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Abstract In an earlier study (Van Lieshout and Stein in Math Gesoci 44(3):309–326,
2012) we postulated the existence of two major earthquakes in the 2005 Kashmir dis-
aster instead of a single one, based upon the pattern of aftershocks. In this study,
we explore this hypothesis further by fitting several spatial point pattern models. In
particular, we discuss the Hawkes and the trigger process models for earthquake after-
shock sequences following the Kashmir catastrophe in 2005. The minimum contrast
method is used for estimation of the parameters. The study shows that the trigger
model fits better than the Hawkes model. The most likely number of main shocks
is rounded to 2 generating the almost 200 aftershocks, whereas the Hawkes model
would estimate a parent process of approximately 18 parents with on average about
10 descendants. We conclude that the spatial pattern of aftershocks can best be under-
stood as a mixture of two bivariate normal distributions centered around two major
shocks and estimate the parameters.

Keywords Cluster process · EM method · Minimum contrast method · Mixture
model · Nearest neighbor distance distribution function · Pair correlation function

1 Introduction

Due to the orogenic belt caused by the collision of the Indo-Australian continental
plate and the Eurasian plate, Pakistan is vulnerable to earthquakes. This vulnera-
bility varies across the country (Van Lieshout and Stein 2012); a hot spot occurs
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in Pakistan-administered Kashmir, a region at which the two convergence zones as-
sociated with the subduction meet. Here, on the 8th of October 2005, a catastrophic
earthquake occurred that resulted in at least 86,000 casualties. The Pakistan Meteoro-
logical Department estimated its magnitude at 5.2 on the Richter scale and the United
States Geological Survey (USGS) measured it at least 7.6 on the moment magnitude
scale. The epicenter was at approximately 19 km north-east of Muzaffarabad with
a hypocenter at 26 km below the surface. The earthquake area is located along the
great Himalayan main boundary thrust fault along the Himalayan arc (Avouac et al.
2006). Here, the Indian plate collides with the stable Eurasian plate. The fault, which
generally runs parallel to the Himalayan mountains along the south eastern to north
western direction, makes a rather peculiar bend in northern Kashmir, called the Haz-
ara Syntaxis. Seen from the south-east, it forms a semicircle, then turns and close
to the city of Islamabad continues in a western direction. The area of the semicir-
cle itself shows a chaotic pattern of cracks and faults due to former energy releases
and earthquakes. The main earthquake originally started close to the city of Muzza-
farabad, some 30 km to the south-east of the northern most top of the semicircle. This
major earthquake was a sudden release of seismic energy that progressed along the
fault into south-eastern and north-western directions, releasing energy at many places
that was registered as aftershocks: earthquakes that are generated shortly after a ma-
jor earthquake (Lay and Wallace 1995). These aftershocks were apparently related to
a fault plane that slipped during the event. The main shock introduces a major stress
adjustment to a complex system by its sudden slip and regions within the rupture
zone or adjacent to it may require adjustment to the new stress state, thus generat-
ing aftershocks. Aftershocks typically begin immediately after a main shock and are
distributed throughout the source volume. In general, the largest aftershock is more
than a magnitude unit smaller than the main shock (Båth’s law). They can still be
quite dangerous, though, due to the damage to structures caused by the main shock.
In our study area, for example, a large build-up of energy took place in the north of
the Hazara Syntaxis, leading to the complete destruction of the city of Balakot.

The cluster of aftershocks following the main event on October 8 was studied in
Anwar et al. (2012) who concluded that the seismicity decreased so sharply that the
number of earthquakes that occurred more than a month after the first shock was
negligible. This picture was confirmed by the analysis carried out in Van Lieshout
and Stein (2012) who found some rather surprising evidence that the spatial pat-
tern formed by the earthquake locations in the period of October 8 to November 7,
2005, could well be described by two clusters rather than the expected single cluster:
one corresponding to the main earthquake, the other to the next largest earthquake
with a magnitude equal to 6.4 occurring approximately 7 hours later. The goal of the
present paper is to investigate this hypothesis in further detail. To do so, we begin
by describing the data and the two models most commonly used in seismology for
the occurrence of aftershocks, namely the trigger and Hawkes processes, in Sect. 2.
These two models are based on different interpretations of spatial patterns and the
best fitting model would give insight into the process underlying the observed pat-
tern. The trigger process is fit to the Kashmir data in Sect. 3, the Hawkes process
in Sect. 4. For both models, a minimum contrast method based on the pair correla-
tion function is used. Results prove that the trigger process with two clusters gives
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Fig. 1 Locations of shallow
earthquakes of magnitude 4.5 or
higher recorded during the
period October 8 to November
7, 2005

the better fit. This model is validated in Sect. 5. Based on these results, we include
temporal information and the location of the main earthquakes to fit a mixture of two
bivariate normal distributions by the EM algorithm in Sect. 6. The paper closes with
discussion and conclusions.

2 Data and Models

The data consist of the locations and times of shallow earthquakes of magnitude
4.5 or higher at a depth of less than 70 km that happened between October 8 and
November 7, 2005, in the Kashmir area. See Anwar et al. (2012) or Van Lieshout and
Stein (2012) for further details of these data in a historical context. Figure 1 shows the
pattern of the 176 spatial locations in the rectangular window W = [72.65,74.25] ×
[33.70,35.25], the position of which in Pakistan is indicated in Fig. 2. The bubble
plot in Fig. 3 gives a visual impression of the spatial distribution of magnitudes.
Figure 4 plots the frequency of earthquake occurrences against time (in hours counted
from the 8th of October). The sharp decline in seismic activity is clearly visible;
indeed 76 % of shocks happen within the first 48 hours from the main shock. The
magnitude of earthquake occurrences against time (in hours counted from the 8th of
October) is shown in Fig. 5, with Fig. 6 zooming in on those occurrences happening
within the first 48 hours from the main shock. Both plots show two clear magnitude
extremes of 7.6 (the main shock) and 6.4. From here on, therefore, it is assumed
that Fig. 1 is an exhaustive map of the aftershocks with estimated spatial intensity
λ̂ = 176/|W | = 70.97 per square degree. The natural model for data of the form
described above is the Poisson cluster process X in the plane defined as the union
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Fig. 2 Location of the
observation window within
Pakistan

Fig. 3 Discs centered at the
locations of shallow earthquakes
of magnitude 4.5 or higher
recorded during the period
October 8 to November 7, 2005,
with radius proportional to the
excess magnitude

of independent, identically distributed clusters Zx , centered around the points x of a
stationary planar (marked) Poisson process Φ of parents, that is

X =
⋃

x∈Φ

(x + Zx). (1)
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Fig. 4 Frequency of
occurrences of shallow
earthquakes of magnitude 4.5 or
higher recorded during the
period October 8 to
November 7, 2005, plotted
against time (in hours)

Fig. 5 Magnitude of
occurrences of shallow
earthquakes of magnitude 4.5 or
higher recorded during the
period October 8 to
November 7, 2005, plotted
against time (in hours)

If the Zx consist of a random number of (marked) points that are scattered indepen-
dently with identical distribution around the unobserved parent x, X is a Neyman–
Scott process and, under the further assumption that the cluster size distribution is
Poisson, X is known as a trigger process in the seismological literature (Adamapou-
los 1976; Lomnitz and Hax 1966; Vere-Jones 1970; Vere-Jones and Davies 1966).
Trigger processes are convenient to work with. Indeed, closed form expressions exist
for many fundamental point process characteristics such as the intensity, the gener-
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Fig. 6 Magnitude of
occurrences of shallow
earthquakes of magnitude 4.5 or
higher recorded within 48 hours
from the main Kashmir
earthquake on October 8, 2005,
plotted against time (in hours)

ating functional, Palm distribution, J -function, and pair correlation function (Daley
and Vere-Jones 2003, 2008; Gelfand et al. 2010; Stoyan et al. 1995). This is not the
case for the other subclass of Poisson cluster processes that dominates the seismol-
ogy literature, namely that of Hawkes processes. In Hawkes processes, each parent
independently generates a (marked) Poisson process of offspring with an intensity
function that depends on the parent. The offspring in turn also generate offspring
independently of all other offspring, and so on. Thus, Zx is a branching process.
An example is Ogata’s Epidemic Type Aftershock-Sequences (ETAS) model, which
is now the standard first approximation for seismic catalogue data that come in the
form of a list of earthquake locations marked by time. An excellent review including
historical references is Ogata (1998). The temporal component is important in that
a conditional intensity can be written down. Consequently, a likelihood function is
available in closed form (Ogata 1998). In the spatial case, on the other hand, only a
series representation of the pair correlation function is available (Møller and Torrisi
2007) and it seems to be hard to generalize this expression to marked point processes
except for predictable marks (Brémaud et al. 2005).

3 Fitting a Trigger Process

The first model we consider is a trigger process X in the plane. The parent process
Φ is assumed to be a stationary Poisson process of intensity κ > 0, which in view
of the small region under consideration, is a viable assumption to make. The number
of offspring generated by each parent is taken to be Poisson with parameter ν > 0.
Conditional on the number of offspring, they are independently and identically dis-
tributed according to a bivariate normal distribution centered at the parent location
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with covariance matrix σ 2I , where I is the 2 × 2 identity matrix. This assumption
is a simplification as the number and spread of aftershocks may well depend upon
the magnitude of the parent shock. We shall get back to this issue in Sect. 6. As an
aside, note that the trigger model is known in stochastic geometry as the modified
Thomas process. The trigger process X is stationary with intensity λ = κν and has
second-order product density (Stoyan et al. 1995)

ρ(x, y) = λ2 + κν2

4πσ 2
exp

[−‖x − y‖2/
(
4σ 2)]. (2)

Heuristically, ρ(x, y) dx dy can be interpreted as the probability of points falling in
each of two infinitesimal areas dx and dy. Note that ρ(x, y) is a function of the
distance r = ‖x − y‖ alone. Upon standardization, one obtains the pair correlation
function

g(r) = ρ(x, y)

λ2
= 1 + 1

4πκσ 2
exp

[−r2/
(
4σ 2)]. (3)

Since g(r) = g(r;κ,σ 2) does not depend on ν, we fix the theoretical intensity
λ = κν at its empirical level λ̂ = 176/|W |. The minimum contrast method can then
be used to estimate κ and σ 2. More precisely, this method minimizes the integrated
Lp distance between the qth power of the estimated pair correlation function ĝq and
its model counterpart

∫ r2

r1

∣∣ĝ(r)q − g
(
r;κ,σ 2)q ∣∣pdr, (4)

with respect to the parameters κ and σ 2 where the parameters p and q and the integra-
tion range from r1 to r2 are free to choose. In our study, we follow the rule of thumb
in Illian et al. 2008 and set q = 1/4, p = 2. We set [r1, r2] to [0.06,0.35]. To estimate
the pair correlation function, we consider the pattern of earthquakes, that is, the ob-
servation {x1, . . . , xn} of X, that occur within the window W . With ∂b(xi,‖xi − xj‖)
denoting the circle centered at xi of radius ‖xi − xj‖, the estimator is

ĝRipley(r) = 1

(λ̂)2

1

2πr

n∑

i=1

∑

j �=i∈{1,...,n}

k(r − ‖xi − xj‖)
αij |{z : ∂b(z,‖xi − xj‖) ∩ W �= ∅)}| . (5)

Here, k is a kernel function, for example, the Epanechnikov kernel, αij is Ripley’s
(1976) edge correction, that is, the proportion of the circle centered at xi of radius
‖xi − xj‖ that lies in W , and | · | denotes area (see also Ohser 1983). The estima-
tor is appropriate for isotropic point processes X. Alternatives for anisotropic point
processes can be found in Gelfand et al. (2010). Upon plugging in the estimated
values κ̂ and σ̂ 2 into g(r;κ,σ 2), one obtains the fitted pair correlation function
gfit(r) = g(r; κ̂, σ̂ 2).

For the data in Fig. 1, the minimum contrast estimators are κ̂ = 0.88, σ̂ = 0.08
and ν̂ = 81. Essentially, 2.17 parents corresponding to slightly over two major earth-
quakes are expected in the region with on average 81 offspring as aftershocks each
scattered around their parent with standard deviation 0.08 for the displacements in
latitude and longitude. The results should be compared to those of Van Lieshout and
Stein (2012). These authors, working with a long time series of earthquake patterns,
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Fig. 7 Fitted (solid line) and
estimated (dashed line) pair
correlation functions against
distance for the trigger process

applied Fisher’s linear discriminant function to assign earthquake locations in Kash-
mir in 2005 to two clusters and pooled the variance estimates with those of a diffuse
swarm of aftershocks in another earthquake year. The longitude and latitude standard
deviations ranged from 0.1 to 0.3, leading to a larger pooled estimate (0.19) for the
displacements’ standard deviation. The fitted and estimated pair correlation functions
are shown in Fig. 7. They are fairly close and differ markedly from gpois(r) ≡ 1, the
pair correlation function of a Poisson process without interpoint interaction.

4 Fitting a Hawkes Process

The second model that we consider is a planar Hawkes process. Again, we use the
generic notation X for the point process that consists of all offspring and assume
that the parent process Φ is a stationary Poisson process of intensity κ > 0. In con-
trast to the trigger processes of Sect. 3, the points of Φ form a subset of X, called
generation zero. As for the Thomas process, each point of Φ generates a Poisson
number of offspring with parameter ν > 0. Conditional on the number of offspring,
they are independently and identically distributed according to a bivariate normal dis-
tribution centered at the parent location with covariance matrix σ 2I . The combined
offspring of all parents in generation zero forms generation one. This construction is
iterated: conditional on generation j , each of its points acts as parent and produces
a Poisson number of offspring with parameter ν > 0; conditional on the number of
offspring, they are independently and identically distributed according to a bivariate
normal distribution centered at the parent location with covariance matrix σ 2I and
the combined offspring of all parents in generation j forms generation j + 1. The
iteration terminates at the first empty generation. In order to ensure this is the case,
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Fig. 8 Fitted (solid line) and
estimated (dashed line) pair
correlation functions against
distance for the Hawkes process

assume ν > 1. The point process X is stationary with intensity λ = κ/(1 − ν) and
second-order product density (Møller and Torrisi 2007)

ρ(x, y) = κ2

(1 − ν)2
+ κ

1 − ν

∞∑

n=1

(n + 1)νn 1

2πnσ 2
exp

[−‖x − y‖2/
(
2nσ 2)]. (6)

Note that ρ(x, y) is a function of the distance r = ‖x − y‖ alone. Upon standardiza-
tion, the pair correlation function is given by

g(r) = 1 + 1 − ν

κ

∞∑

n=1

(n + 1)νn 1

2πnσ 2
exp

[−r2/
(
2nσ 2)]. (7)

To estimate the parameters, we equate the intensity κ/(1 − ν) with its empirical
counterpart λ̂ = 176/|W | and use the minimum contrast method with q = 1/4, p = 2
and [r1, r2] = [0.06,0.35] as before. The parameter estimates are κ̂ = 7.44, σ̂ = 0.03,
and ν̂ = 0.9. Essentially, 18.45 parents are expected as major shocks in the region
with on average 1/(1 − ν) = 9.54 descendants as aftershocks each. Note that due to
the branching process nature of a Hawkes process, the estimate of the scatter standard
deviation is smaller than that of the trigger process of Sect. 3, and that the number
of parents is larger. The fitted and estimated pair correlation functions are shown in
Fig. 8. The estimated line is apparently too high in the middle range and too low
beyond, indicating that the branching structure of the Hawkes clusters may not be
appropriate.
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Fig. 9 Empirical (solid line)
nearest neighbor distance
distribution function with upper
(Ghi) and lower (Glo) envelopes
over 100 simulations of the
fitted trigger process against
distance

5 Model Validation

From a visual comparison of Fig. 7 to Fig. 8, it is clear that a trigger process yields
the better fit. To validate this model, we consider the nearest neighbor distance distri-
bution function (Stoyan et al. 1995)

G(r) = P
(
d
(
x,X \ {x}) ≤ r|x ∈ X

)
. (8)

Since X is stationary, the definition does not depend on the choice of x. Figure 9
plots the empirical nearest neighbor distance distribution function Gobs(r) (together
with the upper and lower envelopes (Ghi(r) and Glo(r), respectively) based on 100
independent samples from the fitted model. The point-wise average of the sample
estimates Ĝi(r), i = 1, . . . ,100, is the dashed line Ḡ(r). It can be seen that Gobs(r)

lies almost entirely within the grey region bounded by the upper and lower envelopes,
indicating a good fit (Besag and Diggle 1977; Diggle 1979). The lower envelope,
however, takes the constant value zero due to the fact that the void probability (Stoyan
et al. 1995)

v(W) = exp

[
−κ

∫ [
1 − e−νP (W−x ;σ 2)

]
dx

]
(9)

of finding no points in the rectangular region W is nonnegligible. Here, P(·;σ 2) de-
notes the bivariate normal distribution measure centered at the origin with covariance
matrix σ 2I , and W−x is a translation over the vector −x of the observation win-
dow W . Tighter envelopes can be obtained by using the information that an earth-
quake did happen on October 8th with the epicenter at e = (73.59,34.54) and using
sampling conditional on having a parent at the epicenter while adapting κ in such a
way that the expected number of parents in W remains constant, that is, κ̃ = 0.47.
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Fig. 10 Empirical (solid line)
nearest neighbor distance
distribution function with upper
(Ghi) and lower (Glo) envelopes
over 100 simulations of the
superposition of a cluster with
normally distributed
displacements centered at the
epicenter of the main Kashmir
shock and the fitted trigger
process plotted against distance

The result is shown in Fig. 10 though it should be stressed that the plot is not a model
validation in the strict sense as conditioning affects the pair correlation function. In-
deed, the conditional model is neither stationary nor isotropic. The estimates of κ

and σ 2 depend on our initial choices of the parameters r1, r2, p, and q . To check the
sensitivity of our choices, we reestimated them for a range of settings. These proved
to have hardly any effect on the outcome.

6 Gaussian Mixture Model

The conclusion drawn from the previous sections is that a trigger process with inde-
pendent normally distributed offspring is a plausible model. We also found evidence
for two clusters. This observation is supported by the histogram of magnitudes re-
stricted to the range [4.5,∞) of shallow earthquakes in the month following the
Kashmir disaster shown in Fig. 11. Indeed, two outliers are clearly visible and are
separated by a wide gap from the bulk of the observations. The largest magnitude
is associated with the main shock, the second largest with a severe aftershock some
7 hours after the main shock. In this section, we refine the trigger model by relax-
ing the assumption that all clusters follow the same normal distribution. Specifically,
we fit a mixture of two bivariate normal distributions without any restrictions on the
covariance matrices. The first cluster is centered around the main shock located at
μ1 = e = (73.59,34.54). For the second cluster, we take as center point the location
μ2 = (73.10,34.73) of the second largest shock. Naturally, all earthquakes happen-
ing before the second shock are allocated to the first cluster. We shall denote their
locations by y = (y1, . . . , ym) where m = 69. For the other earthquake locations to
be allocated, denoted by x = (x1, . . . , xn) with n = 105, we introduce latent vari-
ables (Z1, . . . ,Zn) that indicate the cluster. Thus, if the random variable Zi takes the
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Fig. 11 Histogram of
magnitudes

value 1, then xi is allocated to the cluster at μ1, whereas if Zi = 2 we allocate xi

to the cluster with center μ2. Let f (· | μ,Σ) denote the bivariate normal probability
density function with mean vector μ and covariance matrix Σ . Then the likelihood
function L(θ;x,y, z) is equal to

m∏

i=1

f (yi | μ1,Σ1)

n∏

i=1

[
p · 1{zi=1} · f (xi | μ1,Σ1)

+ (1 − p) · 1{zi=2} · f (xi | μ2,Σ2)
]
. (10)

The parameter vector θ = (p,Σ1,Σ2) consists of the unknown allocation prob-
ability p ∈ (0,1) and the cluster covariance matrices Σ1 and Σ2. Essentially,
the Zi are assumed to be independent and identically Bernoulli distributed with
P(Zi = 1) = p and conditionally on Zi = j , j ∈ {1,2}, Xi follows a bivariate
normal distribution with mean vector μj and covariance matrix Σj . To estimate
the parameters, we use the EM algorithm (Dempster et al. 1977; Sundberg 1971;
Wu 1983), an iterative procedure to approximate the maximum likelihood estima-
tor θ̂ . The essence of this method is to compute the expected log likelihood under
the conditional expectation of the latent variables given the observed ones and the
current value of the parameters, which is then optimized over the parameter vector.
For our model, the new value of the allocation probability is the average over the
xi of the probability of xi belonging to the first cluster under the current parameter
values; the new value of the covariance matrices is the classic estimator weighted by
the probabilities of the latent variables taking the appropriate value, again under the
current parameter values. More precisely, set t = 0, initialize pt , Σ1,t , and Σ2,t , and
compute
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pt+1 = 1

n

n∑

i=1

ptf (xi | μ1,Σ1,t )

ptf (xi | μ1,Σ1,t ) + (1 − pt )f (xi | μ2,Σ2,t )
;

Σ1,t+1 =
∑m

i=1(yi−μ1)(yi−μ1)
T +∑n

i=1 P(Zi=1|Xi=xi ;θt )(xi−μ1)(xi−μ1)
T

m+∑n
i=1 P(Zi=1|Xi=xi ;θt )

; (11)

Σ2,t+1 =
∑n

i=1 P(Zi = 2 | Xi = xi; θt )(xi − μ2)(xi − μ2)
T

∑n
i=1 P(Zi = 2 | Xi = xi; θt )

,

where

P(Zi = 1 | Xi = xi; θt ) = ptf (xi | μ1,Σ1,t )

ptf (xi | μ1,Σ1,t ) + (1 − pt)f (xi | μ2,Σ2,t )
(12)

with P(Zi = 2 | Xi = xi; θt ) = 1 − P(Zi = 1 | Xi = xi; θt ). The above steps are re-
peated for t = 1,2, . . . until the parameter estimates stabilize. Note that the first m

earthquakes only affect the Σ1,t s.
For the Kashmir data of Sect. 2, we obtained p̂ = 0.28 and

Σ̂1 =
[

0.110 −0.039

−0.039 0.056

]
; Σ̂2 =

[
0.0093 −0.0037

−0.0037 0.0077

]
(13)

after 1,000 steps. We took as initial allocation probability p0 = 1/2 and covariance
matrices Σ1,0 = Σ2,0 = σ̂ 2I2 where I2 is the identity matrix and the multiplication
constant σ̂ 2 = 0.0068 is the estimated variance in the trigger process of Sect. 3. Note
that in both clusters, longitude and latitude are negatively correlated, reflecting the
tilt of the convergence zone in northern Pakistan. These are caused by strike lines
that are parallel to the main Himalayan thrust strikes. As expected, the cluster of
aftershocks of the first shock is more widely scattered than the tighter pattern sur-
rounding the second most severe earthquake. The variation in longitude is larger than
that in latitude in both cases, though more pronounced in the main shock’s cluster.
The clusters can be found by allocating an earthquake location xi to the first cluster
if f (xi | μ1, Σ̂1)/f (xi | μ2, Σ̂2) > (1 − p̂)/p̂, that is, if the likelihood of the first
cluster exceeds that of the second. The result is shown in Fig. 12. It differs from that
obtained from Fisher’s linear discriminant function: the inclusion of temporal infor-
mation and the relaxation of the equal variance assumption leads to more points in
the north west being allocated to the main cluster. This phenomenon is the main ex-
planation for the larger variance in longitude compared to latitude. The results also
improve upon those of Kayabol (2011) that did not include the temporal dimension.

7 Discussion and Conclusions

In this paper, the trigger and Hawkes process models were fit to data on aftershocks
following the Kashmir earthquake on 8 October, 2005. Although both Poisson cluster
processes, these models differ in their offspring generating mechanism. In a trigger
process, each unobserved parent gives rise to one generation of offspring, whereas
in the Hawkes process multiple generations of offspring are formed according to a
branching process.
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Fig. 12 Locations of
earthquakes recorded before the
second largest shock (circles),
those of later earthquakes
allocated to the main cluster
(triangles), and the cluster of the
second largest shock (crosses)

The study led to several conclusions:

(i) The three dimensional distribution of seismic waveforms in the underground
exhibits a complicated 3-dimensional pattern. Registration of the depth of an
earthquake is relatively imprecise. In the dataset at our disposal, often the same
depth was given. To analyze the data in three dimensions, seismological models
might be of help. Such models are being developed to properly understand the
mechanism with which the energy waves proceed toward the earth’s surface and
generate earthquakes. Even if understood, such a pattern is difficult to validate
and in the current study area most likely extremely complicated. In order to
avoid such complications, we focused on a 2-dimensional point pattern analysis
and restricted ourselves to shallow earthquakes.

(ii) The trigger model fits the pattern of aftershocks better than the Hawkes process.
Thus, the observed pattern can best be understood as being generated by approx-
imately 2 parents, followed by 176 aftershocks in total. This picture is supported
visually by the spatial pattern of the aftershocks. The Hawkes process model
identifies a pattern of 18.45 main shocks with on average 9.54 aftershocks. The
trigger model can be further improved upon by including temporal information
and by relaxing the constraints on the covariance matrix.

(iii) An unambiguous definition of aftershock does not exist. The existence of the
second main shock, in particular, could as well be (and in fact most likely is) an
aftershock of the first earthquake. However, this second major shock almost in-
dependently generates a clearly recognizable pattern of aftershocks. Increasing
the number of main shocks to higher values such as 18.45 is possible, and the
definition of aftershocks does not prohibit this. This combination of the num-
bers of main shocks and aftershocks though is less likely and intuitively less
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appealing. Note that in order to describe the pattern in terms of a Hawkes pro-
cess with an expected number of two main shocks, one would need 0.99 for the
mean number of offspring which is dangerously close to the critical value of 1
at which the process explodes.

(iv) The trigger process is based upon an entirely different assumption than the
Hawkes process and, therefore, leads to a different interpretation of the mech-
anism generating earthquakes. This study shows that for the Kashmir data af-
tershocks are most likely generated by a Poisson cluster process with clusters
of aftershocks scattered independently around the points of a stationary planar
(marked) Poisson process of main shocks. The Hawkes model, that is, a branch-
ing process in which each main shock independently generates a (marked) Pois-
son process of aftershocks with an intensity function that depends on the parent,
each of which again generates aftershocks independently of all others and so
on, is less likely. This is remarkable, as the ETAS model (Ogata 1998) that is
commonly used for aftershocks is a Hawkes process.

(v) The study as presented can be characterized as a spatial statistical analysis of
earthquake and aftershock data. The general impression that there was only one
main shock in 2005 was already disputed (Van Lieshout and Stein 2012), and is
further criticized by the current study. It all depends upon the definition of a main
shock in relation to an aftershock. In principle, such a definition is somewhat
arbitrary and it can be questioned whether an analysis with 2 main shocks is
scientifically more sound than an analysis with one main shock, or with say 18
main shocks. The present analysis, however, shows that the spatial statistical
modeling with point patterns and subsequent spatial distributional modeling of
shocks and aftershocks conforms to the process of aftershock generation, and in
that sense may help to separate the term of shock from the term aftershock.
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