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1 Introduction
A key characteristic of Mixed-Integer (MI) problems is the presence of both continuous and discrete
problem variables. In this paper, we study the design of an algorithm that integrates the strengths of
LTGA [2] [3] and iAMaLGaM [1]: state-of-the-art model-building Evolutionary Algorithms (EAs) de-
signed for discrete and continuous search spaces, respectively. We wish to study if making use of the
model building and learning abilities of both these algorithms can be applied to MI problems while re-
taining excellent scale-up behavior. The model-building nature of these algorithms allows us to consider
black-box problems where no prior information about a problem structure is known. How difficult is it
to achieve a proper evaluation balance and adequate scalability as the problem size increases? Is it even
possible to solve dependent problems where continuous variables interact with the discrete ones, while
using integrated but independently learning models?

2 Problems
We use well-established problems (see full paper for definitions) and adapt them into the MI setting.
We consider different combinations of discrete and continuous problems where the contributions of the
discrete and continuous parts are kept independent through addition. Minimization is assumed.

In the full paper, we introduce five functions, F1 - F5 which represent different types of variable
dependencies. Variables in F1 are fully independent. Only continuous variables are dependent in F2.
Only discrete variables are dependent in F3. In F4 both sub-spaces are dependent. The F5 benchmark
includes cross-domain dependencies between the continuous and discrete variables. It is an additively
decomposable specific combination of the deceptive trap function with the rotated ellipsoid (see full
paper for details).

3 Results
For the analysis of F1−F4, we consider different problem lengths l. For each problem size, we consider
different proportions of variables used with 5, 0.25l, 0.5l, 0.75l and l−5 continuous variables (remaining
variables are discrete). Success criterion is solving a problem 29/30 times with the precision of 10−10.

Heat maps in Figure 1 show that more evaluations are required for the same problem sizes as the
composition of the problem shifts towards more continuous variables. Moreover, benchmarks which
contain dependencies within the continuous sub-space, F2 and F4, require larger number of evaluations
than F1 or F3. Population sizes are also affected by the problem composition. In F3 and F4 we ob-
serve much larger population size requirements, as the landscape of these functions includes discrete

1The full paper has been accepted for publication in the 13th International Conference on Parallel Problem Solving from
Nature (PPSN’14).”



Figure 1: Heat Maps representing the population sizes (top row) and evaluations (bottom row) needed
for different variable compositions. Horizontal axis represents the problem length, the vertical axis is
the fraction of continuous variables (lc/(lc + ld)) in the problem

variable dependencies. This shows that in addition to problem length, the composition of the problem
and variable dependencies are a big factor for efficiency in terms of evaluations and population sizes.
Scalability analysis in the full paper verified that the results exhibit polynomial scalability on the tested
MI problems. Results on F5 in the full paper show that the hybrid algorithm we propose is in fact
capable of solving this dependent benchmark, however not in all cases. When the fitness contribution
of the discrete variables is scaled down to very small values, it causes their initial fitness contributions
to be very small, resulting in the algorithm prematurely converging on sub-optimal solutions. As this
contribution is scaled up, the problem becomes simpler and requires smaller population sizes and less
evaluations in order to be solved.

4 Conclusions
Mixed-Integer problems introduce many optimization challenges which do not arise in purely real or
discrete optimization problems. Obtaining a proper balance in exploration of model information for
different types of variables, varying variable ratios and additional overhead or fitness contribution scal-
ing are some of the important issues which should be taken into account when solving MI problems.
Our algorithm achieved polynomial scale-up behavior on the tested benchmarks. We showed that a
well-balanced algorithm can solve some cases of even very dependent mixed-integer problems, despite
having independent model learning methods for the discrete and continuous sub-spaces. The results
provide a good foundation and motivation for further work in mixed-integer landscapes with model
building EAs.
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