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On positive convolution operators for Jacobi series 

1 • Introduction 

by 

Herman Bavinck 

Mathematisch Centrum, Amsterdam 

1.1. In a preceding paper [2] the author has started the study of approx­

imation of functions by processes, which are generated by the use of swmna­

bility methods for the expansion of the functions in terms of Jacobi 

polyriomials. The summability methods can be interpreted as convolution 

operators, if the convolution structure for Jacobi series, defined by Askey 

and Wainger [1], is used. By means of some general theorems on approximation 

processes in Banach spaces, (Berens [3]), it is possible to characterize 

the saturation class and the classes of non-optimal approximation of a 

number of classical summability methods for the summation of the ~ourier­

Jacobi series. This paper deals with saturation of positive convolution 

operators and the main part is a theorem of the Tureckii [10] - Devore [4] 

type, which determines the saturation order and the saturation class _of a 

sequence of positive convolution operators, satisfying a special condition 

on the Fourier-Jacobi coefficients of the kernel. The proof is a straight­

forward generalization of DeVore's proof in the case of Fourier series. As 

applications, the saturation class of the higher order Jackson kernel and 

some other positive kernels are characterized. 

1.2. We introduce same Banach spaces of complex valued functions on the 
CIO 

interval [-1,1]. We write C for the space of continuous functions, L denotes 

the space of essentially bounded functions and we define the LP spaces with 

respect to the weight function (x = cos 6) 

( 1 • 1 ) (a,B)(e) ( . e,2a+1 ( 6)26+1 p = sin-, cos -2 2 (a ~ a ~-I>. 

We call M the space of all regular finite Borel measures on [-1,1]. The 
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spaces C, LP (1 .::_p .::_ ~1 and Mare Banach spaces if endowed with the 

following norms 

11 f 11 c = sup I f( cos e) I , 
0<0<'11' 

'II' 

I lfl Ip= cf lf(cos e) Ip p(a,B\e) deJ 1/P 

0 

11 f 11 ~ = ess sup I f( cos 0 ) I , 
o.::_e <'11' 

'II' 

I lµI IM= J ldµ(cos e) I .. 

0 

(1 .::_p < ~), 

With elements of these Banach spaces we can associate an expansion 1n terms 

of Jacobi polynomials. If P(a,B)(x) is written for the Jacobi polynomial of 
n 

degree n and order (a,8) (see Szego [9]), the functions 

satisfy 

( 1.2) 

Here, 

(1.3) = (2n+a+6+1 )r(n+a+6+1 )r(n+a+1} = O(n2_a+1) 
r(n+6+1)r(n+1)r(a+1)r(a+1) ( n-+co). 

With f belonging to one of the spaces C or LP (1 .::_p .::_~)we associate the 

Fourier-Jacobi expansion 

( 1. 4) 

where 

~ 

f(cos e) N l fA(n) 
n=O 



( 1.5) 
A 

f (n} 
. f1T 

= 

0 

3 

f(cos e) R(a,B)(cos e) p(a,S)(e) de 
n ( n=O, 1 , ••• ) • 

With a measureµ€ M we associate the Jacobi-Stieltjes expansion 

( 1.6) 

where 

(1.7) 

co 

dµ(cos e) ~ 
, 

l µv(n) w(a,a) R(a,a)(cos e), 
n n n=O 

1T 

µv(n) = J R~a,a)(cos 0) dµ(cos 0) 

0 

(n=O,1, ••• ). 

Askey. and Wainger [1] have introduced a generalized translation operator 

T,, which maps a function f with (1.4).into 

( 1 .8) 
co 

T~ f(cos 0) ~ l fA(n) w~a,a) R~a;a)(cos 0) R~a,a)(cos ,>. 
"' n=O 

and Gasper [5] has shown the positivity of this operator. This implies that 
1 

T, has an operator norm 1. If f 1 ,f2 € L, then the convolution f 1 * f 2 is 

defined by 

( 1.9) 

1T 

(f1*f2 )(cos 0) = f T, f 1(cos 0) f 2 (cos ,) p(a,S)(,) df.· 

0 

This convolution has the usual properties (see Gasper [5]). If f € LP 

( 1 ~ p ~ co)· and µ € M we can define the convolution f * dµ by 

(1.10) 

1T 

(f*dµ)(cos 0) = J T, f(cos 0) dµ(cos ,). 

0 

Moreover, f * dµ € LP and the following inequality holds 

(1.11) 

1.3. In the rest of this paper Xis written for one of the spaces C or LP 

(1 ~p < co). Assume that we are given a sequence {Ln} of positive convolution 

operators, that is, Ln has the form 
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,r 

(1.12) Ln(f;cos 8) = (f*dµn)(cos e) = f T~ f(cos e) dµn(cos ~) 

0 

( ftaX), 

,r 

where µn (n=1,2, ••• ) are non-negative elements of M with f 
0 

dµ (cos ~) = 1. 
n 

We say that the sequence {L} is saturated if there exists a non­n 
increasing sequence of positive numbers {~(n)} with lim ~(n) = O, such 

that 
n-+co 

i) I lf-Ln(f) I Ix = o(~(n)) 

if and only if f belongs to some "trivial" subspace of X 

and 

ii) there is a "non-trivial" element f 0 € X satisfying 

The sequence {~(n)} is then called the saturation order and the set 

F(X,L ), which consists of all the elements of X which satisfy ii, is 
n 

called the saturation class or Favard class of Ln. 

In this paper we shall prove a theorem, in which the behavior of the 

second trigonometric moment 

(1.13) ( · 8)2 dµ (cos e) sin 2 n 

determines the saturation of {L }. In section 2 we give some inequalities n 
for Jacobi polynomials and we investigate the relationship between Jacobi 

coefficients and trigonometric moments. Then, following DeVore [4], we 

introduce the following conditions: 

A. There exists a constant CA> 0 such that for each integer k there is an 

N(k) for which 

for n > N(k). 
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B. There exists a constant CB> 0 such that for each E > 0 there is an 

N(e) such that 

E 1T 

f (sin :)2 dµn ( cos e) .:.. CB f (sin f) 2 dµn(cos e) for n > N( E). 

0 0 

In section 3 we shall prove 

1. 4. Lemma. The conditions A and B are equivalent. 

We define the Lipschitz classes with respect to the generalized trans­

lation operator by 

(1.14) Lip(y,X) = {f€X: 3 c > o, sup· I IT1//-fl Ix.::_ c<j>Y}, ·(o < y !... 2). 
0<1/J<<I> 

We now state the following theorem that will be proved in section 4. 

1.5. Theorem. If {L} is a sequence of operators of the form (1.12) and if n 
either condition A or condition Bis satisfied, then {L} is saturated with 

n 
order (1-µv(1)) and the saturation class F(X,L) is Lip(2,X). 

n n 

. ( a a) 
The Jacobi polynomials R ' (cos e) satisfy the following differential 

n 
equation: 

(1.15) - ( ~) dde {p(a,S\e) dde R(a,S\cos e)}=n(n+a+S+1) R(a,S)(cos e). 
P ·a, (e) n n 

If for f € X with the expansion (1.4) there exists an element Af € X such 

that 

00 

(1.16) Af ~ l n(n+a+6+1) fA(n) w~a,S) R~a,S)(cos e), 
n=O 

then we say that f € D(A) and we call A the operator which maps D(A) into 

X by f + Af. The operator is the realization in X of the differential 

operator 
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- 1 ,9-_d8 {p(a,S)(e) dde} 
/a,8\e) 

with boundary contitions ~e = 0 ate= 0 and TI, as follows from (1.15). 

Lofstrom and Peetre [7] have shown the close connection between the 

generalized translation operator T• and the operator A. In fact, for 

f € D(A) the following relations hold: 

(1.17) 

(1.18) 

where 

(1.19) 

f - T.f 
lim I I c (•) - Afl Ix= o, 
~o+ 1 

<I> 

c1<•> = I 
0 

(see Bavinck [2], section 4). Moreover, 

( 1.20) lim 
c,c.) 

1 
= 

•+o+ .2f a + 1 sin 2 

and, since 
TI ff 1 for 0 < • < - - < cos < 1 we have -2 ' 2 - 2 -

<I> e 

f 1 f ( .:E.)2a+1 -r de c1(•).::. (a,S) sin 2 cos 2 dT 
0 p (e) 0 

( 1 .21) 

<I> • e 
1 f sin 2 

.::.a+ 1 ( 8)28+1 de 
0 cos 2 

28+1 . 2 ,h 

< sin .:t:. 
- a + 1 2 

Notation: We will use the notation a ~ b (n-+c:o) if there are positive n n 
numbers c1 and c2 such that c 1a < b < c2a. 

n - n - n 
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2. Some relations for Jacobi polynomials 

2.1. Inequalities 

We shall first prove the following inequaltities for Jacobi polynomials 

i{a,a)(x). Let k be a natural number. Then 

( 2. 1 ) 1 _ R(a,S)(cos e) < k(k+a+S+1) 
-k a + 1 

. 2 e sin -
2 (o~e~ir). 

There exists a constant c > O, such that for O < E < 4/2k+a+S+2 
a 

(2.2) k(k+a+S+1) 2 0 (a S) e) 
ca a + 1 - sin 2 ~ 1 - Rk ' ( cos 

By the differ.entiation formula 

L R(a,a)( ) = k k+a+S+1 
dx -K X 2 a.+1 

we obtain from the mean-value theorem 

(2.3) 1 - R(a.,S)(cos 0) k(k+a+S+1 
-k = (a+1 

. 2 e R(a.+1,a+1)( -0 ) -0 sin 2 _k_ 1 cos , o < ~ e. 

Since IR(a+1,a+1>(cos e)I ~ 1, 0 < 8 ~ ir, formula (2.1) follows. -k-1 

For the proof of (2.2) we use Hilb's formula (Szego [9], (8,21.12) for 

large n 

where N = n + (a+S+1)/2. 

= N-a r(a.+1)(0/sin e)~ J (Ne) 
a 

~ ( -3/2-a.) e O n , 
+ 

a.+2 
e o( 1 ) , 

-1 if o < e < en ; 

(z)-a ( ) . • • The power series expansion of 2 J 0 z has terms with alternating sign, 

and monotonically decreasing for real z, 0 < z < 2. Hence we have 



(2.4) 

8 

(N8)2 

-> 1 - 2 + e2 0(1) a + 2 

>a+ 1 _ O(N-2), 
a + 2 

O < 8 < 2N-1 

The inequality· (2.2) follows from (2,3) and (2.4) fork ~k0• On the other 

hand, the constant c can be chosen in such a way, that (2.2) remains valid 
a 

2.2. Relations between trigonometric moments and Jacobi coefficients 

The following expansion is a simple consequence of Rodrigues' formula 

(see also Szego [9], formula (9.3.11)). 

a 
= r(a+1 r a+a+1) r 

r(a+1 l 
n=O 

(-,)n 2n+a+S+1 r n+a+S+1 
r a-n+1 r n+a+S+a+2 r n+1 

(a=1,2, ••• ). 

From the expression of the Jacobi polynomials in terms of hypergeometric 

functions 

we easily derive 

(2.6) 1 - R(a,S)(cos a)= 
n 

n 
= i: 

k=1 

(-,)k+1 r(n+a+6+k+1)r(n+1)r(a+1) . 2k a 
r(n-k+1)r(n+a+8+1)r(k+a+1)r(k+1) sin 2 · 
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If the trigonometric moment of order 2o (0=1,2, .•• ) is defined by 

1T 

T(µn;2o) = f (sin f) 2 dµn(cos e), 

0 

we obtain by (2,5), noticing the value of (2,5) ate= o, 

(2,7) T(µ ;2o) = 
n 

o 
= r(o+1)r(o+a+1) ~ 

r(a+1) l 
k=1 

(-1)k+1 2k+a+(3+1)f k+a+(3+1 
r(o-k+1 r k+a+S+o+2)f(k+1 

On the other hand (2.6) leads to 

V 
(2.8) 1 - µ (k) = n 

= f(k+1)f(a+1) 
f(k+a.+8+1) 

k 
~ (-1 )0+1 r(k+cx+(3+o+1) ( . ) 
l r(k-0+1)r(a+a+1)r(o+1) T µn; 20 • 0=1 

Hence, we easily derive from (2,7) 

(2.9) T(µ ;2) 
n 

a + 1 V 
=a+ (3 + 2 ( 1-µn{ 1)) 

and 

T(µ ;4) 
(2.10) T(µ:; 2 ) = 

(a+2) ( a+(3+2) 
(a+(3+3){a+S+4) 

From (2.8) and (2,9) we conclu~e 

1 - µv(k) 
(2.11) __ n __ = 

1 - µ:{ 1) 

Gca.+s+3) _ 
[ a+(3+2 

k(k+a+S+1) f(k+1 )r(a+2) k o f(k+a+(3+o+1) T(µn; 2o) 
a+8+2 - (a+S+2)f(k+a+S+1) 0~2 {-1) r{k-0+1)r(o+a+1)r{o+1) T(µn;2) • 

Similar relations between trigonometric moments and Fourier coefficients 

have been established by Stark [8]. We also have the following theorem, 
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which generalizes ft. result of Gorlich and Stark [6] (see also Stark (8]). 

2.3. Theorem. For a sequence {L} of positive convolution operators of the n 
form (1.12) the following assertions are equivalent: 

(a) ( k=1 ,2, ••• ) , 

V 
1 - lJ (k) = k{k+a+S+1) lim n 

V a+8+2 n-+co 1 -lJ(1) n 

(b) 
V 

lim 
1 lJ ( 2) 2(a+6+3} n = a+6+2 n-+co V 

, 
1 - µn ( 1 ) 

(c) 
T(µ ;4) 

1· n = o. im T(µ ·2} 
n-+co n' 

Proof. Relation (b) is a trivial consequence of (a). Relation (c) follows 
() () .. 26 1.dt .. from b by 2.10. Since O ~ sin -2 ~ an he measuresµ are positive n . 

it is obvious that 

T(µ ;2o) < T(µ ;4) for o > 2. 
n - n 

T(µ ;20) 
Therefore relation (c) implies that lim T( n. 2 ) = O, o > 2. Thus, by 

n-+co µn' 
formula (2.11) relation (a) follows. 
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3. Proof of lemma 1.4. 

We first show that B implies A. If we take E < 2k+~+B+2 and N(E) as 

given in B, we have using (2.2) and (2.9) for n > N(E) 

1T 
V I (1 - ~a,S)(cos 8) dµn(cos 8) 1 - µ (k) = n 

0 

E 

~I ( 1 - R(a,S)(cos 
k 0)) dµ (cos 0) 

n 
0 

E 

k(k+a+8+1) I . 2 0 ( 8) > C sin 2 dµn cos - a a + 1 
0 

1T 

> C 
k(k+a+6+1) 

CB J 
. 2 8 d ( 

- a a + 1 sin 2 µn cos 

0 

c CB 
Therefore, A holds with N(k) _= N(E) and CA= a~S+2 • 

8) 

We will now show that A implies B with CB= CA (a+:+2 ) • Suppose B 
(a+S+2) 

does not hold for CB= CA 2 , then there is an EO > 0 and a sequence 

(n.) such ·that 
J 

EQ 1T 

(3.1) J sin2 -28 dµ (cos 8) < CA- (a+~+2 ) I sin2 28 dµ (cos 8), j=1,2, •••• n. n. 
0 J O J 

We consider the measures 

" (cos 8) = n. 
J 

o, 

1 
(µ ;2 ) µn_(cos 8), 

n. J 
J 
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'II' 'II' 

Then I 
0 

d\l (cos e) < n. 
J 

1 1 f 
. 2 EO T(µn. ;2) 

sin 2 J 0 

. 2 8 d ( 8) sin -2 µ cos = n. 
J 

1 

• 2 EQ 
sin -

2 

* By the weak compactness of a closed sphere in M there exists a subsequence 

( n ! ) c ( n. ) and a measure \I such that v I converges weajt * to ". In particular 
J - J n. 

J 
we have for each k (k=1,2,,,.) 

'II' 'II' 'II' 

lim f · { 1-i{ a, S \ cos e) } 
n l-+co 

dvn! (cos 8) = f {1-i{a,S)(cos e)} dv < 2 f dv. 
J j O . 

Choose k0 so large that 

(3.2) 
CA k0 (k0+a+S+1 )(a+S+2) 

4(a+1) 

0 

'II' 

~ J dv, 

0 

Then there exists an N such that for n! > N 
J -

EQ 

----1--.- f {1-Rk(a,S)(cos e)} dµ, (cos e) = 
T(µn!;2) 0 n. 

J O J 

'II' 

1 I {1-{a,S)(cos e)} = T(µ t ;2) 0 . n. 
J 0 

'II' 

-I {1-.I\t(a,S)(cos a)} dv , (cos n. 
·o 0 

'II' 

1 I { 1-{ a, S) ( cos 
~T(µ ·2) 

n!' 0 
J 0 

CA ko(ko+a+S+1)(a+S+2) 

2(a+1) 

J 

a)} 

dµ , (cos n. e) 

J 

e) 

dµ I ( cos n. a) 
J 

By virtue of condition A we have for nJ ~max(N,N(k0)) 

0 
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e:o 
J {1-R(a,B)(cos 8)} dµ ,(cos 8) > 

-1to nj 
0 

. 2 e ( ) sin -2 dµ , cos 8. n. 

Finally, by (2.1) we have 

0 

11' 

> C (a+8+2) I 
- A 2. 

0 

J 

.28d ( ) Sin -2 µ I COS 8 , n. 
J 

which is a contradiction to (3.1) and proves lemma 1.4. 
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4. Proof of theorem 1 • 5 

Let {L l be a sequence of positive linear operators of the form (1.12} 
n 

which satisfy either condition A or B. On account of lemma 1.4 both con-

ditions A anal Bare satisfied and we will interchange them appropriately. 

We first show that {L } is saturated with order ( 1-µ v ( 1)}. If f € X 
n n . 

and 

V 
I IL ( f }-f I IX = o ( 1-µ ( 1 ) ) n n 

( n-+<x>} , 

then 

A A V V 
f ( k} - f ( k) µ ( k) = o ( 1-µ ( 1 ) ) 

n n 
( n-+<x>} • 

In view of condition A this implies fA(k) = O, k = 1,2, ••. , and there­

fore f is a constant. The function f 0(cos 6) = (sin ½> 2 is an example of a 

non-constant function which satisfies 

I IL (f}-fl Ix= 0(1-µv(1)) 
n n 

Hence {L} is saturated with order (1-µ 11 (1)}. The "trivial" subspace used 
n n 

in section 1.3 is here the space of constant functions. 

We now ~nish to characterize the saturation class F(X,L ). n 
An element f € X ·belongs to F(X,L) if and only if 

n . 
1T 

I If (T<l>f'(cos 6)-f(cos 6)) dµn(cos <P)I Ix= 0(1-µ:(1)) (n-+<x>), 

0 

or equivalently 

1T 

I 1f 
0 

where 

(T.f(cos 6)-f(cos 6)) 

.2,! sin 2 

(a+6+2) sin2 ¾ dµn(cos <P) 

V 
( a+ 1 ) ( 1-µn ( 1 ) ) 
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1T 

By (2,9) I dijJn(¢) = 1, n = 1,2, ... and consequently it 1.s clear that 

0 
f € F(X,L ), if f € Lip(2,X) (see (1.14)). 

n 
We still have to prove that f € F(X,L ) implies f € Lip( 2 ,X). If we 

n 
denote by A the operator defined by (1.14), then we will first show that 

for f € D(A) satisfying 

( 4. 1 ) ( n-+oo) , 

the following inequality is valid: 

(4.2) 

Here C is a constant independent off. 

Since the measures 1/J all have norm 1, there exists 
n * 

a subsequence {n.} 
J 

to 1/J. By condition Band and a measwre 1/J such that {1/J } converges weak n. 
* J the weak convergence it follows that for each e: > 0 

(4,3) 

We choose e: 0 

(4.4) 

e: e: 

f diJJ = lim f dijJ > C . 
j-+<x> 

n. - B 
0 0 J 

so small that 
1T 

e: < - and 0-2 

f dijJ < CB 
-s 

(O,e:O) 

For f € D(A) satisfying (4.1) we have 

1T 

I 1J 
T f - f ! 2 i diJJ(¢)1 Ix 2-

0 
sin 2 

< lim 
J-+<x> 

1T 

I 1f 
0 

T f - f ! 2 .1 dl/Jn. ( ¢) 11 
sin 2 J 

< M. 

. 8+2 with S > 2+2 • 
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Hence, 

Je:o T f - f f~ Tr - f · 
(4.5) II ! 2 <t> dl/l(<t>)llx ~M + II : 2 <t> dl/l(<t>)II ~ 

0 sin 2 e:O sin 2 X 

21 lrl Ix 
<M+--­

. 2 e:o 
sin 2 

T f - f 
From ( 1.18) and ( 1.20) we know that : 2 i 

sin 2 
In virtue of (4.3) and (4.4) 

~ ( 1 - ½) CB a : 1 I I Af I IX - II I 
(o,e:) 

Since by (1.17) and (1.21) 

Tpf - f 28+1 
11 . 2 i 11 X 2- a + 1 11 Af 11 X , 

sin 2 

we derive from (4.6) and (4.4) 

Je:O T f - f 

( 4. 7) 11 ! 2 ~ dljl ( <f>) I Ix ~ 
0 sin 2 

->(1-l)c 1 
S B a + 1 

8+2 as we have chosen S > 2+2 • 

1 . . + 
+ - a+ 1 Af in X if qi+ 0. 

T f - f qi . 
. 2 i dl/l(<t>) I Ix• 

sin ,... 
C. 



Hence (4.7) and (4.5) yield 

which establishes (4.2). 
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21 lfl Ix 
(M + --.a-) , 

• 2 e:o 
sin -

2 

If we take an arbitrary element of F(X,L) such that n 

(n=1,2, ••• ), 

then we study the convolution off with a positive polynomial kernel K 
m 

(for ·instance the de la Vall~e-Poussin kernel (see se~tion (5.1)) 

f = f * K , which clearly belongs to D("A). Then for f 
m m m 

11 f .-L ( f ) 11 X = 11 f*K -f*K *dµ 11 = 11 ( f-f*dµ )*K 11 X < m n m m m n X n_ m -

V 
< I lf-f*dµ I I < M(1-µ (1)) 
- n X - n 

(n=1,2, ••• ). 

Since I lfml Ix~ I lfl Ix holds, it follows from (4.2) that 

Hence for~> 0 it follows from (1.17) and (1.21) 

(4.8) (m=1,2, ••• ). 

If we take the limit as m ~=in we get 

which is equivalent with f € Lip(2,X). 
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5. Applications 

We will show in this section, that many of the classical approximation 

processes which have a positive kernel, satisfy the conditions of theorem 

2.3. Since condition (a) of theorem 2.3 is essentially stronger than con­

dition A of theorem 1,5, we may conclude by theorem 1.5, that these approx­

imation processes are saturated with order (1-µv{1)) and that their · 
n 

saturation class in Lip(2,X). For some of the examples given here, these 

results have ~lready been obtained by different methods in Bavinck [2]. 

5.1. The de la Vallee-Poussin summability process 

The de la Vallee-Poussin kernel is defined by 

( 5. 1 ) ( ) (a,B+N)( 8)2N VN cos 8 = w0 cos 2 

h {a,B+N) · · 1·n ( 1 3) w: ere w0 is given • • 

The trigonometric moments of VN are very easy to calculate: 

Hence 

. T(VN;4) 
lim T(V ·2) 
N-+<x> N' 

(a+1,6+N) 
. WO = lim ---.-(-a+_2_8_+_N~) = 

N-+<x> w ' 
0 

. a+2 
lim N+ +a+3 = O. 
N-+<x> a IJ 

N = 1 ,2, ••• , 

By theorem 2,3 and theorem 1,5 we conclude that the summability process 

VNf(cos e) = (f*VN}(cos e) is saturated with the order 1 - v;(1), which by 

(2.9) is 

1 - VNA( 1) = (a+S+)) T(V ·2) = 
( a+ 1 N' 

The saturation class is Lip(2,X). 

a+f3+2 
N+a+6+2. 
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5.2 The Jackson kernel 

We now direct our attention to the Jackson kernel 

(5.2) L (9) 
n,r 

where 

A n,r 

= ;>. _ 1 ( sin n ½ ) 2r 
n,r . 9 sin 2 

(rand n positive integers, 

r > a+2), 

In order to find the saturation order and the saturation class, we show 

that the kernel (5.2) satisfies condition B of theorem 1.4~ Using the well-
. 8 · 9 9 f ·o 0 d 12 8 1 f known estimates ; ~ sin 2 ~ 2 or < < ,r ~ 2 ~ cos 2 ~ or 

O < 9 < .!!. we have 
-2 

:>. .T(L ;2) n,r n,r 

,r ( • 9)2r 
= J sin n 2 ( 9)26+1 cos 2 d9 ~ 

( . 9 )2r-2a-3 sin -
0 2 ,r 

n 
2r-2a-3 (!!.)2r J 82a+3 d8 + 2r-2a-3 < 1T 1T .2 

0 

< (.!!.)2r+1 
2r-2a-4 2r-2a-4 n + n 

2r-2a-4 1T = 
- 2 a+2 

= n2r-2a-4 ( (.!!.)2r+1 _1_ + ,r ) 
2 a+2 2r-2a-4 • 

On the other hand (n ~ 2) 

1T -n 

1T 

J 
82a+3-2r d9 < 

1T 

n 

1T 

n ( . 9)r 
;>. 

J 
sin n 2 (cos i)2S+1 dS > (!!.)2r 22r-2a-3-8-~ 

J 
82a+3 d9 

( . 9)2:r.-2a-3 2 - 1T n,r 
0 

sin 2 0 

· 4 2r-2a-4-B-l 
= ( !!. ) 2r-2a- _2__,,--~--

,r (a+2) 

= 
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E: > 0, then for n > 
1T 

If we choose -e: 

e: 1T 

f L (e) p(a,S)(e) 
n,r 

d0 > C 
- B I L (e) p(a,B)(e) 

n,r 
d0, 

0 0 

where 

,..,2r-2a-4-8-~ 
( ( !_) 2r+ 1 _1_ + 1T )-1 

CB 
c. = 

2r-2o.-4( ) n· . a.+2 2 a.+2 2r-2a.-4 · 

. ( ) -2. Since T L ; 2: RI n it follows n,r 
L (9) is saturated with order n,r . 

from (2.9) and theorem 1.5 that the kernel 

n-2 and that the saturation class is Lip(2,X). 

5,3, The Weierstrass kernel 

The Weierstrass kernel, defined by 

(5.3) (t > 0) 

is a positive kernel (see Bavinck [2], section 5.8). If we take a sequence 

of numbers {t } with lim t = 0, then it is easy to show that the seq~ence n. n n-+oo 
of convolution. operators Wt satisfies condition (a) of theorem 2,3, In fact 

n 

lini 
t -+-0+ 

n 

-k(k+a.+8+1 )t 
1 - e n 

-(o.+8+2)t 
n 

- e 

= k(k+a.+8+1) 
a.+8+2 

Hence by theorem 1 . 5 the sequence Wt is saturated with order 
-(o.+8+2)t n 

1 - e n ~ t (n-+oo) and the saturation class in Lip(2,X). 
n 
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