
stichting 

mathematisch 

centrum 

AFDELING MATHEMATISCHE STATISTIEK SW 65/79 
(DEPARTMENT OF MATHEMATICAL STATISTICS) 

R.D. GILL 

A NOTE ON SOME METHODS FOR REGRESSION ANALYSIS 
WITH INCOMPLETE OBSERVATIONS 

Preprint 

~ 
MC 

J ANUARI 

2e boerhaavestraat 49 amsterdam 



PJr.,[n:ted a;t .the Ma;the.ma.:tic.a.l Cen;tJr.e, 49, 2e Boe11.haavet,.ttc.cw;t, Am6.te11.dam. 

The Ma;the.ma.:tic.a.l Cen;tJr.e, 6ou.nded .the 11-.th 06 Feb1tUCV1.y 1946, -l6 a non­
p1to6U .lno.tlit.Ltion a,,im,lng a;t .the pltomoUon 06 pUlte ma;the.ma.:ti.C-6 and m 
appUc.a.Uon6. I.t -l6 .oponoo1ted by .the Ne.theJLta.ndb Gove/1.nmen:t .thJtou.gh :the 
Ne.the/1.la.ndb 01tgan.lza.:tion 601t .the Advanc..e.men:t 06 PUite Re!>eaJtc..h (Z.W.0). 

AMS(MOS) subject classification scheme 1970 62J05 



A note on some methods for regression analysis with incomplete observations*) 

by 

R.D. Gill 

ABSTRACT 

Some recent related proposals for estimating regression coefficients 

with incomplete observations are discussed. The proposals included "approx­

imate standard errors" for the estimators. It is shown that the estimators 

of the regression coefficients are consistent under fairly weak conditions, 

but that only under rather strong ones can the usual (asymptotic) tests of 

significance be validly based on the estimated coefficients and the comput­

ed standard deviations. The consequences of assuming a random or a fixed 

specification for the covariates are also investigated. 

KEYWORDS & PHRASES: incorrrplete observations~ m&SS&ng data~ regression anal­

ysis 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

Very many procedures, both specific and general, have been suggested in 

the literature for dealing with the problem of incomplete observations in 

regression analysis; see the papers of AFIFI & ELASHOFF (1966), (1967), 

(1969a) and (1969b), HARTLEY & HOCKING (1971) and DEMPSTER, LAIRD & RUBIN 

(1977). However few of the methods which are applicable in a general regres­

sion analysis situation give consistent estimators of the regression coeffi­

cients, and still fewer show how asymptotic standard deviations may be valid­

ly estimated (in order to carry out the usual t-tests, etc.). There are 

three very similar proposals which do at least give suggestions in this di­

rection though little theoretical justification is given: these, the sub­

ject of this note, are BEALE & LITTLE's (1975) "method S" and "method 6" and 

the method of DAGENAIS (1973). 

Let us briefly sketch the kind of situation we are interested in. Each 

of N observations if complete would be a (K+l)-vector of values taken by K 

independent or predictor variables and dependent or criterion variable. 

However for some observations, the values taken by some of the predictor 

variables are missing. We suppose that the mechanism causing this works in­

dependently of that generating the values of both predictor and criterion 

variables. This assumption is only implicitly made in the sequel, but it is 

an assumption of major importance (as is usual in the literature on this sub­

ject). We shall work conditionally on the realized patterns of missing and 

non-missing values. For the sake of simplicity we assume that none of the val­

ues taken by the criterion variable are missing. As will become apparent la­

ter, the predictor variables are considered as "covariates" rather than as 

the "design variables" of a planned experiment. We consider both models 

with "random" and with "fixed" predictor variables. N is supposed large, 

making asymptotic results relevant; and missing values occur on a large 

scale, so that just dropping incomplete observations is an unacceptable 

throwing away of information. A final point is that we do not want to make 

strong distributional assumptions, such as that of multivariate normality, 

about the predictor variables, if indeed we assume them random at all. 

All three proposals work by "filling in" the missing values in each ob­

servation with least squares predictions based on the non-missing predictor 
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variables in that observation; the coefficients,needed for this are esti­

mates based on all the present data. Then a standard weighted least squares 

regression analysis is carried out on the "completed" data set, supplying 

both estimates of the regression coefficients and standard errors for them. 

Weights are needed because the least squares prediction introduces an extra 

error of varying size in each incomplete observation. The proposals only 

differ in how the coefficients for the least squares predictions and how the 

weights for the final regression analysis are to be estimated (they all 

agree on what these coefficients and weights should be). 

We are interested in the problems of finding reasonable and non-techni­

cal conditions under which (i) the proposals yield consistent estimators, 

and (ii), suitably normed, the estimators are asymptotically normally dis­

tributed about the true regression coefficients with a covariance matrix 

which is consistently estimated by that produced in the weighted least 

squares regression analysis. Problem (i) turns out to have a satisfactory 

solution. However in (ii), though asymptotic normality is easily proved un­

der certain somewhat restrictive conditions, the asymptotic covariance ma­

trix can often not be the one we want. 

In the next section we specify our general model, define the estimators, 

and prove consistency. Section 3 looks at asymptotic normality while in the 

final section we briefly discuss some implications of our results. 

2. PROBLEM (i): CONSISTENCY 

First some notation. Random variables will be underlined, so that the 

same symbol not underlined represents a possible value of the corresponding 

variable. aT denotes the transpose of the vector a. We specify a model for 

N observations for each N = 1,2, ... ; all quantities (including the underly­

ing sample space) may depend on N unless explicitly stated otherwise, though 

this dependence is generally suppre~sed in the notation. We write ➔p and ➔V 

for convergence in probability and in distribution respectively (always as 

N ➔ 00 ) and denote a multivariate normal distribution with given mean vector 

and covariance matrix by N(•,•). 

Let P and M (a pattern of observed predictor variables and its 
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complement of missing ones) denote sets of indices such that Pu M = {I, ... K} 

(where K is the number of predictor variables), P n M = </J, P·:f: </J and,if e.g. 

the first predictor variable is the constant l, l E P. Vectors and matrices 

will often be partitioned according to P and M, e.g. if Sis a Kxl vector 

and Ea KxK matrix then 

( l) 

E .,) • 
•1·1 

n n n Let(~ ,y_ ,~ ), n = 1, ... ,N, denote the complete KxJ vector of predic-

tor variables, the criterion variable, and the disturbance variable for the 

n'th observation, related by 

(2) 

for some fixed Kxl vector S of regression coefficients which we want to es­

timate. Let Pn and :t-f, n = 1, ... ,N be patterns of observed and missing pre­

dictor variables; the data consists of (z.n,~,Pn), n = 1, ... ,N, where we 

h · n f n · ·1 1 f · n f h b d n ave written~ or ~n. Simi ar.,_y we o ten write ~ 1 or t e uno serve ~n. 

To (2) we add the usual assumptions 

E(~~) = 0 for all n 

1 

(3) E(~n~n) 0 for all n,n' 

I {~2 n ,f: n' 
E(~n~n) = n' > 0 n = 

2 . 
where a like S does not depend on N. The second equality in (3) implies the 

first one if (2) includes a constant term, e.g. 

(4) 
n 

~1 = almost surely 'for each n. 

We make the following assumptions, which we shall illustrate with some 

important examples in a moment. For each pattern P let Pp be a non-negative 

number, and let Ebe a fixed KxK symmetric positive definite matrix. Suppose 
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that for each P, the following convergences hol'd as N ➔ 00 : 

Al 

A2 

A3 

A4 

A5 

N 
-1 

N 
-1 

N 
-1 

-1 
N 

#{n:Pn=P} ➔ Pp 

I n nT 
~~ 

n:Pn=P 

I nT 
~~ 

n:Pn=P 

➔p pPIPP 

➔p pPIPM 

is non-singular (a; is defined in (8) 

below) 

Interpreting I as a limiting average value of E(~n~nT), A2 and A3 together 

with Al express the fact that the patterns of missing values are at least 

asymptotically not influenced by the predictor variables, while A4 expres­

ses the same fact for the disturbance. The role of AS will become clear la­

ter. 

EXAMPLE I Random predictor variables. Suppose (!!_n,~n), n = l, ... ,N are in­

dependent over n and have the same distribution for all n and N. (This 

clearly doesn't exclude (4) from holding). 

Then A2, A3 and A4 are consequences of Al, (3) and 

(5) 

which can be proved by applying the Weak Law of Large Numbers (with special 

attention for P such that Pp= 0 since we do not assume in such a case that 

#{n:Pn=P} ➔ oo or is bounded. The proof on page 17 of GILL (1978) can be 

adapted for this situation). 

EXAMPLE 2 Fixed predictor variables. For some vectors xn, 

(6) 
n n 

X = X almost surely for each n. 

A4 is now a consequence of A2, because 



E {N- l l 
\ n:Pn=P 

E {N-l l 
\ 
-1 2 -I = N 0 N 

5 

n n\ x....e = 0 -l'-) 

n nT 
~ ~. 

➔ o. 

However A2 and A3 have to be explicitly assumed. 

EXAMPLE 3 Conditional models. If in Example 1, (~n.~n,Pn), n = l, ... ,N are 

the first N of a single infinite sequence, then the convergences in proba­

bility in A2, A3 and A4 are in fact almost sure convergences. So almost 

surely,, after conditioning on ~n = xn, n = 1, 2, ... , A2, A3 and A4 remain 

valid and we have a special case of Example 2. Of course (3) is not neces­

sarily valid if the expectations there are replaced by conditional expecta­

tions. In the next section we pay attention to the similar case where we 
n n only condition on~=~• n = 1,2, ..• , which is interesting because it is 

in a way close to the spirit of the proposed estimators. 

To define these estimators let us first work as if the parameters need­

ed for the proposals (certain functions of 0 2 , Sand I) were known. Define 

(7) 

(8) 

(9) 

( 10) 

(11) 

(12) 

( 13) 

-1 
(where Lpp = 

where P 

I= the NxN diagonal matrix with diagonal elements 0 2 ,n=l, ... ,N 
pn 

1 N T 
Y = <1. , • • • ,z ) 

~f -XT~- l-X ,s 
.L L, .L non-singular. 
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2 A 

If a'MP and crp were known, S would be the proposed estimator of Sand 

(XTf-I_R)- 1 the proposed approximate covariance matrix for it. In fact in 
,..n . .b 1· d" f n b d n h" l 2 . Example I~ 1s the est 1near pre 1ctor o ~ ase on~ w 1 e crpn 1s 

the expanded variance of the error term in (2) if~ is replaced there by 

~- For defining 

(I 4) ,..n n T( n n) 
e = e + SM ~-°MP.¼ where P = Pn and M = :tf1 

we rewrite (2) as 

( I 5) n = I, ••• N 

where in Example 1 

E(en) = 0 

I 

(16) E(x¾n) = 0 (c.f. (3)) 

' 
a)nn' E(en!n) = 

n n After conditioning on,¼='),, n = I, •.. ,N (Example 3), (16) no longer nec-

essarily holds, while in Example 2 it is generally false. 

THEOREM I. Under Al to AS, S defined by (13) is a consistent estimator of 
,..i: .... -1,.. - I . -: . - I 

Sand N(X E X) ~s a cons~stent est~mator of A • These statements are 

also tru~ if in the definitions (7) to (13), ~1P and a~ are replaced with 

consistent estimators~ and~ of the same quantities. 

PROOF. We first look at the estimation of A-I. 

- I "'T"'-1"' _ 'i' -2 - I ( - I 'i' 
N XE !_ - lap E.pEpp N l 

p n 
n:P·=P 

'i' -2 -I -I' 
➔p Lap E.pEpp PpEppEppEp. =A. 

p 

Because A 1s non-singular, the probability that N-lXTt-lX is non-singular 

converges to l as N ➔ 00 and hence 
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Next defining 

(18) "' ("l .... N)T 
E = ~ ' ... •~ 

we can rewrite (15) as 

.... .... 
(19) Y = !S + E 

and so by (13) and (17), with probability converging to 1, 

(20) 

So to prove 

(21) 

it suffices to establish 

(22) 

Now 

(23) 

as N ➔ co. 

N-l-XT~-1 .... E = \ -2~ ~-1 
- ,.. - lap ,.._p,..pp 

p 

by A2, A3, A4 and (7). 

~~ = n .... n) 

7 

2 Finally even if aMP and op are everywhere replaced by consistent estimators 

of the same quantities, all the above arguments remain valid. D 

REMARK I. The consistency of the e~timators of~ and a~ in BEALE & 

LITTLE's (1975) method 6 can be established by the same type of arguments 

as in GILL (1977) even though they derive their estimators from consider­

ations of maximum likelihood under multivariate normality of (~n,!::._n), 

n = 1, ... ,N. Suitable conditions for consistency are Al, A2 and A4 
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supplemented with 

A6 For P such that Pp 
. n 

= O, #{n:P =P} = 0 for sufficiently large N, 

and 

A7 -I 
N I for all P. 

n:Pn=P 

We have not yet investigated the other methods in this respect though 

a similar approach should be applicable. The proof of Theorem I actually 

also shows consistency of BEALE & LITTLE's (1975) "method 4", where weights 

are not introduced. 

n n n REMARK 2. If x is predicted by regression on ~Pandy_ for each n, the re­-M 
sulting estimator of 8 is generally inconsistent. For instance in Example I, 

if we let t be the best linear predictor of~ based n n 
on y_ and~' and 

write 

f . d . 1 E_~ee~n JO d . d h ld h then we in that in genera -1'- r an so it oes not o tat 

N-I In:Pn=P ¼_f1 +p O if Pp> 0. This fact makes another of BEALE & LITTLE's 

(1975) proposals (see their section 6) rather difficult to motivate, though 

this proposal is made in a different context to ours. 

3. PROBLEM (ii): ASYMPTOTIC NORMALITY WITH CORRECT COVARIANCE MATRIX 

Reviewing the proof of Theorem I, we see that under the conditions of 

that theorem, 

(24) 
l ... -I 

N2 (_§_-8) +V N(O,A ) 

if and only if 

(25) - 1 ""T"" } "" 
N 2 X L ! +v N(O,A). 

"'T,...-1,... -1 
If ( I 7) holds ,too we can indeed validly use (!_ I !_) as an asymptotic 
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-covariance matrix for_§_ and carry out the usual 'tests of significance on re-

gression coefficients. We shall prove a theorem giving conditions for (24) 

to hold in the special case of Example I, but shall give some heuristic ar­

guments that it cannot hold in Example 2, and only holds under rather spe­

cial conditions in Example 3. 

n n THEOREM 2. Suppose (~ ,!:_ ), n = 1, ... ,N are independent over n and have the 

same distribution for all n and N. Suppose Al to A5 hold and that further­

more 

(26) 

n n 
E(~!:_) = O 

E(_(en) 2) = a2 

E((en)2 n nT) = f 
- ~~ p 

for some finite matrices fp. Then 

(27) N-½_iTi-l_i ➔V N(O,B) 

where 

(28) 

A sufficient condition for (24) to hold (i.e. for equality of A and B) ~s 

(29) for all P. 

I 

PROOF. Multiplying (23) by N2 and recalling (16), we see that by the Central 

Limit Theorem, (again with special care for P such that Pp= O), 

(30) 
-1- ~-1~ 

N 2 X I E ➔V N(O,B) 

Obviously if (29) holds, then A= B. 0 

REHARK 3. Theorem 2 is a satisfactory solution to problem (ii) if we can 

consider the predictor variables as random and can assume that the complete 
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observations would have been independent and identically distributed, with 

( n) 2 1 d 'h n nT 1 'd d d 2 b 1 d ! uncorre ate wit ~~ , at east, provi e ~ an ap may e rep ace 

with consistent estimators~ and Q_~. This turns out to be possible if one 
I 

adds the assumption that N2 (~-C\1P) is bounded in probability as N + 00 • 

Of course one could often be reluctant to assume that the xn's are ran­

dom variables at all. However it is easy to see that (27) cannot hold under 

reasonable conditions in the case of Example 2, even with a different defi­

nition of the matrix B. In (27) ,R =Xis now non-random, and! is the sum 

of a random and a non-random component. There is no reason why the non-ran­

dom contribution to the left hand side of (27) should converge at all. For 

instance suppose (as in the .first part of Example 3) that we wish to work 
n n conditionally on x = x, n = 1,2, ... , arising from an infinite sequence of 

independent and identically distributed (~n,~n)'s, where furthermore xn is 

independent of ~n. Looking at (27), (18) and (14) we see that under the as­

sumptions of Theorem 2, unconditionally, both parts of the left hand side of 

(27) converge in distribution to in general non-degenerate normal distribu-
n n tions. Conditional on x = x, n = 1,2, ... the random part still converges 

in distribution to a normal distribution with mean vector zero. The other 

part, now non-random, would have to converge to zero for (27) to be valid. 

But the probability must be zero that such xn's have been realized, in view 

of the unconditional non-degenerate limiting normal distribution. 

However the other possibility of conditioning only on the observed val­

ues of the predictor variables~=~' which was touched on in Example 3, 

fits rather nicely with the estimator i_, at least if strong enough condi­

tions are made. If Al holds, then with probability 1 after conditioning A2 

holds too, and this implies that 

(31) 

~ 

(Xis now non-random). However the validity of A3 and A4 depends on the con-
n n, . n n 

ditional distributions of ~ 1 and~ given~=~- Let us make the rather 

strong assumption (it implies for instance (29), and is itself implied by 
n n multivariate normality of (~ ,~ )) that these are such that for all P and 

n 
~ 
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(32) 
E(enl~=~) = 0 

(c.f. (16)) 

E ( <in) 21~=~) = er; 
or in words, every regression of x_n on a group of variables from ~n is lin­

ear and homoscedastic. Looking at (20), this now implies that 

E<slx=x) = s 
(33) 

Ecc].-s)<].-s)TI.E.=x) = cxTf- 1x)-1 

By (31) and (33), Bis consistent; but more importantly, (33) gives new mo-
- -T--1- -1 2 

tivation for using (XI X) , with aMP and ap replaced by estimates, as an 

approximate covariance matrix for..§_. Does such a simple argument also give 
! A 

asymptotic normality of N2 (1-B)? 
-1-T--lA 

In the first place, proving a central limit theorem for N 2 X I E (which 

by (25) is what is needed) is going to involve the conditional distributions 

f An . n n h. h n n o ~ given~=~' w ic could depend on P and~ in a very complicated 

way. For simplicity we might assume them only to depend on Pn (we have al­

ready assumed this for the conditional expectations and variances). However 

this is rather close to assuming multivariate normality of xn as the follow­

ing special case, K = 2, shows. The new assumption is equivalent to assuming 

that~; and ~n + B~(~-~~;) are independent for each P. Taking P = {1,2} 

and M = <P , ~ n and ~n are independent; taking P = { I } and then P = { 2} we 

find that~~ is independent of B2 (~~-a21~) and ~2 of s1 (~~-a 12~~). By the 

theorem of SKITOVICH (see KAGAN, LINNIK & RAO (1973) Theorem 3. I. 1) it now 

follows that if all the coefficients involved above are non-zero then xn is 

bivariate normally distributed. 

f . f ( n n) . 1 . . 0 course, i ~ ,~ is mu tivariate normally distributed, then condi-
A - A ATA-lA -1 

tional on_!= X, i has the N(B,(X I X) ) distribution and there is little 

need for asymptotic results. 

4. CONCLUSION 

Though under reasonable conditions the estimators considered are con­

sistent - it is not even necessary to assume the covariates are random -

1:; 
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fairly strong conditions are needed to justify the use of (XTI1X)-l as an 

approximate covariance matrix for 8: namely randomness of the covariates, 

indepence between the N observations, and uncorrela~edness of <t1) 2 and 
n nT . h . . h 11 1 . 1 . 1 . x~p. It is wort pointing out tat sma samp e simu ation resu ts in the 

literature are nearly always based on a multivariate normal distribution for 
n n 

(x '!:. ) • 
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