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1. Introduction

This paper contains the ALGOL 60 realization and a number of applica-
tions of some of the numerical integration methods described and analysed
in references [3] and [L4]. Two ALGOL 60 procedures are presented; proce-
dure modified taylor and procedure exponential fitted taylor. The applica-
tions are chosen in the fields of ordinary differential equations, inclu-
ding stiff equations, and of partial differential equations.

Section 2 deals with procedure modified taylor; a definition of its
parameters is given as well as an outline of the several subprocedures.
Modified taylor chooses its step sizes automatically depending on the re-
quired- accuracy and the spectral radius of the system of differential equa-
tions to be solved. The storage requirements of the procedure are minimized
which makes it an appropriate method for the integration of large systems
(1000 or more equations) such as the systems which arise when by discreti-
zing the space variables a partial differential equation is reduced td a set
of ordinary differential equations. As a consequence,modified teylor does
not reject an integration step when it turns out that the discrepancy ex-
ceeds the tolerance. On the other hand, a stability criterion, derived in
the theoretical treatment of the modified Taylor method ([3] and [L4]), is
incorporated. It is here that the spectral radius of the system enters into
the considerations. A further remark is that in those cases where the re-
quired order of accuracy p is less than the number n of the available deri-
vatives of the local solution (to be given by the user of the program), the
discrepancy is estimaeted by the first neglected Taylor terms instead of the
last correction term.

In section 3 a number of experiments carried out on a simple ordinary
differential equation are analysed. Attention is paid to the local error of
the integration method, weak and strong stability, and the consequences of
the stiffness of a differential equation.

Sections 4 and 5 are devoted to the integration of hyperbolic and pa-
rabolic differential equations, respectively.

Finally, in section 6 and 7 the procedure exponential fitted taylor
and its application to stiff equations are given. Unlike prbcedure modified

taylor, exponential fitted taylor estimates the discrepancy by the residual



term obtained when the local numerical solution is substituted into the
differential equation. It turned out that for stiff equations such an esti-

mate is more realistic than an estimate based on Taylor terms.

The research presented in this paper was carried out by members of the
Applied Mathematical Department (Van der Houwen, Slagt) and by members of
the Computational Department (Beentjes, Dekker). The experiments were car-
ried out on the EL X8 computer of the Mathematical Centre.



2. The modified Taylor method

In this section we describe the ALGOL 60 version of the polynomial
methods, with constant coefficients, as discussed in [3] and [4]. These
methods can be used for the numerical integration of initial value pro-

blems of the type

( %CJ- =H(U,t), tp 2t 2T,
(2.1) <
U= EO, t =t

\
where the function H(U,t) is such that a sufficient number, say n, of deri-

vatives of U can be derived explicitly by repeated differentiation of the

differential equation. For instance, linear initial value problems of the

type

%=DU+F, typ <t 2T,
(2.1') A4
\U=U0, t =ty

where D is a matrix with constant entries and F is an easy to differentiate
function, can be dealed with polynomial methods.

The procedure modified taylor, discussed in the following subsections,
represents the ALGOL 60 version of the polynomial method with constant

coefficients.

2.1 Procedure modified taylor

Firstly, the heading of procedure modified taylor and the meaning of

its parameters will be given:



procedure modified taylor (t, te, m0, m, u, sigma, i, derivative, k, data,

alfa, norm, aeta, reta, eta, rho, output);

integer mO0, m, i, k, norm;

real t, te, sigma, alfa, aeta, reta, eta, rho;
array u, datag

procedure derivative, output;

The actual parameters corresponding to the formal parameters are:

t: <variable>;
t is used as Jensen parameter;
when modified taylor is called t should have its initial value;
te: <expression>;
the end value of t;
m0,m: <expression>;
indices of the first and last equation of the system to be
solved;
u: a one-dimensional array ulmO:m];
when modified taylor is called u should contain the initial
values of the analytical solution U(t);
sigma: <expression>;
largest absolute value of those eigenvalues of the Jacobian D of -
the system which are not in the positive half-plane;
sigma should be given by the user of the procedure;
i: <variable>;
a Jensen parameter for procedure derivative;
derivative: a procedure to be declared by the user:
procedure derivative (i,a); integer i; array a;
<body>;




data:

alfa:

norm:

aeta,reta:

eta:

i assumes the values 1, 2, ..., n and a is a one-dimensional

array almO:m]; 7
when this procedure is called in modified taylor array a contains

the components of the (i-1)-st derivative of U(t) at the point
(t,u);

upon completion of a call of derivative array a should contain
the components of the i-th derivative of U(t) at the point (t,u);
<variable>;

counts the integration steps;

if k = O then the integration starts with a trial step

. "o B(n)
= M ’
T ln[AIH(to,ﬁo)|| o(Do)

if k > 0. then the integration proceeds with a step based on the

last three computed discrepancies;

in the very first call of modified taylor it is required that

k = 03

a one-dimensional array datal-2: datal-2]]; _

data [-2]: the number n of derivatives of U(t) to be used;

data [-1]: order of accuracy of the method; .

data [0]: stabilify parameter B(n) (see references [3] and [5]);

data [1], ..., data [data [-2]1: coefficients Bj’ J=1, «ees n
of the polynomial method (cf. section 8);

<expression>;

the step sizes T

satisfy the condition t, < alfa * T

k k k=13

<expression>;

selects the norm according to which the discrepancy is estimated
(see section 2.3); '
<expression>;

desired absolute and relative local accuracy;

when both aeta and reta are negative modified taylor skips the

accuracy conditions;

<variable>;

the tolerance n, which is some function of’aeta and reta (see

section 2.4);



rho: <variable>;
discrepancj used as an estimate for the local error produced in
the last integration step;
output: a procedure to be declared by the user:
procedure output;
<body>;
by this procedure one may order to print the values of e.g.

t, u[mO0], ..., ulml, sigma, k, eta, rho;

Next we give'the body of procedure modified taylor. For a discussion
of the procedures declared within modified taylor we refer to the following

subsections. For the procedure vecvec one is referred to [2], section

3.2.3.

begin 1:=0;

begin integer n,p,q;

own real ecO,ecl,ec2,tau0,tanl ,tau2,taus,t2;

real teu,taul,tauec,ecl,betan,gamms;

real errey c[mO:m],beta,bethal1:datal-2]1];

boolean start,stepl;

procedure coefficlent;

begin integer J;real ifac;
ifac:=1; gamme:=,5; n:=data[-2]; p:=datal-1];

betan:=datal0]; q:= if p<n then p+l else n;

for j:=1 step 1 until n 29

begin betal J]:=datal j1; ifac:=ifac/J;
bethal j]:=ifao-betal j]

end; |

if p=n then bethaln] :=ifac

end;



reel procedure normfunction(norm,w);

integer norm; arrsy w;

Pfrgin integer j; real s,x;

8:=0;

if norm=1 then

begin for j:=m0 step 1 until m do

begin x:=sbs(w[Jj]); if x>8 then s:=x end

end else

s:=sqrt(vecvee(mO,m,0,w,w));
normfunction:=s

end;

Eocedure local error bound;

eta:=aetatreta X normfunction(norm,u);

procedure locel error constructiop(i) sinteger 1;
P_gwg_:!.zx_ E i=p .JE’.}EE '}fﬁ?ﬂ ecl:=0; tauec:=1 Erlg;
_:1._{ i>p+i1 }:_119—_1 tanec:=tauecxtau; _ v
ecl:=ecl+abs(bethal 1] )xtauecxnormfunction(norm,c);

_:TE i=n then

begin ecO:=ecljecl:=ec2;ec:=ecl;
rhos=eclxtauhq
end
end;
procedure stepsize;

begin real tauacc,taustab,asa,bb,cc,ec;

local error bound;

if ets>0 then

begin _j_.f; start then
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begin 1_1’_ k=0 then

begin integer J;

for j:=m0 step 1 until m do el 3=l 31;

1:=1; derivetive(i,c);
tauacc:=eta/normfunction(norm,c);

stepl s=true

end else

E stepl then

begin tauacc:=(eta/rho)A(1/q)xtau2;

E tauacc>10Xtau2 then

tanacc:=10Xtau2 else stepl:=false

end else

begin bb:=(eco=ecl)/taul; cc:=ec2—i)bxt2; .
ec:=bbXt+ce;
tanacc:=1if ec<O then tau2 else
(eta/ec)M1/a);
start:=false

end

end else

begin aa:=((ecO-ecl)/tau0+(ec2~ecl)/tanl)/

(taul+tan0);
bb:=(ec2=ecl) /taul—aax(2xt2=tanl);
cc:=ec2=t2X(bb+aaxt2); ec:=cc+tXx(bb+tXaa);
tanace:=1f ec<O then taus else(eta/ec)N(1/q);
1f teauacc>alfextaus then tauacc:=elfaxtaus;

if tauacc<gammeXtaus then tauacc:=gammaxtaus;
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if tauacc<y=12 X t then tauacc:= =12 X t

end

end else tauscc:=te=t;

taustebs:=betan/sigma;

E taustab<y=12 X t then goto end of modified taylor;

tan:=_i_i_‘_ tanacc>taustab then taustab else taunacce;

taus:=tau; }_{ ta>te=t then tau:=te=t;

taul:=taul ; taul :=tau2; tau2:=tau
end;
procedure difference scheme;

begin integer j; real b;

for j:=m0 step 1 until m do clJl:=ulj]; taui:=1;

next term: i:=i+1; derivative(i,c); taul:=tauixtau;
b:=betal 1]xtaui;

if ete>0 A 1>p then local error construction(i);

for j:=mO step 1 until m do ulJl:=ul3l+bxel31;

if i<n then gdto next term;
t2:=t; ti=t+tan

end;

start:= if k=0 then true else false;

coefficient;
next level:
stepsize; k:=k+1; 1:=0; difference scheme; output;

E t<te then goto next level

end;
end of modified taylor:

end;
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2.2 Procedure difference scheme

By this procedure the values of ulj], representing the components of
the numerical solution uk, are replaced by the components of uk+1.

The procedure exactly follows the computational scheme given in [3],
section 2.1. During the c?nstruction of Yoo by summing the successive
correction terms B, T- c(l)

1 k k
error, i.e. the discrepancy, is build up by procedure local error construc-

s, 1=1,2, ..., n, an estimate of the local

tion.

2.3 Procedure local error construction

Procedure stepsize is based on estimates of the local errors
Ilpk(Tk)Il evaluated by procedure local error construction. Therefore, this
procedure plays a central role in our calculations given in subsequent sec-
tions.

The local error p,(t,) is defined by (cf. [3], section 2.2).
k''k

(2:2)  eylny) = Uy - wys

where ﬁk+1 is the analytical solution and u£+1 is the numerical result at
the point t = tk+1

applied at the point (tk,ak) (see figure 2.1).

which would be obtained when the difference scheme is

Uge1~, _ T

~
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%o e T Pk

fig. 2.1 Local discretization error and discrepancy in a scalar case
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However, as already observed in [L4], section 2.2, it is not Py Which is

available during the integration process, but some approximation of the

error
' = -
(2.3)  oy(Ty) = Uppq = Weuyo
where U£+1 = U (tk+rk), U (t) being the local analytical solution through

the point (tk,uk). We shall call pi(rk) the discrepancy. In most cases the
local error pk(Ik) and the discrepancy are comparable. However, when the
Jacobian of the differential equation has eigenvalues with a large negative
real part, considerable differences may occur when the eigenfunctions
corrésponding to these "late" eigenvalues vanish rapidly in the analytical
solution and when these eigenfunctions should continue to be present in the
numerical solution. In such cases one may improve the approximation by
using strongly stable methods in order to reduce the effect of the "late"
eigenfunctions (compare section 3).

The discrepancy pi(rk)‘can be expressed as
2)

+ e o o

(2.8)  oplr) = (1-8) 7, el + (3 -8y <2 e

n

+ (%!— B, ) Tin) cin) + 0(r§+1).

Let p be the order of accuracy of the method, i.e.

v +
Di(T) = o(<P 1) as T > 0,

and let p < n. Then we take as a measure for the discrepancy the value of

(1) + ...+ (l - B.) (p)ll +

(2.5)  |1(1-8)) t,cy -8,

B eI Sl

1 1 n
* ey - Bl coo * o - Bl e ey
In the case of the modified Taylor method the first term of this
expression vanishes and, generally, the discrepancy is mainly determined by

the second term. However, when ||cép+1)|| has a zero near t = t,, the third



1k

term is a measure for the discrepancy. In scalar cases such a situation is
not fictitious. This means that it is dangerous to approximate the discrep-
ancy by only the first neglected term. Of course, when n = p+1 we have no
choice and must hope for the best. Note that we have taken the sum of norms
of neglected terms instead of the norm of the sum of these terms in order
to be safe for zeroes of the sum function. |
Furthermore, it may be remarked that formula (2.5) generally holds for
methods with varying coefficients as discussed in [4].

Next we consider the case p = n. We then approximate the discrepancy

by the value of the last correction term:

(259 L |l

Procedure local error construction sums step by step the terms given
(i)
k

in (2.5). Since the vectors c are computed in procedure difference

scheme, local error construction is called in difference scheme each time
(i)
k

a new vector c 1s computed.

2.4 Procedure local error bound

Procedure local error bound assigns a prescribed value to N> the

local error bound to be imposed on the scheme. By putting

(2.6) e = Nops * Npel [l s

where n and n are respectively the absolute and relative error bound .

abs rel
for the local error, we have a flexible formula for My

2.5 Procedure stepsize

The step Ty is determined both by accuracy conditions and stability
conditions. First we consider the accuracy conditions.

Ideally, the step T should be such that

(2.7) Hog(t ) ] = ny-
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As we have seen in preceding sections, however, the value of ||p£(rk)|| is
unknown until the integration step Ty is completed. Thus, when the integra-
tion process is arrived at the point t = t, we only know the values of

k

||p (T )|| for 0 < j < k-1. Therefore, some strategy for predicting Toe is

necessary, which is based on the values of preceding dlscrepancles. For in-
stance, let it be assumed that in the neighbourhood of (rk,tk) the error
|le']]s as & function of T and t, behaves as

(2.8) Ilp'H = f(T,t,A,B,C,...),

where £ is a given function and A, B, C, ... are parameters to be deter-

mined-.by the equations

(2.9) f(t.,t:,4,B,Cy...) = ||pt(T.)]], j = k-1, k=2, ... .
J J Jd J

Then, the new step T, may be predicted by solving the equation

(2.10) £(Tyoty 5 A,B,C5.00) = e

In the case of constant coefficients we have the error formula (see

(2.5) and (2.5'))

‘ " \ - a1 (a)

(2-5 ) Hpk(Tk)ll Tk Iq! - Bq| Hck ” + ...
25 - eyl 2 11e11]

+

wvhere q = n if p = n and q = p+1 otherwise. We have considered the follow-

ing representations of ||p'|]:

(2.8a) lo']] = ¢ %, k=1,
(2.80)  |le'|| = (Bt+c)<, k = 2,
(2.8¢c) o] = (At2+Bt+C) 7Y, k > 3.
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In these representations the dependence on the step T of the factor between
brackets, the "error constant", is neglected in the neighbourhood of
(tk,tk). Note that in this case equation (2.10) can be solved explicitly
for T, provided that the representation of the error constant is positive
“for t = tk Tk_1.

When the coefficients Bj depend on T we may choose the representation

. If not we have put T =

(2.84)  |lo'|| = (ar+Bt+c)d, k> 3,

where q is some function of T tending to n (if p=n) or p + 1 (if p<n) as
T + 0. Since we only consider polynomial methods with constant coefficients
in tHis section, we postpone the discussion of (2.8d4) to section 6.5.

The first step T, cannot be predicted by formulae of type (2.8) since
no estimates of the local error at preceding points are available. We have
used the rather rough formula
(2.11) —(—r-no

. T, = .

0 e
This step corresponds to monitoring the discrepancy of a zero order scheme
and is expected to be sufficiently small. The next step then follows from
(2.8a), i.e. ‘ :

AN . T Y A
‘ s 0 11811\ Hlegte

However, it may happen that ||p6(ro)|| is so small that T, is assigned a
value much too large to be acceptable. We have allowed 11*to'increase with .

a factor 10 with respect to 1. until a realistic step length is reached. We

0
shall call a step length realistic when the last computed discrepancy is
larger .than 10-q * tolerance (when the next step is again 10 larger than
the preceding one, we expect that the discrepaney will exceed the toler=-

ance). In this phase of the integration process, where procedure stepsize

is searching for an appropriate step, we used the simple extrapolation
formula (2.8a). As soon as procedure stepsize reaches a realistic step
length the next step shall be based on (2.8b) and thereafter on (2.8c).

In this phase of the integration process the step sizes are subject to
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the conditions

(2.12) %1 < T

k=12 k_<_a.lfa.*t

k-1°
where alfa is prescribed by the user of the program.

When procedure modified taylor is called with k # O the step size
prediction at once uses (2.8c), since the necessary error constants are
already supposed to be evaluated in the first call of modified taylor.

Having established a step size which satisfies the accuraéy conditions
we consider a second important condition, the stability condition of the
scheme. From the theory presented in [3] and [4] it follows that polynomi-

al methods give rise to inequalities of the type

(2.13) Ty E'O(Dk)’

where B(n) is the stability parameter of the generating polynomial and
o(Dk) the spectral radius of the Jacobian matrix D, of the equation to be
solved.

It may happen that

Bln) o,

c(Dk)

‘where € is the relative precision of the computer used (e ~ 10_12 for the

EL X8). In such cases the integration variable is not changed so that
further calculations are meaningless. When this situation arises procedure

stepsize jumps to the end of procedure modified taylor.

2.6 Procedure coefficient

This procedure calculates the coefficients 81, veesy Bn

and the parameter q.

2.7 Real procedure normfunction (norm, w)

If the parameter norm has the actual value 1 this procedure assigns
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the maximum norm of the array w to normfunction. If norm = 2 the Euclidean

norm of w is calculated.
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3. A single ordinary differential equation

Our first experiments were done in order to illustrate the advantage
of a variable step length, the consequences of weakly and strongly stable

schemes and the difficulties which arise when an equation becomes stiff.

3.1 The initial value problem U = -etU+et1nt+1/t

Consider the following initial value problem

4
%% = —etU + e’int +-1, t 3_10‘2,

(3.1) ~
U(1072) = 1n(1072).

Clearly, this problem has the solution
(3.2) U(t) = 1nt.

3.2 The difference scheme

Suppose that one decides to solve (3.1) by a Taylor method. Which
method depends on the accuracy desired and the range over which the solu-
tion is to be computed. We have considered the following generating poly-
nomials (see [3], section 4.1, 6.2, 6.3 and [5] , table 4.1):

(3.3)  Py(a) =142+ 0%+ k3t

(3.8)  Bylz) = 14z + 4+ 23+ L018U557 2",

(3.5) Py(z) =1+1z+ %22 + 0786845 23 + .003608Y5 2",
N - 2 .1 3 1k

(3.6)  By(a) = 1+ 2 +32% + e 4 g,

These polynomials generate difference schemes which are fourth, third,

second and first order exact, respectively and are appropriate for the nu-
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merical integration of equations of which the Jacobian matrix (in this case
the scalar -et) has negative eigenvalues. For such equations the approxi-

mate <values of the stability parameters B(4) are, respectively,
(3.7) 2.78, 6, 12, 32.
These values complete the data necessary to define the integration method

to be used. In the actual program the data are stored in array data [-2:4].

For instance, the method corresponding to (3.3) is defined by

data [-2]:= L;

data [-1]:= k4;

data [0]:= 2.78;

data [1]:= 1;

data [2]:= .5;

data [3]:= .16666T;
data [L]:= .04166667.

Next, we have to consider the ALGOL 60 description of the initial

value problem. We restrict our considerations to procedure derivative:

procedure derivative (i,a); integer i; array a;

begin if i = 1 then
begin expt:= exp(t); 1lnt:= 1n(t); cO0:= al0];
c1:= a[0]:=-expt * cO + 1/t + expt * 1nt

end;

if i = 2 then c2:= a[0]:= expt * (1nt+1/t-cO-c1) - 1/t/t;

if i = 3 then c3:= al0]:= expt * (lnt+2/t-c0-2%c1-c2-1/t/t) + 2/t/t/t;

if i = L then al0l:= ¢3 - 2 * (143/t)/t/t/t + expt * ((1-(2-2/t)/t-c1-2%xc2-c3)

end;
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Here, the variables expt, 1lnt, cO, cl1, c2 and c3 are to be declared at the
beginning of the proéram. Note that c0, c¢1, c2 and c¢3 correspond to the
quantities céi), i=0, 1, 2, 3, occurring in procedure difference scheme.

Finally, we give the actual call of procedure modified taylor by which
the results listed in tables 3.1 - 3.4 were produced:

k:= 0;
modified taylor (t, if k < 200 then t else 8, 0, 0, u, exp(t), i,

p]

- =L .
derivative, k, data, 1.2, 1, 10 °, 10 , eta, rho, output);

3.3 Variation of the step size

In tables 3.1 - 3.4 the results at the points t = tk’
k = 0, 10, 20, ..., which were obtained by the methods generated by (3.3) -
(3.6), are listed. We have respectively given the step number k, the value
tk of the integration variable, the step size Ty» the maximal step allowed

by stability, the tolerance n, divided by the discrepancy Ipi], the global

k

discretization error e, end its maximal absolute value ||e||m.

Table 3.1 Fourth order Taylor method

kol % Tk stab n/ Loyl | e=0y- llell,
=2.78 exp(—tk)

ol .ot0 | 510° 2.78 y 10'° 0 3.4 107%
10 | .0h1 . 006 2.78 2.25 -2.5 10'h
20 | .165 .024 2.38 1.90 -3.k 1o‘h
30 | .572 .067 1.57 1.49 -2.4 1o"h
4o |1.47L . 165 .19 1.18 2.4 10°°
e s (I
50 [3.340 | .099 .099 59 6.6 1077
60 |L4.oL43 .0k9 .0kg 176 -7.1 10‘8
70 | L. LhT .033 .033 3135 -1.9 10‘8
ces - - cen . ves »

200 |6.107 .006 .006 2 10 =L, 7 10
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Table 3.2 Third order Taylor method with one stability term

koot Tk Tstab m/logl | ey el
=6 exp(-tk) ,

o | .ot0 | 510°® 5.9 7 100 0 1.7 1073
10 | .05 .008 5.76 2.78 +1.2 1073
20 | .207 .037 L. 86 2.24 +1.7 1073
30 | .764 | .088 2.82 1.57 +9.2 10~
4o |2.272 | .333 .61 1.71 +4.3 1072
50 [4.018 | .0T1 .11 .88 -3.1 10~°
- — — —— - — — 4 - = = ]
60 |L4.570 .0k2 .060 1.01 —2.8 107
T0 |4.926 .030 .oLYL 1.00 -2.8 10‘5
80 |5.189 .023 .033 1.00 -2.7 1077
200 |6.530 | .006 .009 1.00 2.7 10~°

In all four tables we see a rapidly varying step size Tyt This varia=-
tion is due to the accuracy condition as well as the stability condition
imposed on the difference scheme.

In the first part of the integration interval the step size prediction

is governed by the accuracy condition

= n_
(3.8) T2 Tace E
where q is the lowest power of T occurring in the formula for the discre-
pancy p' andEi is the extrapolated (predicted) value of the error constant
E. For instance, the fourth and third order method respectively have the
discrepancies

(3.9) IOi(Tk)I = Eﬁ Ti lcéh)l ~ ,0k2 T; |c£h)|

and
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(h)l ~ (h)|’

(3100 lop(r)] = (g - 01BUSSTITy e 023 1) e

from which we conclude that q = 4 and E behaves like lc( )l The value of
Ic(h)l is defined by the fourth derivative of the local analytical solution

U'(t), i.e.

L I t
3.1 el") = GrGe) =4 [t + ce™® 1],
dt b=t Qt =t
k k
_ -etk
where C is some constant (we have in fact € = -Ce ). When the global
error € is negligible w1th respect to the analytical solution a(t) = 1Int we
have Zﬁh) ih) 6/t so that the analytical error constant E behaves as

t-h. This implies a llnear increase of Toce for the fourth and third order
method as may be concluded from formula (3.8) (a similar conclusion holds

for the second and first order method). However, the presence of the error
t .
€, which is of the form -ce™® , introduces into the error constant a compo-

nent which is increasing with t so that, in practice, Toce will have a
lower rate of increase and will finally decrease when the increasing compo-

nent becomes dominant.
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Table 3.3 Second order Taylor method with two stability terms

k|t | T ttab ne/lopl | e Bw | 1lella
= 12 exp(-tk) )
0| .o010 5 1070 11.9 3 107 0 4.6 1073
10 | .021 .003 11.8 1.55 -1.1 1073
20 | .062 .007 11.3 1.14 ~3.3 1073
30 | .165 .016 10.2 1.09 -4.5 1073
4o | .389 | .031 8.2 1.05 4.3 1073
50 | .770 | .obk 6.3 1.02 -2.6 1073
60 [1.227 067 3.5 1.01 _8.1 107"
70 |2.292 .158 1.2 1.01 -9.1 107°
80 |3.588 .091 .33 .99 —2.0 1072
90 |k.312 .055 .16 1.00 ~1.0 10°°
100 |L4.7T76 .038 .096 1.00 -T.1 10‘6
110 (5.117 .030 .072 1.00 -4.9 10'6
120 |5.434 .046 .05k 2.08 3.6 1077
130 |5.768 .025 .036 6.48 -9.2 10’8
140 |6.072 .028 .028 17.11 -1.3 1078
150 |6.319 | .022 ' .022 35.07 5.5 1077
160 6.517 | .018 .018 70.13 | -2.8 1072
200 |7.056 .010 .010 466 -L.6 1077

From figure 3.1, where the observations given above are illustrated,

we see that analytically the step size linearly increases until the stabili-

ty condition

t

(3.12) 1 < B(n) e

Tstab ~

becomes more severe than the accuracy condition (3.8), after which the
step size decreases exponentially. In this region the equation is said to

have a stiff behaviour. The fourth order method (see table 3.1) exhibits
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approximately such a behaviour of the step size. The third and second order
method, however, show some irregularities which will be explained in section
3.5. The steps of the first order method are completely controlled by accu-

racy requirements because of the small integration interval covered in 200

steps.
Table 3.k Fourth degree Chebyshev polynomial
' = -
oot | T Tstab n/legl | &=l Ilell,
= 32 exp(-tk)
. -6 -2
0] .010 5 10 31.68 6000 0 2.6 10
10 | .013 . 000k 31.59 .99 +2.6 10‘3
20 | .018 | .0006 31.43 1.00 +6.6 1073
30 | .025 .0008 31.21 1.00 +1.0 1072
Lo | .03k L0011 30.93 1.00 +1.4 1072
50 | .ob7 | .001k 30.53 1.00 +1.7 1072
60 | .062 .0018 30.08 1.00 +1.9 1o“2
70 | .082 10022 29,48 1.00 +2.1 1072
80 | .106 .0028 28.78 1.00 +2.3 10“2
90 | .136 . 0033 27.93 1.00 +2.4 1072
100 | .172 .00ko 26.94 1.00 1 +2.5 10‘2
110 | .21k ‘.ooh6 25.8L 1.00 +2.6 10'2
120 | .263 .0053 24.60 1.00 +2.5 10‘2
130 | .319 . 0060 23.26 1.00 +2.5 1072
200 | .835 .00Th 13.88 1.00 +1.2 10'2
3.4 Accuracy
In the region governed by the accuracy condition (T = Tacc < Tstab)

one would expect to find approximately equal values for the tolerance and
discrepancy, i.e. nk/lpil ~1.
Except for the first order method (table 3.4) this is, at least ini-
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tially, not in agreement with the numerical results. The reason is that the
extrapolation procesé, by which the error constant E is predicted, cannot
follow the rapid decrease of E. Hence, proceduré step size predicts values
for E which are larger that the real ones, so that, according to formula
(3.8), the step sizes turn out slightly lower than when we had known E in
advance. As a consequence we find nk/Ipil > 1. As soon as p', as a function
of t, slows down the prediction of Ty becomes more accurate so that we find
nk/lpl'cl ~ 1,

In the region governed by the stability condition (T =

Tstab) we have,

of course,nk/lpil >> 1, |

Next we consider the global error € in the region governed by condi-
tion (3.8). As was pointed out in reference [3], section 2.2, the error €4
satisfies the relation

. t
(3.13) e, = Pylr, e ) e * o,

where Py is the local discretization error. For instance, the fourth and

third order methods have local errors which are given by

(3.9 plr,) = =t 12 'E}‘f) + o(c0)= .2 w2 £+ o({)
and
(3.10")  p (1) = (5% - .018U557) Tt Zf{’*) +0(x2) ~ - .1k Ti t;“ + 0(xd),

respectively. These formulae, together with (3.9) and (3.10), explain why
the fourth order method yields more accurate results than the third order
method, although both methods are applied with the same values for the

tolerances. For the integration process tries to keep Ipi(rk)| equal to ng

which results in stepsizes differing by a factor ;%5% ~ 1.2, i.e. 20%.

Thus, the fourth order method chooses smaller steps and has a higher order
local discretization error. This implies a smaller global error €
In connection with this it may be remarked that the third and second order

method yield errors of comparable order of magnitude. This is due to the
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fact that both methods use the first negiected terms (instead of the last
correction terms) of the local Taylor expansions as a measure of the dis-
crepancies.

Finally, we discuss the behaviour of €1 in the region controlled by
stability. In this region (3.13) assumes the form

(3.13") €41 = By (-B(4)) € + Pp-

'In the case of the fourth order method we have
€ra = P), (-2.78) € ¥ Py ™ E Py

Since ¢
k

(cf. formula (3.9')), we may expect that €

is negative and Py positive in the region where (3.13') is valid
K increases so that initially
|ek| is decreasing. This is in agreement with the results listed in table
3.1. For the second order method we have

€

we1 = By (212) g +o ~ 85 e ooy

Although both €, and Py are negative in the region where (3.13') applies

we may again exiect a decreasing behaviour of Iekl (ef. formula (3.10')).
Note that the parameter B(4) = 12, which was taken from [3], formula
(6.11), is slightly lower than the parameter calculated in [5], table k.1,
where we found the value B(l4) = 12.046k4. When this larger value was employ-
ed we should have found an increasing behaviour of Iekl since then the re-

lation

€ ~ €

k+1 ~ €kt Pk

holds for ek.

3.5 Weak and strong stability

In the preceeding two subsections the results listed in table 3.1 -

3.4 were discussed. One phenomenon, however, namely the fact that the third
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order method never, and the second order method only after some "hesita-
tion", reaches the region controlled by stability, was postponed to this
subsection. This phenomenon is related to weak and strong stability. In
this paper, a method is called strongly stable when the amplification

factors of the scheme are all within the unit circle. In the present ex-
t
ample the amplification factors are given by P), (—Tk e k). In figure 3.2

these factors are illustrated for the polynomials (3.4) - (3.7). From this
figure it is seen that the fourth order method can be made strongly stable

by requiring

—tk
0 < Ty < 2.78 e —,

-t
i.e. by excluding neighbourhoods of T = 0 and © = 2.78 e k. In the case of

the other polynomials we may obtain strong stability at the cost of inter-
mediate regions of forbidden T values, which is, however, undesirable from
a practical point of view. Before we give a constructionvof a strongly sta-
‘ble scheme we shall demonstrate the danger of weakly stable schemes.
Consider the third order method applied to example (3.1) for t > 3.

For such values of t we derive from formula (3.10) and (3.11)

Lt
L k
pi(Tk) 023 Ty e .

so that Ty will behave as

o i
k .023]¢, | :

(Note the different behaviour of the local discretization ergor
L -k . . LTy

pk(Tk) - .14 Ty tk and the dls?repanfg pk(TE) .023 T, © )

From table 3.2 and the relation nk ~ 10 + 10 In tk we deduce that the

t

k K increases from 3.T74 at k = 50

to 4.25 at k = 200 and never reaches the value 6 of the stability parameter

coefficient of e in this expression for T

B(4) (see {3.12)). One may ask why ]ekl remains almost constant in this re-

gion of the integration. In order to explain this comsider figure 3.2. We

) t
see that the polynomial Ph(—Tk e k)sgenerating the third order method,
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t
assumes values near -1 in the neighbourhood of Ty © ko 4.39 or
-t
Ty = 4.39 e K For such step sizes we have
Cp+1 T T T P T "%

since Py ey be neglected with respect to €x* This implies that Iek|
remains approximately constant, which is a direct consequence of the weak
stability of the method.

This example clearly demonstrates the danger in using weakly stable
methods. The temporary increase of the stepsizes in table 3.3 is due to the
same phenomenon as described above. But in this case the integration pro-
cess did eventually succeed to pass the region where the amplification fac-
tors equal -1.

We now try to improve the weakly stabilized Taylor methods by construc-
ting strongly stabilized methods. For the class of methods generated by the
polynomials T, (1+z/n2) we refer to [3], section L4.1. Here, we consider the
third order method generated by (3.4). From figure 3.2 it is seen that
Ph(z) reaches its minimal value at z ~ -4.39. Suppose that the last coeffi-

cient is changed with the amount d Bh' Then we have
a Py (-k4.39) = (-h‘39)h dp, ~37148
u . . ll» L

As a rough estimate of the minimum of the new amplification factor we may

take the value of
-1 + 371 4 Bh'

The stability parameter B(4) of the new polynomial can be estimated from

the relation

3
d (k) = B (%) 5 d B, ~ -L38 a B).
B(4) + 3 B), B (4)

[\oY it
wl—



1.0

8

b

o4

al

_02

'—54

—:.8

—58

_1 no

"1:&0 “n4

. t t
. .o . k . . =2 k
fig. 3.2 Amplification factors Ph (-Tk e ) as functions of the variable B_(l-J T © + 1.

p denotes the order of accuracy of the corresponding method.

Mercurius - Wormerveer

(013



31

From these relations one easily derives a polynomial which has, for in-

stance, a minimal value of about .9. We found

(3.14)  Py(z) = 1+ 32+ %22 + %-3 + 01872597 z*, B(L) ~ 5.90.

In table 3.5 results obtained by this polynomial are given. The sta-
bility parameter R(4) was given the value 5.8 in order to make sure that

the amplification factors are within the interval [-1,1] for all step sizes.

Table 3.5 Strongly stable third order Taylor

method with one stability term

k by Tk Tstab n/ loyl €k=ﬁk_ el
=5.80 exp(—tk)

ol .o1t0| 5107 5.7h2 7 10'° 0 1.6 1073
10| .obLT .0081 5.534 2.78 +1.1 1073
20| .215 .033 L.678 2.23 +1.6 10‘3
30| .T90 .090 2.632 1.55 +8.4 10'h
ho| 2.385 | .357 - .53k 1.91 +4.0 107
50| 4.215 .086 .086 1.33 +8.0 10‘6
60| 4.846 | .0k6 .06 2541 +2.2 1072
70| 5.228 | .031 .031 15200 +4.1 10710
200| 6.851 | .006 .006 1.9 10| +3.6 10712

The results of the first 40 integration steps closely resemble the results
listed in table 3.2. After that, however, the strongly stable scheme quick-
ly reaches the region where stability controls the step length.

Although the stabilized Taylor methods enable us to integrate egqua-
tions of type (3.1) more efficiently than the standard Taylor methods,
there are far more efficient integration methods. We mention the two- and

three-cluster methods given in [4], section 4.4, In section 6 of the pre-
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sent paper an ALGOL 60 version of these methods will be given and applied
to problem (3.1).
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4, Hyperbolic differential equations

In this section we study the numerical solution of the Cauchy problem
for some simple hyperbolic differential equations by the modified Taylor
method.

. _ 1
4.1 The equatlon.’Ut = EUx

Consider the Cauchy problem

1
U“b=—2-Ux’ -© < X < @, 0 <t < o
(ho1) <
2
U = exp(-x"), -» <x <% t=0.

By discretizing the variable x, that is replacing x by the discrete
variable jE, j = 0, *1, *2, ..., where £ is the mesh size, we may approxi-

mate equation (L.1) by an infinite set of ordinary differential equations:
(4.2) W1z -x)u.

Here, U denotes a vector with an infinite number of components correspon-
ding to the grid points j€ and X, are shift operators with respect to the
index j of the components of U. The operator occurring in the right hand

side of (4.2) may be represented by a matrix D of infinite order i.e.

eeesy 0, =1, 0, +1, 0, ...
:

D=y veesy 0, =1, 0, +1, 0, ... .
ees 0, =1, 0, +1, 0, ...
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It is easily verified that D has eigenfunctions E of which the j-th compo-

nent is given by

Ezij) = exp(iwjg),

where w is an arbitrary real number. The corresponding eigenvalues § of D

are given by

(4.3) § = El sin wg.

Thus, D has purely imaginary eigenvalues with a spectral radius

(4.4) o(D) = E;: i

In [3], section 5 the polynomials are given which generate difference
schemes suitable for the integration of this type of differential equa-

tions. For instance, the polynomials

1.2 1.3

(4.5) Pay(z) = 1+ 2z + 752" + 127, B(3) = 2,
(5.6)  Py(z) = 1+2z+ 5%+ 33+ lab, gu) = 20,

These polynomials are second and fourth order exact, respectively. Hence,
as can be easily verified, the analytical solution of (4.1) will locally
satisfy the difference schemes generated by (4.5) and (4.6) apart from a

term
(b.7)  0o(x3) + o(z£®%) ena o(z?) + o(r£?),
respectively. Since the stability condition, which is of the form

1.8 <& =2 gy,

allows time steps of order & we shall have an approximation error of at
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least order 53. Note that the second degree polynomial given in [3], for-
mula (5.1), which is only first order accurate, will yield a residual term
0(12) + 0(162), i.e. of order 52.

In the actual application of the modified Taylor method to equation
(4.2) we are faced with the fact that the number of components of U is in-
finite. However, when we wish the difference solution at the point (j&,tk)
we only need the values of the difference solution at the points
(38,1, _4)s ((3£1)E,8,_L)s ...y ((Jin)E,t, ). This is illustrated in figure
4.1 for n = L.

i=h t
i=3
i=2
i=1
i=0 i T

(3-B)e (§=3)& (§-2)E (j-1)& j& (j+1)eg (j+2)& (j+3)& (j+h)&

fig. 4.1 Domain of dependence for a fourth degree gen-

erating polynomial applied to equation (L.2)

Therefore, when we roughly know the number, say K,of steps necessary to
integrate the initial value problem and when the solution is required at,
say J points we have to start with a system of J + 2Kn differential equa-
tions. Moreover, during the integration process the number of relevant
equations decreases, so that it is efficient to change the index o, of the
first equation and the index m of the last equation. Let the initial func-
tion U0 be specified at the points x = j&, j = gge g0+1, «.e+s &. Then the

indices m, and m should be defined by the procedure
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integer procedure m0;

begin integer decrement;

if k = 0 then decrement:= i else decrement:= i + (k-1) * datal-2];

mO:= 8g + decrement; m:= g - decrement

end;

Note that the use of this procedure avoids the repeated calculation of the

value of m in the for statements occurring in modified taylor.

We are now in a position to give the ALGOL 60 version of procedure

derivative.

procedure derivative (i,a); integer i; array a;

begin real ajml, aj;
ajml:= a[mo-1];

~for j:= mO step 1 until m do

begin aj:= aljl;
aljl:= (alj+1]-ajm1)/L/ksi;
ajml:= aj

end

end;

Here, ksi denotes the mesh size § and must be specified before modified
taylor is called.

Suppose that the solution is required in the region
R: [-.05 < x < .05] » [0 <t < .bU5].
Furthermore, let us take a mesh size
g = .0025,

then the solution is required at 40 gridpoints when t = .45. Condition (L4.T)
prescribes a maximal time step .010 and .010v2 for the polynomials (4.5)
and (4.6). Therefore, by the argument given above we have to start with at
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least 40 + 2 * (.45/ .010) * 3 = 310 and 40 + 2 % (.145/ .010/2) * 4 ~ 296
differential equations, respectively. However, when the accuracy condition
is more restrictive than the stability condition we shall need a larger set
200 for

both polynomials. The values of the remaining parameters, such as t, te, u,

of equations. In order to have a safety margin we took g = -8,

data and sigma, need no further explanation.

Having specified all parameters of procedure modified taylor which
characterize the problem to be solved and the method to be used, we arrive
at the actual call of this procedure:

k:= 0;

modified taylor (t, if k > 45 then t else .45, mO, m, u, 1/2/ksi,

3 2

i, derivative, k, data, 1.5, 2, 10 ~, 10 —, eta,

rho, output);
In table 4.1 and 4.2 the results are listed for k = 5, 10, 15, ...

Table 4.1 Generating polynomial (4.5)

k|t | e/ epl o | el I/ 11T 5
ol o 3.3 107 o

51| .05 3.4 10° 3.3 1078

10 | .10 3.6 10° 1.0 1077

15 | .15 3.8 10° 2.1 1077

20 | .20 4.0 10° 3.7 1077

25 | .25 .1 10 5.7 1077

30 | .30 | L.110° 8.2 107"

35 | .35 4.0 107 1.1 10‘6

4o | .Lo 3.8 10° 1.4 1070

45 | .L5 3.6 10° 1.8 1070

In these tables || ||, denotes the Euclidean norm over the grid points

(jg,tk), m, < J <mand || ||R denotes the Euclidean norm over the grid
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points (jE,tk), -20 < j < 20. The error €, is defined by the difference of
the analytical solution U(t) = exp(-(x+%t)2) of (4.1) and the numerical
solution
e(j) = exp[-(jg+lt )2] - ulj]
k 2k

where ulj] is the numerical solution at (jg,tk).

Table 4.2 Generating polynomial (4.6)

k ty nk/||p£|l2 ||€k||R/lIEkIIR
ol o 1.1 107 0
5 | .07 1.1 107 2.0 1078

10 | .1k 1.0 107 6.6 1070

15 | .21 1.0 107 1.4 1077

20 | .28 1.0 107 2.5 107"

25 | .35 1.0 107 3.8 1077

30 | .k 1.0 107 5.4 1077

32 | w8 1.1 107 5.7 1077

An analysis of table 4.1 and 4.2 reveals that the step size is comple-
tely governed by the stability condition (4.8). Ideally, the steps should
be such that the errors due to discretization of x and t are approximately
equal. From (L4.T7) it follows that in the case of the second order method
(polynomial (4.5)) the approximation errors are comparable as 1,§ - 0, hence

we may expect the same for the discretization errors e€,. In order to verify

this consider the errors € produced by the fourth ordzr method (with re-
spect to 1). These errors consist for the greater part of errors introduced
by the x-discretization. Since the second order method uses the same x-dis-
cretization we may conclude for this method that the discretization error
due to the t-discretization is slightly larger than the error due to the x-

discretization. Thus the stability condition is not a restriction for the
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first integration process. The second integration process can be economized
by using a more accurate discretization of the operator 3/3x in order to

make the approximation errors of comparable order as T,§ - O.

4.2 The equation U, = tU_

Consider the Cauchy problem

(

U =tU, -2<x<® 0<t<e=,

(4.10) 3

[}
]

eXP(X)g =® < X < %™ t =0,

\Y

with the analytical solution
~ 1,2
(4.11) U=ex'p(x+-2-t ).

This problem may be approximated by the infinite set of differential equa-

tions

(k.12) a_t (x

at =z % - XU

where U, £ and X, are defined in the same manner as in the preceding sub-
section.

The eigenvalues of the Jacobian D of (U4,12) are given by

(4.13) § =1 %-sin wg,

so that

(k.14) o(D) =

|t

This results: in the (local) stability condition

(h15)  « < BB - 2R
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For small values of t this condition allows large step sizes Ty However,
for large values of Ty the linearization on which (L.14) is based is not
valid. Therefore, we must apply (4.15) very carefully. For instance, we
could replace o(D) by the spectral radius of D at the point t + 1, i.e.

(b.151) © < BBl g

Or equivalently,

/B(m)E for t2 << b g(n)E
(h.15") 1 < 3 (A%+h B(n)g - 1) ~
Btn)g for t° >> 4 g(n)E.

From (4.7) and (4.15") it may be concluded that for small values of t
the approximation error of the difference schemes generated by the polyno-
mials (4.5) and (4.6) is of order 53/2 and 65/2

values of t both polynomials yield an error of order 53. Hence, it is ex-

, respectively. For larger

pected that polynomial (4.6) shall yield more accurate results.
Finally, we have to discuss the derivatives of U defined by equation

(4.12). Let us write it in the form

(b.12') U=tbU, D == (X

then it is easily verified that

=tbU0+ DU,

e
n

tD i + 2p U,

tD U + 3D U.

=
[}

The corresponding ALGOL 60 version is given by
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procedure derivative (i,a); integer i; array a;
begin real vjml, vj;
vlmO-1J:= alm0-1];

ii i =1 then for j:= mO step 1 until m do

begin v[jl:= aljl; aljl:= (t/2/ksi) * (alj+11-v[j-1]) end;
if i > 1 then
begin vjml:= v[m0-1];

for j:= mO step 1 until m do

begin vji:= v[§1;
vljl:= aljl;
aljl:= (t/2/ksi) * (alj+11-v[j-1]) +
(i-1)* (1/2/ksi) * (v[j+11-vjm1);

vjml:= v.
J J
end
end

end;

Here, it is supposed that m0 and m are integer procedures defined by (4.9)
and that v is a one dimensional array vl gO:gl] declared at the beginning of
the program. It may be remarked that this procedure can be written in a
more efficient form, but we have preferred the formulation given above in
order to keep things as simple as possible.

Suppose that the solution is required in the region
R: {-.6 < x < .6} {0<t<1.2},

and let the mesh size £ be given the value .02. Then, if the step size is
completely determined by the stability conditions we would at least

need 1.2 * 30 = 36 and 1.2 * 30 * %-/E.;:26 steps for the polynomials (L.5)
and (4.6), respectively (cf. condition (L4.15')). However, if the values of
n, and n, are small, the accuracy conditions will prescribe much smaller
steps. For reasons of security we took, in all cases, the maximum number of
points needed to accomplish 60 steps, i.e. g = -g0 = 30 + 3 * 60 = 210 and
30 + L4 x 60 = 270, respectively. This completes the definition of the para-

meters characterizing the initial value problem and the method to be used.
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(“a’"r) =(1o'5,1o'6),(10-

eta, rho, output);

Generating polynomial (L4.5)

(ngon,) = (1072,10"

6)

,10‘5), (10'2,10'

The actual call of modified taylor was as follows:
k:= 0;
modified taylor (t, if k > 60 then t else 1.2, m0, m, u,

2 % datal 01/ (sqrt(t*t+h*datal 0]xksi)-t),

derivative, k, data, 1.5, 2, aeta, reta,

We have done some experiments with increasing values of n, and n_:

In table 4.3 through 4.8 the results of these experiments are listed.

k|t | n/llogllp| el
ol o TN

50 .11 0 8.7 1071
10| .26 0 7.0 10‘6
15| .38 0 1.5 1077
20| .48 .0 2.3 107
25| .58 0 3.2 1077
30| .68 0 b1 1077
35| .77 0 5.1 1077
Lbo| .85 0 6.1 1072
45| .93 0 7.2 1072
50| 1.01 0 8.2 1077
55| 1.08 0 9.3 1077
60| 1.15 - 1.1 10-&

Table 4.4
Generating polynomial (k4.6)
(ngon.) = (107,107

k nk/”pk”g Hsk“R
0 0

5 1.0 10‘6
10 1.0 6.4 10”6
15 1.0 1.6 1072
20 1.0 2.7 107
25 1.0 b1 107
27 L7 1077




Table k4.5

Generating polynomial (L.5)

(n_,n) = (107*,107)
ot /el | ey
o] o 3.4 10" 0
5 .25 1.1 1.1 10‘5
10| .50 1.0 6.6 10~
15| .70 1.0 1.3 10'll
20| .88 1.0 1.9 10'h
2511.05 1.0 2.5 10'h
30| 1.20 - 3.3 1o'h
Table 4.7
Generating polynomial (4.5)
(n_»n.) = (1077,1077)
k te |/ Hleglly | Tlegllg
ol o 3.4 107 0
.50 | 1.9 107" | .26 10°°
10| .80 | 4.0 10" 1.7 107
151 1.01 | 5.7 107" |2.8 107
20| 1.20 - 3.7 1o'h
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Table 4.6

Generating polynomial (L.6)

(n on,.) = (107,107

k t'k nk/”pkllg ”ekHR
ol o 1.31073 | o

51 .31 | 3.0 31072
10| .75 1.5 1.6 10’5
15(1.05 | 3.5 3.4 10~
181 1.20 - k.5 1072

Table 4.8

Generating polynomial (4.6)

_ -2 -3
(nasnr) = (10 :10 )
k|t [/l leglls | Heellg
ol o 1.3 10%7 0
51 .59 | 7.8 107" | .4 107
0] .ob | 2.7 10" |2.0 107¥
15| 1.20 - 3.8 10'h
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5. Parabolic differential equations

In the preceding section partial differential equations were consid-
ered of which the Jacobian possessed purely imaginary eigenvalues. We now
concentrate on a class of equations which have negative eigenvalues. We
shall illustrate the application of modified taylor to such equations by two

simple diffusion problems.

. - 8
5.1 The equation Uy = U+ e ®(x'%90x°-x)

Consider the initial boundary value problem

(

Ug = U ¥ e-t(x1o+90x8—X), 0<x<1, t>0,
(5.1) 2 U =1+ x(1-x7), 0<x<1, t=0,
u =1, - x=0,x=1, t>0.

\

In reference [T] some results are given obtained by applying the modified
Taylor method. Here, a more detailed discussion will be given how these

results were obtained. Problem (5.1) is solved by the function
(5.2)  T=1+ e x(1-x").

Let us define the operator

(5.3) (1) - a(xf + xf) +b(X, +X ) +ec,

where X  are the usual shift operators with respect to the mesh size £ and

a, b and c are weight parameters to be determined in such a way that D

2

approximates the operator 32/3x as £ > 0. A simple calculation yields the

following expansion for the operator D:

. 2 N
(5.3") D(l) = (2a+2b+c) + (kLa+b) g2 2 +-T%(16a¥b) Eh ;iu +

8x2

6
1 6 d
+31-6(6)4a+b) 3 3_x6+ ese o
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(i)

if

From this representation of D it follows that we have a first order

exact approximation of 32/8x2

(
2a + 2b + ¢ = 0,

(5.4)

]
—-—

(bat) £°

N

and a third order exact approximation if, in addition,

(5.5) 16a + b = 0.

(1)

J =25 3, eeey g'1 - 2. At the point (g,tk) we define the operator

The operator D can be applied in the grid points (jE,tk),

(v) _ ' ' ' 1x3 b
(5.6) D) =arx_+1'+c'x, + QXS+ e'X] + LX)
and at the point (1-g,tk) a similar operator, which is obtained when X, is
replaced by X;. This operator may be represented by the series

(5.6') L (a'+b'+c'+d'+e'+f') + (-a'+b'+2d'+3e'+4f')E 73—1 +

1 2 32
+ 5(a'+c'+hd'+9e'+16f')g — +
ox
1 3 33
+-g(-a'+c'+8d'+27e'+6hf')g — +
3
ox
i N "
+ —(a'+c'+164'+81e'+256f' ) — +
2k L
ox
1 5 3°
+. ——(-a'+c'+32d4'+243e ' +102L4f' )7 — + ... .
120 axS

We have a first order exact approximation of 32/3x2

if

at the boundary points
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(
a' +b'" +c'+4da"'" +e'"+ £ =0.
-a' +c' +23"' + 3e' + 4f' =0
(5.7) ~
(a'+c'+hd'+9e'+16£" ) E® = 2,
-a' + c' + 8d' + 2Te' + 64f' = 0

\

and a third order exact approximation if, in addition,

(

a' + c' + 164' + 81e' + 256f' 0,
(5.8) <

-a' + ¢' + 32d4' + 2L43e' + 102L4f!

O.

\
Problem (5.1) can now be approximated by an initial value problem for

the system of ordinary differential equations

(5.9) U=DU+ F,
where
—
b' e' 4a' e' f' O . . . 0 a
b c b a 0 0 . . . 0
a b c b a O 0
0 a b c b a 0 . 0
D= 0O . +« a b ¢ b a 0 O

0 o 0 a b c b a
0 . . 0 a b c b
0 . 0 f' e' 4a' e¢' b
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and
ot £10,90¢8 -£ +a'el
U(2) (26)1°+9o(2g)8 -2E +a et
(35) "%400(36)® -3¢
U= gld) |, r=e" (58 "%+90(58)8 ik
ylm=1) (m=1)£) "%490((m-1)€) 8- (m-1)g+a &
(m) 10 8 , t
U (mg) '~ +90(mE) -mg +a'e
L _ L _
A simple calculation reveals that the set of values
( -2 -2
a=0, b=§ s C = -2 ’
(5.10) ~

a'=E2, v'=2£™2, c'=£72, a'=e'=£'=0,

\

gives rise to a first order exact approximation and

a =‘T‘;’E-2’ b =').3i£-29 c ="g€-23
(5.11)
a'=2E?, b=, olmaar s, artsle?, er=le T, £l

to a third order exact approximation.
In the first order case it is easily verified that the matrix D has
eigenfunctions of the form exp(wjf) with eigenvalues

-2

(5.12) 8, = 2(cos wE=1)g .
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Hence, D has negative eigenvalues with a spectral radius

(5.13)  o(D) = kg2,

In the third order case the eigenfunctions and eigenvalues are not so

easily found. As an estimate of o(D) we shall use the spectral radius of

(i)

that is we neglect the boundary conditions. The eigenvalues § of this ap-

the matrix D approximating the operator D within third order accuracy,

proximation are of the form

(5.14) § = (~% coszwg +'§ cos wg - -2

w 3 )

wl=

with the spectral radius

(o)

1 -2

(5.15) o(D) = g

wl

Formulae (5.13) and (5.14) lead to the stability conditions
1 2 3 2
(5.16) 1 <1 8(mE5, <=3 8,
respectively.
Clearly, equation (5.9) should be solved by polynomials which exploits
the fact that D has negative eigenvalues. Such polynomials are discussed in
reference [3]. The order p of the polynomial to be used is determined by

the approximation error of the difference scheme. In the cases (5.10) and

(5.11) we have respectively errors
(5.17)  o(®*!) + o(xg?), o(P*!) + o(xg™),

so that, by (5.16), p should be chosen 1 and 2. For p = 1 we have chosen
the polynomials

(5.18) Th(1+z/16), T10(1+z/100)

with B(4) = 32 and B(10) = 200.
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For p = 2 we have chosen the polynomials

12

(5.19)  Py(z) =1+ 2z + 327, B(2) = 2,
(5.20)  Py(z) = 1+ 2 + 32" + =iz, 8(3) = 6.27,
(5.21)  Py(z) = 1+ z +1a? + 0786845 2% + .003608k5 2", B(L) = 12.

We solved problem (5.1) for 0 < t < .3. In table 5.1 the relative
accuracy €, and an estimate for the computational labour required, are
listed (the computational labour was measured by the quantity Ken/100Ax,
where K is the number of integration steps, n the degree of the polynomial

and ¢ has the values 1 and 2 in the first and third order case respectively).

Table 5.1 Values of computational labour and relative

accuracy obtained in solving problem (5.1)

€rel Th(1+z/16) T1O(1+z/100) P2(z) P3(z) Ph(z)
. 10% 130 80 30 15 11
. 06% 290 160 Lo 20 15
.02% 1070 700 67 33 2k

These results were obtained by neglecting accuracy conditions (aeta
and reta negative), because it was expected that the stability condition .is

the most stringent one.
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; - 1
5.2 The equation Ut = (aU+b) (Urr + rUr)

The next initial boundary value problem arose in a physics problem:

f

]
U, = (aU+b)(Urr +;Ur), 0OL<r<= t>0,
U =1, 0<r<1, t=0,
(5.22) “
U =0, 1<r<w, t=0,
U, =0, r=0, t>0.

Here, -a and b are given positive constants.
In [6] this problem was solved by replacing the discontinuous initial

function by the continuous function

1, r < 1-Ar,

(r-1)+Ar M),

S 1-Ar < r < 1+Ar, t = 0,

(5.23) U = %(1+cos(

o, ' X > 1+Ar.

\

Furthermore, the independent variable r was replaced by a variable x which
amplifies the region 1-Ar < r < 1+Ar in such a way that the initial func-
tion in this new variable behaves sufficiently smooth. Here, we shall not
use such a transformation. Moreover, we replace the right hand boundary
condition simply by

(5.23) U=0, r=r t = 0.

o,

Problem (5.22) can be approximated by an initial value problem for the

differential equation (compare [6], section k4)

(5.24) U = DU,
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where U is a vector with components U(J) corresponding to the grid points
x
JEs J =0, 1, 2, eesy, my m = —% and D is the matrix
B )
2@ g0 o o, R
%d(1), -2d(1), gd(1), o, e e e e s e e e e e 0
2 2 2
0o, 2@, @ @2 o 0
Q- 3 . ° .+ .
b= o C o, 2j=1303) 5403 ai,G) 5 o L
52 2§ 23
0 et e e e e e e e 0, %Ld(m),-ed(m)
| —
The grid function d(J) is, in fact, the diffusion coefficient
al3) = a3 4y,

As was pointed out in [6], D has negative eigenvalues with

(5.25)  o(D) < 4™ Max(2.ald)),
J
Equation (5.24) is a first order exact approximation of the partial
differential equation and, therefore, should be solved by first order exact
generating polynomials. Since D has negative eigenvalues we choose the

polynomials Tn(1+z/n2). In our experiments we took:

GHRLIOTHERE  BMATHEMATISCH CEMTALM

aondE TR Y AP
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--263, b

.291,

®
[}

(5.26)

Ar = .08, gE= .02, r,=2.

From (5.25) and the stability condition associated to the generating poly-

nomials Tn(1+z/n2) it follows that we certainly have stability for

B(n) _ ﬁne 2 - 10~"n2.

In table 5.2 some results are listed for n = 10.

Table 5.2 Numerical solution in the neighbour-

hood of the transition point r = 1

.90 [1.00 | .84 | .77 | .74 | .72 | .70 | .68 | .6T | .66 | .65 | .6k

94 | .95 | T4 | .TO |- .68 | .66 | .65 | .64 | .63 | .62 | .61 | .60
.96 | .84 | .69 | .66 | .65 | .64 | .63 | .62 |- .61 | .60 | .59 | .59
.98 | .68 | .64 | .63 | .62 | .61 | .60 | .59 | .59 | .58 | .58 | .57
1.00| .50 | .59 | .59 | .59 | .58 | .58 | .57 | .57 | .56 | .56 | .55
1.02 | .33 | .54 | .55 | .56 | .56 | .55 | .55 | .55 | .54 | .5k | .5k
1.04 | .18 | b9 | .52 | .53 | .53 | .53 | .53 | .53 | .53 | .52 | .52
1.06 | .09 | .44 | 48| .50 | .51 | .51 | .51 | .51 | .51 | .51 | .50
1.08 | .03 | .bo | .45 | b7 | .48 | .49 | .49 | .49 | .49 | .49 | .L9
1.10 | .00 | .36 | .bh2 | .uh | .46 | b7 | .47 | 4T | Jbu7 | JUT | LT
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6. The exponential fitted Taylor method

The second numerical integration method presented in this paper is the
procedure exponential fitted taylor. This procedure is based on the three-
cluster method described in reference [4], section L.4. It is appropriate
for the integration of those problems of type (2.1) in which the Jacobian
has eigenvalues 6 which can be reasonably placed into three clusters as
illustrated in figure 6.1. Such equations are said to be stiff.

A Im §

das

1

dsé
r

fig. 6.1 Eigenvalues § situated in three clus-
ters with dé, << [8;], a8 << |8

1

In an actual application of the method it is necessary to give expli-
citly the first three derivatives of the function U(t) in terms of t and U.
In the following subsections the ALGOL 60 version of the three-cluster

method is discussed.

6.1 Procedure exponential fitted taylor

The heading of this procedure reads as follows:
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procedure exponential fitted taylor (t, te, mO, m, u, sigma, phi, diameter,
derivative, i, k, alfa, norm, aeta,
reta, eta, rho, output);

integer mO, m, i, k, norm;

real t, te, sigma, alfa, aeta, reta, eta, rho, phi, diameter;

array u;
procedure derivative, output;

The actual parameters corresponding to the formal parameters, as far

as not identical to the parameters defined in section 2.1, are:

sigma£ <expression>;
approximation of the modulus of the center 61 of the left hand
cluster;
phi: <expression>;
argument ¢ of the centér of a left hand cluster;
phi should be given in radians by the user of the procedure;
diameter: <expression>;
diameter dGl of the left hand clusters;
diameter should be given by the user;
aeta, reta: <expression>;’
desired absolute and relative local aécuracy ng, and N,

aeta and reta should be positive;

Next the procedure body is given:

begin integer kl;

own real ecl,ec?,taud,tanl,tau2;
real q,ecO,taun,taui,betan,t2,sigmal ,phil;

regl array c,ro[mO:m],beta,bethal1:3];
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procedure coefficient;

begin real b,bl1,b2,bb,e,betal,beta3l;

b:=tauxsigmal; b1:=bXcos(phil); bb:=bxb;
if abs (b )<,~3 then
begin betal:=,5-bb/2k;
beta3:=1/6+b1/12;
betha[3]:=,5+b1/3
end else

begin e:=exp(b1)/bb; b2:=bxsin(phil);

betal:=(=2xb1-lxb1Xb1 /bb+1) /bb;
beta3:=(1+2xb1/bb) /bb;
if abs(b2)<,~9 then

begin betal:=betad—ex(b=3);

beta3:=beta3+ex(b-2)/b;
bethal 3] :=1/bb+ex(b=1)
end else

begin betal:=betal—exsin(ba=3xphil)/b2Xb;

beta3:=beta3+exsin(ba=2xphil) /b2;
bethal 3]:=1/bb+exsin(b2=phil) /b2Xb;
end

end;

beta[1]:=bethal1]:=1;

beta[2]:=beta2; betal 3]:=beta3;

betha[ 2] :=1-bbxbeta3; b:=abs(b);

q:=if b<1,5 then L—2Xb/3 else if b<6 then (30-2xb)/9 else

end;
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real procedure normfunction(norm,w);

integer norm; arrsy w;

begin integer Jj; real s,x;

8:=0;

if norn=1 then

begin f.?f Je=m0 step 1 until m do

begin x:=abs(wljl); if x>8 then s:=x end

end else

s:=sqrt(vecvec(mo,m,0,w,w));
normfunction:=s;

end;

procedure locel error bound;

etas=aetatreta X nonnﬁlnction(nonn,u) H

procedure local error construction(i); integer i;

begin integer j; resl b;

if i=1 then for j:=m0 step 1 until m do ro[ j]:=0;

if i<k then

begin b:=betha[1]Xtaui;

for j:=m0 step 1 until m do rol j]:=rol jl+bxel J]

end;

if i=L then
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begin for j:=mO0 step 1 until m do rolj]:=ro[jl-tauxe[J];

rho:=normfunction(norm,ro);
ecO:=ec1;ec :=ec2; ec2:=rho/tauhq;
end

end;

, Erocedure stepsize;

begin real tauacc,taustab,taucr,asa,bb,cc;

_12 k=0Ak140 then begin k:=kl;tau:=tau2;goto eos end;
local error bound;
an:=2Xabs(sigmal/diameter);bb:=,5xabs(1/sin(phil));

betan:=aaX( if aa<bb then aa else bb);

if k=0 then tauacc:=(eta/normfunction(norm,c)) else

E k1=0 then

begin tauacc:=(eta/rho)A(1/q)xtau2;

if tauacc>10Xtau2 then tauacc:=10Xtau2 else kl:=2

end else

if x1<h then

begin tamacc:=(eta/rho)A(1/q)xtan2; kl:=kl+1 end else

begin aa:=(tauox(eco~ect)=taulx(eci—eco))/

(ten2xtauO=taulxtaul );
bb:=(eco-ecl—aax(tau=taul))/taul;

if as>0 then

begin ceci=ec2=gaXtau2=bbXt2; tauace:=0; tau:=alfaxXtau2;
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if Jzeroin(teuacc,tau,aaxtauaco-eta/tenacchq+bbxt
+ce,~3Xten2) then tauacc:=tau2xalfa;
end else tauace:=( eta/rho)M(1/q)xteu2;
tau:=tau2x(if ete<rho then (eta/rho)A(‘l/q) else elfa);

_:E tanacc>tau then tauacc:=tau;

1f tauace<,5Xten2 then tauacec:=,5Xtau2;
end;
tausteb:=sbs(betan/sigmal); teucr:=tau2xtau2/teul;

tau:-E tanaccotaustab then taustab else tauace;

il_i_’_ taustab<;=12xt 21_19_1 écﬁ end of eft;

1f tauacc<y=-12xt then tanacc:==12Xt;

1f K1Ataw>tauerX(1—y6)Atau<taucrx(1+y-6) then

tau:=if tau<taucr then tauerX(1my=b6) else tancrX(1+46);
taul:=tanil ; taul :=tau2; tau2: =tan;

eos: 1f t+taw>te then fw:at&-t

end;

procedure difference scheme;
begin integer 1,Jj; real b;
1:=0;tauis=1;8igmal :=sigma;phil:=phi;

for J:=mO step 1 until m do c[Jl:=ulJ];

next term: 1:=i+1; derivetive(i,c);

E i=1 then

begin if k40 then
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ng}g local error construction(l);output EEE?
stepsize; coefficient;;k:=k+1

end;

teui:=tauixtau; b:=betalilxtauni;

local error construction(i);

for j:=m0 step 1 until m do uljl:=uljl+bxel];

1{ 1<3 then goto next term;
t2:=t; ti=t+tan

end;

kl:=k; k:=0;
next level:

difference scheme; Ez t<te then goto next level;

output;
end of eft:

end of exponential fitted taylor;

6.2 Procedure difference scheme

When procedure difference scheme is completed the array ulj] contains
the components of the numerical solution at the next grid point tk+1 = tk+1k.
In principle, this procedure is equivalent to procedure difference

scheme declared in modified taylor, but the organization is different. The

reason is that the construction of the local error is completely different
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(see section 6.3). For instance, the error associated with the step T not
only uses the successive derivatives cil), but also the first derivative at
the next point (tk+1’uk+1)' Therefore, procedure difference scheme must
proceed until the first correction term of the next step, otherwise the
step length Thet1? which is based on the error produced in the step T» can-

not be predicted.

6.3 Procedure local error construction

As already observed in section 2.3 it may be inconvenient to measure
the local error by the first neglected terms of the local Taylor expansion
in those cases where the differential equation has a stiff behaviour. There
are two reasons: firstly, the discrepancy may differ considerably from the
local error; secondly, the first neglected terms may be a poor approxima-
tion to the discrepancy. In order to illustrate this we consider once again
the third order stabilized Taylor method applied to problem (3.1) for t > 3

(ef. section 3). We have

T T T
(6.1) %ug~-Au§ﬂ+§@§5-giﬁ+.“
k

and

t t t
k)h + lr(rke ky> _ -%-!—(Tke k)6 + ]

(6.2) °1'<(Tk) ~ o () + ek[—.023(1ke 51

Let us elaborate these expressions for the maximal step size allowed by

stability, i.e.

-t
T ™ 6e k.
Then we have
(6.1") pk(’l‘k) ~ -.14 _ﬁ%g_ > -, 1k 10'8 if t > 3
(t e )

and
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(6.2") pi(rk) ~ pk(rk) - .26ek ~ - .26€k if € > 10-8.

In actual computation, however, we approximate the discrepancy by its first
Taylor term, so that we find

(6.2") pi(Tk) ~ pk(Tk) - 29.67ek ~ - 2_9.675k if € > 10-10.

Our conclusion is the following: firstly, the discrepancy is a reasonable
approximation to the local discretization error provided that the global
9

discretization error is at least less than 10 °; secondly, estimating the
discrepancy by its first Taylor term we are led to values which are a fac-
tor 160 too large.

This example clearly shows the danger of estimating the local error by
the first Taylor terms of the discrepancy.

We will describe a completely different approach for controlling the
accuracy of numerical calculations. Our starting point is simple: instead
of substituting the local analytical solution into the difference scheme,
which gives rise to a discrepancy pi(T), we substitute the numerical solu-

tion valid between two points t, and t into the differential equation.

k+1
This gives rise to a residual ck(r). Let U_(t) be the numerical solution

between the points P = (tk,uk) and q = (tk+1’uk+1) (see figure 6.2). Sub-
stitution of Up(t) into equation (2.1) leads to ‘

(6.3) ge(t) = U,(8) - H(%,U (¢)) = ﬁp(tk+r) - Blty+t, U (g 41)).

We now have the following theorem.

Theorenm 6.1

The discrepancy pi(rk) is given by
"k
' ~
(6.4) op (1) J . g (t)dr

provided that the integral
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(1,) = "1 [H(t,0' (t)) - H(t,U_(t))]lat
et = p T

by

is negligible with repsect to the right hand side of (6.4).

Furthermore, we have
I (7) = o(t®*?) as 1t > 0,

where p is the order of the method.

Proof

It is easily verified that

' U - = - o -
pp(Tye) = Up(tyyq) = Uty ) = U(%, ) - UR(ty) + UR(%y) - ULty )

t . t '
+1 % .
f k+1 U (e)at - J k18 (6)at

ty e P
tk+1 ~ tk+1 )

= f (H(t,U'(t)) - H(t,U_(t))]1dat + f [H(t,U_(t)) - U_(t)]at
t P , P t P P

Tk
f ck(T)dT + Ik(Tk).
0

The second statement of the theorem is trivial.

From this theorem we derive for T 0 a simple upper bound for the

discrepancy, i.e.

(6.5) ||p£(1k)|| :_Tk||ck(rk)||.

For a given value of 1, the correctness of (6.5) depends on the value of
IIIkll' Nevertheless, it seems reasonable to base the accuracy of numerical

calculations on the value of
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(6.6) Tkllgk(tk)ll.

H(tk+r,U'(tk+r))

1
]
)
'
1
)
[}
I

tx TtT ter

fig. 6.2 Geometrical illustration of the residual function Ck(T)

Procedure local error construction calculates the value of expression
(6.6) and uses it as an estimate of the discrepancy.
From the definition of the three-cluster method it follows that

(6.7) Up(t) = Up(tk+1) =u + TC£1) + 62T2c£2) + 83(1)T3c

(3)

k H]

where 8, and By are given functions of 1 (see [4], formula (4.1L4)). This
yields

Y (2) 2,(3),

(6.8) Up(t =c. '+ Bé(Tk)chk + Bé(Tk)chk

k+1

where
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_ 1 b cos ¢ sin(b sin ¢'- 2¢)
Bl = - [% cos ¢ + e sin $ ,

2 b

. b cos ¢ sin(b sin ¢ - ¢)
69 4 8=% [1+e sin ¢ = o],

b = Tk|61|.

Note that Sé = 1—83b2.

From (6.6) and (6.7) we finally derive

(1) (1)

| 2
(6'6') Tkl lck(rk)ll = IIchk+1 - chk - Bé’t cl(( ) - BéTicl({3)||'

2
k

In the exponential fitted Taylor method we have adopted the right hand
side of (6.6') as a measure for the discrepancy. The array bethalil, occur-

ring in procedure local error construction, corresponds to the coefficients

!
B

6.4 Procedure local error bound

See section 2.L4.

6.5 Procedure stepsize

As in section 2.5 the prediction of the step Ty is based on an extra-
polation of the error constants, which are known at the points t = tj’
J < k, to the next point t = tk. We have used the extrapolation process re-

presented by formula (2.8d), i.e.

(6.10)  |[|e']] = (Ar+Bt+c)rl.
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For q the following function was taken (see figure 6.3).

?
L
3
I T i Q
|
! |
| |
|
|
. :
| |
] L , D
0 1.5 6

fig. 6.3 Order g of the discrepancy as a function of b = Tk|61|

Representation (6.6) gave rise to some difficulties. Firstly, when the
step size T, equals the critical value

12
k-1

Tx-2

T =

cr ®

then, in the next step, the value of A becomes infinite. Therefore, proce-
dure stepsize excludes the new step Ty from a small neighbourhood of Tcr.
Secondly, the constant A may turn out to be negative; thus when T increases
the error constant decreases. In order to avoid this undesired behaviour of
the error constant we have used representation (2.8a) in cases where A < O.
Finally, since the extrapolation formula (6.10) is only linear with respect
to T and t the extrapolation process is more sensitive for variations of T
and t than in modified taylor which uses a parabolic formula. In order to

guard against rapid variations we have put

q Ny

(6.11) = -
[Tex(r I TT

as soon as Ilpi(Tk)II > ny. This means that the step length decreases each
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time it is found that the discrepancy exceeds the tolerance. Of course, the
user of procedure exponential fitted taylor may prescribe more severe ex-
pressions a than (6.11).

When a prediction of the new step length Ty is found, this step is
checked for stability. The following stability condition is used ([4], for-
mulae (L4.8') and (4.18)):

2
IG | Ié I
M 1 L 1

1n(d61|sin 1k

(as,)?

| A

(6.12) T
k [8, ]

This condition guarantees stability with respect to the components corres-

ponding to eigenvalues in the left hand clusters. The stability properties

with respect to the right hand cluster are identical to those of the third

order Taylor method as T, > 0 and Euler's method as Tkléll + o (compare the

regions given in [3], fig. 3.1),

6.6 Procedure coefficient

This procedure calculates the values of the cdefficients 82, 83, Bé
and Bé according to [4], formula (L4.14) and formula (6.9) of the present
paper. Furthermore, the value of q is calculated according to figure 6.3.
Since these coefficients depend on the step length, procedure coefficient

is called in every integration step.

6.7 Real procedure normfunction (norm,w)

See section 2.T.
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T. Numerical solution of stiff equations

We shall employ procedure exponential fitted taylor for the numerical
solution of some simple ordinary differential equations with a stiff behav-

iour.

7.1 The equation U = —e'U + efint + 1/t

Let us again consider problem (3.1). We recall that for t > 3 the dif-
ferential equation becomes increasingly stiff and, as we have seen in sec-
tion 3.5, in this region the modified Taylof method is seriously limited in
its step sizes by stability conditions. We have applied the three-cluster
method to problem (3.1). Since ¢ = 7 the stability condition for this pro-

blem becomes (compare (6.7))

|6,
(7.1) Tkih—iju
(as,)

For |61| and 48, we have chosen the approximations

t t T t
_ .k oo kK Ly K -
(1.2) |6,] = e, a8 =2e “(e "-1) 2T e ™.

Substitution into (T7.1) yields

) |61 =1/3%, .

(7.1") T. < = e
k= e, |3

1
From this it follows that the parameters sigma and diameter respectively
are

+t

(7.2") sigma = e ~, diameter = 2e2/3t.

In table T.1 the results are listed of the following call of procedure
exponential fitted taylor (compare the call of modified taylor in section
(3.2)):
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k:= 03

exponential fitted taylor (t, if k < 200 then t else 8, 0, 0, u, exp(t),
3.141592, 2 x exp(2xt/3), derivative, i, k, 1.5, 1,
10’5, 10" ', eta, rho, output);

Table 7.1 Three cluster method applied to prob-

lem (3.1) with n, = 10‘5, n. =A1o‘h

k Y | Tk Tstab me/ Loyl | legl = lﬁk°ukl ell,
= exp(- ltk) :

o| .oto| 5 107° .997 10 | o 1.3 1073
10 .034 | .ook .989 1.7h mh104*
20 | .113 | .013 .963 | 1.63 1.3 1073
30 | .339 | .035 .893 1.61 1.3 1073
Lo .888 | .076 g 1.39 6.1 1o'h
50 | 1.766 | .092 .555 .88 5.2 1077
60 | 2.619 | .078 118 .92 .3.7 1077
70 | 3.336 | .065 .329 .95 3.1 1077
80 | 3.942 | .056 269 .95 2.6 1077
90 | 4.466 | .ok9 .226 .96 2.3 1077
100 | 4.928 | .ou3 .192 .97 2.0 1077
200 | 7.915 | .022 .0T1 1.00 3.5 10’6

At first sight the superiority of the three-cluster method is not
clear from these results. In the first part of the integration process it
is even considerably less efficient than the stabilized third order Taylor
method generated by polynomial (3.4) (compare table 3.2). This may be ex-
plained by the fact that the present method has third order accuracy only
as T >~ 0, whereas the Taylor method is "uniformly" of third order. In the
second part of the integration the three-cluster method is the more effi-

cient one, as it is not retarded by stability. This means that we can ac-
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celerate the integration by relaxing the accuracy condition. Note that in
the case of the modified Taylor method a less severe tolerance function
will hardly diminish the number of integration steps as the greater part
of the steps is governed by stability.

In table 7.2 some results are given for lower values N, and n.. As can
be seen a large number of integration steps are saved while a reasonable

accuracy is retained.

Table 7.2 Three-cluster method applied to problem (3.1)

na.=nr k tk "k Tstab nk/lp£| .|Ek|=|ﬁk—ukl |e|m
= exp(- §tk)
107" | 10| .772 |.389 773 10.3 5.3 1072 | 9.7 1072
20 |L4.592 |.216 216 T.7 1.5 1073
30 |6.256 | .12k .12k 17.8 2.4 107"
4o | T7.312 |.087 .087 27.2 7.6 1072
49 |8.000 .069 - 2.3 107
1072 | 10| .238 |.080|  .927 3.2 5.3 1072 | L. 1072
20 |3.098 |.283 .356 .84 2.8 1073
30 |5.336 | .169 .169 1.15 6.4 107
Lo | 6.701 | .107 .107 2.2 1.5 1o'h
50 | 7.629 |.079 .079 3.1 6.1 1077
55 | 8.000 .069 3.9 1077
1073 10 | .075 | .021 975 .82 6.4 1073 8.6 1073
20 | .596 |.122 .820 2.4 6.3 1073
30 | 2.6L4L | .167 RSN .93 4.2 1o'h
Lo | 4.080 |.119 .257 .9k 2.6 10‘h
50 | 5.138 | .093 .180 1.00 1.4 10'h
60 | 5.995 | .OTT .136 1.00 8.3 1077
70 | 6.718 | .066 .107 1.00 5.0 1077
80 | 7.342 | .058 .087 1.00 3.3 107°
90 | 7.888 | .051 .072 1.00 2.2 1072
93 | 8.000 .069 1.1 10'6
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The efficiency of our integration method can be further improved by
exploiting the fact that in all our experiments with a constant tolerance

it turned out that the accumulated discretization error €, is relatively

k
small for larger values of Ty This may be explained by recalling the fact

that the differential equation becomes increasingly stiff for larger values

of tk so that the discrepancy becomes an increasingly more pessimistic es-

timate of the local discretization error. This suggests to use a tolerance

function which is larger as the equation becomes more stiff. In the present

case we expect the discrepancy to behave like Tieztk in the stiff region,

while the local discretization error is certainly not expected to increase
with tk.

the step sizes prescribed by accuracy are at least non-decreasing in the

This implies that the tolerance function Ny should be such that

stiff region, i.e.

Let us take 3 < t 5_8 as the stiff region of the problem. Then we may

define

(7.3) nye = (ngn [ u [ e,

2t -6
k -
where fk = 1 for tk <3 fk = e for tk > 3 and Ngs N, are constants.

With this tolerance function we found the results listed in table 7.3 (see
page ¥1).

We have omitted the case Mg =Ny = 10_1 since the results would be
equal to the ones listed in table T.2. This can be concluded from the fact
that in table 7.2 stability already controls the integration in the stiff
region.

This section is concluded with a comparison of the computational
labour involved when applying the modified and the exponential fitted Tay-
lor method in the stiff region, respectively. Let 3 < t < 8 be the stiff
region then a modified Taylor method with stability parameter B(n) chooses
step sizes which do not exceed the value

-t
T = B(n)e X
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Table 7.3 Three-cluster method with the tolerance function (7.3)

| 5Lt | | e, | lepl | led=1Tewd | 1Iel,
exp(- =t
1072 10 | .238| .080 .92k 3.2 4.3 1072 b4 1072
20 [3.098 | .310 .356 .76 2.8 1073
30 | 5.490 | .160 .160 1.8 10° 5.k 10‘h
40 | 6.798 | .10k .10k 45103 | 1.4 107
50 | 7.700 | .OTT 07T 3.8 10h 5.7 1072
55 | 8.000 . 069 1.8 1077
1073 | 10| .o15] .021 .975 .82 6.4 1073 |8.6 1073
20 | .596 | .122 .820 2.4 6.3 1073
30 | 2.6L4k4 | 167 RIS .93 4.2 10"‘L
40 | 4.548 | .220 .220 1.7 1.4 1073
50 | 6.232 | .125 .125 1.1 102 | 2.5 107%
60 | 7.294 | .088 .088 1.5 103 | 8.4 107
69 | 8.000 . 069 3.7 1077
na=1o'i 10 | .034 | .00k .989 1.7k T.b 107 1.3 1073
nr=1o' 20 | .113|.013 .963 1.63 1.2 1073
30 | .338].035 .893 1.61 1.2 1073
4o | .88k4 | .076 .Th45 1.39 5.1 10'h
50 | 1.767 | .092 .555 .88 5.2 1072
60 | 2.619 | .078 418 .92 3.7 1072
70 | 3.365 | .080 .325 .90 5.1 1072
80 | 4.285 | .108 .2ko .9k 2.1 10"1L
90 | 5.630 | .153 .153 1.73 4.1 10‘h
100 | 6.888 | . 101 .101 3.8 10 1.3 1o"h
110 | 7.767 | .075 .075 3.1 10° | 5.3 107°
114 | 8.000 . 069 1.7 10“6
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For t, > 3 we may approximate this relation by
dt -t
k k
= = B(nle
'so that
t
k = ! e k + const.

From this relation we deduce that the number of steps required by the modi-

fied Taylor method to integrate the interval 3 <t < 8 is at least

eB_e3  2981-20 _ 2961

g(n) = B8(n) ~ B8(n) °

Hence the number of evaluations of a derivative of the right hand side of

equation (3.1) is at least

2961n
(7.4) B(n) °

This lower bound does not depend on the required accuracy. For the methods
discussed in section 3 expression (T.4) assumes the appropriate values 4000,
1940, 970 and 360. The exponential fitted Taylor method, however, requires
a number of evaluations which varies from 100 to 150 for the cases listed
in table T.3.

T.2 Two coupled differential equations

In reference [1] the following initial value problem was discussed as

an illustration of a stiff differential equation:

(7.5) U=DU+F, U(0) = ﬁo,

where
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-50005 h99u5 2 ‘-.1
499.5 -500.5 2 .1

The matrix D has the eigenvalues 61 = -1000 and Gr = -1 with eigenvec-
tors (-1,1)T and (1,1)T, respectively. In the initial phase the solution is
for the greater part composed of the eigenvector-(—1,1)T since the initial
vector is composed of this vector. However, this component will vanish
rapidly, as it corresponds to the eigenvalue 61 = ~-1000, and the inhomogene-
ous term F only introduces the slowly varying component corresponding to

§.=-1. In fact, the analytical solution of (7.5) is given by

1 L1
1 1

We have done experiments with

3 L

(7.7) n.=n.=1,10"1,31072,1072,310 ,1073,310” ,10'1*,310‘5,10‘5.

a r

The actual call of exponential fitted taylor reads: '

k:= 0; .
for te:= .1 step .1 until 1 do _
exponential fitted taylor (t, te, 0, 1, u, 1000, 3.1416, 0, derivative, i,

k, 1.5, 2, aeta, reta, eta, rho, output);

In table T.4 we have listed the values of 3K, K being the total number

of integration steps, and

lell, = Maximum L7 |
T £,23/10,3=0,1,...,10 (t) k! 2
where || ||, denoted the maximum norm.
Note that the standard third order Taylor method, which is of compara-
ble order as 1t + 0, requires at least 400 integration steps, thus
3K > 1200.
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Table 7.4 Three-cluster method applied to problem (7.5)

ng=n. | 3K 1 el
10° 36 | 3.6 1072
107" 39 | 3.6 1072
3 1072 39 | 3.6 1072
1072 51 | 3.1 1072
3 1073 81 | 1.8 1072
1073 117 | 1.1 1072
3 107 189 | 5.8 1073
10'LL 288 | 3.1 1073
3 1077 468 | 1.5 1073
1077 711 | 6.9 10'h

In order to investigate the consequences of an inaccurate estimate of
the left eigenvalue we have done experiments with %ﬁtentionally wrong
chosen I61| or ¢. Furthermore, we have done the corresponding experiments
in which d6l was chosen in such a way that the exact position of 61, i.e.

8, =-1000, was just in the left hand cluster determined by |61|, ¢ and dGl.

fig, 7.1 Simulation of a cluster with non-zero diameter ds

1
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From figure T.1 it follows that

1

(7.8) s, = 2//]5112 + 2 1o3|6l|cos ¢ + 100

The results are shown in table 7.4 and illustrated in figure 7.2 and
T.3.

Table 7.4 Three-cluster method applied to prob-

lem (7.5) with n = n_ = 1073
N ds, =0 ds, according to (7.8)
als,|/|s;| | ae/m 3k | |lell, 3 | Ilelle | Tgtap
0 117 | 1.1 1072 117 | 1.1 1072 o
.05/m | 120 | 1.1 1072 120 | 1.1 1072 | .2
J10/7 | 126 | 1.1 1072 126 | 1.1 1072 | .05
J5/m | 132 | 1.1 1072 174 | 6.3 1073 | o222
.20/t | 135 | 1.1 1072 | 264 | 3.3 1073 | .0125
0 25/m | 135 | 1.1 1072 | 411 | 1.7 1073 | .0080
.30/7 | 192 | 7.6 1073 | 561 | 1.0 1073 | .0056
.35/m | 246 | 5.5 1073 %1 { 5.9 10"h .00k41
bo/m | 303 | 3.9 1073 k8 | 3.6 10’h .0032
A5/m | 369 | 3.0 1073 | 1185 | 2.2 107% | .0026
.50/7 | 336 | 1.0 107 | 1452 | 1.4 1o“h .0021
-.5 u62 | 8.3 107> | 1536 | k.2 1077 | .0020
.t 330 | 6.8 1073 | 828 | 2.4 107 | .0038
-3 273 | 4.9 1073 | M4 | 1.3 1073 | .0078
-.2 w7 | 9.1 1073 | 177 | 5.5 1073 | .0200
-1 126 | 1.1 1072 126 | 1.1 1072 .0900
0 0 17 | 1.1 1072 17 | 1.1 1072 ®
. 126 | 1.1 1072 | 126 | 1.1 1072 | .1100
.2 132 | 1.1 1072 147 | 8.7 1073 | .0300
.3 138 | 1.1 1072 237 | 4.1 1073 | .okl
b 171 | 8.8 1073 384 | 2.2 1073 | .0088
.5 222 | 7.1 1073 534 | 1.3 1073 | .0060
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fig. 7.2 The computational labour as a function of d¢/m
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fig. 7.3 The computational labour as a function of.d[éll/IG
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First, we consider the results corresponding to dsl = 0, the case of an in-
accurately estimated eigenvalue 61. As can be seen from the figures we have
an increase of approximately 15% of the computational labour (function
evaluations) provided that ¢ and |61| are accurate within #8% and -15%,
+30%, respectively. For higher inaccuracies the computational labour rapid-
ly increases. Furthermore, we observe that it is better to estimate lﬁll
too large than too small.

Next, we consider the cases in which a cluster with non-zero diameter is
simulated (figure T7.1). From the figures 7.2 and 7.3 it may be concluded
that the integration becomes increasingly more laborious when the diameter
increases. Only for relatively small clusters fhe accuracy condition

n =n_ = 10" is more severe than the stability condition.

a r

7.3 A third order differential equation

Consider the initial value problem

U+ (1-2r cos ¢) U + r(r-2 cos ¢) U + r2y = 0,

(7.9)

u(o) = 1, U(0) = 0, U(0) = 0

where r and ¢ are given parameters.

This problem can be written in the equivalent form

. 0 1 0
T=| o0 0 1 U,
2 -r(r-2 cos ¢) 2r cos ¢-1
(1.9
1
u(o) = 0 >
0

where U has the components U, U and U.
It is easily verified that the Jacobian matrix of (7.9') has the

eigenvalues
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-1, rei¢, re 19,
Hence, for large values of r and m/2 < ¢ < m the three-cluster method is an
appropriate integration method for problem (T7.9').
‘ This example was chosen to illustrate the superiority of the residual
formula for the evaluation of the discrepancy over the usual formula based
on the first neglected Taylor terms. In order to see this we consider the

general solution of equation (T7.9'):

1 1 : . 1

2 : el . it
(7.10) U=c, -1 et +c. |-ret? e rte 1¢ e Tte

+ cg -re
5> 2i
rce

2 .
2e-21¢

r

where cys Cp and cq are integration constants determined by the initial
conditions. In general, the constants 32 and CE are O(r'1) so that initial-
ly the third derivative of the vector U is 0(r”). Hence, the discrepancy,
approximated by its first neglectethailor terms, is at least T3O(rh). This
)1 3

implies initial steps of order (n/r . To be more concrete, let

(7.11)  r =1000, ¢ ==5 , n= 10 ~.
Then we have to expect initial steps T ~ 1072,

When using the residual formula for the discrepancy the three-cluster
method needs in the case (7.11), 8 trial steps whereafter the step sizes
vary from .025 (at t~0) to .039 (at t~1). In table 7.5 some results are
listed obtained for alfa = 1.5 and norm = 2.

It may be interesting to compare these results with the results ob-

tained when the initial values are changed to

1
(7.12) u(o) = (-1
1

which leads to the analytical solution (7.10) with c; =1and c, = cqy = 0.

In this case procedure exponential fitted taylor only needs 2 trial steps,
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since the initial derivatives do not contain the fastly decaying compo-

nents. In table T.6 some results are shown.

Table 7.5 Three-cluster method applied to problem (7.9')
3

~.with.r.= 1000, ¢ =.2n/3, n,.=.10 " and n, =0

k by Tx Yk Oy u & = YUk

0 0 1071% | 1.000 .000 .000 0

5 .00001 .0001 1.000 ~.6 107¥ -1 1.1 107
10 L0611 .025 .9k2 -.942 .9k2 9.1 10'll
15 .190 . 027 .827 -.827 .827 b2 107
20 .327 .029 .T19 -.T19 .T19 1.6 1073
25 LT7s .031 .619 -.619 .619 2.5 1073
30 .63L .033 .527 | =.527 .527 3.4 1073
35 | .806 .037 A3 | -, kb3 443 4.0 1073
Lo .99k .006 367 -.367 367 h.5 1073
41 | 1.0000 .363 -.363 -363 4.5 1073

Table 7.6 Three-cluster method applied to equation (7.9') with initial

conditions (7.12) and r = 1000, ¢ = 2n/3, n, = 1073, n. =0

k e Tk W Oy L € = WUk
0 0 6 1077 1 -1 1

5 .081 .026 .921 -.921 +.921 8.2 10’h
10| .212 .027 .807 | -.807 | +.807 2.1 1073
15 .351 .029 .701 -. 701 .701 3.0 1073
20 | .500 .031 .603 | -.603 .603 3.9 1073
25 660 .03k .512 -.512 .512 4.6 1073
30 .836 .037 428 -.L428 128 5.1 1073
35 | 1.000 .362 -.326 .326 5.4 1073
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T.4 A stiff equation from biochemistry

In biochemistry the following initial value problem is of interest:

( -
s

(-1+C)s + .99C,

(7.12) - & = 103(-c+(1-0)8),

s(o) = 1, c(o) = 0.

\

The solution is required at t = 50.

The Jacobian matrix of (7.12) is given by

(O .99 + S
(7.13) D=

103(1=c)  =103(1+8)

According to the theorem of Gerschgerin the eigenvalues are situated in two
circles of radius .99 + S and centered at C - 1 and f103(1+S), respectively.
Thus, initially the eigenvalues are in two circles of radius 1.99 and cen-
tered at -1 and -2000, while in the stationary state (8=6~0) the eigen-
values are near -1 and -1000. From this it follows that (T7.12) is an ex-
ample of a stiff equation, so that the three-cluster method should be used.
In table 7.7 the results obtained at t = 50 are shown. In the actual call
of exponential fitted taylor we have put alfa = 1.5 and norm = 2.

Table 7.7 Three-cluster method applied to problem (7.12)

g =M | Kty Sk Cx
107" 18 | 50 | .T64B59 |.L33hok
10‘2 36| 50 | .765405 |.L33561
1073 82 | 50 | 765671 |.4336Lk
10‘h 170 | 50 | .765781 433679
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8. Summary of integration formulae using at most four derivatives

This paper is concluded with a survey of possible integration formulae
using at most four derivatives.

We distinguish four classes of initial value problems.

Class A: Jacobian D of the given system of differential equations is
known to have negative or "almost negative" eigenvalues.
Many parabolic equations describing diffusion processes be-

long to this class.

Class B: Jacobian D is known to have imaginary eigenvalues. To this

class belong symmetric hyperbolic differential equations.
Class C: Eigenvalues of D cannot be located.
Class D: Eigenvalues of D can be placed in two or three widely spaced

clusters.

Table 8.1 The array data for some modified Taylor' methods

class|data[~2]| datal[-1]| data[0]|datal 1]|datal[2]| datal3] datal[ 4]

A 1 1 2 1

A 1 8 1 1/8

B,C 1 1

A 2 2 2 1 1/2

A 3 1 18 1 L/27 4/729

A 3 2 6.26 1 1/2 1/16

B 3 2 2 1 1/2 1/4

A,C 3 3 2.52 1 1/2 1/6

A N 1 32 1 5/32 1/128 1/8192
A L 2 12 1 1/2  |(-9)7868LL85| (-10) 36084541
A L 3 6 1 1/2 1/6 (-9) 18455702
A,B,C L N 2/2 1 1/2 1/6 1/24
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If the given initial value problem belongs to class A, B or C it is
recommended to use modified taylor with an array data as given in table
8.1. For methods using more than four derivatives we refer to the referen-
ces [3] and [k].

If the problem is of type D the two- or three-cluster method, i.e.

exponential fitted taylor, is most convenient.
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