m(x0) dx0 ≥ |A|.

3 Tessellation Based Estimators

A potential disadvantage of kernel estimators such as Eq. 4 is that the same
bandwidth is used throughout the observation window A, risking over smoothing
in high intensity regions. Thus, estimators that adapt to � have been proposed based
on tessellations.

More specifically, suppose that the realisations ϕ = {x1, x2, . . . } of the point
process � are almost surely in general quadratic position, that is, no d + 2 points are
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located on the boundary of a sphere and no k + 1 points lie in a k − 1 dimensional
affine subspace for k = 2, . . . , d. Recall that the Voronoi cell of xi in ϕ is the set

C(xi | ϕ) = {y ∈ R
d : ||xi − y|| ≤ ||x j − y|| ∀x j ∈ ϕ}

that consists of all points in R
d that are at least as close to xi ∈ ϕ as to any other point

of ϕ. Note that the Voronoi cells are closed and convex, but not necessarily bounded.
Under our assumptions, intersections between k = 2, . . . , d + 1 different Voronoi

cells are either empty or of dimension d − k + 1. In particular,

d+1⋂
i=1

C(xi | ϕ) �= ∅ ⇔ b(x1, . . . , xd+1) ∩ ϕ = ∅,

where b(x1, . . . , xd+1) is the open ball spanned by the points x1, . . . , xd+1 on its
boundary, and in that case the intersection is a single point, referred to as a vertex of
the Voronoi tessellation.

Vertices can be used to define the second tessellation of interest to us in this
paper. Suppose that ϕ contains at least d + 1 points. Each Voronoi vertex arising
as the intersection of d + 1 cells C(xi | ϕ) defines a closed simplex, the convex hull of
{x1, . . . , xd+1}, which is called a Delaunay cell and denoted by D(x1, . . . , xd+1). For
d = 1, Delaunay cells are intervals, in the plane they form triangles. Alternatively,
join points xi �= x j ∈ ϕ that share a common Voronoi border C(xi | ϕ) ∩ C(x j | ϕ) �= ∅
into a Delaunay side. Such xi and x j are said to be Voronoi neighbours; the set of
neighbours of xi in ϕ is denoted by N (xi | ϕ). The union of Delaunay cells containing
xi ∈ ϕ is known as the contiguous Voronoi cell, denoted W(xi | ϕ), of xi in ϕ. For
further details, see e.g. Møller (1994) or Okabe et al. (2000).

Note that the tessellation cells described above can be seen as adaptive neighbour-
hoods of a point of �. In contrast to the balls of fixed radius h used in Section 2,
the sizes of the cells depend on the point process: In densely populated regions,
the cells will be small, whereas they tend to be larger in regions of low intensity.
This observation led Schaap and Van de Weygaert (2000), see also Schaap (2007)
to introduce their Delaunay tessellation field estimator (DTFE) as follows. For
x ∈ � ∩ A, set λ̂D(x) = (d + 1)/|W(x | � ∩ A)|, and for any x0 ∈ A in the interior
of some Delaunay cell, define

λ̂D(x0) = 1
d + 1

∑
x∈�∩D(x0|�∩A)

λ̂D(x) (5)

by averaging over the vertices of the Delaunay cell D(x0 | � ∩ A) that contains x0.
Note that the factor (d + 1)−1 in Eq. 5 cancels out against the reciprocal factor in
λ̂D(x). However, from the point of view of generalisation to interpolation schemes
other than averaging over the vertices of D(x0 | � ∩ A), the formulation in Eq. 5
is useful (Schaap and Van de Weygaert 2000, Schaap 2007). An earlier variation
on this theme was the Voronoi tessellation field estimator (Bernardeau and Van de
Weygaert 1996; Ord 1978) that estimates λ(x0) by the reciprocal area of the Voronoi
cell x0 belongs to (with obvious modifications on the borders of these cells). The
Voronoi approach, in contrast to that based on contiguous Voronoi cells, cannot be
used in combination with linear interpolation and still be mass preserving (Schaap
2007), so we will from now on focus on Eq. 5.
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In order to rephrase Eq. 5 as a general weight function estimator, write D(� ∩ A)

for the family of Delaunay cells of � ∩ A, use a superscript ◦ to denote topological
interior, and set

g(x0; x, � ∩ A) =
∑

D j∈D(�∩A) 1{x0 ∈ D◦
j; x ∈ Dj}

|W(x | � ∩ A)|
for x0 ∈ A \ �, x ∈ � ∩ A and g(x; x, � ∩ A) = (d + 1)/|W(x | � ∩ A)|. The func-
tion g is well-defined on the event that � ∩ A contains at least d + 1 points. For
configurations consisting of less than d + 1 points, we may set the function g equal to
1/|A|. Now,

λ̂D(x0) =
∑

x∈�∩A

g(x0; x, � ∩ A),

and, as
∫

A g(x0; x,� ∩ A) dx0 = 1, mass preservation follows.
Arguments similar to those used in Section 2 for the derivation of the moments

of the kernel estimator (4) can be used to calculate the moments of the estimator
defined by Eq. 5. The main difference is that in the case of Eq. 5, g(x0; x, �, A) does
depend on �, which necessitates the use of Palm distributions. Intuitively speaking,
the Palm distribution Px of � at x can be seen as the conditional distribution of
� given that a point falls at x, with similar interpretations for higher order Palm
distributions. More specifically, it can be shown that the first two moments of the
estimator defined by Eq. 5 are given by

E

[
λ̂D(x0)

]
=

∫
A

Ex
[
g(x0; x, � ∩ A)

]
λ(x) dx;

E

[
λ̂D(x0)

2
]

=
∫∫

A2
E

(2)
x,y

[
g(x0; x,� ∩ A) g(x0; y,� ∩ A)

]
ρ(2)(x, y) dx dy

+
∫

A
Ex

[
g2(x0; x, � ∩ A)

]
λ(x) dx, (6)

provided the second order factorial moment measure of � exists as a locally finite
measure that is absolutely continuous with respect to the product Lebesgue mea-
sure with Radon–Nikodym derivative ρ(2). Here Ex and E

(2)
x,y denote, respectively,

expectation with respect to the Palm distribution of � at x and the two-fold Palm
distribution at x, y (Hanisch 1982). Indeed, the right hand sides in Eq. 6 are valid
expressions for the first and second moment of any estimator of the form (1).

If � is a Poisson process with intensity function λ(·), Eq. 6 can be simplified
by observing that the Palm and two-fold Palm distributions coincide with the
distributions of � ∪ {x} and � ∪ {x, y}, respectively. Moreover, ρ(2)(x, y) = λ(x) λ(y).

4 Example: The Poisson Process

For stationary Poisson processes, the expressions for the moments of the estimators
discussed in Sections 2 and 3 can be simplified.
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Theorem 1 Let � be a stationary Poisson process on R
d with intensity λ > 0. Then

the Delaunay tessellation f ield estimator λ̂D(0) is unbiased with variance cd λ2, where
cd + 1 is given by

E1

⎡
⎣ 1

|W(0 | � ∪ {0})|

⎧⎨
⎩1 +

∑
y∈N (0|�∪{0})

|W(0 | � ∪ {0}) ∩ W(y | � ∪ {0})|
|W(y | � ∪ {0})|

⎫⎬
⎭

⎤
⎦ .

Here E1 denotes expectation with respect to a unit intensity Poisson process.

The proof is deferred to an Appendix. In words, the variance of the Delaunay
tessellation field estimator increases quadratically in λ with a dimension dependent
scalar multiplier cd. For example if d = 1, c1 = 2 (2 − π2/6) ≈ 0.7. Since the Berman–
Diggle estimator is unbiased with variance λ ω−1

d h−d, where ωd is the volume of the
unit ball in R

d, it is more efficient than (5) whenever EN(b(0, h)) > c−1
d . Hence on

the line, the estimator defined by Eq. 2 is the better choice if EN((−h, h)) = 2λh >

1.4. For comparison, the computation of the estimator defined by Eq. 5 in this case
requires four points.

In the remainder of this section, we contrast the behaviour of the DTFE estimator
on the line with that of a kernel estimator. We minimise edge effects by simulating �

beyond the region used for estimation.
In order to choose the bandwidth in such a way that a meaningful comparison

can be made, note that the computation of the right hand side of Eq. 5 involves
four points. Therefore we set the global bandwidth so that an interval of length 2h
contains on average four points.

First consider the highly fluctuating step function plotted in Fig. 1. Here the
Delaunay tessellation field estimator clearly outperforms the kernel estimator which
gives a misleading picture as it is large for low values of the intensity function and
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Fig. 1 Intensity function (solid line) with estimates of Eλ̂D(·) (coarsely dashed line) and Eλ̂K(·)
(finely dashed line)
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Fig. 2 Intensity function (solid line) with estimates of Eλ̂D(·) (coarsely dashed line) and Eλ̂K(·)
(finely dashed line)

small when the intensity function is large. The estimated integrated mean squared
error of λ̂D(·) is 22, the integrated mean absolute error 9.6. The kernel estimator
λ̂K(·) has estimated integrated mean squared error 18 and integrated mean absolute
error 16.

We also considered the mildly oscillating function λ(x) = b sin(c x) + d with b =
0.6, c = 0.5 and d = 0.8. The estimated expected values of the kernel and DTFE
estimator are given in Fig. 2. Both follow the intensity graph, the DTFE is somewhat
better able to cope with the peak, the kernel estimator with the valley. The kernel
estimator λ̂K(·) has estimated integrated mean squared error 3 and integrated mean
absolute error 1.3. The estimated integrated mean squared error of λ̂D(·) is 10, the
integrated mean absolute error 1.0. Moreover, for the latter estimator, the average
estimated standard deviation (0.7) is up to the first decimal equal to λ̄

√
c1 where λ̄

is the average intensity. For the wilder step function considered above, the average
estimated standard deviation (0.8) is larger than λ̄

√
c1 = 0.7.

In summary, the Delaunay tessellation field estimator is preferred when peaks in
the intensity surface are an important feature that would be flattened out by standard
kernel estimation. The price to pay is a higher standard deviation as well as a higher
computational cost. Therefore, in most cases, statisticians will prefer to use mass
preserving kernel estimators.

5 Discussion

In this paper, we reviewed techniques for estimating the intensity function of simple
point processes on Euclidean spaces. We presented mass preserving general weight
function estimators and showed that both kernel and tessellation based estimators
can be described as members of this class. We derived explicit expressions for the first
two moments of these estimators in terms of their product densities. We then turned
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to the special, computationally amenable, case of Poisson processes and presented
some examples.

It should be mentioned that Bayesian methods have been proposed as well.
For example, Heikkinen and Arjas’ method (1998) is based on approximating the
unknown intensity function by a function that is constant on the Voronoi cells of
random point patterns. Smoothing between nearby intensity values is achieved by
means of a Markov random field prior in the spirit of Bayesian image analysis
(Winkler 2003).

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix: Proof of Theorem 1

Let � be a stationary Poisson process on R
d with intensity λ > 0. We begin the proof

of Theorem 1 by showing the unbiasedness of λ̂D(0).
Let b(x, y1, . . . , yd) be the open ball spanned by the points x, y1, . . . , yd on its

topological boundary, and let D◦(x, y1, . . . , yd) be the open simplex that is the
interior of the convex hull of {x, y1, . . . , yd}. Recall that the points x, y1, . . . , yd define
a Voronoi vertex, or, equivalently, a Delaunay cell if and only if there are no points

in b(x, y1, . . . , yd). Thus, E

[
λ̂D(0)

]
= λ

∫
Rd E

[
g(0; x, � ∪ {x})] dx is equal to

λ

∫
E

[∑ �=
{y1,...,yd}⊂�

1{0 ∈ D◦(x, y1, . . . , yd); b(x, y1, . . . , yd) ∩ (� ∪ {x}) = ∅}
|W(x | � ∪ {x})|

]
dx

= λ

∫
E

[∑ �=
{z1,...,zd}⊂�−x

1{−x∈ D◦(0, z1, . . . , zd); b(0, z1, . . . , zd) ∩ �−x = ∅}
|W(0 | �−x ∪ {0})|

]
dx.

Here the notation
∑ �= is used to indicate that the sum is over sets of distinct points

and �−x denotes the (random) pattern obtained from � by translating all its points
by −x. By stationarity, the above expression is equal to

λ

∫
E

[∑ �=
{z1,...,zd}⊂�

1{−x ∈ D◦(0, z1, . . . , zd); b(0, z1, . . . , zd) ∩ � = ∅}
|W(0 | � ∪ {0})|

]
dx.

Hence, by Fubini’s theorem,

E

[
λ̂D(0)

]
= λ E

[∑�=
{z1,...,zd}⊂� |D◦(0, z1, . . . , zd)| 1{b(0, z1, . . . , zd) ∩ � = ∅}

|W(0 | � ∪ {0})|

]

= λ E

[ |W(0 | � ∪ {0})|
|W(0 | � ∪ {0})|

]
= λ,

which proves the claim of unbiasedness.
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Next, we consider the two terms in the expression for the second moment of λ̂D(0),
cf. Eq. 6. Our first aim is to show that

E(λ, d) := λ2
∫∫

E
[
g(0; x, � ∪ {x, y}) g(0; y,� ∪ {x, y})] dx dy

= λ2
∫

E1

[ |W(0 | � ∪ {0, x}) ∩ W(x | � ∪ {0, x})|
|W(0 | � ∪ {0, x})| |W(x | � ∪ {0, x})|

]
dx,

where E1 denotes expectation with respect to a unit intensity Poisson process.
Consequently, by the Nguyen–Zessin formula (see e.g. Van Lieshout 2000; Stoyan
et al. 1995),

E(λ, d) = λ2
E1

⎡
⎣ 1

|W(0 | � ∪ {0})|
∑

y∈N (0|�∪{0})

|W(0 | � ∪ {0}) ∩ W(y | � ∪ {0})|
|W(y | � ∪ {0})|

⎤
⎦ .

To do so, write �d−1 for sets of d − 1 distinct points in �. Then, as g(0; x,� ∪
{x, y}) g(0; y,� ∪ {x, y}) vanishes whenever x and y do not belong to the same
Delaunay cell containing 0 in its interior,

E(λ, d)

= λ2
∫∫

E

⎡
⎣ ∑

z∈�d−1

1{0 ∈ D◦(x, y, z); b(x, y, z) ∩ � = ∅}
|W(x | � ∪ {x, y})| |W(y | � ∪ {x, y})|

⎤
⎦ dx dy

= λ2
∫∫

E

⎡
⎣ ∑

z∈�−x;d−1

1{−x ∈ D◦(0, y − x, z); b(0, y − x, z) ∩ �−x = ∅}
|W(0 | �−x ∪ {0, y− x})| |W(y− x | �−x ∪ {0, y− x})|

⎤
⎦dx dy.

Because of stationarity, E(λ, d) can be written as

λ2
∫∫

E

⎡
⎣ ∑

z∈�d−1

1{−x ∈ D◦(0, y − x, z); b(0, y − x, z) ∩ � = ∅}
|W(0 | � ∪ {0, y − x})| |W(y − x | � ∪ {0, y − x})|

⎤
⎦ dx dy

= λ2
∫∫

E

[∑
z∈�d−1

1{−x ∈ D◦(0, y, z); b(0, y, z) ∩ � = ∅}
|W(0 | � ∪ {0, y})| |W(y | � ∪ {0, y})|

]
dx dy.

Scaling by λ1/d yields that λ−2 E(λ, d) is equal to

∫∫
E

[∑
z∈�d−1

1{−λ1/dx ∈ D◦(0, λ1/d y, λ1/dz); b(0, λ1/d y, λ1/dz) ∩ λ1/d� = ∅}
λ−1|W(0 | λ1/d� ∪ {0, λ1/d y})| λ−1|W(λ1/d y | λ1/d� ∪ {0, λ1/d y})|

]
dx dy.

Since λ1/d� is a unit intensity Poisson process, we obtain

λ−2 E(λ, d) =
∫∫

E1

[∑
z∈�d−1

1{−x ∈ D◦(0, y, z); b(0, y, z) ∩ � = ∅}
|W(0 | � ∪ {0, y})| |W(y | � ∪ {0, y})|

]
dx dy.

An appeal to Fubini’s theorem proves the claim.
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To conclude the proof of Theorem 1, we shall show that

E′(λ, d) := λ

∫
E

[
g2(0; x,� ∪ {x})] dx = λ2

E1

[
1

|W(0 | � ∪ {0})|
]

,

where, as before, E1 denotes expectation with respect to a unit intensity Poisson
process.

Arguing as in the proof of unbiasedness, E′(λ, d) can be written as

λ

∫
E

[(∑ �=
{z1,...,zd}⊂�

1{−x ∈ D◦(0, z1, . . . , zd); b(0, z1, . . . , zd) ∩ � = ∅}
|W(0 | � ∪ {0})|

)2
]

dx

= λ

∫
E

[∑ �=
{z1,...,zd}⊂�

1{−x ∈ D◦(0, z1, . . . , zd); b(0, z1, . . . , zd) ∩ � = ∅}
|W(0 | � ∪ {0})|2

]
dx

since −x can belong to at most a single Delaunay interior. Write �d for sets of d
distinct points in � and scale each point by λ1/d to obtain that E′(λ, d) is equal to

λ

∫
E

[∑
z∈�d

1{−λ1/dx ∈ D◦(0, λ1/dz); b(0, λ1/dz) ∩ λ1/d� = ∅}
λ−2|W(0 | λ1/d� ∪ {0})|2

]
dx,

which, since λ1/d� is a unit intensity Poisson process, reduces to

λ2
∫

E1

[∑
{z1,...,zd}⊂� 1{−x ∈ D◦(0, z1, . . . , zd); b(0, z1, . . . , zd) ∩ � = ∅}

|W(0 | � ∪ {0})|2
]

dx.

Noting that the sum of d-volumes of Delaunay cells involving 0 is exactly equal to
the volume of W(0 | � ∪ {0}) concludes the proof of the claim. Finally, an appeal to
Eq. 6 and collecting all terms computed above finishes the proof of Theorem 1.
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