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Cox's regression model for counting processes: a large sample study*) 

by 

I) ·112) P.K. Andersen & R.D. Gi 

ABSTRACT 

The Cox regression model for censored survival data specifies that 

covariates have a proportional effect on the hazard function of the life­

time distribution of an individual. In this paper we discuss how this model 

can be extended to a model where covariate processes have a proportional 

effect on the intensity process of a multivariate counting process. This 

permits a statistical regression analysis of the intensity of a recurrent 

event allowing for complicated censoring patterns and time dependent covar­

iates. Furthermore, this formulation gives rise to proofs with very simple 

structure using martingale techniques for the asymptotic properties of the 

estimators from such a model. Finally an example of a statistical analysis 

is included. 
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I. INTRODUCTION 

The Cox-model for censored survival data (COX, 1972) specifies the 

hazard rate or intensity of failure A(t) = lim P[T~t+hiT>t] for the survival 
hiO 

time T of an individual with covariate vector z which may depend on the time 

t to have the form 

(I. I) t::,: o. 

Here sO is a p-vector of unknown regression coefficients and AO(t), the 

underlying hazard, is an unknown and unspecified non-negative function. 

The statistical problem is the one of estimating s0 and the function AO 

on the basis of, say, n possibly right censored survival times T1 , ••• ,Tn 

and the corresponding covariate vectors z 1, ••• ,zn' where zi is observed on 

[O,T.]. 
1. 

COX (1972) suggested that inference on s0 be based on the function 

(eS'zi(Ti) \ 0i 

\ S'z·(Ti)} 
. "R e J 
JE i 

(1. 2) 
n 

L(S) = i!\1 

where R. = {j:T. ~ T.} and 1-o. is an indicator for censoring. In a later 
1. J 1. 1. 

paper (COX, 1975) he derived (1.2) as a partial likelihood function. Letting 
,. 
S be the value that maximizes (1.2), then the continuous estimator obtained 

by linear interpolation between failure times of 

(1.3) A(t) = I 
T.~t E 

1. 

Q • 
1. 

S' z · (T ·) e J 1. 

for the 

BRESLOW 

jER. 
1. 

cumulative underlying hazard AO(t) = f~ AO(s)ds was suggested by 

(1972,1974). In a recent paper (JOHANSEN, 1981) it was demonstrated 

that L given by (1.2) is a likelihood profile in the sense that L(S) = 

max L(S,A) where L(S,A) is 
A 

a joint likelihood for the unknown parameters 

sO and AO• Also the value of A that maximises L(S,A) is exactly A given by 

(1.3). This joint likelihood was derived by extending the Cox-model (I .I) 

to a model allowing for multiple jumps and furthermore allowing (I.I) to 

be the intensity of a recurrent event. 

In this paper we consider the large sample properties of a counting 
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process model with intensity given by (I.I), i.e. we include the possibility 

of the event considered being recurrent, but not more than one event may 

happen at a given time. 

We have had several motivations for undertaking this study. First of 

all much effort has been spent on deriving the asymptotic properties of the 

estimators Sand A in the Cox-model (see COX (1975), LIU and CROWLEY (1978), 

TSIATIS (1978a, 1978b, 1981a), LINK (1979), BAILEY (1979) and NlES (1981a, 

198lb)) and we found that the martingale theory also used by NIES (1981a, 

198Ib) which emerges very naturally from the counting process formulation of 

(I.I) could be used very efficiently to give proofs whose basic ideas are 

very simple. Secondly we found that the assumption of the covariates being 

bounded made by all of the above mentioned authors except TSIATIS (1981a) 

(who on the other hand only considered time-independent covariates) is too 

restrictive and should be avoided. Finally in a practical example (see 

ANDERSEN and RASMUSSEN (1980)) concerning admissions to psychiatric hos­

pitals for women giving birth the results were needed for the more general 

case of describing the effect of covariate measurements on the intensity of 

a recurrent phenomenon. This example will be discussed in more detail below. 

We conclude that it is useful to formulate the Cox-model in the more 

general set-up of multivariate counting processes of AALEN (1978). This 

will be done in Section 2 where we also outline the basic ideas in the proofs 

of asymptotic normality and consistency of Sand of weak convergence of 

A(·) - A0(•). In Section 3 we give the basic assumptions and the technical 

details for proving the results rigorously and in Section 4 we consider the 

problem of actually verifying these conditions in the special case where 

the counting processes and the covariate vectors are assumed to be indepen­

dent and identically distributed. In that final section we also return to 

the practical example. 

Regression mocPels for counting processes were also considered by 

AALEN (1980). He parametrized the intensity process itself linearly 

rather than the logarithm as we do, and thus the standard martingale central 

limit theory applied rather innnediately when deriving the asymptotic 

properties. On the other hand this approach does not guarantee the estima­

tor of the intensity to be non-negative and hence some posterior smoothing 

of the estimate has to be performed before applying the results from an 
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In our model properties of stochastic processes, such as being a local 

martingale or a predictable process, are relative to a right-continuous non­

decreasing family (F~n):t E [0,1]) of sub cr-algebras on ~he n'th sample 

space (n(n) ,F(n) ,P(n)); F~n) represents everything that happens up to time 

t (in the n'th model). 

Our basic assumption is that for each n, N(n) has random intensity 

process A(n) = (A~n) , ••• ,A~n)) such that 

(2. 1) 

Here s0 is a fixed column vector of p coefficients, AO a fixed underlying 

hazard function, and Y~n) is a predictable process taking values in {0,1} 
. i 

indicating (by the value 1) when the i'th individual is under observation 

(so in particular, N~n) only jumps when Y~n) = 1). Finally Z~n) = i i i 
(n) (n) ' • , = (Zil , ••• ,zip) is a column vector of p covariate processes for the i th 

individual. We suppose that zfn) is predictable and locally bounded (which 

is the case for instance if z~n) is left continuous with right-hand limits 
i 

and adapted). 
. h N(n) By stating tat 

processes M~n) defined by 
i 

(2.2) M~n)(t) = 
i 

' . ,(n) th t th has intensity process A we mean a e 

i = I, ... ,n, t E [0,1] 

are local martingales on the time interval [0,1]. As a consequence, they 

are in fact local square integrable martingales, with 

t 

(2. 3) <M~n) ,M~n)>(t) = 1 A~n)(u)du and 
i i i 

0 

<M~n) ,M-fn) > = o, i "f J, i J 

(i.e. M~n) and M~n) are orthogonal when i-/: j). Under certain regularity 
i J 

conditions which do not concern us here, these facts are equivalent to the 

following generalization of (I.I): 

(2.4) lim 
h+O 

/n) (t+) • 
i 



One could start with (2.4) plus regularity conditions as the basic model; 

however we prefer to take the local martingale property of M(n) in (2.2) 

5 

as primary, and only mention the "intensity" property (2.4) as a motivation 

for this more abstract looking model. 

In the following we shall everywhere drop the superscript (n), since 

only s0 and AO are the same in all models. Convergence in probability 

(P) and convergence in distribution (V) are always relative to the probab-
➔ ➔ 

ility measures p(n) parametrized by s0 and A0 • 

2.B. Asymptotic normality of s. 
As demonstrated by JOHANSEN (1981) Cox's likelihood (1.2) is a reason­

able basis for the estimation of the regression parameter vector sO in our 

more general set-up too. Let C(S,t) be the logarithm of the Cox likelihood 

evaluated at time t, so that according to (1. 2) and (2.1) we have 

t t S'Z.(s) n 

I J log(i!n C(S,t) I S ' Z . ( s ) dN . ( s ) - i -= Y.(s)e )dN(s), 
i=l i i i 

0 0 
- n where N = I. 1N .• Then we have that C(S,1) = logL(S), and the estimator 

... i= i 
Sis defined as the solution to the likelihood equation :S C(S,1) = O, 

where the vector of derivatives U(S,t) of C(S,t) w.r.t. S has the form 

t 

U(S,t) 
= 1 I 

t 

Z • ( s) dN . ( s) - f 
i i 

0 

From (2.2) it is innnediately seen that 

t 

u(s0 , t) =;:; I f 
i=l O 

z. (s)dM. (s) - tI 
i i 

0 

S'Z. (s) 
\n i 
li=IYi(s)Zi(s)e -

S'Z () dN(s). 
\'1_1 1 Y • ( s ) e i s 
li= i 

s~z. (s) 
t1: 1Y.(~)Z.(s)e i 
Li= i l. -

S'Z.(s) dM(s), 
In O 1. . 1Y.(s)e 

1.= l. 

where M = rn M 1.s a local martingale. Taylor expanding U(S,1) around sO li=l i 
we get 

(2.5) 

* where S 

* U(S,I) - U(So,1)= -I(s ,I)(S - So), 

is on the line segment between Sand sO and the positive semi-

definite matrix 
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1(S,t) 

t 02 S'Z.(s) 
( \~ 1Y.(s)Z.(s) e 1 

l1.= 1. l. 
=J (-\n---~s=z~i~(s~)----( 

0 li=IY/s)e 

n S'Z.(s) 
}:._1Y.(s)Z.(s)e 1 ~ 2 1.- ]. ]. 0 -

n S'Z.(s) ) )dN(s) 
\. 1Y.(s)e 1 
l1.= i 

is minus the second derivative of C(S,t) w.r.t. s. (For a column vector a 
02 

we denote by a the matrix a a', cf. Section3.) Inserting Bin (2.5) we get 

(2. 6) 

since by definition U(S,1) = O. 
1 A 

To prove asymptotic normality of n 2 (S - sO) it now suffices to prove 
-1 

weak convergence to a Gaussian process of the local martingale n 2 U(SO,•) 

and to prove convergence in probability to a non singular matrix of 
-I * n 1(S ,1). For the weak convergence we utilize the central limit theorems 

for local martingales given by REBOLLEDO (1978, 1980). As to the convergence 

in probability of n-I 1 (s:1), it suffices to prove that Sis consistent and 

that n-l 1 (s*,1) converges in probability for any s* such thats* g sO• 

In the case of time independent covariates the weak convergence of 
-1 

n 2U(SO,•) to a Gaussian process was also proved by TSIATIS (1981b). 

2.C. Consistency of s. 
A 

To prove consistency of S consider the process 

X(S,t) 

(2. 7) 

V 

= n- l ( C ( S, t) 

t 

= n-1 c ! J 
i=l O 

- C(S0 ,t)) 

t S'Z.(s) 
\n ( i I. . li=l Yi s)e dN(s)] 

(S-So) I zi (s)dNi (s) - log So'Z. (s) • 
In ( l. 0 • 1Y. s)e 

1.= ]. 

Then X(S,1) is a concave function with a (with probability tending to 1) 

unique maximum at S = S by definition of s. Using the inequality of LENGLART 

(1977) (see also Appendix I) it can be proved that X(S,I) converges in 

probability to a function of S which is concave with a unique maximum at 

sO• A fairly simple argument using convex function theory then shows that 
A p 
S + s0 • 



.... 
2.D. Asymptotic distribution of A. 

,._ 
Formulated by means of counting processes the estimator A given by 

(1.3) has the form 

.... 
A(t) 

and hence 

t 
( 

= J 
0 

dN(s) 
n s'zi(s) , 

'· 1Y.(s)e l1.= 1. 

t 

7 

= n½ f ( n 1 S'z -(s) .. n .. SaZi (s))dN{s) 
0 '. 1Y.(s)e '· 1Y.(s)e li= i l1.= 1. 

(2.8) 

* ft ,n where A0 (t) = 0 A0 (s)I{li=lYi(s) > O}ds. Here the third term is asymptotic-

ally negligible; the second term is a local martingale, namely 

! -
n 2 dM(s) t 

W(t) = f 
0 

$'Z.(s); 
In O i . 1Y. (s)e 

1.= l. 

and a Taylor expansion of the first term yields the quantity 
! .... 

H(S*,t)' n 2 (13-130), where the vector His given by 

S'Z. (s) 
ln ( ( l. t . 1Y. s)Z. s)e 

(2.9) H(i3,t) = -----.---.,--,.--- dN(s), f i= l. l. 

S'Z. (s) 2 

and 13* is on the line 
! ,._ 

of n 2 (A(•)-A (•)) now 
0 

local martingale W(t) 

,n ( i 
0 (li=lyi s)e ) 

,._ 
segment between Sand s0 • The asymptotic distribution 

follows by finding the asymptotic distribution of the 

and by proving convergence in probability of H(i3*,t) 
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p 
for any 13* such that 13* + sO, and by finally noting that W(•) is orthogonal 

toU(l30,•): 

f dM 
< U(130,•), ---~, s0z. ln l. 

. ly. e 
1.= l. 

> = o. 

* l ... From this last fact it follows that W(t) and H(B ,t)' n 2 (13-13O) are 

asymptotically independent since Sis a function of U(13O,t) (cf. (2.6)). 

Hence the desired asymptotic distribution can be derived using 2.B. 

3. ASYMPTOTIC PROPERTIES 

In this section the notation is the same as in Section 2. In particular 

this means we are dropping a superfix (n) almost everywhere; only 130 and AO 

are fixed (i.e. independent of n). Unless otherwise stated all limits are 

taken as n+ 00 • Suppose a= (a1, ••• ,ap)' an/db= (b 1, ••• ,bp)' are p-vectors, 

then we write a 0 b for the p x p matrix ab' with (i,j)'th element a.b .• 
l. J 

Also we write a02 for the matrix a 0 a. For a matrix A or vector a, 
2 ! ! 

IIAII = supla .. l and llall = sup!a.j. For a vector a, lal = (~a. ) 2 = (a'a) 2 • 
• • l.J • l. l. 
1.,J l. 

Some further important definitions are: 

n B'Z (t) 
s(O)(B,t) = .!. l Yo(t)e .t 

n .f.=1 -<-

E(B,tY 

and 

s(2)(13,t) 02 
= (O) - E(B,t) • 

s (13,t) 
V(B,t) 

Note that S(O) is a scalar, S(l) and E are p-vectors and s(2) and V are 

p ·x p matrices. 



These quantities can be interpreted as follows. Suppose at time t, we 

select an individual i out of those individuals under observation (i.e. 
S'Z· (t) with Y.(t) = 1) with probabilities proportional toe 1 • Then E(S,t) and 

1 

V(S,t) are the expectation and variance respectively of the covariate vector 

Z.(t) of the individual selected. S(O) ,S(l) and s< 2) are roughly to be 
1 

interpreted as a norming factor, a sum and a sum of squares respectively. 

The following list of conditions will be assumed to hold throughout 

this section. There are a number of redundancies in them, and not all 

conditions are needed for every result, but in this way we hope to avoid 

too many technical distractions in the theorems and their proofs. Further 

discussion of the conditions is deferred till Section 4. 

1 

A. (Finite interval) J A0 (t)dt < 00 

0 
B. (Asymptotic stability) There exists a neighbourhood B of s0 and 

scalar, vector and matrix functions s(O) ,s(l) and s(2) defined on 

Bx [0,1] such that for J = 0,1,2 

sup 
tdO, 1 J 

$EB 

C. (Lindeberg condition) There exists o > 0 such that 

n-½ sup lz.(t)!Y.(t)I{So'Z.(t) > - oiZ.(t)l} t 0 
• 1 1 1 1 
1,t 

D. (Asymptotic regularity conditions) Let B, s(O) ,s(l) and s(2) be as 

in Band define e = s(l) /s(O) and v = s( 2) /s(O) - e32 • For all 

SE B, t E [0,1]: 

s(l)(S,t) = a 
as 

s(O)(S,t), 

9 
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s(O)(•,t), s(l)(•,t) and s(2)(•,t) are continuous functions of 

S € B, uniformly int€ [0,1], 

s(O) ,s(l) and s(2) are bounded on Bx [0,1]; s(O) is bounded away 

from zero on Bx [0,1], and the matrix 

1 

t = J v(S0,t) s(O)(S0,t) A0(t)dt 

0 

is positive definite. 

Note that the partial derivative conditions on s(O),s(l) and s(2) are 

satisfied by S (O), S (1) and S <2>; and that t is automatically positive 

semidefinite. Furthermore the interval [0,1] in the conditions may every­

where be replaced by the set {t:A0 (t) > O}. 

LEMMA 3.1. (Consistency of S) 

PROOF. (See Section 2.C) 

Consider the processes X(S,•) given by (2.7) and 

n 
where A = l 

i=l 
A •• 

1 

Then for each S 

X(S,•) - A(S,•) is a local square integrable martingale 

with 

<X(S,•) - A(S,•), X(S,•) - A(S,•)> = B(S,•), 

say, where 



B(S,t) 

t 

= n-2 ¥ f 
i=l O 

t 

= n-l I [(S-So)'s<2)(So,u)(S-So) 

0 

- 2(S-So)'S(l)(S,u) 

(O) 
+ (log(s (S,u) )J,2 8 (0)( )]' ( )d 

(0) S,u Ao u u. 
s (s0 ,u) 

By conditions A, Band D it follows that for each SE B, 

1 

A(S,1) t f 
0 

while nB(S,1) converges in probability to some finite quantity (depending 

on S). Therefore by the inequality of Lenglart (I.2) we see that X(S,1) 

converges in probability to the same limit as A(S,l) for each SE B. 

1 1 

Now by the boundedness conditions in D we may evaluate the first and 

second derivatives of this limiting function of S by taking partial deriva­

tives inside the integral (cf. BARTLE (1966), Corollary 5.9); these deriva-

tives are therefore also by D equal to 

1 /O)(So,u) 

I (1) - /O (S,u) J 11.0 (u)du [s (s0 ,u) 
/O) (S,u) 

0 
1 

= I [e(S0,u) - e(S,u)J s(O)(s0 ,u) 11.0 (u)du 

0 

and 

1 s(O)(s0 ,u) /O)(So,u) 

f c-/2) (8,u) + /I)(S,u)02 
s(O)(S,u) 

(0) 2]11.0(u)du 

0 s (S,u) 
1 

= - f v(S,u) s(O)(S0,u) 11.0 (u)du 

0 

respectively. 
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The first derivative is zero at S = s0 ; the second is minus a positive 

semidefinite matrix; and at S = s0 minus a positive definite matrix. Thus 

for each SE B, X(S,l) converges in probability to a concave function of 

S with a unique maximum at S = s0 • Since~ maximizes the random concave 

function X(S,1), it follows by some convex analysis (see Appendix 2) 
~ p 

that S + s0• □ 

THEOREM 3.2. (Asymptotic normality of B) 

l ~ V. -1 
n (a-s0) + N(O,E ). 

PROOF. (see Section 2.B) 

We have two tasks here: firstly to show that 

-l V n U(S0,t) + N(O,E) 

and secondly to show that 

* *(n) * p for any random S = S such that S + s0• 

For the first part we use the fact 

t t 

n-lucs ,t) = 
n 

f 
( 

l Z.(u)dM.(u) -
J 

E(S0,u)d.M(u) 0 i=l 
1 1 

0 0 
t n 

J = l (Z.(u) - E(S0 ,u))dMi(u). 
i=l 1 

0 

We shall apply Theorem I.2 of Appendix I with 

To verify condition (I.3), we note that 



t 

H (u)H (u) ' ( )d { f (s(2)cs0,u) -U jl /1...e. u u = ' 

0 

s<l) (So,u)@2 
-----)>,_o(u)du) 
s<o)(So,u) ij 

t 

t ( J v(s0 ,u) 

0 

by A,B and D. 

To verify (I.4) note first that by the simple inequality 

it is sufficient to verify 

(i) 

(iia) 

and 

l 

f IECS0,t) 12 I{n-½IE(S0,t) I 

0 

l 

f .!. I lzo(t)l 2 
n l=l ,{.. 

0 

JI I n 2 i 

(iib) n lt lz..e.(t)I I{n- 2 lz..e.(t)I > E, Sc?..e.Ct) > - o!Z,e_(t)I} 

0 s0z..e.(t) p 
Y..e.(t)e >,_0 (t)dt + 0. 

I 

Convergence of E(S0,•) and S(O)(s0,·) and finiteness of J >,_ 0 (t)dt deals 

with (i) irrnnediately. For (iib), we note that 0 

by condition C. Finally, the quantity on the left hand side of (iia) is 

bounded by 

13 
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fl I n 
- I 
n l=I 

0 
2 -ox But x e + 0 as x + + 00 • So for any n > O, for large enough n this quan-

tity is bounded by n fb A0 (t)dt. 
-1 

This shows that n 2U{B0,•) converges weakly to a certain continuous 

Gaussian process. Since this process evaluated at time t = I has covariance 

matrix E, the first part of the proof is complete. 

For the second part of the proof note that 

I 

-I * I * n I(B ,I)= V(B ,t) 
dN(t) 

n 
0 

and that 

Hence 

(3. I) 

(3. 2) 

I 
( (0) 

E = j v(B0 ,t)s (B0 ,t)A0(t)dt. 

0 

I 

I 

f cvcs*,t) 
0 

* dN - v(B ,t)) -(t)II 
n 

J * dN + 11 c v c s , t ) - v c s O , t) ) n< t) 11 

0 
I 

+ II I v(Bo,t) (~(t) - A~t)dt)II 

0 
I I (O) (O) 

+ II v(B0 ,t)(S (80 ,t) - s (B0 ,t))A0 (t)dtll. 

0 

First we show that lim 
ct00 

lim P[N(I) > c] = O. 
n 

n➔oo 

By consequence (I.I) of Lenglart's inequality, 

I 
P[N(l) > c] :;; i+ P[ 

J 
s(O)(Bo,t)Ao(t)dt > oJ. 

n C 

0 



For o > J~ s(O) (S0 ,t)A0 (t)dt the latter probability tends to zero as n ➔ 00 ; 

and the required result now follows easily. Next, by Band the boundedness 

conditions in D, it follows that 

p 
sup HV(B,t) - v(B,t)U + 0. 

tE[O, I J 
BEB 

Hence * p B ➔ Band (3.2) imply that the first term on the right hand side of 
0 

(3. l) converges in probability to zero. 

Again, (3.2) together with the continuity in B, uniformly int, in 

condition D implies that the second term on the right hand side of (3.1) 

is also asymptotically negligible. 

For the third term we use consequence (I.2) of the inequality of 
Lenglart. We have 

l l 

P[I f dM I v .. (s0 ,t) -(t) > oJ ~ 
iJ n 

1 f 2 PC - v .. < s0 , t) 
n 1.J n 

0 0 

Thus condition B plus the boundedness conditions in A and D show tha't this 

term disappears too. 

Finally the fourth term on the right hand side of (3.1) converges in 

probability to zero by directly-applying .conditions A, Band D. 

Note that this proof actually yields the stronger result 

supU l I(s*,t) - I(t)U f 0 
t n 

□ 

COROLLARY 3.3. (Consistency of estimator of asymptotic covariance matrix of 

n 2 (s-s0)) 

-1 ,.. p 
n I(B,l) + L 

PROOF. See the last part of the proof of Theorem 3.2. D 

15 
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! ... 
THEOREM 3.4. (Weak convergence of n 2 (A-AO)). 

! ... 
n 2 (B-s0) and the process equal in the point t to 

t 

n 2(A(t) - Ao(t)) + n½(S-Bo)' I e(Bo,u)\o(u)du 

0 

are asymptotically independent3 the latter being asymptotically distributed 

as a Gaussian martingale with variance function 

t 

J 'o(u) 
(O) du 

0 s (B0 ,u) 

PROOF. (See Section 2D). 

Note first that by Band the boundedness condition in D, 

* P[A0 = A0 on [0,1]] + I. 

! * So we need not consider the term n 2 (A0 - A0) in the equality (2.8). 

By precisely the same arguments as those we used to deal with I(s*,1) 

in the preceding proof, we can now show that 

for any 

It 

jointly. 

t 

IIH(B*,t) + f e(B0 ,u) \ 0 (u)dull sup 
tdO, I J 0 

s* such * p that B + s0• 

remains to apply Theorem I.2 to 

n- 2u(s0 ,•) and J 
0 

_! -
n 2 dM(u) 

S(O)(B0 ,u) 

p 
0 + 

By orthogonality of these two local square integrable martingales we 

need only consider verifying (I.3) and (I.4) for the second of the two; i.e. 

we take p = 1 and H1l(t) = n-½/s(O)(B0 ,t). 

But 



t 

H1l(u) 2Al(u)du = I 
0 

(giving (I.3)), and 

is zero on the complement of the event 

l 
~ n 2 s for all t}. 

So by conditions Band D, (I.4) holds too. 0 

17 

COROLLARY 3.5. (Consistency of estimator of limiting covariance function of 

n2(A-J\o).) 

sup IIH(S,t) 
tdO, I J 

where His given by (2.9). 

t -I e(Bo,u) Ao(u)dull f 0 

0 

PROOF.It was indicated how this could be proved at the beginning of the 

proof of Theorem 3.4. 0 

4. SOME SPECIAL CASES 

Before considering some special cases of our model in detail, we shall 

give a general discussion of our conditions. 

A. (Finite interval). From a practical point of view this condition is hard 

to justify. One would like to use all the observations on the whole line 

[0, 00), and since in general we will have f; A0 (t)dt = 00 , the infinite 

interval case cannot be derived from the finite interval case by a simple 

mapping. Also in general we will have s(O)(t) ➔ 0 as t ➔ 00 , so condition D 
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also prevents easy extension to [O,m). 

An identical problem arises when other statistical methods for analys­

ing censored data are described from the point of view of counting processes, 

see GILL (1980) or ANDERSEN et al. (1981). In those cases some extra condi­

tions have to be made ensuring that the contribution to the test statistics 

from the data on [.,m) can be made arbitrarily small, uniformly inn, by 

taking T large enough. In Theorem 4.2 we shall give such an extension in 

the special case of bounded covariates, only sketching the proof through. 

Our finite interval condition is also present, explicitly or implicitly, 

in the cases studied by TSIATIS (1981a), NIES (1981a, 1981b) and BAILEY 

(1979). 

B. (Asymptotic stability). Up to the uniformity in S, and to a lesser extent, 

int, these conditions speak for themselves. Such conditions have been ... 
proposed in a heuristic proof of consistency of S by OAKES (1981). It may 

be noted that uniformity in Sis not required for consistency of B or for 

asymptotic normality of n-~ :slog L(S)I s=so· However it is to be expected 

that some kind of.c.onver£ence uniform in Swill be needed to ensure con-
-I 2 2 I vergence in probability of n a /as logL(S) S=s• 

C. (Lindeberg condition). This condition appears at first sight complicated, 

but in some important special cases it is very easy to verify. For instance, 

if the covariates are bounded, the condition is completely empty; if they 

are bounded by random variables having a bounded r'th moment for some r > 2 

it is also easy to verify. We shall see presently that in the special case 

of i.i.d. observations it is implied by a natural second moment condition. 

Finally the condition simplifies somewhat in the one-dimensional case 

p = 1; it is then equivalent to: 

_I p 
n 2 sup z;. (t)Y. (t) + 0 if So > 0 

i,t 
. 1. 1. 

-1 
-z . ( t) Y. ( t) 'f:. 0 n 2 sup if So < 0 

i,t 1. 1. 

_1 p 
n 2 sup lz.(t)IY.(t) + o if s0 = O. 

i,t 
1. 1. 

D. (Asymptotic regularity conditions) These conditions on boundedness, 

continuity, and interchanging of orders of various limiting operations do 
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not require any discussion. 

Finally some miscellaneous remarks. Note that the function A0(t) it­

self is never needed in the theorems or their proofs; we could replace 

A0(t)dt everywhere with dA0(t), where A0 is assumed continuous, nondecreasing 

and O = A0(o) < A0(I) < 00 • Next, a suitable choice of covariates yields as 

score test many of the standard (p+l)-sample tests in the literature of cen­

sored data, see LUSTBADER (1980) and OAKES (1981) for a discussion of this 

point in the case p = 1. Since we only need to work under B0 for this sta­

tistic, the uniformity in Bin the conditions may be relaxed. Finally, we 

have not discussed the asymptotic distribution of the generalized likeli­

hood ratio test. However, it is clear that our methods will give the 

expected results under the same conditions, see RAO (1973), Section 6e. 

The literature so far only contains rigorous treatments of the Cox 

model in what are essentially i.i.d. cases, and in order to show how power­

ful our methods are, we shall show here how conditions A to Dare satisfied 

in such cases. Four approaches deserve special attention. NlES (1981a, 1981b) 

employs martingale techniques in the model where (N~n) ,Y~n),Z~n)), i=l, ••• ,n i i i 
are i.i.d. replicates of (N,Y,Z) say. He works on a finite interval, with 

bounded covariates, which have to satisfy a Lipschitz condition if A0 is 

to be estimated too. TSIATIS (1981a) works also in an i.i.d. set up with 

Z I-dimensional and time independent though possibly random. He also has 

a finite interval condition and further a second moment condition 

E[z2e2BZJ < m for Bin a neighbourhood of Bo• This is stronger than what 

would be a natural condition here, E[z2eBZJ < 00 for Bin a neighbourhood 

of B0• LIU and CROWLEY (1978) discuss a situation in which, in each of a 

finite number of independent strata, (N~n) ,Y~n) ,Z~n)) are i.i.d. and Z~n) 
i i i i 

is time independent and non random. They do not make a finite interval 

assumption; however their proof is extremely complicated. Finally BAILEY 

(1979) assumes fixed censoring imposed on an i.i.d. situation: i.e. one 

observes i.i.d. replicates of (N,Y,Z) on intervals [O,t~n)J, i=l, ••• ,n. 
i 

All these authors work in the original life testing situation considered by 

C ' N(n) k ' V ' ' d . ox: i.e. i ma es at most one Jump. arious in ependence assumptions are 

also made. In each case our counting process model is applicable. 

We shall consider the i.i.d. case in detail: (N~n) ,Y~n) ,z~n)) are 
i i i 

i.i.d. replicates of (N,Y,Z). We suppose that Y and Z are left continuous 
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processes with right hand limits, which will allow us to apply laws of 

large numbers for the space D[O,I] (after reversing the time axis!). It will 

be obvious (taking the results of Appendix 3 into account) how to make 

either or both of the following extensions: i.i.d. case within each of a 

finite number of independent strata, a positive limiting fraction of obser­

vations in each stratum as n ➔ 00 ; and the case where (N~n) ,Y~n) ,Z~n)) are 
l. l. l. 

observations of 
(n) [O,t. ], where 
l. 

independent replicates of (N,Y,Z) on fixed intervals 

the distribution of the t~n),s converges as n ➔ 00 • Thus 
l. 

all the cases considered by the above authors are covered. 

THEOREM 4.1. In the i.i.d. case with Zand Y left continuous with right 

hand limits, conditions A to Dare staisfied if: 

I 

( 4. I) J "o (t)dt < oo, 
0 

there exists a neighbourhood B of s0 such that 

(4. 2) 

(4.3) 

and 

(4.4) 

2 B'Z(t) 
sup Y(t)IZ(t)I e J E[ < oo, 

tdO, I J 
BEB 

P[Y(t) = l Vt E [O,I]] > o, 

I is positive definite, where s(O), s(I) and s(2) 

are now defined by 

s(O)(B,t) = E[Y(t)eB'Z(t)J 

s(I)(B,t) = E[Y(t)Z(t)eB'Z(t)J 

s(2)(B,t) = E[Y(t)Z(t)02ef3'Z(t)J. 

PROOF. By (4.2) we also have 

E[ sup Y(t)jZ(t)leB'Z(t)J < oo 

tdO, l J 
BEB 



and 

E[ sup Y(t)eS'Z(t)J < oo. 

tE[0,1] 
SEB 

By dominated convergence s(O) ,s< 1) and s(s) are continuous functions of 

a EB for each t E [0,1], uniformly int E [0,1]. They are also bounded 

on Bx [0,1] and by (4.4) s(O) is bounded away from zero on Bx [0,1]. 

Without loss of generality we may take B to be compact. We can consider 

Y(t)eS'Z(t) as a random element of D[O,l], where the elements of D[0,1] 

take values not in E. but in the Banach space of continuous functions on 
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B endowed with the supremum norm. Then by Theorem III.I, condition B holds 

for S(O); the same argument works for S(l) and s< 2). 

This leaves condition C (The Lindeberg condition) to verify. First 

note that if x1,x2, ••• are i.i.d. random variables wfth E[XiLJ < oo, then by 

the central limit theorem it holds that . sup n- 2 lxi-EX. I g Oas n ➔ 00 ; 

-! p i=l, ••• ,n i 
which implies that . sup n jx. I ➔ 0 as n ➔ 00 • Thus in the i.i.d. case, 

i=l, .•. ,n i 
condition C holds if there exists o > 0 such that 

E[ sup Y(t)IZ(t)l 2I{BoZ(t) > -olZ(t)l}J < 00 • 

tE[0,J] 

Now choose o such that the closed cube of side 2o, centre a0, is contained 

in B. Then 

BoZ(t) > -olZ(t)I => 38 EB such that B'Z(t) > O; 

simply choose the j'th coordinate of S to be (SO)j + o if (Z(t))j ~ O, 

(S0)j - o if (Z(t))j < O. Thus 

sup Y(t)IZ(t)j 2e8'Z(t) ~ Y(t)IZ(t)l 2I{SoZ(t) > - o!Z(t)I}; 
SEB 

and condition C holds oy (4.2). D 

Next we shall see how in the i.i.d. case with bounded covariates one 

can extend the results to the infinite interval [0, 00). As an example we 
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shall sketch the proof of an extended version of Theorem 3.2, but also 

Corollary 3.3, Theorem 3.4 and Corollary 3.5 generalize in the obvious 

fashion. Eis now defined by integration over [0, 00). 

THEOREM 4.2. Suppose in the i.i.d. case~ given in Theorem 4.1 3 Z is bounded 

and EN(00 ) < 00 • Then if Sis Cox's estimator of 8 based on the observations 

on [0, 00 ) instead of only on [0,1], 

provided only that E ~s positive definite3 and that for each T < 00 , 

P[Y(t) = I Vt~ T] > o. 

PROOF. Since EN(00 ) < 00 , we also have 
(X) 

f s0z(s) 
E Y(s)e A0 (s)ds 

0 

So by boundedness of Z and the condition on Y, it must be that f~ A0 (s)ds < 00 

for each T < 00 • Thus the conditions of Theorem 4.1 are satisfied on the 

interval [0,T] for each T < 00 • 

To extend to [0, 00 ] we must show that throughout the proofs, the con­

tribution from (T, 00 ) can be made arbitrarily small, uniformly inn, by 

choosing T large enough, see GILL (1980) Theorems 4.2.1 and 4.3.l or 

ANDERSEN et al. (1981) Theorem 3.1 for examples of this technique. We 

illustrate it here by considering one of the simplest such cases where this 

must be done. This is in the proof of Theorem 3.2 where we must show that 

in particular 

00 

lim limsup P[ J II s(2) (a0 ,t)II A0(t)dt > e:J = 0 
,too n-+<x> 

T 

for any s > O. 

By boundedness of Z we may consider proving instead 

lim limsup 
T t 00 n-+<x> 

00 

P[f l I 
n i=l 

T 



Now 

E[ 
n 

= 

£ 

n 
t. l N.(00 ) - N.(T)] li= l l 

£ 

➔ 0 as T too. 

The quantity su2(I(S, 00) - I(S,T)) in the proof of Theorem 3.2 may be 
SEtS 

dealt with similarly. D 
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EXAMPLE. Finally we shall consider an example concerning admissions to 

psychiatric hospitals among women giving birth (ANDERSEN & RASMUSSEN (1980)). 

In that study it was investigated who among the about n = 70,000 Danish 

women giving birth to a child in 1975 had been admitted (possibly more than 

once) to a psychiatric hospital in the period from 1 October 1973 to 31 

December 1975 and the dates of admission and discharge respectively were 

registered. Moreover information on such demographic factors as age, marital 

status and parity(= number of children born before 1975) was available. 

Due to the fact that the exact date of birth was known only for the women 

who were actually admitted during the time span considered reliable in­

formation on admissions was only available in the time interval ranging from 

- 15 months= - 456 days to 12 months= 366 days relative to the date of 

birth, and hence that interval is the relevant one to consider. 

Let Y.(t) = 0 if woman i (i=l, ... ,n) is resident in a psychiatric 
i 

hospital at time t relative to the date of birth (- 456 days$ t $ 366 days) 

and let Y.(t) = 1 otherwise; let N.(t) be the number of admissions for 
i i 

woman i in the interval [- 456 days, t] •. For each woman i = 1, ••• ,n we 

consider the two state Markov process model: 

a.. ( t) 
i ) 

"µ.(t) 
i 

not admitted admitted 
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where a.(t) and µ.(t) are the forces of transition. It follows that N.(t) 
l. l. l. 

is a counting process with intensity process A.(t) = a.(t)Y.(t) (cf. 
l. l. l. 

AALEN (1978), p. 709). In the following we assume that this intensity process 

has the form (2.1), i.e. 

A. (t) 
l. 

i = 1, ••• ,n, 

where the information on demographic variables and admissions prior to time 

t for woman i is collected in the vector Z.(t). 
l. 

First we consider a model (Model I) where only the parity of the woman 

and the time relative to the date of birth are assumed to influence the 

probability of being admitted to a psychiatric hospital and we define the 

(time independent) covariates 

f if woman l. has parity 0 

zit = 1 0 otherwise 

{ 
if woman i has parity 2 

zi2 = 
0 otherwise 

J if woman i has parity 2: 3 

zi3 = 1 
, 

0 otherwise 

A0 (t) being the force of transition for women with parity 1. The estimated 

regression coefficients in Model I are given in Table 1 (numbers in brackets) 

together with their estimated standard errors and correlations. 

TABLE I. Estimates in Markov process models 

_,,.. ! estimated correlations 
A 

l. covariate z. so var(B0) 2 2 3 4 5 
l. 

parity 0 0.094 0.010 1 
(0.09-0) (0.099) (1) 

2 parity 2 0.202 0. 131 0.42 1 
(0.253) (0.130) (0.43) (I) 

3 parity 2: 3 0.458 O. 168 0.32 0.30 1 
(0.641) (0.157) (0.36) (0.27) (I) 

4 age ~ 18 years 0.116 0.238 -0.16 0.01 0.00 1 
5 age > 3Tyears 0.601 o. 162 0.04 -0 .13 -0.35 0.02 
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From Table l it seems that the intensity of being admitted is much 

larger when parity exceeds 2 but also the women with 2 children seem to have 

a-somewhat increased intensity compared to those with parity l or O. The 

Wald test statistic for the global null hypothesis (S 1,s2,s3) = 0 takes the 

highly significant value 18.34 with 3 degrees of freedom in fairly close 

agreement with the value of the likelihood ratio test statistic 16.22. 

As mentioned above the counting process generalizations of the usual 

nonparametric k sample tests for censored survival data may be obtained as 

score tests by appropriate choices of stochastic covariates. In the present 

example the generalized log-rank test statistic takes the value 24.52 where­

as the value of the generalized Kruskal-Wallis test is 21.05 (see ANDERSEN 

et.al (1981), Section 3F). We conclude that parity has a highly significant 

influence on the intensity of being admitted to a psychiatric hospital. 

Consider next the model (Model II) obtained by introducing the age of 

the women in the model by means of the two covariates 

f 1 if woman i is~ 18 years old 

Zi4· = l O otherwise 

= J 
1 0 

if woman i is> 34 years old 

otherwise 

A 

The estimates for Model II are given in Table 1. By comparing s5 with its 

estimated standard error it seems that the intensity of being admitted is 

increased for the older women compared with the younger ones. Furthermore 

the influence of parity has diminished compared to Model I; this is of 

course due to the positive correlation between parity and age, which is 

reflected for example in the fairly large negative estimated correlation 

coefficients: -0.16 between s1 and s4 and -0.35 between s3 and s5 • The 

Wald test statistic for no influence of age when parity is included in the 

model takes the value 14.01 with 2 degrees of freedom compared to the 

value 12.28 of the likelihood ratio test statistic. The Wald test statistic 

for no influence of parity when age is included in the model takes the 

value 8.04 with 3 degrees of freedom, and we conclude that both age and 

parity have a significant influence on the intensity of being admitted 

in spite of the positive correlation between these two covariates. 
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Finally we consider a model (Model III) where the psychiatric past of 

the women is introduced by means of the time dependent covariate 

zi6(t) = { 

if woman i has been resident in a psychiatric hos­
pital during the month [t-30 days,t), 

0 otherwise 

Since the probability of being admitted in this model depends on the 

time since latest admission, Model III is a semi-Markov model rather than 

a Markov model as Models I and II. The estimates in Model III are given 

in Table 2. 

TABLE 2. Estimates in semi-Markov process model 

............. - ! 
estimated correlations 

i covariate z. s. var($.)2 2 3 4 5 i i i 
l parity 0 0.036 o. 102 l 
2 parity 2 0.252 0. l 32 0.42 l 
3 parity z 3 0.473 O. I 67 0.32 0.30 
4 age::; 18 years 0. l l 3 0.251 -0. l 6 0.02 0.01 l 
5 age> 34 years 0.473 O. l 60 0.03 -0.13 -0.33 0.01 l 
6 admission during 6. 13 0. 133 -0. 03 0.02 -0.01 0.02 0.01 

latest month 

6 

From Table 2 we first notice the marked influence of prior admissions 

reflected by the value s6 = 6.13 with an estimated standard error of 0.133. 

The estimated effects of age and parity are practically unchanged compared 

with Model II, and we conclude that the oldest women and women with high 

parity, i.e. women who have terminated their "birth carrier", have the 

highest intensity of being admitted to a psychiatric hospital in connection 

with another pregnancy which is being carried to term. Furthermore prior 

admissions increase the risk of being admitted again. 
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APPENDIX I. 

All stochastic processes are defined on the time interval [0,1]. 

THEOREM I.I. (Two applications of the inequa,lity of Lengla.Pt) 

(a) Let N be a univa.Piate counting process with intensity process A. Then 

for all o, n > 0 

(I. 1) 

1 

P[N(t) > nJ ~ ~ + P[ f A(t)dt > oJ 
0 

(b) Let W be a local squa,re integrable ma.Ptingale. Then for all o,n > O 

(I.2) P[ sup lw(t)I > nJ ~ ; + P[<W,W>(l) > o] 
tE[0,1] n 

THEOREM I.2. (Application of ReboUedo 's Central Limit Theorem for local 

squa.Pe integrable ma.Ptingales). 

For each n = 1,2, .•. let N(n) be a multivariate counting process with 

n components. Let H(n) be a p x n (p ~ 1 is fixed) matrix of locally 

bounded predictable processes. Suppose that N(n) has an intensity process 

A(n), and define local sqUa.Pe integrable ma.Ptingales W(n) = (W~n) , ... ,w;n)) 

by 

t 

wfn)(t) = f .e.It Hit)(u)(dNjn)(u) - Ain)(u)du). 

0 

Let A be a p x p matrix of continuous functions on [0,1] which form.the 

cova.Pianee functions of a continuous p-Va.Piate Gaussian ma.Ptingale w<00
) 3 

with w<00)(0) = 0: 

• ( (oo)( w<.oo)(u)) ( ) ~.e. cov w. t), = A •• t Au 
i J iJ 

for all i,j,t and u. 

(I.3) 

Suppose that for aU i,j and t 

t 

<W~n),w~n)>(t) = J I 
i J l=l 

0 

asn+oo 
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and that for aZZ i and E > 0 

1 

(I.4) f I H~n)(t) 2A(n)(t)I{IH~n)(t)I 
l=I il l U 

0 

Then W(n) £ W(oo) as n + 00 in D([O,l]P). 

p 
> ddt + o as n + 00 • 

These two results have each in different ways been slightly extended 

with respect to the originals. In the first place Theorem I.I is only a 

direct application of Lenglart's inequality when E[N(l)] < 00 in (I.I) or 

E[W(t) 2J < 00 in (1.2). In our situation we only know that a sequence 

T 1 ::; T2,::; ••• ::; of stopping times exists, P[Ti = 1 J ➔ I as i ➔ co, such 

that E[N(T.)] < co or E[W(T.) 2] < co for all i. So the inequality of Lenglart 
1 1 

does directly apply to the "stopped" processes, N(t AT.) and W(t AT.). 
1 1 

Letting i ➔ 00 then gives our versions. 

Theorem I.2 has been extended by making the original univariate theorem 

into a p-variate theorem. This extension can be done by standard Cramer­

Wold type arguments, see for instance AALEN (1977), Lemma A.I for a similar 

extension worked out in detail. 
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Point wise convergence in probability of random concave functions 

implies uniform convergence on compact subspaces. 
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The "almost sure" version of this theorem is a direct consequence of 

ROCKAFELLAR (1970) Theorem 10.8. However for an "in probability" result we 

must be more careful. The following "diagonalization method" was pointed out 

by T. BROWN. 

THEOREM II. 1. Let E be an open convex subset of JRP and let F 1 ,F 2 , ••• ,be 
nd . h . p a sequence of ra om concave funct~ons on E sue that Vx EE, F (x) + f(x) 

n 
as n + 00 where f is some real function on E. Then f is also concave and 

for aU compact A c E, 

sup IF (x) - f(x)I r Oas n + 00 • 

xEA n 

PROOF. Concavity of f is obvious. Next let x 1 ,x2 ••• be a countable dense 

set of points in E. Since Fn(x1) r f(x 1) as n + 00 there exists a subsequence 

along which convergence holds almost surely. Along this subsequence 

Fn(x2) ! f(x2) so a further subsubsequence exists along which also 

Fn(x2) a➔s. f(x2). Repeating the argument, along a (sub)k sequence, 
a.s. 

F (x.) + f(x.) for j = 1, ••• ,k. Now consider the new subsequence formed 
n J J 

by taking the first element of the first subsequence, the second of the 
a.s. 

second, etc. Along the new subsequence we must have F (x.) + f(x.) for 
n J J 

each j = 1,2, •••• 

By ROCKAFELLAR (1980) Theorem 10.8 it now follows that 

supjF (x) - f(x)I n 
XEA 

a.s. 
+ 0 along this subsequence, 

We have shown more generally how, from any subsequence, a further subse­

quence can be extracted along which supjF (x) - f(x)I a+s. O. It now follows 
XEA n 

that 

supiF (x) - f(x)I r O along the whole sequence. □ 
xEA n 
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COROLLARY II.2. Suppose f has a unique ma:x:imum at x EE. Let X ma:x:imize 
- p - n 

F. Then X + x as n + 00 • 
n n 

PROOF. The proof, a simple E - o argument, is left to the reader. D 
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Extension of SLLN for D[0,1]. 

Let X; x1 ,x2, ••• be i.i.d. random elements of D[O, 1 J with EDXII = 

E suptE[O,l] jX(t)I < 00 • Then by Theorem 1 of R. RANGA RAO (1963) we have 

almost surely 

n 
II 1 l 

n i=l 
x. - Exll + 0 as n + co. 

l. 
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We need to extend this result in two directions. Firstly we must allow the 

random elements of D[0,1] to be random functions not from [0,1] to lR but 

from [0,1] to the space of continuous real functions on 8, where Bis a 

compact neighbourhood of a0 E ]RP. If we endow this space of functions with 

the supremum norm it becomes a separable Banach space, and that will be all 

the structure we need. 

Secondly we must allow for censoring. To tie in with the usual right 

continuity convention for D[0,1], we shall consider Zeft censoring: X. 
l. 

is only observed on an interval [tf,1], or more generally, in a triangular 

array scheme, on [ti(n) ,I] or [Tin ,I] for fixed or random times tin) or 

T~n) respectively. 
l. 

THEOREM III.I. Let X; x1,x2 ••• be i.i.d. random elements of DE[O,l] (en­

dowed with the Skorohod topoZogy) where the eZements of DE[0,1] are right 
continuous functions on [0,1] with Zeft hand Zimits taking values in a 

separabZe Banach space E (rather than the usuaZ lR). Suppose that Ell XII = 

E suptE[O,l] IIX(t)II < 00 0 

For each n, Zet t}n)~ ••• ~t~n) be fixed time instants in [0,1]. Let 

Yin)= I[tfn),l] and suppose there exists a distribution function y such 

that~ on [ O, 1 J , 

l n (n) - l y. - yll + 0 as n + co 

n i=l 1. 

Then 
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n 
11 _!_ I X. y~n) - EXyll + 0 almost su:t'ely as n + co. 

n i= 1 1 1 

PROOF. Note that DE[0,1], just like DR[0,1], is separable and complete with 

respect to the Skorohod d0-metric (see BILLINGSLEY (1968) Section 14, 

replacing 1•1 where appropriate with II •II). Thus any random element of 

DE[0,1] is tight (BILLINGSLEY (1968) Theorem 1.4). Also Xis a random 

element of DE[0,1], provided that its sample paths have the correct proper­

ties and that X(t) is a random vector for each t E [0,1]. The characteriza­

tions of compact sets of DR[O,I] given by BILLINGSLEY in Theorems 14.3 and 

14.4 do not carry over directly to DE[0,1], since in Ea closed, bounded 

set is not necessarily compact. However it can be verified that the condi­

tions given are still necessary for compactness, even if not sufficient 

any more. 

We shall make use of the following three properties of DE[0,1] corres­

ponding to properties used by RAO (1963) in the case E = R: 

(i) Vs YO, V compact Kc DE[0,1], 38 > 0 such that x EK and 

(ii) 

(iii) 

a ~ t < i3 ~ o =ii, llx(t)-x(a)II ~ llx(i3-)-x(a)II + s. (BILLINGSLEY 

(1968) Theorem 14.4, necessary condition for compactness, see 

above) 

E[IIXII] < co •Vo> 0 3 0 = to 

for all j , I t. 1-t. I < o and 
J+ J 

as in RAO (1963) Lemma 2) 

E[IIXII] < 00 • E[IIXIII{X i K}J 

< t 1 < ••• < tN = I such that, 

E[IIX(t. 1-)-X(t.)II J ~ s. (Proof 
J+ J 

can be made arbitrarily small by 

suitable choice of compact Kc DE[O,l]. (Tightness of random 

elements of DE[O,l], see above). 

Given compact Kc DE[0,1] and£> 0 choose o by (i). There exists a finite 

partition of [O,l) such that y(l3-)-y(a) <£for each interval [a,13) in the 

partition. By applying (ii) for each interval in the partition separately, 

we can find 

ly(t. 1)-y(t.) I < £ and E[IIX(t. 1-)-X(t.)II J < £ 
J+ J J+ J 

for each j=O, ••• ,N-1. 



Since trivially IIEX( .!_ 11:_1 y~n)--y)II-+ 0 as n + 00 , it suffices to 
1 n( )1.- 1. 

consider II- 11: 1 (X.-EX)y.n II. For any t E [0,1), let [a,S) be the n i= 1. 1. 

[t.,t. 1) interval containing t. Then 
J J+ 

where 

n 

1 
n i=1 

(X. (t) - EX(t))y~n) (t)II s E:K(t) + 
1. 1. n 

n 
1 llx.llr{x. i K} + E[llxllr{x i K}J 

n i= 1 1. 1. 

n 
K E: (t) = 
n 

I (X.(t)I{X. EK} - E[X(t)I{X E K}])y~n)(t)II 
n i=l 1. 1. 1. 

.!_ I (X.(a)I{X. EK} - E[X(a)I{X e K}])y~n)(t)II 
n i=l 1. 1. 1. 

n 
+ - L IIX.(S-) - X.(a)II + E[IIX(S-) - X(a)IIJ + 2E: 

n i= 1 1. 1. 

n 
s II.!_ l (X.(a)I{X. EK} - E[X(a)I{X E K}]y~n)(a)II 

n i=l 1. 1. 1. 

+ .!_ i IIX.(a)II (y~n)(S-) - y~n)(a)) 
n i=1 1. 1. 1. 

n 
+ - I 

n . 1 1.= 

1 n 
+ - I 

n i=1 

EIIX(a)II (y~n) (S-) 
1. 

y~n)(a)) 
1. 

IIX.(S-) - X.(a)II + 3E:. 
1. 1. 

Now suppose U;U 1,u2, ••• are i.i.d. separable Banach space valued random 

variables with E[IIUII] < 00 • By the SLLN for separable Banach space 

(MOURIER (1953)) we have.!_ ,1; 1 U. + EU almost surely as n + 00 • n l1.= 1. 

We want to show that we now also have 

n 

n 
I U.y~n)(a)-+ EUy(a) almost surely as n + 00 • 

i=1 1. 1. 

Define k(n,a) = max{i:t~n) ~ a}. Then 
1. 

33 
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n 
, U (n)() = k(n,a) 
l iyi a n 

n i=I 

,~(n,a) U. 
li=l 1 

k(n,a) 

where k(n,a)/n + y(a) as n + 00 • If k(n,a) + 00 as n + 00 then the required 

result obviously holds. Also if k(n,a) remains bounded as n + 00 (which im­

plies, but is not implied by, y(a) = 0) then the required result again holds. 

Since from any subsequence(~) we can always select a further subsequence 

along which either k(n,a) + 00 or k(n,a) is bounded as n + 00 , the result is 

true generally. 

Applying this result 

lim sup sup 
n➔oo tda,S) 

we see that 

2EIIX(a)II (y(S-) - y(a)) + 4E 

and hence, again applying the SLLN, (and treating t = 1 separately), 

lim sup 
n-+= 

sup 
tdO, I J 

n 

I 
n i=I 

(X. (t) - EX(t))y~n) (t)II s 
1 1 

s 2EEllxll + 4E + 2E[llxllr{x i K}J. 

Since E and K were arbitrary, by (iii) the theorem has been proved. D 

(n) (n) 
COROLLARY III.2. Suppose that for each n, x 1 , ••• ,xn are i.i.d. elements 

of DE [ 0, I J with the same distribution as X; suppose that Ell xii < 00 • Suppose 
(n) (n) . 

also that for each n, T1 , ••• ,Tn are ~ndependent censoring times in 

[O,I], independent also of the X~n)'s; suppose that their average distri-
1 

bution function 

I n 
- I 
n i=l 

P[T~n) st] 
1 

converges uniformly int to some distribution function y. Then 

n (n) 
l xi I[T~n),IJ 

n i=l 1 

Exyll f 0 

as n + 00 • 



PROOF. ByV.AN ZUIJLEN (1978) Theorem 2.1 and Corollary 3.1 we have 
I ,n 
n li=I I[Ti(n),I] converges in the supremum norm toy, in probability, as 

Thus by a Skorohod-Dudley construction (see WICHURA (1970)) we can 

construct a new probability space on which are defined 

n = 1,2, ••• , and x1,x2, ••• such that 

~(n) 
T. , i = 1, ••• ,n, 

1 

(i) x1,x2 , ••• is independent of Tin), i = 

(ii) i}n) ;;,,: T~n) ;:::: ••• ;:::: T~n) almost surely 

1, ••• ,n, n = 1,2, ••• 

n 
( ••• ) 1 t 111 - l 

n i=l 
and 

n 
(iv) I 

n i=l 

I[T~n), I J 
1 

converges almost surely uniformly toy 

~ V 1 n 
X.I[T(n) I]= - l 

1 i ' n i=l 

On this new probability space we can apply Theorem III.I (or rather its 

proof, since in the theorem the T~n),s were supposed to be non random; 
1 

however this played no part in the proof), to give 

n 
II.!_ l Xi I[T~n),l] - EXyll + 0 almost surely. 
n i=l 1 

Therefore we also have 

n 
II .!_ , (n) ( ) E II O . b b · 1 • D n .l1 Xi I[T.n ,I] - XY + 1n pro a 1 1ty. 

1= 1 

35 
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