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In this note a discussion is given of two papers on dependent central limit 

theory which were presented at the 44th meeting of the I.S.I. in Madrid, 

1983. The papers are by I.S. Helland, "Applications of Central Limit Theorems 

for Martingales with Continuous Time", and by T.G. Kurtz, uGaussian Approx­

imations for Markov Chains and Counting Processes". The note addresses it­

self to the main differences between the approaches described by Helland 

and Kurtz, called the martingale approach and the Poisson process approach 

respectively, and discusses their application to statistical problems 

in survival analysis, life-testing, demography, epidemiology etc. 
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In this discussion of the papers of Helland (1983) and Kurtz (1983) 

my aim is to bring out the differences and similarities, advantages and 

disadvantages, of the two approaches described by these authors to deriving 

dependent central limit theorems. The discussion will be limited to their 

application in proving central limit theorems for statistical quantities 

(estimators, test-statistics) in counting process models such as those 

used in demography, epidemiology, actuarial science, survival analysis and 

life testing. Models of the occurrence in time of the events of interest 

in these fields are often "dynamic" in the sense that they describe the 

instantaneous development of the whole system conditioned on its past 

development. There is emphasis on hazard rates and intensities; there are 

often various forms of censoring present (loss to observation as time 

develops); and models are often non- or semi-parametric. All these factors 

make a counting process approach very natural. 

Considering a univariate counting process N(t) the "martingale approach" 

exploits the fact that M(t) = N(t)-fg A(s)d,s is a matingale, where A(t) 

times h is approximately E(N(t+h) - N(t)I past up to time t). We can often 

model A (t) as a simple function of parameters and observables. The "Poisson 

approach" on the other hand uses the representation N(t) = Y(fg A(s)d,s) 

where Y is a standard Poisson process. This representation carries exactly 

the same intuitive meaning as the martingale representation. However, to 

use it we need to add the assumption that N is "self-exciting"; i.e. 

A(s) A (s,N ) for some function A, where N is the whole path of N up to 
s- s-

time s. This representation now defines N as an implicit function of Y. 

What are the advantages of the martingale approach? When it is appli­

cable it is often extraordinarily easy to apply. Also one need not explicit­

ly model the whole system in order to apply it, i.e. no "self-exciting" 

assumption is needed. Another advantage is that the method is applicable 

so often in statistical applications, but this phenomenon calls for 
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explanation. Two facts are relevant here. 

Firstly, suppose Z is some test-statistic which we hope will be asymp­

totically normally distributed with zero mean under the null hypothesis. 

We will often construct Z so that it is unbiased in the sense that (under 

the hypothesis)E(Z) = O. We will also be able to compute the test-statistic 

at a stopping time T, call the result Z(T), and hopefully this will be un­

biased in the same sense. But if EZ(T) = 0 for all T, Z(t) is automatically 

a martingale (A similar argument would apply to some estimators). 

A second source of martingales is the use of likelihood or partial 

likelihood based methods. Exploiting (a conditional version of) the fact 

that E(a/ae log f (X;B)) = 0 when X has smooth density f(x,8), one can show 

that the derivative with respect to some parameter of the log likelihood 

(or log partial likelihood) based on the data available at time t (and at 

the true parameter value) is a martingale in t. 

Advantages of the Poisson approach are that, since we consider the ob­

jects of interest as a hopefully nice function of a single Poisson process, 

much extra information can be derived. We could for instance derive rates 

of convergence; or, by considering the same statistic under a range of models 

(parameter values) as different functions of the same Poisson process, we 

could derive results on uniform convergence. Disadvantages are that the 

functions considered soon become very complicated. A disadvantage of the 

martingale approach is that it often breaks down when different time scales 

are involved simultaneously, whereas the Poisson random measure extension 

of the Poisson approach has much promise here. 

Some of these points will hopefully be illustrated by considering a 

simple example. Consider a finite state space, time inhomogeneous Markov 

process with intensities A· .(t). Such models are extremely important in the 
~J 

applied fields mentioned above. So we have a number of states i, and a num-

ber of individuals or particles moving independently from one state to 

another, such that h times A· .(t) is approximately the probability that a 
~J 

particle in state i at time t moves to j in the small time interval (t,t+h). 

The system is started at time 0 with n particles distributed about the sys­

tem, n. in state i. 
~ a 



Let N • • (t) (later 
1..J 

\ .. (t) 
1..J 

n 
denoted N •• (t)) denote the 

1..J 

3 

number of transitions 

made from i to j at or before time t. Then N •• (t) 
1,J 

has intensity Y.(t)\ .. (t) 
1, . l.J 

where Y · (t) = n · + N • (t-) -N • (t-) is the number of individuals in state i 
1, 1, .1, 1,~ 

just before time t; a dot denotes sunnnation. Let M •• denote N minus its inte­
-&J 

grated intensity. Important statistical problems concern e.g. estimation of 

J
0
t \ .. (s)ds fort in some interval; or testing equality of the \ . . 's cor-
~ ~ 

responding to several different possible transitions. In the estimation 

problem, the natural estimator is f
0
. (Y.(s))- 1dN .. (s). Since in fact 

t -I t -& -&J 
f

0
(Y.(s)) d,N •• (s) - fo I{Y.(s) > O} \ . . (s)ds turns out to be a martingale, 

-& 1..J I /2 -& -&J 
weak convergence of n times estimator minus estimand to a Gaussian 

martingale is proved extremely simply with a martingale CLT one it has been 

shown that Y.(s)/n ~ y.(s) > 0 for each s plus some kind of uniformity 
1, 1, 

condition (see Helland's paper). Note that we need only to consider a 

perhaps very small part of the model here: 

The rest of the model doesn't. need to be explicitly considered at all; it 

doesn't need to have the Markov structure just assumed. There may be entry 

into v and censoring from i according to almost any mechanism. We just need 

the martf'ngale property of M •• and the predictability of Y •• 
~ 1, 
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For some applications we may be interested in very complicated functions 

of {N .. (t)} which are not closely related to any particular martingales and 
1.-J . 

the most feasible approach is to prove weak convergence of {N .. (t)} (suitably 
1.-J 

centred and normalized) and then use a a-method or van Mises expansion type 

approach to approximate the object of interest with a linear function of 

these processes. For instance a recent paper by Borgan and Ramlau-Hansen 

(1983) on so-called demographic incidence rates uses such an approach. The 

Poisson approach comes into its own now. Suppose for simplicity that (for 

all n) all particles start in the same state at time zero. We first consider 

the model for n = 1 and then rescale. Let N be the vector of N .. 's (with 
1.-J 

n~l). N has (vector) intensity X(s;N ). Rescaling means that we define Jll 
s-

as a process with intensity n(s;N
8
_/n). We should check that this does yield 

the process we're interested in (which is not always the case!). Here we 

have 

A (s ;N ) = A (s) N (s-) + B (s) 
s-

where A(s) is a matrix with entries± x .. (s) and 0 in appropriate places, 
1.-J 

and B(s) is a similar looking vector (depending on the initial state). So 

rescaling gives a process Jll with intensity 

lflrs-J 
n(A(s) 

n 
+ B (s) ) = A (s) Jll (s-) + nB (s) 

exactly as we want. Since X(s;N ) (which is essentially Kurtz's function 
s-

F, with components corresponding to his functions Bl) is linear in N(s-), 

all the conditions of Kurtz's theorems 2.1 and 2.2 are trivially satisfied 

if the A •• are continuous. 
1.-J 

Actually we can imitate Kurtz's proof of this theorem when proving the 

same result using the martingale approach; i.e. we consider Jll as being 

"driven" by the (vector) martingale W rather than by a collection of 

Poisson processes (I am indepted to O. Aalen for this idea). This way we can 

also include censoring in and out of the whole system without essentially 

changing the method of proof. The idea, using the previous notation (and 

replacing N(s-) by N(s) as we may), is to write 
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dJi1' = Aff dt + nB dt + dJ.f. 

-1/2 
Substracting expectations and multiplying by n gives the equation 

where Zn = n- 112 (!11' -EN") and W1' = n- 112 f1L is a vector of martingales 

which is easily shown (if f;_ (t) /n _P_,,. yi (t) for all t plus some uniformity 

condition) to converge in distribution to a vector of independent Gaussian 

J
0
t y. (s) A. •• (s)ds). So taking • 00 00 

martingales W say. (In fact var W • • ( t) 

account of the initial conditions ~~(O) 
in distribution to Z

00 

satisfying 

00 00 00 00 

dZ = AZ dt + dW , Z (0) = 0 

1,. 1.-J 
= 0 we would expect Zn to converge 

In fact (with all integrals ordinary 

equation dZ = AZ dt + dW, Z (O) = W(O) 

Lebesgue-Stieltjes integrals) the 

= 0 has the explicit solution 

I t s 
Z(t) = s=O n (I+A(u)du)W(ds) or equivalently 

u=t 
t 

Z(t) W(t) + I 
s=O 

s 
n 

u=t 
(I+A(u)du) A(s)ds W(s)· 

so if A is bounded we see that Z is a continuous function of W (in the 

supremum norm over some finite interval). More information about the 

product integrals here can be found in Aalen & Johansen (1978). Thus weak 
n oo 

convergence of Z to Z is easily established (using a Skorohod construction 

-cf. Kurtz's thm. 1.1- in order to pretend that W1' + W
00 

in the supremum norm 

almost surely). 

Before discussing a final example, I would like to make a few comments 

on Helland's weaker but supposedly more easily verifiable conditions for 

the martingale CLT's. Certainly his formulation vastly improves the 

Andersen, Borgan, Gill & Keiding (1982) results he mentions. His discussions 

turn around the following idea. Suppose for some nonnegative process X1' 
we know that i1'Ct) ~ f(t) for each t and would like to conclude that 

J~ x!1'(t)dt ~ J~f (t)dt. More is needed to guarantee this conclusion so 
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Helland introduces the concept of "convergence boundedly in L1
11

, written 

r ~ f, and shows that r ~ f implies f6 r(t)dt ~ f 6 f (t)dt. In 

fact r ~ f implies even more than E(f b i2 (t)dt- f 6 f (t)dt)--'>- O. So more 

is being proved that is needed and in fact r ~ f makes integrability 

conditions which are quite extraneous to Rebolledos theorem (the latter has 

been later shown to hold for "local square integrable martingales", for 

which !11' need not even be integrable). More importantly, in may applications 

r ~ f is very hard to verify or even untrue (e.g. in problems involving 

the Kaplan-Meier estimator when i2 often includes a factor (1-.FZ) to some 

power, whose expectation would need to be bounded by a constant times the 

same power of (1-F)). Here is an alternative suggestion (a better one would 

be welcome!) involving a concept "convergence boundedly in probability". 

For a nonnegative process r we say r Pb.> f if 

(i) r(s) ~ f(s) v s 

(ii) v 0 > 0 such that 
1 

lim inf P{Xn (s) ::; k 0 (s) v s} ~ 1 - o and Jr k 0 (s) ds < oo 

n+ oo 
0 

It is easily verified that r ~ l implies J6 r(t)dt ~ f bf (t)dt; also 

replacing~ by~ in Helland's theorems leaves the conclusions un­

altered. (The new conditions are not actually weaker than Helland's; they 

overlap). My main point is that this new condition is satisfied in a number 

of situations where the other is not (cf. Andersen & pill, 1982 or Gill, 

1983) • 

Finally I should like to discuss another very important example where 

the martingale approach breaks down while the Poisson approach, in its 

random measures extension, should be applicable (though I have not succeeded 

in doing this yet). Another similar and important type of example concerns 

sequential analysis for staggered entry clinical trials (see Sellke & 

Siegmund, 1983, and Slud, 1984). 

The model can be visualized exactly as the previous Markov model except 

that an individual or particle who entered into a state i at time t-x and 
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is.still there at time t has intensity A •. (x) (not A •• (t)) for leaving state 
'Z-J 'Z-J 

i now and going to j. This is a semi-Markov or Markov renewal process. The 

intensity depends directly on age x not time t where age "starts anew" at 

zero after each transition into a new state. To fix ideas we consider again 

n individuals starting at time 0 and age 0 in, say, a fixed state, and sup­

pose the system is observed up to a fixed time T. Statistical procedures con-

cerning the A •• 's 
'Z-J 

fashion as in the 

will analogously (and sensibly) be based in identical 

Markov model on processes N': .(x) and Y!' (x)., where J/1: .(x) 
'Z-J. 'Z- 'Z-J 

is the number of transitions observed in the time interval [0,T] from state 

i to state j at an age less than or equal to x at transition; .Y':(x) is 
'Z-

defined as the number of times an individual is in state i at age x. A 

minor complication is that i:(O) is now random, not fixed. 
'Z-

As mentioned before, the martingale approach fails here. A direct ap­

plication of the Poisson approach (i.e. to processes counting transitions 

of various types at or before time t) fails too since the "rescaled" process 

isn't the one we are interested in. However the Poisson random measure ap­

proach is potentially applicable: cf. Kurtz's final examples which both in­

clude consideration of different "time" and "age" dimensions. Unfortunately 

I haven't succeeded in carrying out this yet. 

It is possible to derive CLT's for the processes {J/1: .(x)} by brute 
'Z-J 

force; i.e. by directly verifying tightness and using ordinary CLT for 

finite dimensional distributions, (Gill, 1980). Surprisingly the resulting 

limiting distribution has identical form to the one it has in the Markov 

case. If the Poisson approach works, it could give a probabilistic reason for 

this. A statistical explanation can also be given, as follows. Under a 

discrete time version of the two models it is clear that the likelihood 

functions in the two cases have identical form (as functions of J/1: • ., Y!' 
'Z-J 'Z-

A •• ). The 
'Z-J 

same holds (under the appropriate definitions, which I hope to 

present elsewhere) in the continuous time models; moreover it turns out 

that f'.f.. = Nri:. - f iJ A •• dt is the functional analogue of the derivative 

and 

'Z-J 'Z-J ,, 'Z-J • 
of the log likelihood with respect to the parameter f 0 Aij. So this process, 

by the analogue of the usual property, has expectation zero in both models. 

Its covariance structure is also the same in both models by the analogue of 
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the usual relation between the lst. moments of 2nd. derivatives and 2nd. mo­

ments of lst. derivatives. Thus in the semi-Markov case, {.zf..} is "driven" 
1.,J 

by processes {l\f..} which, though not martingales, have zero means and uncor-
i.J 

related increments, and can be shown by standard (though not pretty) methods 

to be asymptotically Gaussian. So in the limit, the centred and normalized 

{.zf. .} process has the same limiting distribution (in terms of y. and A .• ) 
~ . 1., ~ 

as in the Markov case. 
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