
stichting 

mathematisch 

centrum 
~ 
MC 

AFDELING TOEGEPASTE WISKUNDE TW 130/71 SEPTEMBER 

P.J. VAN DER HOUWEN, P. BEENTJES, K. DEKKER 
and E. SLAGT 
ONE STEP METHODS FOR LI NEAR INITIAL VALUE PROBLEMS I I I 
NUMERICAL RESULTS 

2e boerhaavestraat 49 amsterdam 



P.Jun.ted a.t :the Ma.thema.tica.£. Ce.n.tti..e., 49, 2e. BoeJr.ha.a..vu.tJr.a.a;t, ~.teJLd.am. 

The Ma.:th.ema.tica.£. Cen:tlt.e, 6ou.nded :the 11-:th 06 FebJtuJVty 1946, L6 a. non­
p11.00a w:tl:tu.ti.on a.i.m.i.ng a.t :the. pMmo.ti.on 06 pwr.e. ma.thema.ti..C4 a.nd .i:t6 
a.pp.Uc.a.t.lon.6. I.t L6 .6pon1,011.ed by :the Ne.th.eJti.and.6 Gove.JLnme.n.t .thlt.ou.gh :the 
Ne;the,'1.i.ancU 011.ga.nlza.tion 6011. :the Adva.ncemen.t 06 Pu.JLe. Ruea.11.ch lZ.W.O), 
by :the. Mwtlc.lpai.,i,.ty 06 A,n!).te.JLda.m, by :the Unlve/t.6,i,.ty 06 Am.6.te.!Lda.m, by 
:the. F:!.ee Uni..veM,i,.ty a.t A,n!).te.JLdam, a.nd by -i..nd.u.-6.tluu. 



1 

Contents 

1. Introduction 

2. 

3. 

4. 

5. 

6. 

The modified Taylor method 

2. 1 Procedure modified taylor 

2.2 Procedure difference scheme 

2.3 Procedure local error construction 

2.4 Procedure local error bound 

2.5 Procedure stepsize 

2.6 Procedure coefficient 

,·2. 7 Real procedure normfunction (norm,w) 

A single ordinary differential equation 

3.1 The initial value problem U = -etU+etlnt+1/t 

3.2 The difference scheme 

3.3 Variation of the step size 

3.4 Accuracy 

3. 5 Weak and strong stability 

Hyperbolic differential equations 

4. 1 The equation U = .lu t 2 X 

4.2 The equation ut = tux 

Parabolic differential equations 
. -t( 10 8 ) 5.1 The equation Ut = U +e x +90x -x 

xx 1 
5.2 The equation Ut = (aU+b) (U + -U) rr r r 

The exponential fitted Taylor method 

6. 1 Procedure exponential fitted taylor 

6.2 Procedure difference scheme 

6.3 Procedure local error construction 

6.4 Procedure local error bound 

6.5 Procedure stepsize 

6.6 Procedure coefficient 

6.7 Real procedure normf'unction (norm,w) 

3 

5 
5 

12 

12 

14 

14 

17 

17 

19 

19 

19 

21 

25 

27 

33 

33 

39 

44 
44 
50 

53 

53 

59 

60 

64 

64 

66 

66 



7. 

8. 

2 

Numerical solution of stiff equations 
. . t t / 7. 1 '.rhe equation U = -e U+e lnt+1 t 

7. 2 '.L'wo coupled differential equations 

7.3 A third order differential equation 

7.4 A stiff equation from biochemistry 

Summa:ry of integration formulae using at most four derivatives 

References 

67 
67 
72 

77 
Bo 

81 

83 



3 

1. Introduction 

This paper contains the ALGOL 60 realization and a number of applica­

tions of some of the numerical integration methods described and analysed 

in references [3] and [4]. Two ALGOL 60 procedures are presented; proce­

dure modified taylor and procedure exponential fitted taylor. The applica­

tions are chosen in the fields of ordinary differential equations, inclu­

ding stiff equations, and of partial differential equations. 

Section 2 deals with procedure modified taylor; a definition of its 

parameters is given as well as an outline of the several subprocedures. 

Modified taylor chooses its step sizes automatically depending on the re­

quired;,.accuracy and the spectral radius of the system of differential equa­

tions to be solved. The storage requirements of the procedure are minimized 

which makes it an appropriate method for the integration of large sy~tems 

(1000 or more equations) such as the systems which arise when by discreti­

zing the space variables a partial differential equation is reduced to a set 

of ordinary differential equations. As a consequence,modified taylor does 

not reject an integration step when it turns out that the discrepancy ex­

ceeds the tolerance. On the other hand, a stability criterion, derived in 

the theoretical treatment of the modified Taylor method ([3] and [4]), is 

incorporated. It is here that the spectral radius of the system enters into 

the considerations. A further remark is that in those cases where the re­

quired order of accuracy pis less than the number n of the available deri­

vatives Qf the local solution (to be given by the user of the program), the 

discrepancy is estimated by the first neglected Taylor terms instead of the 

last correction term. 

In section 3 a number of experiments carried out on a simple ordinary 

differential equation are analysed. Attention is paid to the local error of 

the integrationmethod, weak and strong stability, and the consequences of 

the stiffness of a differential equation. 

Sections 4 and 5 are devoted to the integration of hyperbolic and pa­

rabolic differential equations, respectively. 

Finally, in section 6 and 7 the procedure exponential fitted taylor 

and its application to stiff equations are given. Unlike procedure modified 

taylor, exponential fitted taylor estimates the.discrepancy by the residual 
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term obtained when the local numerical solution is substituted into the 

differential equation. It turned out that for stiff equations such an esti­

mate is more realistic than an estimate based on Tqlor terms. 

The research presented in this paper was carried out by members of the 

Applied Mathematical Department (Van der Houwen, Slagt) and by members of 

the Computational Department (Beentjes, Dekker). The experiments were car­

ried out on the EL X8 computer of the Mathematical Centre. 
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2. The modified Ta.ylor method 

In this section we describe the ALGOL 60 version of the polynomial 

methods, with constant coefficients, as discussed in [3] and [4]. These 

methods can be used for the numerical integration of initial value pro­

blems of the type 

dU ( ) dt =H U,t , 

(2. 1) 

u = uo, 

where the fwlction H(U,t) is such that a sufficient number, say n, of deri­

vatives of U can be derived explicitly by repeated differentiation of the 

differential equation. For instance, linear initial value problems of the 

type 

dU 
dt =DU+ F, 

(2.1 1 ) 

u = uo, 

where D·is a matrix with constant entries and Fis an easy to differentiate 

fwlction, can be dealed with polynomial methods. 

The procedure modified taylor, discussed in the following subsections, 

represents the ALGOL 60 version of the polynomial method with constant 

coefficients. 

2.1 Procedure modified taylor 

Firstly, the heading of. procedure modified taylor and the meaning of 

its parameters will be given: 
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procedure modified taylor (t, te, mO, m, u, sigma, i, derivative, k, data, 

alfa, norm, aeta, reta, eta, rho, output); 

integer mo, m, i, k, norm; 

real t, te, sigma, alfa, aeta, reta, eta, rho; 

array u, data; 

procedure derivative, output; 

The actual para.meters corresponding to the formal para.meters are: 

t: <variable>; 

tis used as Jensen para.meter; 

when modified taylor is called t should have its initial value; 

te: <expression>; 

xp.O ,m: 

u: 

sigma: 

the end value oft; 

<expression>; 

indices of the first and last equation of the system to be 

solved; 

a one-dimensional array u[mO:m]; 

when modified taylor is called u should contain the initial 

values of the analytical solution U(t); 

<expression>; 

largest absolute value of those eigenvalues of the Jacobian D of 

the system which are not in the positive half-plane; 

sigma should be given by the user of the procedure; 

i: <variable>; 

a Jensen parameter for procedure derivative; 

derivative: a procedure to be declared by the user: 

procedure derivative (i,a); integer i; array a; 

<b,ody>; 
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data: 

alfa: 

norm: 
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i assumes the values 1, 2, ••• , n and a is a one-dimensional 

array a[mO:m]; 
when this procedure is called in modified taylor array a contains 

the components of the (i-1)-st derivative of U(t) at the point 

( t, u); 

upon completion of a call of derivative array a should contain 

the components of the i-th derivative of U(t) at the point (t,u); 

<variable> ; 

counts the integration steps; 

if k = O then the integration starts with a trial step 

. [ no iliU 
To= Min[j IH(to,uo>II , ~ ; 

if k > O. then the integration proceeds with a step based on the 

last three computed discrepancies; 

in the very first call of modified taylor it is required that 

k = O; 

a one-dimensional array data[-2: d.ata[-2]]; 

data [-2]: 

data [-1]: 

data [OJ: 

data [ 1 ], 

the number n of derivatives of U(t) to be used; 

order of accuracy of the method; 

stability para.meter S(n) (see references [3] and [5]); 
••• , data [data [-2]]: coefficients s., j = 1, ••• , n ., 

of the polynomial method (cf. section 8); 
<expression>; 

the step sizes Tk satisfy the condition Tk ~ alfa * Tk_ 1; 

<expression>; 

selects the norm according to which the discrepancy is estimated 

(see section 2.3); 

aeta,reta: <expression>; 

desired absolute and relative local accuracy; 

when both aeta and reta are negative modified taylor skips the 

accuracy conditions; 

eta: <variable>; 

the tolerance nk which is some function of aeta and reta (see 

section 2.4); 
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output: 
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<variable>; 

discrepancy used as an estimate for the local error produced in 

the last integration step; 

a procedure to be declared by the user: 

procedure output; 

<body>; 

by this procedure one mey order to print the values of e.g. 

t, u[m0], ••• , u[m], sigma, k, eta, rho; 

Next we give the body of procedure modified taylor. For a discussion 

of the procedures declared within modified taylor we refer to the following 

subsections. For the procedure vecvec one is referred to [2], section 

3.2.3. 

begin i:=O; 

begin integer n,p,q; 

own real ecO,ec1,ec2,tauO,tau1,tau2,taus,t2; --
!=!! tau, teui, tauec ,eel, betan,gemme.; 

real array c[Jm):m],beta,betha[l:data[-2]]; -
boolean atert,step1; 

procedure coefficient; 

b.egin integer j;~ ifac; 

ifac:=1; gamma:=. 5; n:=data[-2]; p:=data[-1]; 

betan:=data[O]; q:= _!! p<n ~ p+-1 else n; 

~ j :•1 step 1 until n do 

'begin beta[j]:=data[j]; ifac:=ifac/j; 

betha[j]:•ifao-beta[j] 

end; 

_!! p=n ~ betha[n] :=ifac 

end; 
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_!:isl. procedure normfunction(norm,w); 

~:gin integer j; reel. s,x; 

end; 

s:=O; 

if norJIP11 then 

begin ~ j: =mO step 1 until m ~ 

begin x:=a.bs(w[j]); if :x:>s then s:=x end 

end else 

s:=sqrt(vecvec(mO,m,o,w,w)); 

normfunction:=s 

E::ocedure locel. error bound; 

eta:=aeta+reta x normfunction(norm,u); 

J!!'OCedure locel. error construction(i);integer i; 

~:gin_!! i=p ~ begin ecl:=O;tauec:=1 end; 

end; 

if i>p+ 1 then tauec: =tauecXtau; 

ecl:=ecl+abs(betha[i])xtauecxnormf'unction(norm,c); 

if i=n then 

begin ec0:=ec1;ec1:=ec2;ec2:=ecl; 

rho:=eclXt~q 

end 

~~ocedure stepsize; 

~~gin~ tauacc,taustab.,aa,bb,cc,ec; 

local error bound; 

if eta>O then 

begin _!! start ~ 
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begin ,!! k-0 ~ 

begin integer j; 

~ j:-mO step 1 until m ~ c[j] :-u[j]; 

1:•1; derivative(i,c); 

tauacc:=eta/normf'unction(norm,c); 

step1:~ 

end else 

if step1 then - -
begin tauacc:=(eta/rho),t..(1/q)xtau2; 

if tauacc>10Xtau2 then 

tauacc:=10Xtau2 ~ step1:=felse 

end else 

begin bb:•(eca-ec1)/tau1; cc:=ec8-bbXt2; 

ec: =bbxt+cc; 

teuacc:=if ec<o then tau2 else 

· (eta/ec),t..(1/q); 

start:=felse 

end· 

end else 

begin aa:=((ec0-ec1)/tauo+(ec8-ec1)/teu1)/ 

( teu1 +teuO); 

bb:=(ec8-ec1)/tau1-ea><(2Xta-teu1); 

cc:=eca-t2X(bb+a.axt2); ec:=cc+tx(bb+txe.e.); 

teuacc:=,!! ec<o ~ taus ~(etafec),t..(1/q); 

if teuacc>elfeXteus then teuacc:•elfaxteus; -
,!! teuacc<gemmsXteus ~ teuacc: =gem:naxtaus; 
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if tauacc<.,.-12 x t then tauacc:• .,.-12 x t - -
end 

end else tauacc:•te-t; 

tauatab:•betan/sigma; 

_!! tauatab<.,.-12 x t ~ goto end of toodified tay].or; 

tau:•_!! tauac<!>taustab ~ taustab ~ tauacc; 

taus:=tau; _!! tau>te-t ~ tau:=te-t; 

tauO:•tau1;tau1:=tau2;tau2:=tau 

procedure difference scheme; 

begin integer j; ~ b; 

~ j:-mO step 1 until m ~ c[j] :-u[j]; taui:•1; 

next term: i:•i+1; derivative(i,c); taui:•tauiXtau; 

b:•beta[i]xtaui; 

-end; -

if eta>O A ~P ~ local error construction(i); 

for j:=mO step 1 until m do u[j]:-u[j]+bxc[j]; - - -- -
_!! i<n ~ goto next term; 

t2:=t; t:•t+tau 

start:• _!! k=O ~ ~ ~ false; 

coefficient; 

next level: 

stepsize; k:•k+1; i:=O; difference scheme; output; 

_!! t<te ~ goto next level 

end of toodified teylor: 
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2.2 Procedure difference scheme 

By this procedure the values of u[j], representing the components of 

the numerical solution'\_, are replaced by the components of '\+1• 

The procedure exactly follows the computational scheme given in [3], 

section 2.1. During t~e c~nstruction of '\+1, by sllllDning the successive 

correction terms Si T~ c~1 ), i = 1, 2, ••• , n, an estimate of the local 

error, i.e. the discrepancy, is build up by procedure local error construc­

tion. 

2.3 Procedure local error construction 

Procedure stepsize is based on estimates of the local errors 

I IPk(Tk)I I evaluated by procedure local error construction. Therefore, this 

procedure plays a central role in our calculations given in subsequent sec­

tions. 

The local error pk(Tk) is defined by (cf. [3], section 2.2). 

(2.2) 

~ where Uk+1 is the analytic~ solution and ~+1 is the numerical resul;t at 

the point t = tk+1 which would be obtained when the difference scheme is 

applied at the point (tk,Uk) (see figure 2.1). 

~ U' 

'\ I ......... 

:\ "u 
I 

I '\+1 
I 

t 
to tk Tk tk+1 

fig. 2.1 Local discretization error and discrepancy in a scalar case 
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However, as already observed in [4], section 2.2, it is not Pk which is 

available during the -integration process, but some approximation of the 

error 

~ (2.3) Pk(Tk) = 0k+1 - '\:+1' 

where uk+1 = U' (tk+Tk), U'(t) being the local analytical solution through 

the point (tk,11t>• We shall call pk(Tk) the discrepancy. In most cases the 

local error pk(~k) and the discrepancy are comparable. However, when the 

Jacobian of the differential equation has eigenvalues with a large negative 

real part, considerable differences may occur when the eigen:f\mctions 

corresponding to these "late" eigenvalues vanish rapidly in the analytical 

solution and when these eigen:f\mctions should continue to be present in the 

numerical solution. In such cases one may improve the approximation by 

using strongly stable methods in order to reduce the effect of the "late" 

eigen:f'u.nctions (compare section 3). 
The discrepancy pk(Tk) can be expressed as 

(2.4) + ••• 

1 (n) (n) n+1 
+ (- - S) ~k ck + O(Tk ). n! n 

Let p be the order of accuracy of the method, i.e. 

p+1 p'(T) = o(. ) 
k 

as • -+ O, 

and let p < n. Then we take as a measure for· the discrepancy the value of 

(2.5) 

I 1 I p+, 11 (p+,) 11 11 I n 11 (n) 11 + (p+1) ! - 6p+1 Tk ck +· • • • + n! - ·6n Tk ck • 

In the case of the modified Taylor method the first term of this· 

expression vanishes and, generally, the disc:ttepancy is mainly determined by 

the second term. However, when I lc~P+1)1 I has a zero near t = tk, the third 
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term is a measure for the discrepancy. In scalar cases such a situation is 

not fictitious. This means that it is dangerous to approximate the discrep­

ancy by onl.y the first neglected term. -Of course, when n = p+1 we have no 

choice and must hope for the best. Note that we have taken the sum of norms 

of neglected terms instead of the norm of the sum of these terms in order 

to be safe for zeroes of the sum function. 

Furthermore, it may be remarked that formula (2.5) generally holds for 

methods with varying coefficients as discussed in [4]. 

Next we con.sider the case p = n. We then approximate the discrepancy 

by the value of the last correction term: 

1 n 11 (n) 11 
n! -rk ck • 

Procedure local error construction sums step by step the terms given 

in {2.5). Since the vectors c~i) are computed in procedure difference 

scheme, local error construction is called in difference·scheme each time 

a new vector c~i) is computed. 

2.4 Procedure local error bound 

Procedure local error bound assigns a prescribed value tonk' the 

local error bound to be imposed on the scheme. By.putting 

(2.6) 

where n b and n 1 are respectively the absolute and relative error bound as re 
for the local error, we have a flexible formula for nk. 

2.5 Procedure stepsize 

The step -rk is determined both by accuracy conditions and stability 

conditions. F~rst we consider the accuracy conditions. 

Ideally, the step -rk should be such that 

(2.7) 
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As we have seen in p:eceding sections, however, the value of I IPk{Tk)I I is 

unknown until the integration step Tk is completed. Thus, when the integra­

tion process is arrived at the point t = tk we only know the values of 

IIPj{Tj)II for O ~ j ~ k-1. Therefore, some strategy- for predicting Tk is 

necessary, which is based on the values of preceding discrepancies. For in­

stance, let it be assumed tha~ in the neighbourhood of {Tk,tk) the error 

IIP'I I, as a £'unction of T and t, behaves as 

{2.8) I IP' I ~ = r( T, t ,A,B, c, ... ) , 

where f is a given £'unction and A, B, C, ••• are parameters to be deter­

mined:by the equations 

{2.9) f(T.,t.,A,B,C, ••• ) = I lp!(T.)11, 
J J J J 

j = k-1, k-2, .... 

Then, the new step i:k ~ be predicted by solving the equation 

(2.10) 

In the case of constant coefficients we have the error formula (see 

(2.5) and {2.5')) 

(2.5") I IPk(,:k)I I ~ i::[1~! - f\l I lc~q)I I + 

+ I~! - Bn I •~-q 11 c~ n) I ij , 
where q = n if p = n and q = p+1 otherwise. We have considered the follow­

ing representations. or 11 P ' 11 : 

(2.8a) k = 1, 

{2.8b) 11 P' 11 - (Bt+c),:q, k = 2, 

(2.8c) 
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In these representations the dependence on the step T of the factor between 

brackets, the "error'constant", is neglected in the neighbourhood of 

{Tk,tk). Note that in this case equation (2.10) can be solved explicitly 

for Tk' provided that the representation of the error constant is positive 

fort= tk. If not we have put Tk = Tk_1• 

When the coefficients B. depend on T we~ choose the representation 
J 

{2.8d) I IP' 11 = (AT+Bt+c)T4 , k ~ 3, 

where q is some function of T tending ton (if p=n) or p + 1 (if p<n) as 

T + o. Since we only consider polynomial methods with constant coefficients 

in tHi's section, we postpone the discussion of (2.8d) to section 6 •. 5. 

The first step T0 cannot be predicted by formulae of type (2.8) since 

no estimates of the local error at preceding points are available. We have 

used the rather rough formula 

(2. 11) 

This step corresponds to monitoring the discrepancy of a zero order scheme 

and is expected to be sufficiently small. The next step then follows from 

(2.8a), i.e. 

T = 1 

However, it~ happen that I IPo(To>II is so small that T1 is assigned a 

value much too large to be acceptable. We have allowed T1'to"increase with_. 

a factor to with respect to T0 until a realistic step length is reached. We 

shall call a step length realistic when the last computed discrepancy is 

larger.than 10-q * tolerance (when the next step is again 10 larger than 

the preceding one, we expect that the discrepancy will exceed the toler­

ance). In this phase of the integration process, where procedure stepsize 

is searching for an appropriate step, we used the simple extrapolation 

formula (2.8a). As soon as procedure stepsize reaches a realistic step 

length the next step shall be based on (2.8b) and thereafter on (2.8c). 

In this phase of the integration process the step sizes are subject to 
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the conditions 

(2.12) 

where alfa is prescribed by the user of the program. 

When procedure modified taylor is called with k ~ O the step size 

prediction at once uses (2.8c), since the necessary error constants are 

already supposed to be evaluated in the first call of modified taylor. 

Having established a step size which satisfies the accuracy conditions 

we consider a second important condition, the stability condition of the 

schem,e. From the theory presented. in [ 3] and [ 4 J it follows that polynomi-
·r"•.·,. 

al methods give rise to inequalities of the type 

(2.13) T < 8(n) 
k-a(D )' 

k 

where 13(n) is the stability parameter of the generating polynomial and 

a(Dk) the spectral radius of the Jacobian matrix Dk of the equation to be 

solved. 

It may happen that 

. . ( -12 ·where e is the relative precision of the computer used e ~ 10 for the 

EL X8). In such cases the integration variable is not changed so that 

further calculations are meaningless. When this situation arises procedure 

stepsize jumps to the end of procedure modified taylor. 

2.6 Procedure coefficient 

This procedure calculates the coefficients 81, ••• , an 
and the parameter q. 

2.7 Real procedure normf'wiction (norm1 w) 

If the parameter norm has the actual value 1 this procedure assigns 
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the maximum norm of the array w to normi'unction. If norm = 2 the Euclidean 

norm of w is calculated. 
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3. A single ordinary differential equation 

Our first experiments were done in order to illustrate the advantage 

of a variable step length, the consequences of weakly and strongly- stable 

schemes and the difficulties which arise when an equation becomes stiff. 

3.1 The initial value problem U = -etU+etlnt+1/t 

Consider the following initial value problem 

( 3. 1) 

dU t t 1 
dt = -e U + e lnt + t' 

Clearly-, ~his problem has the solution 

(3.2) U(t) = lnt. 

3.2 The difference scheme 

Suppose that one decides to solve (3.1) by a Taylor method. Which 

method depends on the accuracy desired and the range over which the solu­

tion is to be computed. We have considered the following generating poly-­

nomials (see [3], section 4.1, 6.2, 6.3 and [5] , table 4.1): 

(3.3) P4(z) = 1 + 1 2 1 3 1 4 
z+p +~ +w' 

(3.4) P4(z) = 1 + z + ~ 2 + iz3 + .0184557 
4 z , 

(3.5) P4(z) 1 + z +~2 + .0786845 z3 + .00360845 4 = z ' 

(3.6) P4(z) ~ 1 + z ~2 1 3 1 4 
+ 32 + 128z + 8192z • 

These polynomials generate difference schemes which are fourth, third, 

second and first order exact, respectively- and are appropriate for the nu-
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merical integration of equations of which the Jacobian matrix (in this case 

the scalar -et) has negative eigenvalues. For such equations the approxi-­

mate values of the stability parameters B(4) are, respectively, 

(3.7) 2. 78, 6, 12, 32. 

These values complete the data necessary to define the integration method 

to be used. In the actual program the data are stored in array data [-2:4]. 

For instance, the method corresponding to (3.3} is defined by 

data (-2]:= 4; 

data [-1]:= 4; 

data [OJ:= 2.78; 

data [1 ]:= 1 ; 

data [2]:= • 5; 

data [3]:= • 166667; 

data [4]:= .04166667~ 

Next, we have to consider the ALGOL 60 description of the initial 

value problem. We restrict our considerations to procedure derivative: 

procedure derivative (i,a}; integer i; array a; 

begin if i = 1 then 

end· _, 

begin.expt:= exp(t}; lnt:= ln(t}; cO:= a[O]; 

c1:= a[O]:=-expt * cO + 1/t + expt * lnt 

end· _, 
if i = 2 ~ c2:= a[O]:= expt * (lnt+1/t-c0-c1} - 1/t/t; 

if i = 3 ~ c3:= a[O]:= expt * (lnt+2/t-c0-2*c1-c2-1/t/t} + 2/t/t/t; 

if i = 4 then a[O]:= c3 - 2 * (1+3/t}/t/t/t + expt * {(1-(2-2/t}/t-c1-2*c2-c3) 
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Here, the variables expt, lnt, co, cl, c2 and c3 are to be declared at the 

beginning of the program. Note that co, cl, c2 and c3 correspond to the 

quantities c~i), i = O, 1, 2, 3, occurring in procedure difference scheme. 

Finally, we give the actual call of procedure modified tqlor by which 

the results listed in tables 3.1 - 3.4 were produced: 

k:= O; 

modified tqlor (t, if k < 200 ~ t ~ 8, O, O, u, exp(t), i, 
10-5, -4 ) . derivative, k, data, 1.2, 1, 10 , eta, rho, output ; 

3.3 Variation of the step size 

In tables 3.1 - 3.4 the results at the points t = tk, 

k = 0, 10, 20, • .'~ , which were obtained by the methods generated by ( 3. 3) -

(3.6), are listed. We have respectively given thestepnumber k, the value 

tk of the integration variable, the step size Tk' the maximal step allowed 

by stability, the tolerance nk divided by the discrepancy IPkl, the global 

discretization error Ek and its maximal absolute value llellm• 

Table 3.1 Fourth order Taylor method 

nk/ IPkJ - ~ I lel Im k tk Tk T Ek:;:Uk-1\: stab 
=2.78 exp(-tlc) 

0 .010 5 ,o-6 2.78 4 1010 0 3.4 ,o-4 

10 .041 .006 2.78 2.25 -2.5 10-4 

20 . 165 .024 2.38 1.90 -3.4 ,o-4 

30 .572 .067 1.57 1.49 4 -4 -2. 10 

40 1.474 .165 .19 1. 18 4 -5 -2. 10 
- - - - -~ - - -- - - - - -- - - - - - - -

50 3.340 .099 .099 59 -6.6 ,o-7 

60 4.043 .049 .049 776 -7. 1 ,o-8 

70 4. 447 · .033 .033 3135 -1.9 10-8 

. . . . . . . . . . .. . . . ... 
200 6.107 .006· .006 2 1~6 -4.7 10-11 
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Table 3.2 Third·order Taylor·metliod•with one stability term 

nk/lPkl 
~ 

11 £ I loo k t;k Tk T £k=Uk-11t stab 
= 6 exp(-tk) 

0 .010 5- 10-6 5.94 7 1010 0 1.7 10-3 

10 .045 .008 5.76 2.78 +1.2 10-3 

20 .207 .037 4.86 2.24 +1.7 10-3 

30 .764 .088 2.82 1.57 +9.2 10_4 

40 2.272 .333 • 61 1.71 +4.3 10-5 

50 4.018 .071 . 11 .88 -3.1 10-5 

..... - - - - - - ---- - -~ - -- --,-. -- - -
60 4.570 .042 .060 1.01 8 -5 -2. 10 

70 4.926 .030 .o44 1.00 8 -5 -2. 10 

80 5.189 .023 .033 1.00 -2.7 10 -5 

. . . . . . . . . . . . . .. ... 
200 6.530 .006 .009 1.00 -2.7 10-5 

In all four tables we see a rapidly varying step size Tk. This varia­

tion is due to the accuracy condition as well as the stability condition 

imposed on the difference scheme. 

In the first part of the integration interval the step size prediction 

is governed by the accuracy condition 

(3.8) T < T =~.!L t - ace E p 

where q is the lowest power of T occurring in the formula for the discre­

pancy p' andEP is the extrapolated (predicted) value of the error constant 

E. For instance, the fourth and ~bird order method respectively have the 

discrepancies 

(3.9) 

and 
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(3.10) IP'(T )I=(-::+ - .0184557)Tk4 lck(4)I ~ .023 Tk4 lck(4)I, Jt k; 2~ 

from which wi~ conclude that q = 4 and E behaves like I c,( 4 ) I • The value of 

lc~4)1 is defined by the fourth derivative of the localK analytical solution 

u'(t), i.e. 

(3.11) 
4 

c~l~) = -\ U' (t) 
dt t=t 

k 
t=t 

k 

d4 t 
= ---,; [ lnt + Ce -e J 

dt 

tk 
where C is siome constant (we have in fact E:k = -Ce-e ). When the global 

error E: is negligible with respect to the analytical solution U(t) = lnt we 

have ·'6~ 4) = ,c~ 4) = -6/t~ so that the analytical error constant E behaves as 
-4 . t . This implies a linear increase of T for the fourth and third order ace 

method as may be concluded from formula (3.8) (a similar conclusion holds 

for the second and first order method). However, the presence of the error 
t 

1::, which is of the form -Ce-e, introduces ihto the error constant a compo-

nent which is increasing with t 

lower rate of increase and will 

nent becomes dominant. 

so that, in practice, T will have a · ace 
finally decrease when the increasing compo-

Tstab =S(n)e-t 

I 
,_ I 

• 01 

fig. 3.1 Analytical and numerical behaviour of the stepsize T 
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Table 3.3 Second order Taylor method with two stability terms 

nk/lPkl ~ 
11 £ I L» k tk 'k 'stab £k=Uk-'1t 

= 12 exp(-tk) 

0 .010 5 10-6 11.9 3 107 0 4.6 10-3 

10 .021 .003 11. 8 1.55 - 1. 1 10-3 

20 .062 .007 11.3 1 . 14 -3.3 10-3 

30 • 165 .016 10.2 1.09 -4.5 10-3 

40 • 389 • 031 8.2 1.05 -4.3 10-3 

50 • 770 .044 6c3 1. 02 6 -3 -2. 10 

q,Q 1. 2127 .067 3,5 1.01 -8.4 10-4 

70 2.292 .158 1. 2 1.01 -9- 1 10-5 

80 3, 5;88 .091 .33 .99 -2.0 10-5 

90 4.312 .055 . 16 1.00 -1.0 ,o-5 

100 4.7'76 .038 .096 1.00 -7. 1 10-6 

110 5,1i17 .030 .072 1.00 -1~. 9 10-6 

120 5.434 .046 .054 2.08 -3.6 10-7 

130 5, 1'68 .026 .036 6.48 -9.2 10-8 

,__ -- - -- I- - - - - - - - - - ----
140 6.072 .028 .028 17 .11 -1.3 10-8 

150 6.319 .022 .022 35,07 -5. 5 10 -9 

160 6.~;17 .018 .018 70.13 -2. 8 10 -9 

. . . . , .. . .. . . . . .. ... 
200 7.056 .010 .010 466 4 -9 - • 6 10 

From figure 3. 1, where the observations given above are illustrated, 

we see that analytically the step size linearly increases until the stabili­

ty condition 

(3. 12) , <, = B(n) 
- stab 

-t 
e 

becomes more severe than the accuracy condition (3,8), after which the 

step size decreases exponentially. In this region the equation is said to 

have a stiff behaviour. The fourth order method (see table 3.1) exhibits 
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approximately such a behaviour of the step size. The third and second order 

method, however, show some irregularities which will be explained in section 

3.5. The steps of the first order method are completely controlled by accu­

racy requirements because of the small integration interval covered in 200 

steps. 

Table 3.4 Fourth degree Chebyshev polynomial 

n/lPkl 
~ 

lle:IICX) k tk Tk T e:k=Uk-~ stab 
= 32 exp(-tk) 

o .010 5 10-6 31.68 6000 o 2.6 10-2 

10 .013 .0004 31.59 .99 +2.6 10-3 

20 .018 .0006 31.43 1.00 +6.6 10-3 

30 .025 .0008 31.21 1.00 +1.0 ,0-2 

4o .034 .0011 30.93 1.00 +1.4 10-2 

50 .047 .0014 30.53 ·1. 00 +1.7 10-2 

60 . 062 .0018 30.08 1.00 +1.9 10-2 

70 .082 '· 0022 29.48 1.00 +2. 1 10-2 

Bo • 106 .0028 28.78 1.00 +2.3 10-2 

90 . 136 •. 0033 27.93 1.00 +2.4 10-2 

100 .172 .0040 26.94 1.00 +2,5 10-2 

110 .214 .0046 25.84 1.00 +2.6 10-2 
,\ 

120 .263 .0053 24.60 1.00 +2.5 10-2 

130 .319 .0060 23.26 1. 00 +2.5 10-2 

. . . . . . . . . . . . . . . ... 
200 .835 .0074 13.88 1.00 +1.2 10 -2 

3.4 Accuracy 

In the region governed by the accuracy condition(.= T < T .... b) · ace sva 
one would expect to find approximately equal values for the tolerance and 

discrepancy, i.e. nk/ I pkJ ~1. 

Ex~ept for the first order method (table 3,4) this is, at least ini-
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tially, not in agreement with the numerical results. The reason is that the 

extrapolation process, by which the error constant Eis predicted, cannot 

follow the rapid decrease of E. Hence, procedure step size predicts values 

for E which are larger that the real ones, so that, according to formula 

(3.8), the step sizes turn out slightly lower than when we had known E in 

advance. As a consequence we find nk/lPkl > 1. As soon asp', as a f'lmction 

of t, slows down the prediction of Tk becomes more accurate so that we find 

nk/ IPkl ~ 1. 
In the region governed by the stability condition (T = Tstab) we have, 

of course,nk/lPkl >> 1. 

Next we consider the global error Ek in the region governed by condi­

tion'{3.8). As was pointed out in reference [3], section 2.2, the error Ek 

satisfies the relation 

( 3. 13) 
t 

Ek+1 = P4(Tk e k) Ek+ Pk, 

where pk is the local discretization error. For instance, the fourth and 

third order methods have local errors which are given by 

(3.9') 

and 

(3.10 1 ) 

respectively. These formulae, together with (3.9) and {3.10}, explain why 

the fourth order method yields more accurate results than the third order 

method, although both methods are applied with the same values for the 

tolerances. For the integration process tries to keep IPk(Tk)I equal tonk 

which results in step sizes differing by a factor~ :~~~· ~ 1.2, i.e. 20%. 

Thus, the fourth order method chooses smaller steps and has a higher order 

local discretization error. This implies a smaller global error Ek. 

In connection with this it may be remarked that the third and second order 
-

method:yield errors of comparable order of magnitude. This is due to the 
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fact that both methods use the first neglected teI'!D.S (instead of the last 

correction terms) of the local Teylor expansions as a measure of the dis­

crepancies. 

Finally, we'discuss the behaviour of Ek in the region controlled by 

stability. In this region (3.13) assumes the form 

(3.13') 

In the case of the fourth order method we have 

Since ek is negative and pk positive in the region where (3.13') is valid 

(cf. formula (3.9 1 )), we mey expect that Ek increases so that initially 

IEkl is decreasing. This is in agreement with the results listed in table 

3.1. For the second order method we have 

Although both Ek and pk are negative in the region where (3.13') applies 

we mey again expect a decre'asing behaviour of I Ek I _ (cf. formula ( 3. 10' ) ) . 
Note that the parameter f3(4) = 12, which was taken from [3], formula 

(6.11), is slightly lower than the parameter calculated in [5], table 4.1, 

where we found the.value 8(4) = 12.0464. When this larger value was employ­

ed we should have found an increasing behaviour of IEkl since then the re­

lation 

holds for Ek. 

3.5 Weak and strong stability 

In the preceeding two subsections the results listed in table 3.1 -

3.4 were discussed. One phenomenon, however, namely the fact that the third 
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order method never, and the second order method only after some "hesita­

tion", reaches the region controlled by stability, was postponed to this 

subsection. This phenomenon is related to weak and strong stability. In 

this paper, a method is called strongly stable when the amplification 

factors of the scheme are all within the unit circle. In the present ex-
t 

ample the amplification factors are given by P4 (-Tk e k). In figure 3.2 

these factors are illustrated for the polynomials (3.4) - (3.7), From this 

figure it is seen that the fourth order method can be made strongly stable 

by requiring 

i.e. 

-t 
k 0 < Tk < 2.78 e , 

-t 
k by excluding neighbourhoods of T = 0 and T = 2. 78 e In the case of 

the other polynomials we may obtain strong stability at the cost of inter­

mediate regions of forbidden T values, which is, however, undesirable from 

a practical point of view. Before we give a construction of a strongly sta-

ble scheme: we shall demonstrate the danger of weakly stable schemes. 

Consider the third order method applied to example (3.1) fort> 3. 

For such values oft we derive from formula (3.10) and (3.11) 

so that Tk will behave as 

-t 
k 

e 

(Note the different behaviour of the local discretization error 
4 -4 . 4 t 

pk(Tk) ~ - .14 Tk tk and the discrepancy pk(Tk) ~ .023 Tk e k). 
- -5 -4 From table 3.2 and the relation nk ~ 10 + 10 1n tk we deduce that the 

-tk 
coefficient of e in this expression for Tk increases from 3,74 at k = 50 

to 4.25 at k = 200 and never reaches the value 6 of the stability para.meter 

S(4) (see (3,12)). One may ask why lekl remains almost constaz:i.t in this re­

gion of th,e integration. In order to explain this consider figure 3.2. We 
t 

see that the polynomial P4(~Tk e k),generating the third order method, 
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assumes values near -1 in the neighbourhood 
-t 

4 k . 
Tk = .39 e • For such step sizes we have 

since pk mS¥ be neglected with respect to Ek. This implies that lekl 

remains approximately constant, which is a direct consequence of the weak 

stability of the method. 

This example clearly demonstrates the danger in using weakly stable 

methods. The temporary increase of the step sizes in table 3.3 is due to the 

same phenomenon as described above. But in this case the integration pro­

cess did eventually succeed to pass the region where the amplification fac­

tors equal -1 • 

We now try to improve the weakly stabilized TS¥lor methods by construc­

ting strongly stabilized methods. For the class of methods generated by the 

polynomials T (1+z/n2) we refer to [3], section 4.1. Here, we consider the 
n 

third order method generated by (3.4). From figure 3.2 it is seen that 

P4(z) reaches its minimal value at z ~ -4.39. Suppose that the last coeffi­

cient is changed with the amount d s 4• Then we have 

As a rough estimate of the minimum of the new amplification factor we may 

take the value of 

-1 + 371 d 84· 

The stability parameter S(4) of the new polynomial can be estimated from 

the relation 

s3C4) d S ( 4) = ___ _.__..., _ _. ______ _ 

l - l s(4) + 3 84 s 2(4) 2 3 
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From these relations one easily derives a polynomial which has, for in­

stance, a minimal value of about • 9. We found 

(3.14) 1 2 1 3 4 P4(z) = 1 + z + ~ + ~ + .01872597 z, S(4) ~ 5.90. 

In table 3.5 results obtained by this polynomial are given. The sta­

bility para.meter s(4) was given the value 5.8 in order to make sure that 

the amplification factors are within the interval [-1, 1] for all step sizes. 

k 

0 .010 

10 • 047 
20 

30 

.215 

.790 

40 2.385 
-- -i,- --

50 4.215 
60 4.846 

70 5.228 

200 6.851 

Table 3~5 Strongly stable third order Taylor 

method with one stability term 

5 10-5 

.0081 

.033 

.090 

. 357 
- --

.086 

.o46 
• 031 

.006 

5.742 

5.534 
4.678 

2.632 

.534 

.086 

.046 

.031 

.006 

7 1010 

2.78 
2.23 

1.55 

1.91 

0 

+1.1 10-3 

+1.6 10-3 

+8.4 10-4 

+4.o 10-5 

,_ ~. 3;- -r-+8. o ~~6 
2541 +2.2 10-9 

15200 +4.1 10-lC 

106 1.9 +3.6 10-12 

1.6 10-3 

The results of the first 40 integration steps closely resemble the results 

listed in table 3.2. A:f'ter that:, however, the strongly stable scheme quick­

ly reaches the region where stability controls the step length. 

Although the stabilized T~lor methods enable us to integrate equa­

tions of type (3.1) more efficiently than the standard T~lor methods, 

there are far more efficient integration methods. We mention the two- and 

three-cluster methods given in [4], section 4.4. In section 6 of the pre-



32 

sent papeI' an ALGOL 60 version of these methods will be given and applied 

to problem ( 3. 1). 
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4. Hyperbolic differential equations 

In this section we study the numerical solution of the Cauchy problem 

for some sim1>le hyperbolic differential equations by the modified Taylor 

method. 

4. 1 The equation. Ut = ½rx 

Consider the Cauchy problem 

-oo ~ X ~ oo, 0 < t < oo, 

(4.1)· 

2 
U = exp(-x ), -oo ~ x ~ 00 , t = O. 

By disc:retizing the variable x, that is replacing x by the discrete 

variable j~, j = O, ±1, ±2, ••• ,where~ is the mesh size, we may approxi­

mate equation (4.1) by an infinite set of ordinary differential equations: 

(4.2) dU 1 _, = - (X - X )U 
dt 4~ + - • 

Here, U denotes a vector with an infinite number of components correspon­

ding to the grid points j~ and X± are shirt operators with respect to the 

index j of the components of U. The operator occurring in the right hand 

side or (4.2) may be represented by a matrix D of infinite order i.e. 

... ' o, -1, o, +1, o, 
D 

1 o, -1, o, +1, o, =~ ... , 
... , o, -1, o, +1, o, 
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It is easily verified that D has eigenfunctions E of which the j-th compo­
w 

nent is given by 

E(j) = exp(iwjt), 
w 

where w is an arbitrary real number. The corresponding eigenvalues 6 of D 

are given by 

(4. 3) R i • 
u = 2 t sin w~. 

Thus, D has purely imaginary eigenvalues with a spectral radius 

(4.4) a(D) = - 1 
2t 

In [3], section 5 the polynomials are given which generate difference 

schemes suitable for the integration of this type of differential equa­

tions. For instance, the polynomials 

(4.5) P() 1+z 12+13 
3Z = +~ ?t B(3) = 2, 

(4.6) 

These polynomials are second and fourth order exact, respectively. Hence, 

as can be easily verified, the analytical solution of (4.1) will locally 

satisfy the difference schemes generated by (4.5) and (4.6) apart from a 

term 

(4.7) 

respectively. Since the stability condition, which is of the form 

(4.8) T < B(n~ = 2 B(n)t - a(D , 

allows time steps of order t we shall have an approximation error of at 
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least order ~3• Note that the second degree polynomial given in [3], for­

mula (5.1), which is only first order accurate, will yield a residual term 

0(T2) + 0(T~2), i.e. of order ~2• 

In the actual application of the modified Taylor method to equation 

(4.2) we are faced with the fact that the number of components of U is in­

finite. However, when we wish the difference solution at the point (jt,tk) 

we only need the values of the difference solution at the points 
I 

(j~,tk_1), ((j±1)~,tk_1), ••• , ((j±n)~,tk_1). This is illustrated in figure 

4.1 for n = 4. 

i=3 

i=2 

i=1 

i=O 

(j-4)~ (j-3)~ (j-2)t (j-1)~ j~ (j+1)~ (j+2)~ (j+3)~ (j+4)~ 

fig. 4.1 Domain of dependence for a fourth degree gen­

erating polynomial applied to equation (4.2) 

Therefore, when we roughly know the number, say K,of steps necessary to 

integrate the initial value problem and when the solution is required at, 

say J points we have to start with a system of J + 2Kn differential equa­

tions. Moreover, during the integration process the number of relevant 

equations decreases, so that it is efficient to change the index mO of the 

first equation and the index m of the last equation. Let the initial func­

tion u0 be specified at the points x = j~, j = g0 , g0+1, ••• , g. Then the 

indices mO and m should be defined by the procedure 
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integer procedure mO; 

begin integer decrement; 

end· __ , 
if' k = O then decrement:= i ~ decrement:= i + (k-1) * data[-2]; 

mO:= g0 + decrement; m:= g - decrement 

Note that the use of' this procedure avoi~s the repeated calculation of' the 

value of' min the for statements occurring in modified taylor. 

We are now in a position to give the ALGOL 60 version of' procedure 

derivative. 

procedure derivative (i,a); integer i; array a; 

begin real ajm1, aj; 

end· __ , 

ajm1 := a[m0-1]; 

for j:= mo step 1 until m do 

b.egin aj : = a[ j J ; 

a[j] := (a[j+1 J-ajm1) /4/ksi; 

ajm1 := aj 

Here, ksi denotes the mesh size~ and must be specified before modified 

taylor is called. 

Suppose that the solution is required in the region 

R: [-.05 ~ x ~ ,05] * [0 ~ t ~ .45]. 

Furthermore, let us take a mesh size 

~ = .0025, 

then the solution is required at 40 gridpoints when t = .45. Condition (4.7) 

prescribes a maximal time step .010 and ,01012 for the polynomials (4.5) 

and {4.6). Therefore, by the argument given above we have to start with at 
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least 40 + 2 * (.45/ .010) * 3 = 310 and 40 + 2 * (.45/ .010/2) * 4 ~ 296 -
differential. equations, respectively. However, when the accuracy condition 

is more restrictive than the stability condition we shall need a larger set 

of equations. In order to have a safety margin we took g = -g0 = 200 for 

both pol.ynomial.s. The values of the remaining parameters, such as t, te, u, 

data and sigma, need no further explanation. 

Having specified all parameters of ~rocedure modified taylor which 

characterize the problem to be solved and the method to be used, we arrive 

at the actual. cal.l of this procedure: 

k:= O; 

modified taylor (t, if k > 45 then t else .45, mo, m, u, 1/2/ksi, 
- - -- -- -3 -2 

i, derivative, k, data, 1.5, 2, 10 , 10 , eta, 

rho, output) ; 

In table 4.1 and 4.2 the results are listed fork= 5, 10, 15, •••• 

Table 4.1 Generating polynomial (4.5) 

k tk nk/1 IPkl 12 11 e:k 11 R/ 11 Uk 11 R 

0 0 3.3 105 0 

5 .05 3.4 105 3.3 10-8 

10 .10 3.6 105 1. 0 ,o-7 

15 .15 3.8 105 2. 1 10-7 

20 .20 4. O 105 3.7 10-7 

25 .25 4. 1 105 5.7 10-7 

30 • 30 4. 1 105 8.2 10-7 

35 .35 4.o 105 1. 1 10-6 

40 .40 3.8 105 1 .4 10-6 

45 • 45 3.6 105 1.8 10-6 

In these tables I I I 12 denotes the Euclidean norm over the grid points 

(jt,tk), m0 ~ j ~m and I I I IR denotes the Euclidean norm over the grid 
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points (j~,tk), -20 ~ j ~ 20. The error e:k is defined by the difference of 

the analytical solution U(t) = exp(-(x+½t) 2) of (4.1) and the numerical 

solution 

where u[j] is the numerical solution at (j~,tk). 

Table 4.2 Generating polynomial (4.6) 

k tk nk/1 IPk.11 2 11 e:k 11 R/ 11 Uk 11 R 

0 0 1 . 1 107 0 

5 .07 1. 1 107 2.0 10-8 

10 .14 1.0 107 6.6 10-8 

15 .21 1.0 107 1.4 10-7 

20 .28 1.0 107 2.5 ,o-7 

25 ,35 1.0 107 3.8 10-1 

30 . 42 1.0 107 5.4 10-7 

32 .448 1. 1 107 5,7 10-7 

An analysis of table 4.1 and 4.2 reveals that the step size is comple­

tely governEid by the stability condition (4.8). Ideally, the steps should 

be such that the errors due to discretization of x and tare approximately 

equal. From (4.7) it follows that in the case of the second order method 

(polynomial (4.5)) the approximation errors are comparable as.,~+ 0, hence 

we may expect the same for the discretization errors e:k. In order to verify 

this considElr the errors e:k produced by the fourth order method (with re­

spect to,)., These errors consist for the greater part of errors introduced 

by the x-die1cretization. Since the second order method uses the same x-dis­

cretization we may conclude for this method that the discretization error 

due to the t-discretization is slightly larger than the error due to the x­

discretization. Thus the stability condition is not a restriction for the 
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first integration process. The second integration process can be economized 

by using a more accurate discretization of the operator a/ax in order to 

make the approximation errors of comparable order as T,t + o. 

4.2 The equation U = tu t X 

Consider the Cauchy problem 

(4.10) 

tu, 
X 

u = exp(x), -m ~x ~ m, t = o, 

with the analytical solution 

( 4. 11) ~ 1 2 
U = exp(x + 2t ) • 

This problem may be approximated by the infinite set of differential equa­

tions 

(4.12) ·dU t ( ) 
dt = 2t X+ - X - _u' 

where U, t and X± are defined in the same manner as in the preceding sub­

section. 

The eigenvalues of the Jacobian D of ( 4.12) are given by 

(4.13) 

so that 

(4.14) 

~ . t . 
u = 1. ~ sin w~, 

t 
o(D) = ~. 

This results: in the (local) stability condition 

(4.15) 
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For small values oft this condition allows large step sizes Tk. However, 

for large values of Tk the linearization on which (4.14) is based is not 

valid. Therefore, we must apply (4.15) very carefully. For instance, we 

could replace cr(D) by the spectral radius of D at the point t + T, i.e. 

(4.15') T < f3(n) ~. 
- t+T 

Or equivalently, 

(4.15") 

2 fort << 4 e(n)~ 

2 fort >> 4 e(n)~. 

From ( 4. 7) and ( 4. 15") it may be concluded that for small values of t 

the approximation error of the difference schemes generated by the polyno­

mials (4.5) and (4.6) is of order ~312 and ~512 , respectively. For larger 

values oft both polynomials yield an error of order ~3• Hence, it is ex­

pected that polynomial (4.6) shall yield more accurate results. 

Finally, we have to discuss the derivatives of U defined by equation 

(4.12). Let us write it in.the form 

(4.12 1 ) U = tD U, 
1 

D = 2~ (X+ - x1) 

then it is easily verified that 

U= tD U + D u, 

"fj = tD ti+ 2D U, 

"1J = tD ij + 3D u. 

The corresJ>Onding ALGOL 60 version is given by 
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procedure derivative (i,a); integer i; arrq a; 

begin real vjm 1 , vj ; 

end· __ , 

v[m0-1 J := a[m0-1 J; 

if i = 1 then for j:= mO step 1 until m do 

begin v[j]:= a[j]; a[j]:= (t/2/ksi) * (a[j+1]-v[j-1]) end; 

if i > 1 then 

begin vjm1 := v[m0-1 J; 

end 

for j:= mO step 1 until m do 

begin vj:= v[j]; 

end 

v(j]:= a[j]; 

a[j]:= (t/2/ksi) * (a[j+1J-v[j-1]) + 

(i-1)* (1/2/ksi) * (v[j+1]-vjm1); 

vjm1:= v. 
J 

Here, it is supposed that mO and mare integer procedures defined by (4.9) 

and that vis a one dimensional array v[gO:g] declared at the beginning of 

the program. It mq be remarked that this procedure can be written in a 

more efficient form, but we have preferred the formulation given above in 

order to keep things as simple as possible. 

Suppose that the solution is required in the region 

R: {-.6 ~ x ~ .6} * {O ~ t ~ 1.2}, 

and let the mesh size~ be given the value .02. Then, if the step size is 

completely determined by the stability conditions we would at least 

need 1.2 * 30 = 36 and 1.2 * 30 * i 12 ~ 26 steps for the polynomials (4.5) 

and (4.6), respectively (cf. condition (4.15')). However, if the values of 

na and nr are small, the accuracy conditions will prescribe much smaller 

steps. For reasons of security we took, in all cases, the maximum number of 

points needed to accomplish 60 steps, i.e. g = -gO = 30 + 3 * 60 = 210 and 

30 +·4 * 60 = 270, respectively. This completes the definition of the para­

meters characterizing the initial value problem and the method to be used. 
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We have done some experiments with increasing values of na and nr: 

( ) -5 -6 ( 4 -5) ( -2 -3) na, nr = ( 1 o , 10 ) , 10- , 1 o , 1 o , 1 o • 

The actual call of modified taylor was as follows: 

k:= O; 

modified taylor (t, if k > 60 then t else 1.2, mo, m, u, 

2 • data[O]/{sqrt(t*t+4*data[O]*ksi)-t), 

derivative, k, data, 1.5, 2, aeta, reta, 

eta, rho, output); 

In table 4.3 through 4.8 the results of these experiments are listed. 

Table 4. 3 

Generating polynomial (4.5) 

(n ,n) = (10-5,10-6) a r 

Table 4.4 

Generating polynomial (4.6) 

(na,nr) = (10-5,10-6) 

k tk nk/ I IPkl 12 11 e:kl IR k tk nk/ 11 Pkll 2 11 e:kl IR 

0 0 3.4 10+11 b 0 0 1.3 10+16 0 

5 • 11 1.0 8.7 10-7 5 . ra .9 1. 0 10-6 

10 .26 1.0 7.0 10-6 10 .44 1.0 6.4 10-6 

15 • 38 1. 0 1. 5 ,o-5 15 .69 1.0 1. 6 10-5 

20 .48 1.0 2. 3 ,o-5 20 .91 1.0 2.7 10-5 

25 • 58 1.0 3.2 10-5 25 1.12 1.0 4. 1 10-5 

30 .68 1. 0 4.1 10-5 27 1.20 - 4.7 10-5 

35 .77 1.0 5. 1 10-5 

40 .85 1.0 6. 1 10-5 

45 .93 1. 0 7.2 10-5 

50 1.01 1. 0 8.2 10-5 

55 1.08 1.0 9.3 10-5 

60 1. 15 - 1.1 10-4 



Table 4. 5 

Generating polynomial (4.5) 
( ) ( -4 -5) n ,n = 10 ,10 a r 

k tk nk/ I I Pk! I 2 11 e:kl IR 

0 0 3.4 10+9 0 

5 .25 1 • 1 1. 1 10-5 

10 .50 1.0 6.6 10-5 

15 .10 1.0 1.3 10-4 

20 • 88 1. 0 1.9 10-4 

25 ·1 .05 1. 0 2.5 10-4 

30 1.20 - 3.3 10-4 

Table 4. 7 

Generating polynomial (4.5) 
(n ,n) = (10-2 ,10-3) 

a r 

k tk rik/ I I pk I I 2 11 e:J,c 11 R 

0 0 3.4 10+5 0 

5 .50 1.9 10+1 .26 10-5 

10 .Bo 4.o 10+1 1.7 10-4 

15 1.01 5.7 10+1 2.8 10-4 

20 1.20 - 3.7 10-4 
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k 

Table 4.6 

Generating :polynomial (4.6) 

(na,nr) = (10-4,10-5) 

' 

tk nk/ 11 Pkl I 2 11 e:k 11 R 

0 0 1.3 10+13 0 

5 • 31 3.0 .3 1 ,-5 

10 .75 1.5 1.6 10-5 

15 1. 05 3.5 3.4 10-5 

18 1.20 - 4.5 10-5 

Table 4.8 

Generating polynomial (4.6) 

(na,nr) = (10~2 ,10-3) 

k tk nk/1 IPkl 12 II e:k 11 R 

0 0 1. 3 10+7 0 

5 • 59 7.8 10+1 .4 10-5 

10 .94 2.7 10+2 2.0 10-4 

15 1.20 - 3.8 10-4 
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5. Parabolic differential equations 

In the preceding section partial differential equations were consid­

ered of which the Jacobian possessed purely imaginary eigenvalues. We now 

concentratie on a class bf equations which have negative eigenvalues. We 

shall illustrate the application of modified teylor to such equations by two 

simple dif:fusion problems. 

-t 10 8 
5. 1 The equation u = u + e (x +90x -x) 

t xx 

Consider the initial boundary value problem 

-t 10 8 
ut = u + e (x +90x -x), 0 < X < 1 , t ~ o, xx 

( 5. 1) u = 1 + x(1-x9), 0 < X < 1 , t = o, 

u = 1 , X = 0 , X = 1 ' t > o. 

In reference [7] some results are given obtained by applying the modified 

Taylor method. Here, a more detailed discussion will be given how these 

results were obtained. Problem (5.1) is solved by the function 

(5.2) ~ -t 9 U = 1 + e x(1-x ). 

Let us define the operator 

(5.3) D(i) = a(x2 + x2) + b(X + X) 
+ - + 

+ c, 

where X± are the usual shift operators with respect to the mesh size l; and 

a, b. and c: are weight parameters to be determined in such a wey that D 
. 2; 2 . approximates the operator a ax as l; ➔ o. A simple calculation yields the 

following expansion for the operator D: 

(5.3') C-) 2 a2 1 4 a4 
D i = ( 2a+2b+c) + ( 4a+b) l; 2 + ""i2( 16a+b) l; - + 

ax ax4 



From this representation of D(i) it follows that we have a first order 

exact approximation of a2/ax2 if 

2a + 2b + c = o, 

(5.4) 

(4a+b) 'f,2 = 1 

and a third order exact approximation if, in addition, 

(5.5) 16a + b = O. 

The operator D(i) can be applied in the grid points (j'f,,tk), 

j = 2, 3, ••• , 'f,-1 - 2. At the point ('f,,tk) we define the operator 

(5.6) = a'X + b' + c'X + d'x2 + e'X3 + f'X4 
- + . + . + + 

and at the point (1-'f,,tk) a similar operator, which is obtained when X± is 

replaced by x_. This operator may be represented by the series 
+ 

(5.6') D(b) = (a'+b'+c'+d'+e'+f') + (-a'+b'+2d'+3e'+4f')'f, _1 + 
ax 

2 
+ l(a'+c'+4d'+9e'+16f')'f,2 - 3- + 

2 3x2 

3 
+ -g(-a'+c'+8d'+27e'+64f')'f.3 - 3- + 

ax3 

4 
+ ....l(a'+c'+16d'+81e'+256f' )'f,4 ..1.... + 

24 ax4 

5 
+ . ...J._(-a'+c'+32d'+243e'+1024f' )'f,5 _a_+ 

120 ax5 

We have a first order exact approximation of a2/ax2 at the boundary points 

if 
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a' + b' + c' + d' + e' + t' = o. 

-a'+ c' + 2d' + 3e' + 4f' = 0 
(5.7) 

(a'+c'+4d'+9e'+16f')t2 = 2, 

-a'+ c' + 8d' + 27e' + 64f' = 0 

and a third order exact approximation if, in addition, 

a'+ c' + 16d' + 81e' + 256f' = o, 
(5. 8) 

-a' + c' + 32d' + 243e' + 1024f' = O. 

Problem ( 5. 1 ) can now be approximated by an initial value problem for 

the system of ordinary differential equations 

(5.9) 

where 

U =DU+ F, 

D = 

b' c' d' e' f' 0 

b c b a O 0 

a b c b a 0 

0 a b c b a 0 

0 a b c b 

0 ,. 0 a b 

0 

0 

0 

• . 0 

a 0 0 

.. 
c b a 

0 

0 

0 a b C b 

0 f' e' d' c' b' 



and 

U= 
-t 

, F = e 

47 

t 1O+9ot8 

(2t) 10+9O(2t) 8 

. 
(jt) 10+9O(jt) 8 

. 

-t 

-2t 

t +a'e 

t +a e 

((m-1)t) 1O+9O((m-1)t) 8-(m-1)t+a et 

(mt) 1O+90(mtl8 -mt +a'et 

A simple calculation reveals that the set of values 

-2 -2 a= O, b = t , c = -2t , 

(5.10) 

-2 -2 -2 a'=t , b'=2~ , c'=t , d'=e'=f'=O, 

gives rise to a first order exact approximation and 

(5.11) 

to a third order exact approximation. 

In the first order case it is easily verified that the matrix D has 

eigenfunctions of the form exp(wj~) with eigenvalues 

(5.12) ) -2 000 = 2(cos w~-1 t • 
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Hence, D ha:s negative eigenvalues with a spectral radius 

(5.13) 4 -2 o(D) = ~ • 

In the third order case the eigenfunctions and eigenvalues are not so 

easily found. As an estimate of o(D) we shall use the spectral radius of 

the matrix D approximating the operator D(i) within third order accuracy, 

that is we neglect the boundary conditions. The eigenvalues o of this ap­

proximation are of the form 

(5.14) ( 1 2 8 7) -2 ow= 3 cos wt+ 3 cos w~ - 3 ~ 

with the spectral radius 

(5.15) 16 -2 o(D) = 3 ~ . 

Formulae (~i.13) and (5.14) lead to the stability conditions 

(5.16) 1 2 ,: ~ 4 S(n)~, 3 2 
T ~,6 S(n)~, 

respectively. 

Clearly, equation (5.9) should be solved by polynomials which exploits 

the fact that D has negative eigenvalues. Such polynomials are discussed in 

reference [3]. The order p of the polynomial to be used is determined by 

the approximation error of the difference scheme. In the cases (5.10) and 

(5.11) we have respectively errors 

(5.17) 

so that, by (5.16), p should be chosen 1 and 2. For p = 1 we have chosen 

the polynomials 

(5.18) T10(1+z/100) 

with S(4) = 32 and 8(10) = 200. 
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For p = 2 we have chosen the polynomials 

(5.19) P2(z) 1 + z 1 2 f3 ( 2) 2, = + ~ , = 

(5.20) P3(z) = 1 + z 1 2 
+~ 

1 3 
a( 3) 6.27, + "i"6z , = 

(5.21) P4(z) = 1 + z + 1 2 + .0786845 2 
+ .00360845 4 f3 ( 4) 12. ~ z z , = 

We solved problem (5.1) for 0 ~ t ~ .3. In table 5.1 the relative 

accuracy e .land an estimate for the computational labour required, are re 
listed (the computational labour was measured by the 4ua.ntity Kcn/100~x, 

where'k is the number of integration steps, n the degree of the polynomial 

and c has the values 1 and 2 in the first and third order case respectively). 

Table 5.1 Values of computational labour and relative 

accuracy obtained in solving problem (5.1) 

£ rel 
T4 ( 1+z/16) T10 (1+z/100) P2(z) P3( z) P4 ( z) 

. 10% 130 80 30 15 11 

.06% 290 160 40 20 15 

.02% 1070 700 67 33 24 

These J~esults were obtained by neglecting accuracy conditions (aeta 

and reta negative) , because it was expected that the stability condition .is 

the most stringent one. 
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1 
The equation Ut = (aU+b) (Urr + r-Ur) 

The next initial boundary value problem arose in a physics problem: 

(5.22) .. 

Ut = (aU+b)(U + .lu ), o < r .::_ 00, t ~ o, rr r r 

u = 1 , 0 < r < 1 , t = o, 

u = o, < r .::. 00' t = o, 

u = o, r = o, 00' t > o. r 

Here, -a and bare given positive constants. 

In [6] this problem was solved by replacing the discontinuous initial 

function by the continuous function 

1 ' r < 1-tir, 

(5.23) u = l(l+ ((r-1)+tir )) 
2 COS 2~r TT , 1-tir < r < 1+~r, t = 0, 

o, X > 1+~r. 

Furthermore, the independent variable r was replaced by a variable x which 

amplifies the region 1-~r < r < 1+lir in such a way that the initial func­

tion in this new variable behaves sufficiently smooth. Here, we shall not 

use such a transformation. Moreover, we replace the right hand boundary 

condition simply by 

(5.23) u = o, r = ro, t = 0. 

Problem (5.22) can be approximated by an initial value problem for the 

differential equation (compare [6], section 4) 

(5.24) U = DU, 
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where U is a vector with 

jt, j = O, 1, 2, ••• , m; 

components U(j) corresponding to the grid points 
XQ 

m = - and D is the matrix t 

1 
D =-

t2 

-4d(O), 

.k( 1) 
2 , 

0 , 
. . 

0 

4d(o), 

-2d( 1), 

¾1(2), 

0 , 

0 , 0 , 

~(1) 
2 , 0 , 

-2d(2 ), ¾1(2), 

2.i-L(j) -r--a. , 
J • 

. . . . . . . . 
. . . . . . 

0 , . . . . . 

C-) 2·+1 (j) 
-2dJ, ~, 

. . . 0 

. . . 0 

. . . 0 

o, .. 0 

. . 
0 . . . . . . . . . . . . . . . . 0 , 2m-1d(m) _2d(m) 

2m , 

The grid function d(j) is, in fact, the diffusion coefficient 

As was pointed out in [6], D has negative eigenvalues with 

( 5.25) o(D) ~ 4t-2 Max(2.d(j)). 
j 

Equation (5.24) is a first order exact approximation of the partial 

differential equation and, therefore, should be solved by first order exact 

generating polynomials. Since D has negative eigenvalues we choose the 

polynomials Tn(1+z/n2). In our experiments we took: 

MA fH1:/iAT!S01 

J, tsAC'"'ft':'O rt.AM 
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a = -.263, b = .291, 

(5.26) 

ar = .OB, ~ = .02, r 0 = 2. 

From (5.25) and the stability condition associated to the generating poly­
nomials T (1+z/n2) it follows that we certainly have stability for n 

_ .f!.hl _ 1 2 ~-2 _ 10-4 2 
T - a(D) - ~ ~ - n. 

In table 5.2 some results are listed for n = 10. 

~ 0 

.90 1.00 

.92 1.00 

.94 .95 

.96 .84 

.98 .68 
1.00 .50 
1.02 .33 
1. 04 • 18 

1. 06 .09 
1.08 .03 
1.10 .oo 

Table 5.2 Numerical solution in the neighbour­
hood of the transition point r = 1 

• 10 .20 .30 .40 .50 .60 .70 .Bo 

.84 • 77 • 74 .72 .70 .68 .67 .66 

. 79 .74 • 71 .69 .67 .66 .65 .64 

• 74 .70 · .68 .66 .65 .64 .63 .62 

.69 .66 .65 .64 .63 .62 - • 61 .60 

.64 .63 .62 • 61 .60 .59 .59 .58 

.59 • 59 • 59 • 58 .58 • 57 • 57 .56 

.54 .55 • 56 .56 .55 .55 .55 .54 

.49 .52 • 53 .53 .53 .53 .53 .53 

.44 .48 .50 • 51 .51 .51 .51 .51 

.40 .45 .47 .48 .49 .49 .49 .49 
• 36 .42 .44 .46 .47 .47 .47 .47 

.90 1.00 

.65 .64 

.63 .62 

.61 .60 

.59 .59 

.58 .57 

.56 .55 

.54 .54 

.52 .52 

.51 .50 

.49 .49 

.47 .47 
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6. The expo11ential fitted Taylor method 

The secc:md numerical integration method presented in this paper is the 

procedure exponential fitted taylor. This procedure is based on the three­

cluster method described in reference [4], section 4.4. It is appropriate 

for the integration of those problems of type (2.1) in which the Jacobian 

has eigenvalues o which can be reasonably placed into three clusters as 

illustrated in figure 6.1. Such equations are said to be stiff. 

Imo 

0 
fig. 6.1 Eigenvalues o situated in .three clus­

ters with dor << loll' dol << 1011 

Re o 

In an aetual application of the method it is necessary to give expli­

citly the first three derivatives of the function U(t) in terms oft and U. 

In the following subsections the ALGOL 60 version of the three-cluster 

method is dii;cussed, 

6.1 ProcedUJre exponential fitted taylor 

The heading of this procedure reads as follows: 
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procedure exponential fitted taylor (t, te, mo, m, u, sigma., phi, diameter, 

derivative, i, k, alfa, norm, aeta, 

reta, eta, rho, output); 

integer mO, m, i, k, norm; 

real t, te, sigma., alfa, aeta, reta, eta, rho, phi, diameter; 

array u; 

procedure derivative, output; 

The actual para.meters corresponding to the formal para.meters, as far 

as not identical to the para.meters defined in section 2.1, are: 

sigma: <expression>; 

phi: 

approximation of the modulus of the center o1 of the left hand 

cluster; 

<expression>; 

argument$ of the center of a left hand cluster; 

phi should be given in radians by the user of the procedure; 

diameter: <expression>; 

diameter do1 of the left hand clusters; 

diameter should be given by the user; 

aeta, reta: <expression>; 

desired absolute and relative local accuracy n and n; a r 
aeta and reta should be positive; 

Next the procedure body is given: 

begin integer kl; 

~ ~ ec1 ,ec2,tau0.,tau1 ,tau2; 

!:!!; q.,ec0,tau.,tau1.,betan.,t2,s1gmal.,ph11; 

!:!!; array c.,ro[mO:m].,beta.,betha[1 :3]; 
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procedure coefficient; 

begin reel b,b1,b2,bb,e,beta2,beta3; 

b:=taUXsigmel; b1:=bXcos(phil); bb:•bXb; 

_!! abs(b)<ia-3 ~ 

begin beta2:=.5-bb/24; 

beta3:=1/6+b1/12; 

betha[3]:=.5+b1/3 

end else 

beg.in e:•exp(b1 )/bb; b2:=bXsin(phil); 

beta2:=(--2Xb1-4Xb1Xb1/bb+1)/bb; 

beta3:=(1+2Xb1/bb)/bb; 

_!! abs(b2)<io-9 ~ 

begin beta2: ::sbeta2-eX( b-3); 

beta3:=beta3+eX(b-2)/b; 

betha[3h=1/bb+eX(b-1) 

end else 

end; 

begin beta2:=beta2-eXsin(ba-3X'phil)/b2Xb; 

beta3:=beta3+eXsin(ba,...2Xphil)/b2; 

betha[3]:::s1/bb+eXsin(ba-phil)/b2Xb; 

end 

beta[1]:=betha[1]:=1; 

beta[2]:=beta2; beta[3]:=beta3; 

betha[2]:=1-bbXbeta3; b:=abs(b); 

q:=_!! b<1 .5 ~ 4--2Xb/3 ~ _!! b<6 ~ (3()..2Xb)/9 ~ 2; 



real 1>rocedure normf'unction(nonn,w); 

integE;!: nonn; ~ w; 

begin integer j; real s,x; 

end; 

s::=O; 

if norIIF1 then 

begin f'or j: =mO step 1 until m do 

begin x:=abs(w[j]); if' ,c,s ~ s:=x end 

end else 

s::=sqrt(vecvec(mo,m,O ,w ,w) ); 

normf'unction:=s; 

procedure local error .bound; 

eta: =aeta+reta X normf'unction( nonn, u); 

procedure local error construction{i); integer i; 

begin integer j; ~ b; 

if 1=1 then for j: =mO step 1 until m do ro[ j] : =O; ----
if i<4 then 

~egin b:=betha[ i]xtaui; 

f'or j:=mO step 1 until m do ro[j]:=ro[j]+bXc[j] 

end; 

if i=4 then 
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begin ~ j: ==mO step 1 until m ~ ro[ j] :=ro[ j ]-tauXc[ j]; 

rho:=normfunction{nonn,ro); 

ec0:=ec1;ec1:=ec2;ec2:=rho/tau,4.q; 

end 

procedure stepsize; 

begin reel tauacc,taustab,taucr,aa..,bb.,cc; 

1! k=OAkl.=f,O ~ begin k:•kl;tau:=tau2;goto eos ~; 

local error bound; 

aa.:=2Xabs{sigme1/diameter);bb:=.5Xabs{1/sin{phil)); 

betan:=e.ex{1! aa<bb ~ aa ~ bb); 

1! k•O ~ tauacc:•(eta/normfunction{nonn,c)) else 

if kl=O then 

begin tauacc:=(eta/rho),+.(1/q)xtau2; 

if tauac~10xtau2 then tauacc:=10xtau2 else kl:=2 

end else 

if kl<4 then 

begin tauacc:=(eta/rho),+.(1/q)xtau2; kl:=kl+1 end else 

begin aa.: •{tauox{ eca-ec1 )-tau1 x{ ec1-ec0)) / 

{ tau2Xtau0-tau1 xtau1 ) ; 

bb:={eca-ec1-e.eX{taua-tau1))/tau1; 

if es>O then 

begin cc:=eca-e.axtaua,..;t,bXt2;tauacc:=O;tau:•elfsXtau2; 



end; -

58 

_!! 1zeroin( tauacc, tau, aaxtauaco-eta/tauac~+bbXt 

+cc,.-3Xtau2) ~ tauacc:-tau2Xalfa; 

~!!!! tauacc:•(eta/rho),t..(1/q)xtau2; 

te.u:-tau2X(1f eta<rho then (eta/rho),t..(1/q) else alfa); - - -
if tauacc>tau then tauacc:-tau; -
_!! tauacc<.5Xtau2 ~ tauacc:•.5Xtau2; 

taustab:•abs(betan/sigmel); taucr:•tau2Xtau2/tau1; 

tau:•if tauaca>tausteb then taustab else tauacc; 

_!! taustab<rl 2Xt ~ goto end of efi; 

.!! tauacc<.-1 2Xt ~ tauacc: •.-12Xt; 

if k>1/\tau>taucrX(1-.,-6)/\tau<taucrX(1+..,6) ~ 

tau:•_!! tau<taucr ~ taucrX(1-.,-6) ~ taucrX(1+..,6); 

tauO:•tau1;tau1:-tau2;tau2:-tau; 

eos: if t+te:u>te then tau:•te-t 

procedure difference scheme; 

begin integer 11 j; ~ b; 

1:-0;tau1:•1;s1gmal:•s1gma;phil:-i,h1; 

for j : -mO step 1 until m do c[ j] : au[ j]; - - -- -
next term: 1:•1+1; derivative(i,c); 

if 1•1 then 
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begin local error construct1on(4);output ~; 

ateps1ze;coe:f't'1c1ent;k:-k+1 

end.; -
tau1:-tau1Xtau; b: •beta[ 1]Xtau1; 

local error construct1on(1); 

~ j:-mO step 1 until m ~ u[j] :-u[j]+bxc[j]; 

_!! 1<3 ~ goto next term; 

t2:-t; t:•t+tau 

kl:•k; k:=O; 

next level: 

difference schema;_!! t<te ~ goto next level; 

output; 

end of e:rt: 

~ of exponential fitted taylor; 

6.2 Procedure difference scheme 

When procedure difference scheme is completed the array u[j] contains 

the components of the numerical solution at the next grid point tk+1 = tk+Tk. 

In principle, this procedure is equivalent to procedure difference 

scheme declared in modified ta.ylor, but the organization is different. The 

reason is that the construction of the local error is completely different 
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(see section 6.3). For instance, the er:or associated with the step Tk not 

only uses the successive derivatives c~1 >, but also the first derivative at 

the next point (tk+1''1t+1). Therefore, procedure difference scheme must 

proceed until the first correction term of the next step, otherwise the 

step length Tk+1, which is based on the error produced in the step Tk' can­

not be predicted. 

6.3 Procedure local error construction 

As already observed in section 2.3 it may be inconvenient to measure 

the local error by the first neglected terms of the local Taylor expansion 

in those cases where the differential equation has a stiff behaviour. There 

are two reasons: firstly, the discrepancy may differ considerably from the 

local error; secondly, the first neglected terms may be a poor approxima­

tion to the discrepancy. In order to illustrate this we consider once again 

the third order stabilized Taylor method applied to problem (3.1) fort,::. 3 

(cf. section 3). We have 

( 6. 1) 

and 

Tk 4 1 Tk 5 
p (T) ~ -.14(-) + -(-) 
kk tk 5tk 

+ ••• 

Let us elaborate these expressions for the maximal step size allowed by 

stability, i.e. 

Then we have 

(6.1 1 ) 

and 
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(6.2 1 ) 
-8 if e:k > 10 . 

In actual coni.putation~ however, we approximate the discrepancy by its first 

Taylor term, so that we find 

(6.2 11 ) 
-10 

if e:k > 10 • 

Our conclusion is the following: firstly, the discrepancy is a reasonable . 
approximation to the local discretization error provided that the global 

discretization error is at least less than 10-9; secondly, estimating the 

discrepancy ·by its first Taylor term we are led to values which are a fac­

tor 100 too large. 

This example clearly shows the danger of estimating the local error by 

the first Taylor terms of the discrepancy. 

We will describe a completely different approach for controlling the 

accuracy of numerical calculations. Our starting point is simple: instead 

of substituting the local analytical solution into the difference scheme, 

which gives rise to a discrepancy pk(T), we substitute the numerical solu­

tion valid beitween two points tk and tk+l into the differential equation. 

This gives rise to a residual z;k(T). Let Up(t) be the numerical solution 

between the J>Oints P = (tk,'\_) and Q = (tk+l'~+l) (see figure 6.2). Sub­

stitution of Up(t) into equation (2.1) leads to 

(6.3) 

We now have t,he following theorem. 

Theorem 6.1 

(6.4) p'(T ) ~ k k 

provided that the integral 
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Ik(Tk) = ftk+ 1 [H(t,U~(t)) - H(t,Up(t))]dt 
tk 

is negligible with repsect to the right hand side of (6.4). 
Furthermore, we have 

where pis the order of the method. 

Proof 

It is easily verified that 

= k+1 U'(t)dt - k+1 U (t)dt ft . ft 
tk p tk p 

The second statement of the theorem is trivial. 

From this theorem we derive for Tk ~ 0 a simple upper bound for the 

discrepancy, i.e. 

(6.5) 

For a given value of Tk the correctness of (6.5) depends on the value of 

I IIkl I. Nevertheless, it seems reasonable to base the accuracy of numerical 

calculations on the value of 
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(6.6) 

H( tk +T, U' ( tk +T)) 

u• ( t> p 

U (tk+T) 
I p 

- - -c!, - - - u (t' 
- I Q p I 

I 

p 

t 

fig, 6.2 Geometrical illustration of the residual function ~k(T) 

Procedure local error construction calculates the value of expression 

(6.6) and uses it as an estimate of the discrepancy. 

From the definition of the three-cluster method it follows that 

(6.7) 

where s2 ancl a3 are given functions of T (see [4], formula (4.14)). This 

yields 

(6.8) up(tk+1) = 
( 1 ) 

ck S'( ) (2) + 2 Tk TkCk 
I 2 (3) 

+ B 3 ( T k )T k ck ' 

where 



(6.9) 

1 
S' = -2 - b 

1 
S' =-
3 b2 

2 Note that s2 = 1-S3b. 

64 

lr2 b cos 4> sin(b sin p - 2p)l L cos 4> + e sin 4> ]' 

G + b cos 4> sin(b sin : - ;51, 
e sin J 

From (6.6) and (6.7) we finally derive 

(6.6 1 ) 

In the exponential fitted Taylor method we have adopted the right hand 

side of (6.6 1 ) as a measure for the discrepancy. The array betha[i], occur­

ring in procedure local error construction, corresponds to the coefficients 

a!. 
1 

6.4 Procedure local error bound 

See section 2.4. 

6.5 Procedure etepsize 

As in section 2.5 the prediction of the step Tk is based on an extra­

polation of the error constants, which are known at the points t = t., 
J 

j < k, to the next point t = tk. We have used the extrapolation process re-

presented by formula (2.Bd), i.e. 

(6.10) I IP' 11 = (AT+Bt+ch4 • 
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For q the following function was taken (see figure 6.3). 

4 

3 

2 ·-------..&.- ------ --------- - -·--•~·~------
' 

q 

b 

0 1.5 6 

fig. 6.3 Order g of the discrepancy as a function of b = Tkl~1 1 

Representation (6.6) gave rise to some difficulties. Firstly, when the 

step size Tk equals the critical value 

T er 

2 
Tk-1 =--, 
Tk-2 

then, in the next step, the value of A becomes infinite. Therefore, proce­

dure stepsize excludes the new step Tk from a small neighbourhood of T • er 
Secondly, the constant A may turn out to be negative; thus when T increases 

the error constant decreases. In order to avoid this undesired behaviour of 

the error constant we have used representation (2.Ba) in cases where A< O. 

Finally, since the extrapolation formula (6.10) is only linear with respect 

to T and t the extrapolation process is more sensitive for variations of T 

and t than in modified taylor which uses a parabolic formula. In order to 

guard against rapid variations we have put 

as soon as I IPk(Tk) 11 > nk. This means that the step length decreases each 
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time it is found that the discrepancy exceeds the tolerance. Of course, the 

user of procedure exponential fitted teylor mey prescribe more severe ex­

pressions a than (6.11). 
When a prediction of the new step length Tk is found, this step is 

checked for stability. The following stability condition is used ([4], for­

mulae (4.8') and (4.18)): 

(6.12) . 

1011 
Min ( do I . "' I ' l SJ.n 'I' 

This condition guarantees stability with respect to the components corres­

ponding to eigenvalues in the left hand clusters. The stability properties 

with respect to the right hand cluster are identical to those of the third 

order Teylor method as Tk + O and Euler's method as Tklo1 1 +~(compare the 

regions given in [3], fig. 3.1), 

6.6 Procedure coefficient 

This procedure calculates the values of the coefficients 82, 83, 82 
and 83 according to [4], formula (4.14) and formula (6.9) of the present 

paper. Furthermore, the value of q is calculated according to figure 6.3. 
Since these coefficients depend on the step length, procedure coefficient 

is called in every integration step. 

6.7 Real procedure normf'unetion (norm,w) 

See section 2.7. 
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7. Numerical solution of stiff equations 

We shall employ procedure exponential fitted taylor for the numerical 

solution of some simple ordinary differential equations with a stiff behav­

iour. 

7.1 The equation U = -etU + etlnt + 1/t 

Let us again consider problem (3.1). We recall that fort> 3 the dif­

ferential equation becomes increasingly stiff and, as we have seen in sec­

tion 3.5, in this region the modified Taylor method is seriously limited in 

its s~ep sizes by stability conditions. We have applied the three-cluster 

method to problem (3.1). Since$=~ the stability condition for this pro­

blem becomes (compare (6.7)) 

lt\l 
( dol )2 • 

( 7. 1} 

For lo1 1 and do1 we have chosen the approximations 

(7.2} , 

Substitution into ( 7. 1 ) yields 

(7.1'} 
_ -1/3tk 
e 

From this it follows that the para.meters sigma and diameter respectively 

are 

(7.2'} +t sigma= e , diameter= 2e213t. 

In table 7.1 the results are listed of the following call of procedure 

exponential fitted taylor (compare the call of modified taylor in section 

(3.2}}: 
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k:= O; 
exponential fitted taylor (t, if k < 200 then t else 8, O, O, u, exp(t), 

3.141592, 2 * exp(2*t/3), derivative, i, k, 1.5, 1, 

-5 -4 ) 10 , 10 , eta, rho, output ; 

Table 7.1 Three cluster method applied to prob-
( ) · -5 -4 lem 3. 1 with n = 1 o , n = . 1 O a r 

k tk Lk 1" nk/ IP.kl I e:k I = 1uk-~1 11 e: 11 (X) stab 1 
= exp(- ~k) 

1·· 

0 .010 5 ,o-6 .997 1010 0 1.3 ,o-3 

10 .034 .oo4 .989 1. 7l~ 7.4 ,o-4 

20 • 113 .013 .963 1.63 1.3 ,o-3 

30 .339 .035 .893 1. 61 1.3 ,o-3 

40 .888 .076 .744 1.39 6. 1 ,o-4 

50 1. 766 .·092 .555 .88 5.2 ,o-5 

60 2.619 .078 .418 .92 . 3. 7 ,o-5 

70 3,336 .065 .329 .95 3. 1 ,o-5 

Bo 3,942 .056 .269 .95 2.6 ,o-5 

90 4.466 .049 .226 .96 2.3 ,o-5 

100 4.928 • 043 . 192 ,97 2.0 ,o-5 

... . . . . .. . . . . .. . .. 
200 7,915 . 022 .071 1.00 3,5 ,o-6 

At first sight the superiority of the three-cluster method is not 

clear from these results. In the first part of the integration process it 

is even considerably less efficient than the stabilized third order Taylor 

method generated by polynomial (3.4) (compare table 3,2). This may be ex­

plained by the fact that the present method has third order accuracy only 

as -r + O, whereas the Taylor method is "uniformly''. of third order. In the 

second part of the integration the three-cluster method is the more effi­

cient one, as it is not retarded by stability. This means that we can ac-



celerate the integration by relaxing the accuracy condition. Note that in 

the case of the modified Taylor method a less severe tolerance function 

will hardly diminish the number of integration steps as the greater part 

of the steps is governed by stability. 

In table 7.2 some results are given for lower values n and n. As can a r 
be seen a large number of integration steps are saved while a reasonable 

accuracy is retained. 

Table 7. 2 Three-cluster method applied to problem ( 3. 1) 

na=nr k tk Tk T nk/ IPkJ le l=lu -~I lel 00 stab1 . k k 

= exp(- 3tk) 

,0-1 10 .772 .389 .773 10.3 5.3 ,0-2 9.7 10-2 

20 4.592 .216 .216 7.7 1.5 ,o-3 

30 6.256 • 124 . 124 17.8 2.4 ,o-4 

40 7.312 .087 .087 27.2 ·7 .6 ,o-5 

49 8.000 .069 ~ 2.3 ,o-5 

,0-2 10 .238 .080 .927 3.2 4.3 ,0-2 4.4 ,0-2 

20 3.098 .283 .356 .84 2.8 ,o-3 

30 5.336 • 169 • 169 1.15 -6.4 ,o-4 

40 6.701 • 107 • 107 2.2 1.5 ,o-4 

50 7.629 .079 .079 3. 1 6. 1 ,o-5 

55 8.000 .069 3.9 ,o-5 

,o-3 10 .075 .021 .975 .82 6.4 ,o-3 8.6 ,o-3 

20 .596 • 122 .820 2.4 6.3 ,o-3 

30 2.644 • 167 .414 .93 4.2 ,o-4 

40 4.080 • 119 .257 .94 2.6 ,o-4 

50 5.138 .093 • 180 1.00 1.4 ,o-4 

60 5.995 .077 . 136 1.00 8.3 ,o-5 

70 6.718 .066 • 107 1.00 5.0 10-5 

80 7.342 .058 .087 1.00 3.3 ,o-5 

90 7.888 .051 .072 1.00 2.2 ,o-5 

93 8.000 .069 1.1 ,o-6 
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The efficiency of our integration method can be further improved by 

exploiting the fact that in all our experiments with a constant tolerance 

it tu.med out that the accumulated discretization error e:k is relatively 

small for larger values of tk. This may be explained by recalling the fa.ct 

that the differential equation becomes increasingly stiff for larger values 

of tk so that the discrepancy becomes an increasingly more pessimistic es­

timate of the local discretization error. This suggests to use a tolerance 

function which is larger as the equation becomes more stiff. In the present 
. . 2 2tk. t t"ff . case we expect the discrepancy to behave like Tke in hes i region, 

while the local discretization error is certainly not expected to increase 

with tk. This implies that the tolerance function nk should be such that 

the step sizes prescribed by accuracy are at lea.st non-decreasing in the 

stiff region:, i.e. 

Let us take 3 .::_ t .::_ 8 as the stiff region of the problem. Then we may 

define 

(7,3) 

2tk-6 
where fk = 1 for tk .::_ 3, fk = e for tk .::_ 3 and na, nr are constants. 

With this tolerance function we found the results listed in tabie 7,3 (see 

page 11). 

We have omitted the case n = n = 10- 1 since the results would be a r 
equal to the ones listed in table 7,2. This can be concluded from the fact 

that in table 7.2 stability already controls the integration in the stiff 

region. 

This sec:tion is concluded with a comparison of the computational 

labour involved when applying the modified and the exponential fitted Tay­

lor method in the stiff region, respectively. Let 3 .::_ t .::_ 8 be the stiff 

region then a, modified Taylor method with stability parameter S(n) chooses 

step sizes wfaich do not exceed the value 

-t 
T = S(n)e k k . 
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Table 7.3 Three-cluster method with the tolerance function (7.3) 

Tl =n k tk -rk T nk/ I Pk I 1€k1=1uk-~1 11 €II.XI a r stab1 
= exp(- ~k) 

,0-2 10 .238 .080 .924 3.2 4.3 10-2 4.4 10-2 

20 3.098 .310 .356 .76 2.8 ,o-3 

30 5.490 • 160 .160 1. 8 1 o2 5.4 10-4 

40 6.798 • 104 • 104 4. 5 103 1.4 10-4 . 
50 7.700 .077 .077 3.8 1~4 5.7 10-5 

55 8.000 .069 1. 8 1 o-7 

10-3 10 .075 • 021 .975 . 82 6.4 10-3 8.6 10-3 

20 .596 • 122 .820 2.4 6.3 10-3 

30 2.644 • 167 .414 .93 4.2 10-4 

40 4.548 .220 .220 1.7 1.4 10-3 

50 6.232 .125 .125 1. 1 102 2.5 10-4 

60 7.294 .088 .088 1. 5 1 o3 ·8 4 - 5 • 10 

69 8.000 .069 - 3.7 10-5 

=10-5 10 .034 .oo4 .989 1. 74 7.4 10-4 1.3 10-3 
Tia -4 

20 .113 .013 .963 1. 63 · 1.2 10-3 n =10 r 
1.2 10-3 30 .338 .035 .893 1. 61 

40 .884 .076 .745 1.39 5.1 10-4 

50 1. 767 .092 .555 .88 5.2 10-5 

60 2.619 .078 .418 .92 3.7 10-5 

10 3.365 .080 .325 .90 5.1 10-5 

80 4.285 • 108 .240 .94 2.1 10-4 

90 5.630 • 153 • 153 1.73 4.1 ,o-4 

100 6.888 • 10.1 • 101 3.8 101 1.3 10-4 

110 7.767 .075 .075 3. 1 1 o2 5.3 10-5 

114 8.000 .069 1.7 10-6 
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For tk ~ 3 we may approximate this relation by 

dtk ..,tk 
dk = S(n)e , 

so that 

1 tk 
k = a(n) e + canst. 

From this relation we deduce that the number of steps required by the modi­

fied Taylor method to integrate the interval 3 ~ t ~ 8 is at least 

e8-e3 _ 2981-20 _ 296) 
a(n) - a(n} - S(n • 

Hence the number of evaluations of a derivative of the right hand side of 

equation (3.1) is at least 

(7.4) ~ a(n) • 

This lower bound does not depend on the required a~curacy. For the methods 

discussed in section 3 expression (7.4) assumes the appropriate values 4000, 
1940, 970 and 360. The expo~ential fitted Taylor method, however, requires 

a number of evaluations which varies from 100 to 150 for the cases listed 

in table 7. 3. 

7.2 Two coupled differential equations 

In reference [1] the following initial value problem was discussed as 

an illustration of a stiff differential equation: 

(7.5) U =DU+ F, U(0) = U0, 

where 



(
-500. 5 

D= 
499.5 

499.5) 

-500.5 

73 

, u = 
0 

The matrix D has the eigenvalues o1 = -1000 and or= -1 with eigenvec-
( 1 )T ( )T . . . • t 1 . . tors - ,1 and 1,1 , respectively. In the initial phase he so ution is 

for the greater part composed of the eigenvector· (-1,1)T since the initial 

vector is composed of this vector. However, this component will vanish 

rapidly, as it corresponds to the eigenvalue o1 =-1000, and the inhomogene­

ous term F only introduces the slowly varying component corresponding to 

or= -1. In fact, the analytical solution of (7.5) is given by 

(7.6) U = 2 ( 1-e -t) C ) + 16 e -1 OOOt C) . 
We have done experiments with 

(7.7) -1 -2 -2 -3 -3 -4 -4 -5 -5 na = nr = 1,10 ,310 .,10 ,310 ,10 ,310 ,10 ,310 ,10 • 

The actual call of exponential fitted taylor reads:· 

k:= 0; 

forte:= .1 step .1 until 1 do 

exponential fitted taylor (t, te, 0, 1, u, 1000, 3.1416, 0, derivative, i, 

k, 1.5, 2, aeta, reta, eta, rho, output); 

In table 7.4 we have listed the values of 3K, K being the total number 

of integration steps, and 

11 e: 11.., = Maximum 11 U ( t )-'1t II 2 , 
tk=j/10,j=0,1, ••• ,10 k 

where I I I 12 denoted the maximum norm. 

Note that the standard third order Taylor method, which is of compara­

ble order as T ~ 0, requires at least 400 integration steps, thus 

3K ~ 1200. 
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Table 7.4 Three-cluster method applied to problem (7.5) 

n = n a r 3K lle:IICX) 

100 36 3.6 10-2 

10-1 39 3.6 10-2 

3 10-2 39 3.6 10-2 

10-2 51 3. 1 10-2 

3 10-3 81 1. 8 10-2 

10-3 117 1. 1 10-2 

3 10-4 189 5.8 10-3 

10-4 288 3.1 10-3 

3 10-5 468 1.5 10-3 

10-5 711 6.9 10-4 

In order to investigate the consequences of an inaccurate estimate of 

the left eigenvalue we have done experiments with ~ntentionally wrong 

chosen lo1 1 or$, Furthermo~e, we have done the corresponding experiments 

in which do1 was chosen in such a way that the exa~t position of o1 , i.e. 

o1 = -1000, was just in the left hand cluster determined by I 01 1, $ and do1 • 

-1000 0 

fig. 7.1 Simulation of a cluster with non-zero diameter do1 
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From figure 7.1 it follows that 

7.3. 

The results are shown in table 7. 4 and illustrated in figure 7. 2 and 

Table 7.4 Three-cluster method applied to prob­

lem (7.5) with n = n = 10-3 
a r 

do = 0 
1 do1 according to (7.8) 

... 

dl 01 l/lo1 1 dcj>/,r 3K 11 e: 11 (X) 3K 11 e:l I (X) Tstab 

0 117 1.1 10-2 117 1 • 1 10-2 (X) 

.O5/,r 120 1 • 1 10-2 120 1. 1 10-2 .2 

• 1 O/ ,r 126 1 • 1 10-2 126 1 • 1 10-2 .05 

.15/,r 132 1 . 1 10-2 174 6.3 10-3 .0222 

.2O/,r 135 1.1 10-2 264 3.3 10-3 .0125 

0 . 25/ ,r 135 1. 1 10-2 411 1. 7 10-3 .0080 

.3O/,r · 192 7.6 10-3 561 1.0 10-3 .0056 

.35/,r 246 5.5 10-3 741 5,9 10_4 .0041 

.4O/,r 303 3.9 10-3 948 3.6 10-4 .0032 

.45/,r 369 3,0 10-3 1185 2.2 10-4 .0026 

.5O/,r 336 1.0 10-2 1452 1.4 10_4 .0021 

-.5 462 8.3 10-3 1536 4.2 10-5 .0020 

-- • 4 330 6.8 10-3 828 2.4 10-4 .0038 

-.3 273 4.9 10-3 414 1.3 10-3 .0078 

-.2 147 9. 1 10-3 177 5.5 10-3 .0200 

-- • 1 126 1 • 1 10-2 126 1. 1 10-2 .0900 

0 0 117 1. 1 10-2 117 1 • 1 10-2 (X) 

• 1 126 1 . 1 10-2 126 1. 1 10-2 .1100 

.2 132 1. 1 10-2 147 8.7 10-3 .0300 

.3 138 1. 1 10-2 237 4. 1 10-3 .0144 

.4 171 8.8 10-3 384 2.2 10-3 .0088 

.5 222 7. 1 10-3 534 1.3 10-3 .0060 
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d<S .eo 
1 

d<S =0 
1 

0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 dt 

fig. 7.2 The computational labour as a function of d♦/w 

-~5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 

d<S =0 . /]; 

fig. 7.3 The computational labour as a function of.d~<S1 1/l<S1 1 
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First, we ce>nsider the results corresponding to do1 = O, the case of an in­

accurately estimated eigenvalue o1 . As can be seen from the figures we have 

an increase of approximately 15% of the computational labour (function 

evaluations) provided that cf> and lo1 1 are accurate within ±8% and -15%, 

+30%, respectively. For higher inaccuracies the computational labour rapid­

ly increases. Furthermore, we observe that it is better to estimate I o 1 I 
too large than too small. 

Next, we consider the cases in which a cluster with non-zero diameter is 

simulated (figure 7.1). From the figures 7.2 and 7.3 it may be concluded 

that the integration becomes increasingly more laborious when the diameter 

increases. Only for relatively small clusters the accuracy condition 

na = nr = 10-5 is more severe than the stability condition. 

7.3 A third order differential equation 

Consider the initial value problem 

U + (1-2r cos cj>) U + r(r-2 cos cj>) U + r 2u = O, 

(7.9) 

u(o} = 1, b(o~ = o, ti(o) = o 

where rand cj> are given parameters. 

This problen1 can be written in the equivalent form 

(7.9') 

t = 02 
1 

0 

-r(r-2 cos cj>) 

➔ 
U(O) 

= (~) 

➔ 
where Uhas the components U, U and U. 

It is E~asily verified that the Jacobian matrix of ( 7. 9 1 ) has the 

eigenvalues 
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irp -irp -1, re , re • 

Hence, for large values of rand n/2 ~ rp ~ n the three-cluster method is an 

appropriate integration method for problem (7.9 1 ). 

This example was chosen.to illustrate the superiority of the residual 

formula for the evaluation of the discrepancy over the usual formula based 

on the first neglected Taylor terms. In order. to see this we consider the 

general solution of equation (7.9 1 ): 

(7.10) 
~ ~ u = c, . . (1 ) -rte1 ' -irp e + c3 -re 

-i"' -rte "' 

2 -2irp r e 
e 

where c1, c2 and c3 a.re integration constants determined by the initial 

conditions. In general, the constants c2 and c3 a.re O(r- 1) so that initial­

ly the third derivative of the vector U is 0(r4). Hence, the discrepancy, 

approximated by its first neglected Taylor terms, is at least T 30(r4). This 

implies initial steps of order (n/r4)113• To be more concrete, let 

(7.11) 2n r = 1000, rp = 3 , 

Then we have to expect initial steps T ~ ,o-5• 

When using the residual formula for the discrepancy the three-cluster 

method needs in the case (7.11), 8 trial steps whereafter the step sizes 

vary from .025 (at t~o) to .039 (at t~1). In table 7.5 some results a.re 

listed obtained for alfa = 1.5 and norm= 2. 

It may be interesting to compare these results with the results ob­

tained when the initial values are changed to 

(7.12) U(O) = (:) 

which leads to the analytical solution (7.10) with c1 = 1 and c2 = c3 = 0. 

In this case procedure exponential fitted taylor only needs 2 trial steps, 

, 
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since the initial derivatives do not contain the fastly decaying compo­

nents. In table 7.6 some results are shown. 

k 

0 

5 

lO 

15 

20 

25 

30 

35 

40 

41 

Table 7.5 Three-cluster method applied to problem (7.9 1 ) 

with.r.= 1000, $ =.2TI/3, .na.=.10-3 .and nr = O 

~ 
tk Tk ~ ~ u e:k = ~-Uk k 

0 10-10 1. 000 .ooo .000 0 

• 00001 .0001 1. 000 6 -4 -. 10 -11 1. 1 10-5 

• 0611 .025 .942 -.942 .942 9. 1 10-4 

• 1190 .027 .827 -.827 .827 4.2 10_4 

.327 .029 .719 -.719 .719 1.6 10-3 

• 1~75 . 031 .619 -.619 .619 2.5 10-3 

.634 .033 .527 -.527 .527 3.4 10-3 

.Bo6 .037 .443 -.443 .443 4.o 10-3 

.994 .006 .367 -.367 ._367 4.5 10-3 

1. 0000 .363 -.363 .. 363 4.5 10-3 

Table 7.6 Three-cluster method applied to equation (7,9') with initial 
-3 conditions (7.12) and r = 1000, ~ = 2TI/3, na = 10 , nr = O 

~ k tk Tk ~ ~ ~ e:k = ~-Uk 

0 0 6 10-5 1 -1 1 0 

5 .081 .026 .921 -.921 +.921 8.2 10-4 

10 • ::!12 .027 .807 -.807 +.807 2. 1 10-3 

15 • 351 .029 • 701 -.701 ,701 3.0 10-3 

20 • ~;oo • 031 .603 -.603 .603 3.9 10-3 

25 .-660 .034 .512 -.512 .512 4.6 10-3 

30 .B36 .037 .428 -.428 .428 5. 1 10-3 

35 1. 000 • 362 -.326 . 326 5.4 10-3 
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7.4 A stiff equation from biochemistry 

In biochemistry the following initial value problem is of interest: 

(7.12) 

S = (-1+C)S + .99c, 

C = 103(-C+(1-C)S), 

S(O) = 1, C(O) = O. 

The solution is required at t = 50. 

The Jacobian matrix of (7.12) is given by 

C - 1 

(7.13) D = 

.99 + s) 
-103( 1+S). 

According to the theorem of Gerschgerin the eigenvalues are situated in two 

circles of radius .99 +Sand centered at C - 1 and ~103(1+S), respectively. 

Thus, initially the eigenvalues are in two circles _of radius 1.99 and cen­

tered at -1 and -2000, whil~ in the stationary state (S=C~O) the eigen­

values are near -1 and -1000. From this it follows that (7.12) is an ex­

ample of a stiff equation, so that the three-cluster method should be used. 

In table 7.7 the results obtained at t = 50 are shown. In the actual call 

of exponential fitted taylor we have put alfa = 1.5 and norm= 2. 

Table 7.7 Three-cluster method applied to problem {7.12) 

na = nr k tk sk ck 

10-1 18 50 .764859 .433404 
10-2 36 50 .765405 .433561 

-3' 10 82 50 .765671 .433644 
10-4 170 50 .765781 .433679 
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8. Swmnary of integration formulae using at most four derivatives 

This paper is concluded with a survey of possible integration formulae 

using at moist four derivatives. 

class 

A 

A 

B,C 

A 

A 

A 

B 

A,C 

A 

A 

A 

A,B,C 

We distinguish four classes of initial value problems. 

Class A: Jacobian D of the given system of differential equations is 

known to have negative or "almost negative" eigenvalues. 

Many parabolic equations describing diffusion processes be­

long to this class. 

Class l3: Jacobian D is known to have imaginary eigenvalues. To this 

class belong symmetric hyperbolic differential equations. 

Class C: Eigenvalues of D cannot be located. 

Class JD: Eigenvalues of D can be placed in two or three widely spaced 

clusters. 

Table 8. 1 The array data for some modified Taylor' methods 

-
data[--2] data[-1] data[0] data[1] data[2] data[3] data[4J 

1 1 2 1 

2 1 8 1 1/8 

2 1 1 1 1 

2 2 2 1 1/2 

3 1 18 1 4/27 4/729 

3 2 6.26 1 1/2 1/16 

3 2 2 1 1/2 1/4 

3 3 2.52 1 1/2 1/6 

4 1 32 1 5/32 1/128 1/8192 

4 2 12 1 1/2 (-9)78684485 (-10)36084541 

4 3 6 1 1/2 1/6 (-9) 18455702 

4 4 2/2 1 1/2 1/6 1/24 
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If the given initial value problem belongs to class A, B or Cit is 

recommended to use modified taylor with an array data as given in table 

8.1. For methods using more than four derivatives we refer to the referen­

ces [3] and [4]. 

If the problem is of type D the two- or three-cluster method, i.e. 

exponential fitted taylor, is most convenient. 
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