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Abstract

A minimax problem, arising from the stability theory of one-step methods,
is solved by reducing it to-a system of nonlinear algebraic equations and
applying the damped Newton method. In order to start this method a least

squares solution was used as initial approximation. This initial approxi-

mation turned out to be sufficiently accurate to obtain convergence.
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Introduction

In this report the authors (which are members of the department of
Applied Mathematics and the Computational department, respectively) try to
solve numerically a minimax problem for polynomials of which the first,
say p+1, coefficients are prescribed. When p=1 the problem is equivalent
to the well-known minimax problem of Chebyshev in which case an analytical
solution can be given. When p > 1 no analytical solution seems to be known,
so that numerical methods have to be used.

The numerical approach presented here is based on the solution of a
set of non-linear algebraic equations determining the coefficients of the
polynomial. In order to solve this set some version of the "damped Newton
method" was employed. First, it turned out that it was difficult to provide
with sufficiently close initial approximations for the coefficients. To
overcome this difficulty a least squares problem was solved yielding
approximations of the minimax solutions which appeared to be satisfactory
as initial approximations. A second difficulty was the break down of the
damped Newton method when the number of unknown coefficients exceeds 10.
However, it was found that this is not as serious as might be expected,
because of the following three reasons. In the first place, enough in-
formation about the minimax solutions could be collected to discover a
relation between some parameter B (see section 1) associated to these

polynomials and the degree n. In fact, it was found that

B ~ cp n- ,

where cp is a constant depending only on p. It is this parameter B which is
important in applications of minimax polynomials (see section 1). In view
of the above relation we may predict the value B for polynomials which
cannot be calculated by the damped Newton method. Secondly, the least
squafes polynomials appeared to possess the same property, although with
different values for cp. In order to find polynomials for which the para-
meter B is close to the optimal one, least squares solutions were derived
for several weight functions. In this way, polynomials were found with

relatively slightly lower values for B than the optimal ones.



Finally, it may be remarked that the method of finding least squares ap-
proximations employed in this report is not the usual one. However, it
mekes use of expansions in orthogonal polynomials with the advantage that
the accuracy of the least squares solutions depends mainly on p and hardly
on n,.

The authors wish to acknowledge the work done by Mr. M. Bakker who wrote

the program by which the least squares approximations were obtained.



1. Statement of the problem

In reference [2], p. 26 the following problem was stated. Let Pn(x)
be a polynomial of the form

(1.1) P (x) = A (x) + £ B (x), n = prari,

where Ap(x) is the polynomial

l_a

Ap(x)=1+x+ X 4 ...+ «®

1
!

2!
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and Bq(x) is an arbitrary polynomial of degree q in x. Further, let B(n)
be a number such that

(1.2) | (-8(m))| =1, [B ()] <1, -8(n) <x<o0.

Then, the problem is to construct the polynomial Bq(x) for which B(n) is
as large as possible for given values of p and gq.

This problem arises in the theory of difference schemes. The polyno-
mial Pn(x) generates a p-th order exact difference scheme which is more
efficient as the value of B(n) is larger.

When p = 1 the problem'is the well-known minimax problem of Chebyshev

and is solved by the polynomials
_ -2
(1.3) P (x) =T (14n""x),

where T is the Chebyshev polynomial of degree n in x. The value of B(n)

is given by

(1.14) 8(n) = 2n° .

When p > 1 no analytical solution seems to be known.



In [2], p. 2T it was shown that if there exists a polynomial Pn(x)
which has in the interval [-8(n),0] at least q+1 alternating tangent
points with the lines y = +1 (see figure 1.1), then no other polynomial

with the same values p and q will yield a larger value of B(n).
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fig. 1.1 The optimal polynomial for p = 2, q = 2.

By assuming that such a polynomial does really exist one can set up 2q + 2
non~linear equations for the q + 1 coefficients Bp+1""’6n of Bq(x) and
the q + 1 tangent points of Pﬁ(x). It is readily seen that these equations
are

P (x.) = (=1)R"2"1%

(1-5) noJ s J = 152504050+
P'(x.) =0
n J

By solving the set (1.5) the optimal polynomials characterized by
(p,a) = (2,0), (2,1), (3,0), (4,0)

were constructed (see [2], section 6). Furthermore, a method was given

which yields polynomials Pn(x) for which

B(n) ven asn > o,



where ¢ is a constant. However, these polynomials are not optimal in the
sense that the numbers B(n) associated to them are as large as possible.

In this paper we give a numerical method to construct optimal poly-
nomials Pn(x) for arbitrary values of p and q.

Our point of departure was the set of 2q + 2 equations mentioned above.
These equations were solved by an algorithm developed by Kok [3]. An out-
line of the program will be given in section 3.

It turned out, however, that for q > p the initial approximation of
the unknowns, necessary to start the algorithm of Kok, must be very close
to the actual solution in order to get convergence. In the follgwing
section a method is given which yields sufficiently close initial approxi-

mations.

2. Least squares solutions as initial approximations.

Our starting point in constructing reasonable initial polynomials is
the following definition of the polynomials we are looking for.
Let B' be a given positive number and let Pn(x) be a polynomial of the form

(1.1) such that the norm

0 1
(2.1) e ()] = J P (x)T%x | ™
-8

is minimized for m = =, When B' increases from O to infinity the value of

this expression will behave as illustrated in figure 2.1
2,11,

R

0 B(n)

fig. 2.1 Behaviour of the HPn(x)Hoo as a function of B' .



Clearly, the optimal polynomial as defined in section 1 corresponds to the
value of B' where HPn(x)H°° begins to increase. If one carries out the
minimization of ||Pn(x)||w for a sequence of values of B' one should find
an approximation of the optimal polynomial. In practice, however, this is a
difficult process. Therefore, we have preferred to minimize the least
squares norm ||Pn(x)||2, which is much easier to compute than the maximum
norm.
More generally we calculate the value of
0

(2.2) f w(x) P_(x)ax

B!
where w(x) is a weight function. The function w(x) is added to compensate
the fact that m = 2 instead of m = », We will see that w(x) # 1 may yield
better initial approximations than w(x) = 1. When a number of least squares
solutions corresponding to a sequence of -B' values was obtained we took
the one which has its values just between +1 and -1 over the interval

(-8',0).

2.1 Derivation of the equations determining the initial polynomial.

The problem remains to minimize (2.2) for given values of B', p and q.

At first sight, the most simple approach is to solve the equations

0
(2.3) 3 J wix) Pﬁ(x)dx =0, j=Dp+tl,...,n.
B

or equivalently
-> ->
(2.3") Ag=0v,

where § is the vector with components Bp+1""’8n’ b the vector with com-
ponents

0

J w(x) xp+j+idx, i=p+l,...,n

dJ -B!



and A a matrix with entries

Unfortunately, the matrix A is very ill-conditioned for large values
of B' and we may expect B' to be large as n increases. Therefore the nume-
rical solution of equation (2.3) may be unreliable.

We have preferred the following method of solution which leads, as we
will see, to & set of equations the number of which only depends on p and
not on n.

First, we adjust the polynomial Pn(x) on the interval [-B',0] to the

interval [-1,+1], i.e.
P(x)=Q(y), y==5x+1.
n n ? B!
Clearly, Qn(y) satisfies the conditions
. . s
(2.1) Qr(l‘))(1) = (%—)J s 3 =0,1,.00,D.
Let v(y) be the weight function w(x) adjusted to the interval [-1,+1] and
{pi(y)}?=0 the set of polynomials of degree i, i = 0,...,n which are

orthogonal with respect to v(y) over the interval [-1,+1] and normalized

such that pi(1) = 1, Further, let
n
(2.5) Q.(y) = izo a; . (¥).

We now minimize the expression

(S 2
viy)| L oo p(3)| T ay
1=0

-——

1
f V(Y)Qﬁ(Y)dy =
-1 -

with the additional conditions (2.4).



Introducing the Lagrange parameters A

0° A1,...,Ap we arrive at the set of
equations
d 2 j
(2.6) Y J v(y) Qh(y)dy + E AL QiJ)(1) =0,
i j=0 J

-1

or, substituting (2.5) and using the orthogonality relation between the
polynomials p, (y),

(2.6") 2 a; b, + .i Aj p§j)(1) =0,
J=0
where
1
(2.7) b = [ 220 v(ray.

-1
From (2.4) and (2.5) it follows that

\ v (3) .y _ (B
(2.4") iZO o piJ (1) = (5

J .
), J =0,1,.00,p.

Hence, by combining (2.6') and (2.L4') we obtain
< -1_(3) (1) = (B!

or equivalently
(2.8") AX =3,

-> > .
where A is the vector with components XO,...,AP, b is the vector with

components

b, = 289"

l 9 l=0’1,.'.’p



and A is the matrix with entries

i 1},:1 pi(j)(1)pi(l)(1)
RSN By '

By solving equation (2.8') the Lagrange parameters are obtained and
by substituting these values into (2.6') the coefficients o, can be com-

puted. Finally, the coefficients Bj are computed from the relation

(3)
13' 13(1)

We observe that the order of the matrix A is p+1 and does, contrary
to the matrix A corresponding to the direct method, not depend on n.
Since we are only interested in cases where p is small (p = 2,3,4), we only
need to invert matrices of relatively low order, irrespective the value
of n.

2.2 The computation of h; and pi(J)(1).

In order to solve equations (2.8) we have to compute the values of

h, and pi(J)(1). The class of orthogonal polynomials considered here, is

the class of Jacobi polynomials (compare reference [ 1], p. 561)

(2.9) Pi(Y) = (iza)-1 Pi(a’s)(y) = F(-i,i+a+B+1;0+1; léx) ,

where F denotes the hypergeometric function.
The polynomials pi(y) as defined by (2.9) satisfy the condition pi(1) =

and are orthogonal with respect to the weight function
(2.10) v(y) = (19)* (149)f .

According to [1], p. TT4 we have for hi the explicit expression
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- (i+a)-2 2a+8+1 r(i+a+1) T'(i+g+1)

i i oi+a+B+1 1! T(i+a+p+1)

(2.11) h

The values of the gamma function in this expression can be generated by

the recurrence formula
(2.12) r(z+1) = z I'(z),

so that only the values of I'(a), I'(8) and I'(a+B) are necessary.
The values of pi(J)(1) can be calculated by means of the formula

(see [1], p. 55T)
(a). (b).

g'——:-13‘(3.,b;c;x') = —a—d F(a+j,b+jjetizx) .
ax? (C)j

Since F(a,bj;c;0) = 1, this yields

(-i)j (i+u+8+1zi
(a+1)j

(213 p, ) =

In these formulae the symbol (z)j is defined by

_ _ I'(z+j)
(2'“4') (Z)O = 1, (Z)j = P(Z) °

2.3 Initial approximations for the case p = 2

We now are in a position to solve equations (2.8) and to find the
coefficients Bj by formula (2.9).

First we compute the value of the parameter B'(n) of the polynomial
which just remains between +1 and -1 over the interval (-g'(n),0). In
table 2.1 approximations are given for a number of weight functions of type
(2.20) i.e.
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(2.10) viy) = (1=9)%C)® L a > -1, 85 -1,

Table 2.1. Approximate values of B'(n) for p = 2

B 0,-3) | (0,00 | (0,1 (=3,-1)| (=3,0) [ (-3, |(2,-})| (3,00 | (3,D)
3 6.2 5.4 L.7 6.2 5.3 4.5 6.2 5.6 4.8
L 1.4 | 10.2 8.2 | 11.6 .6 7.7 | 11.2| 10.6 8.6
5 17.9 | 16.4 | 12.6 | 18.4 15.2 | 11.7 | 17.4| 17.5 | 13.5
6 25.5 |24.1 | 18.0 | 26.4 22.1 | 16.4 | 24.7|26.0 | 19.5
T 34.4 | 33.6 |24.3 | 35.8 30.3 | 21.8 | 33.2| 34.7 | 26.6
8 Lh,5 | Lh.8 | 31.6 | 46.6 39.8 | 28.0 | L2.7 | LLk.6 | 35.0
9 55.8 | 57.9 [39.8 | 58.7 50.7 { 34.9 | 53.4|55.5 | Lk.6
10 68.4 | 70.0 |L49.0 | T2.1 63.0 | k2.6 | 65.2| 67.6 | 55.5

Before these results are discussed it is interesting to give the cor-

responding table of B'(n)/n2 values:
Table 2.2. Approximate values of B'(n)/n2 for p =2

)

»2)

—~~
Nl
»
o
~—r
~~
-

LV R

3

(@8) 1 (6,-3)](0,0) | (0,3) [(-3,-}) | (-3,0) | (-

< POl

.6889 |.6000 | .5222| .6899 |.5889 |.5000 |.6889 |.6222 |.5333
.7125 |.6375 | .5125| .7250 |.6000 |.4812 |.7000 |.6625 | .5375
.T160 |.6560 | .50k0| .7360 |.6080 |.4680 |.6960 |.7000 | .5L00
.7083 |.6694 | .5000| .7333 |.6139 |.4556 |.6861 |.7222 | .5417
.7020 |.6857 | .4959| .7306 |.6184 |.Lhkg |.6776 |.T7082 |.5L429
.6953 |.7000 | .4938| .7281 |.6219 |.L4375 |.6672 |.6969 | .5469
.6889 |.T148 | 491k | 7247 |.6259 |.4309 |.6593 |.6852 | .5506
.6840 |.7100 | .4900| .7210 |.6300 |[.4260 |.6520 |.6T60 | .5550

O 0O o ~N O WUV F W

-

From this last table it may be concluded that B'(n)/n2 becomes approx-
imately constant as n increases and, therefore, we may evaluate the merits

. . . . 2
of a particular weight function by considering this constant B'(n)/n
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for n sufficiently large. The larger its value, the better the corresponding
initial polynomial. Thus, considering the values B'(n)/n2 for n = 10 in
table 2.2 we see that negative values of o and B yield better approxima-
tions than positive ones. In order to select the best weight function in the
square -1 < a < 0, -1 < B < 0 we have computed the values of 8'(10)/100 at

some more points in this square. The results are listed in table 2.3.

Table 2.3. Approximate values of B'(10)/100 for p = 2

-9 | =8 | <7 | -6 | =5 | =4 [ =3 | =2 | -1 0
B
0| .601 .630 .T10
-.1] .61k
-.2|.67T9 | .700| .723 | .TL6
-.3|.758 | .759| .750 | .Th1 .T16
-.bf.162 | .753| .Thhk | .T35
-5 | 756 | JTUT| .T38 | .T29 | .T21 | .684
-.6|.750 .723 .T00
-.7 . 726
-.8
-.9.732 . 706 .683

This table suggests to take the weight function

2 _ b
0 (14y) 10

(2.10") v(y) = (1-y)

The coefficients of the corresponding polynomials are given in the next
table.
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Table 2.4. Coefficients of the initial polynomials generated by the weight
N

2 .
function v(y) = (1-y) 10 (1+y) 10 for p=2
2 9 10 11 12 1L 16
n |B(n)/n| 10 By (107 By, 10 Bs 1077 g |10 BT 10" Bg
3 .6889 | 63219113
L .T438 | 78277488 | 36419210
5 .T6L40 | 84503139 | 55430520 | 12359887
6 .T66T | 881L444T2 | 66906897 | 22771947 | 2860535
T .T6T73 | 9023998k | 73958254 | 30304887 | 6065960 | LT2T06L
8 .T656 | 91668190 | 78788327 | 35849713 | 8909019 | 11431566 | 592751k
9 .T642 | 92599300 | 82067LL1 | 39858254 | 11217344 | 18252893 | 15938188
10 L7620 | 93312949 | 84541252 | L29L361h4 | 13106106 | 24568978 | 27705275
11 .7603 | 93809168 | 86324539 | 45253786 | 14601169 | 30035002 | 39515796
12 .7590 | 94161999 | 87638953 | 47011439 | 15787376 | 34655099 | 50537230
13 LT5TL | 9LL666kl | 88731680 | 48461429 | 16TT89T8 | 38654307 | 60692137
1L .T561 | 94689746 | 89563026 | 4959L49L0 | 17577039 | 41998615 | 69657222
15 LTS4T | 94891957 | 90284391 | 50563881 | 18260555 | 44910738 | 77722289
' | |
Table 2.4 continued
n 1018 B 1020 8o 107 8., 1024 Brn 1028 Bis 1027 B 1032 Bys
9| 5780404
10 | 17246582 | 4554170
11 | 32195017 | 14797599 | 2933677
12 | 48555501 | 29538L458| 10312673 1574223
13 | 65247607 | 47274320 22071379 | 5996676| T204272
14 | 81190662 | 66307057 | 37154536 | 13607585 | 29337930 2823550
15 | 96307865 | 85852481 | 54608364 | 24179854 | 70806079 | 12324738 | 9654371
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2.4, Initial approximations for the cases p = 3 and p = L

In the same way as in the preceding section initial approximations can

be calculated for p > 2. We shall restrict our computations to the cases

p = 3 and

Anglogously to table 2.2 we give the results for p =

(0,8)

p = L.

Table 2.5. Approximate values of B'(n)/n2 for p

3and p = k.

. (0,-3) (0,0) | (0,3) [(=3,-3)| (=3,0)| (=3,3)| (3,-3)| (},0) | (3,3)
L .3750 | .3375 | .3125 | .3750 | .3375 | .3125 | .3750 ;31#37 3187
5 .4080 | .3680 | .3240 | .4120 | .3600 | .3160 | .hkokO | .3760 | .3280
6 L4222 | 3861 | .3278 | L4306 | .3722 | .319L | L4167 |.3972 | .3361
T 4306 | .3959 | .3286 | .4388 |.3796 | .3184 {.k22k | 4122 | .3L08
8 L4328 | JLhoLT7 | L3297 | .L4L38 |.3859 | .3172 | .L23k | . L2266 | . 3438
9 L4346 | L4123 | L3296 | LL69 | .3889 | .3160 | .4222 | . L4370 | .3469
10 4340 | 4180 | .3300 | .4L48O |.3920 | .3140 |.4220 | .L4360 | .3490
Table 2.6. Approximate values of B'(n)/n2 for p= 14
B (0,-1)] (0,00 | (0,) [(-3,-3)| (-3,0)] (-3,)| (3,-3)[ (3,0) | (3, D)
5 '.ehho .2200 | .2040 | .2440 | .2200 | .2040 | .24k0 | .22L40 | .2080
6 2722 | .2k72 | L2194 | .2750 | .2417 | .216T7 | .269L | .2500 | .2222
T 2878 | .2612 | .2286 | .2918 | .2571 | .222k4 | .2857 | .2673 | .23L4T
8 .2969 | .2734 | .23Lk | .3016 | .2656 | .2281 |.2938 | .2797 | .2k06
9 .3025 | .2802 | .2383 | .3086 | .2716 | .2296 | .2975 | .2901 | .2L5T
10 .3070 | .2870 | .2400 | .3130 | .2760 | .2320 |.3010 | .2970 | .2L490

An examination of these tables reveals a similar behaviour as for

p = 2. This suggests to investigate the polynomials generated by weight

function (2.10') which was appropriate in the case p = 2. We found the

results given in table 2.7.




S

15

Table 2.7. Approximate values of B'(n)/n2 for p = 3,4
and (a,8) = (-.9,-.1)

n p=3 p=L
L .3750

5 4160 .2k0o
6 1389 2722
7 L4531 .2939
8 4578 .3078
9 L4617 .3160
10 .4650 .3210

As expected, weightfunction (2.10') is also superior for p = 3 and p = k.

In table 2.8 and 2.9 the coefficients of the corresponding polynomials

are given for n = 4,...,15.

Table 2.8. Coefficients of the initial polynomials generated by the weight
function v(y) = (1-y)_'9 (1"'3’).-')4 for p = 3

n B(n)/n2 107 B), 1019 B 10" Bg 1013 B 101h Bg 1016 By

L | .3750 | 18566961

5| .4160 | 23841563 | 11272742

6 | .4389 | 26119633 | 17849599 | L359060

7| .4531 | 27310479 | 21743696 | 8191339 | 11729676

8 | .4578 | 28157310 | 24508302 | 11296700 | 26265769 2426682

9 | .4617 | 28681481 | 26332928 | 13589687 | 39626765| 6098337| 385111k
10 | .4650 | 29020601 | 27575676 | 15272960 | 50781509| 9989971 | 10718995
11 | 4661 | 29300984 | 28574465 | 16643936 | 60419166 13799552 | 19285529
12 | .467Lh | 29492253 | 29287789 | 17672005 | 68141098 | 17171792 | 28172490
13 | 4675 | 29663234 | 29901248 | 18549600 | T486LT29| 20260759 | 37100213
14 | 4679 | 29783262 | 30351910 | 19220402 | 80238579 | 22876992 | 45298215
15 | .4680 | 29882200 | 30722338 | 19776074 | 84TT6T711| 25161785 | 52844005




Table 2.8 continued
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n |10"® Bio 1020 Bi 1022 Bin 102h Big 1027 By, 1022 Bis
10 4835242

11 | 15070077 5045190

12 | 29007027 | 17024898 4346133

13 | L45382LL8 | 35532327 | 16105352 3214576

14 | 62294317 | 58385026 | 35580364 | 12711905 | 20206547

15 | 79141429 | 8L0OT86L | 61754256 | 2989863k | 85761412 | 11040852

Table 2.9. Coefficients of the initial polynomials generated by the weight

function v(y) = (1-y)"9 (1+Y)_°h for p = L

a | 8(n)/n?|101° B 10" B¢ 1012 B 1013 Bg 1012 B 1016 B 1o
51 .2400 | 41197906

6| .2722 | 53434805| 24535627

7| .2939 | 58704769 39323037 9786272

8| .3078 | 6156L4T720| L4L84L15151| 18801450 2839611

9| .3160 | 6341321k4| 54584162 26027197| 6U1T18T| 638LTTT

10 | .3210 | 6L4705601| 5902015L4| 31728545| 9896L405| 16565T737| 1151083
11| .3248 | 65590855| 62178367| 36091807 12932403| 27909303 332599L
12| .3271 | 66278169 6h6Lk2212| 39615910 15576278 39257900 6133903
13 | .3296 | 66731121 66359773| 42222825| 17687394| 49368202| 9093693
14 | .3311 | 67112330 67786915| LLLOT171| 19511985| 58642413 12094087
15 | .3320 | 6T7L38L5T| 68994508 L46265805| 21100439| 6TOTTTL1| 15025569




Table 2.9 continued

18

7

25

27

n |10 B, 1077 8, 1077 B3 1077 8, 1070 Eg
11 1681669

12 5411036 206050k

13 10619799 7125834 2092932

14 16838794 15130732 7923367 18371625

15 23632694 25550726 18086558 75488881 14085650
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3. A numerical method for solving systems of non-linear equations

In this section we discuss the "damped Newton method" (see [ L ] and

[51]) in order to solve equations (1.5).

3.1. Definitions

This method starts from the Newton-Raphson method (NR method) for

solving a system of non-linear equations
(3.1) f(x) =0,
a compact notation for

(301') fi(x -,xn)=o ’ 1= 1,..-,n.

120
With the NR method equations (3.1) are approximated (in each iteration) by

a first order Taylor series expansion

(3.2) ey w7 xxE)y = 0

In this formula the matrix J(f) is the jacobian of all first partial deriv-

atives of f(x).

Let 6(k) =x - x(k), then (3.2) becomes

(3.21) e(x)) + J(e(x Cet®) g,

(k)

From these linearized equations § can be solved. In the NR method,

x(k+1) = x(k) + 6(k) is taken as the starting point for the next iteration.
In the damped Newton method, however, the step vector is not necessarily

s put 0.6%) (0 <o <15 in fact o = 27%, ¢ > 0).

3.2. The damped Newton method

2 2 2
tet [[al[?= ] &
1=1

Then, for acceptance of the step §

(|]..]| is the euclidean norm).

(k) (k+1))||2

, it is required that ||f(x
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k
( ))llz, where only the first

is at least a given fraction A less than ||f(x
time p = 1, and p is halved until the stepvector p.$ is accepted.
Hence, at each iteration we obtain for p the first element of the sequence

1, —;-, )1:, %, for which
(3.3) e+ o512 < o L (1eEN 2

(k))

When p becomes too small, the last value of ||f(x | is accepted as a

relative minimum of ||f(x)||. Otherwise, when ||f(x k )]| is less than a

given tolerance, x k is close enough to a zero of f(x) = 0.

3.3. Applications

When this method was applied to the special system of equations (1.5),

it turned out that for q > p, it was very difficult to provide with a
(0)
)3

sufficiently close initial approximation (x for @ > 10 the approxima-

tion of the jacobian obtained by central differences became singular.
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4. Approximations to the optimal polynomials

Possessing an algorithm to solve the algebraic equations defining the
optimal polynomials and having derived initial approximations, we are in a
position to actually compute these optimal polynomials. In our calculations
we made use of the property that the parameter B(n) corresponding to the
initial polynomials approximately behaves as cn2, ¢ being a constant given
in table 2.3. By virtue of this property we minimized expression (2.2)
with B' = cn® and did not check whether Pn(x) remains between -1 and +1
over the interval (-8',0), but used Pn(x) as initial approximation. In
doing so a considerable amount of computing time was saved. Furthermore,
it turned out that we not necessarily have to take the best initial approx-
imation. In all our experiments the weight function corresponding to
Chebyshev polynomials generates sufficiently close initial approximations.
The reason that we took the trouble to optimize the initial approximation
is that, for n > p+10,it is not possible to obtain results by the damped
Newton method. We shall discuss this point at the end of this séction.

In tables 4.1, 4.2 and 4.3 the results for p = 2, 3 and 4 are listed.
Instead of B(n) we have given the value of B(n)/n2. Similar to the polyno-
mials obtained as least squares solutions,the minimax solutions also have

the property
(4.1) B(n) ~ cn® ,

where c is a constant (see table 4.1-L4.3).

Unfortunately, the algorithm did not yield answers for n > p+10.
However, when the "best" initial polynomials obtained in the preceding
section are compared with the polynomials given above we see that the

corresponding values of B(n) are comparable within 10%, see table L.k,



Table L4.1. Coefficients of the optimal polynomials for p = 2, n = 3,...,12
n|8(n)/n° 10° By 10'% 8, [10" B 10'2 g 10" 8. 1010 Bg 10'® B 10°0 g, 1023 By, [10% 8.,
3| .6956 | 62500000
L| .7529 | 78684485 3608L5k1
5| .7782 | 84608499| 55271248[ 12219644
6| .7917 |8T7994019| 66169168| 221760T1| 2731156
T| .7998 | 89985021 T28TT550| 29298151 5723751 4336799|
8| .8050 | 91257740l 77281768 34366T789| 8297337| 10298268| 5148095
9| .8085 [92121645| 8032277T| 38043289 10373348 16275261| 13652347| LT43119
10| .8111 |92735331| 82508285( LOTT3070| 12021734| 216586L4| 23378958| 13887849 3490930
11| .8130 |93187123| 84130659| 42846249| 13332017| 26301736{ 33046921| 25627575| 11181948|20999782
12| .81k |93529L476| 85367612 LLL53L41) 143814L0| 30237000| 420k58L4T| 38385258) 2212621k | 73028416 | 10518942

Le



Table 4.2. Coefficients of the optimal polynomials for p = 3, n = 4,...,13
n s(n)/n2 10° B), 1010 Bs 10" Be 1013 By 1o1h Bg 1016 By 10'8 Bio 1020 B, 1022 Bio 102? B3
L| .3767 | 18455702
5/ .4214 | 23721832 11118724
6| .Lu5T |26054057| 17697690 L4284k125
7| 460k | 27315880|216886L4L| 8124209| 11539864
8| .4699 |28083307| 24265433 11058382 25241896 230214L
9| 4765 | 2858T7698| 26020933} 13252127 37998480 5T3uLE8| 3543546
10| .L4811 [ 28938153|2726967T7| 14905913| 48724828| 9395275| 9857520 4339861
11| .L4846 | 29192093| 28189409| 16172622| 57582581 12857102| 17520203| 13321234 4332017
12| 4873 | 29382258| 28886366| 17159628| 64852101| 15962684| 25508353| 25524232] 14532165| 3593250
13| 489k | 29528506|2942T7153| 1794 1422| T0830830| 18681545| 33239933| 394 14755| 29855892 | 13070917| 25165030

cc



Table 4.3. Coefficients of the optimal polynomials for p = 4, n = 5,...,14
n|8(n)/n?[10"° B 10 8, 1012 B 1013 Bg (10" B 106 B1o 10'8 B, 1020 81 1023 B s 1027 By
5| .24k2h (40869614
6| .27T70 |53034307|240LT305
T| .2978 |5852291k| 3895928T| 9614737
8| .3114 [61530756| 48271897| 18665099| 280242k
9| .3207 |63380802| 54415671| 25823024 6324541| 6241238
10| .3274 | 64609566| 58675260| 31318718 9676950| 16017061 | 1098880
11] .3324 | 654T71686| 61750557| 35551T48| 12603033 26853219 | 3154281 1569873
12| .3362 | 66102156| 64045172 38852969| 15078409 | 3T42UTTS | 5TLT862[ LITE600| 185T6T2
13| .3392 | 66578336| 65804031| 41465210| 17151510| k7156774 | 8539768 9788891| 6438509| 18516202
14| .3409 | 66949337| 67189660| 43572346 55903927 | 11327608] 15470573| 1361783k4| 69780353 |15817898

18894332

€2



2k

Table 4.4. Relations B(n) ~ en® for n >> 1

p =2 p=3 p =1k

Leastsquares solutions | B(n) ~ .76n2 B(n) ~ .46n° B(n) ~ .32n2

Minimax solutions B(n) ~ .82n" | B(n) ~ .)-L9n2 B(n) ~ .3Ltn2
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