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On positive convolution operators for Jacobi series

by

Herman Bavinck

Mathematisch Centrum, Amsterdam

1. Introduction

1.1. In a preceding paper [2] the author has started the study of approx-
imation of functions by processes, which are generated by the use of summa-
bility methods for the expansion of the functions in terms of Jacobi
polynomials. The summability methods can be interpreted as convolution
operators, if the convolution structure for Jacobi series, defined by Askey
and Wainger [1], is used. By means of some general theorems on approximation
processes in Banach spaces, (Berens [3]), it is possible to characterize
the saturation class and the classes of non-optimal approximation of a
number of classical summability methods for the summation of the Fourier-
Jacobi series. This paper deals with saturation of positive convolution
operators and the main part is a theorem of the Tureckii [10] - DeVore [L]
type, which determines the saturation order and the saturation class of a
sequence of positive convolution operators, satisfying a special condition
on the Fourier-Jacobi coefficients of the kernel. The proof is a straight-
forward generalization of DeVore's proof in the case of Fourier series. As
applications, the saturation class of the higher order Jackson kernel and

some other positive kernels are characterized.

1.2. We introduce same Banach spaces of complex valued functions on the

[~
interval [-1,1]. We write C for the space of continuous functions, L denotes
the space of essentially bounded functions and we define the P spaces with

respect to the weight function (x = cos 6)

(a’B)(G) = (sin 902a+1 (cos 9028+1

5 5 (o >8> -3).

(1.1) p

We call M the space of all regular finite Borel measures on [-1,1]. The



spaces C, ? (1 <p i_w) and M are Banach spaces if endowed with the

following norms

||f||C = sup |f(cos 8)],
0<6<m
T
el = [J |£(cos 8)|P o(*®)(4) 207"/ (1<p <),
0
|I£]]_ = ess sup |£(cos 8)],
0<6<m
n
[Tl = | lauteos o).
0]

With elements of these Banach spaces we can associate an expansion in terms

(asB)
na (

of Jacobi polynomials. If P x) is written for the Jacobi polynomial of

degree n and order (o,B) (see Szegd [9]), the functions

(a,B)(
n
P(a38)(1)

n

P cos 6)
Réa’e)(cos 8) =

satisfy

(1.2) I Réa’s)(cos 8) R;a’s)(cos 6) 0(%B)(q) ap = 5 m[w£“’3)1'1.
0

Here,

(a,8) _ (2n+a+B+1)T(n+o+B+1)T(n+o+1) _
(1.3) wna = P?nis+1)r(n21?F(a+1)P?a31) = 0(n

2q+1) (n+).

With f belonging to one of the spaces C or ? (1 < p < ») we associate the

Fourier-Jacobi expansion

(1.4) f(cos 6) ~ E £2(n) wéa’s) Ria’s)(cos ),
n=0

where



om
(1.5) A (n) = I £(cos 9) Ria’B)(cos 8) o ®8)(e) a6 (n=0,1,...).
0]

With a measure u € M we associate the Jacobi-Stieltjes expansion

(1.6) du(cos 8) ~ J u'(n) w(®B) Rl%B)( oy
n=0 n n
where
m
(1.7) uv(n) = J Réa’s)(cos 8) du(cos 6) (n=0,1,...).
0

Askey and Wainger [1] have introduced a generalized translation operator
T¢, which meps a function f with (1.L4) into

(1.8) T f(cos 8) ~ z fA(n) W

(a,8) g(a;8)
' ¢ n=0 n

N (cos Q) Ria’s)(cos o),

and Gasper [5] has shown the positivity of this operator. This.implies that
T, has an operator norm 1. If f ,f, € L1, then the convolution f, * fé is

) 1272 1
defined by
m
(1.9) (f1*f2)(cos ) = I T¢ f1(cos ) f2(cos $) p(“’s)(¢) a¢.
0

This convolution has the usual properties (see Gasper [51). If f e LP

(1 <p <«)and u € M we can define the convolution f * du by

m
(1.10) (f*du)(cos 0) = [ T¢ f(cos 6) du(cos ¢).

o -
Moreover, f * du € I? and the following inequality holds

11 || £xa £ .
(1.11) [exaul | < Tl Hully

1.3. In the rest of this paper X is written for one of the spaces C or Lp

(1 <p < ). Assume that we are given a sequence'{Ln} of positive convolution

operators, that is, L has the form



T
(1.12) Ln(f;cos 8) = (f*dun)(cos 8) = J T¢ f(cos 8) dun(cos ¢) (feXx),
0

m

where W (n=1,2,...) are non-negative elements of M with J dun(cos ) = 1.

)
We say that the sequence {Ln} is saturated if there exists a non-

increasing sequence of positive numbers {¢(n)} with lim ¢(n) = 0, such

that ne

i) [le-p (£)]]y = o(é(n)) (n>)

if and only if f belongs to some "trivial" subspace of X
and A

ii) there is a "non-trivial" element f_ € X satisfying

0
1251, (20 |y = 0(6(n)) | ().

The sequence {¢(n)} is then called the saturation order and the set
F(X,Ln), which consists of all the elements of X which satisfy ii, is
called the saturation class or Favard class of Ln.
In this paper we shall prove a theorem, in which the behavior of the
second trigonometric moment
m
(1.13) T(u_3;2) = | (sin 22 au (cos 6)
' n’ 2 n
0

determines the saturation of {Ln}. In section 2 we give some inequalities
for Jacobi polynomials and we investigate the relationship between Jacobi
coefficients and trigonometric moments. Then, following DeVore [L4], we

introduce the following conditions:

A. There exists a constant CA > 0 such that for each integer k there is an

N(k) for which

v
1 - u (k)
—— 2 C, k(k+a+g+1) for n > N(k).
1 - (1)



B. There exists a constant CB > 0 such that for each € > 0 there is an

N(e) such that
€ , )
(sin 202 dp (cos 8) > C (sin 202 dy_ (cos 6) for n > N(e)
n ~ "B 2 n :
0 0

In section 3 we shall prove

1.4. Lemma. The conditions A and B are equivalent.

We define the Lipschitz classes with respect to the generalized trans-

lation operator by

(1.14) Lip(v,X) = {fex: e >0, sup ||T £-£|[, < o'}, (0 <y <2).
osyss ¥

We now state the following theorem that will be proved in section L.

1.5. Theorem. va{Ln} is a sequence of operators of the form (1.12) and if
either condition A or condition B is satisfied, then {Ln} is saturated with

v . ..
order (1-un(1)) and the saturation class F(X,Ln) is Lip(2,X).

(

na’B)(cos 0) satisfy the following differential

The Jacobi polynomials R
equation:

(1.15) - %—e- {p(a’B)(e) %é‘ Rr(la’s)(cos 9)} =n(n+a+p+1) Rx(la’s)(cos 8).

1
p(d,B)(e)
If for f € X with the expansion (1.4) there exists an element Af € X such
that

(1.16) Af ~ ) n(n+a+g+1) £'(n) o (cos 8),

n=0

(a,8) p(a,8)
n n
then we say that £ € D(A) and we call A the operator which maps D(A) into
X by £ > Af. The operator is the realization in X of the differential

operator



6

1 a , (0,B),,y d_
TIPS o 35 (e (8) 36

Y

with boundary contitions -g—e =0at 6 =0 and m, as follows from (1.15).
L3fstrém and Peetre [T] have shown the close connection between the
generalized translation operator T 6 and the operator A. In fact, for

f € D(A) the following relations hold:

(1.17) 17,221y < C3(8) asll,,
_ f - T,f
(1.13) i’l’g+ ||W'Afl|x=o’
where '
, o 8
_ 1 (a,B) ‘
(1.19) _ C1(¢) = [ RCRIPAN (J P (t) at) ase,
o P 7 (e) 0. .

(see Bavinck [2], section 4). Moreover,

(&)
(1.20) lim =
¢>o* sinzg @+
and, since for 0 < ¢f_-12-r-,-%__<_cos%_<_1 we have
¢ )
1 . T,20+1 T
C1(¢) _f_[—w,—s‘)‘—J (sin 2) cos 3 dt 4ae
p (e)
0 0
1 ¢ sin E
0 2
B+1
2 .29 m
im_._1s1n2 O<¢_<_2.
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Notation: We will use the notation a, bn (n»>) if there are positive

numbers ¢, and 02 such that c1an < bn < cean.



2. Some relations for Jacobi polynomials
2.1. Inequalities

We shall first prove the following inequaltities for Jacobi polynomials

R.%*®)(x). Let k be a natursl number. Then

(2.1) 1 - Ria’S)(cos 9) E_Eikiﬁiﬁill sin2

a + 1

o

(0 <6 <m).

There exists a constant ¢, > 0, such that for 0 < e < L4 /2k+a+B+2

(a,B)
k

(2.2) ¢ k(kto+ B+ sin2 2-5_1 - R

e o+ 1 (cos 6) | (0 <8 <€)

By the differentiation formula

a _(a,B) _ k(k+a+B+1 (a+1,841)
a0 = MR R

we obtain from the mean-value theorem

(2.3) 1 - Ria’s)(cos 9) = ELE%§$$§11 sin® g-Rift1’B+1)(cos 8), 0 <8 <.

Since |Rig?1’8+1)(cos 8)| <1, 0<8 <m, formula (2.1) follows.

For the proof of (2.2) we use Hilb's formuls (Szegd [9], (8,21.12) for

large n

(sin %Ja (cos gJB Ria’s)(cos 8) = N % I'(a+1)(8/sin 6)% Ja(NG)

n—3/2'a)

1
82 of , if en”! <8 < T-e,

ot+2

6 o(1), if0<eicn_1g

where N = n + (o+B+1)/2.
The power series expansion of (%J—u Ja(z) has terms with alternating sign,

and monotonically decreasing for real z, O < z < 2, Hence we have



(a+1,8+1) 2_ya+1 2 ‘ -1
R 4 (cos 6) > T(o+2)(57) J 41 (NO) + 07 0(1) 0<6 <2N
N6,2
2 2
(2.1) 21 =555+ 68 o(1)
o + 1 -2
a+2—o(N )

The inequality (2.2) follows from (2.3) and (2.4) for k > k. On the other

hand, the constant c, can be chosen in such a way, that (2.2) remains valid
for k :_ko.
2.2. Relations between trigonometric moments and Jacobi coefficients

The following expansion is a simple consequence of Rodrigues' formula

(see also Siegs (9], formula (9.3.11)).

(2.5) (sin 5)% =
ag
= D(o+1)T(o+at1) (2n+a+8+1)T(n+a+B+1) ~ _(a,B)
= F(a+?)a L ()7 r(o-n21?r(n+a+eﬁzge)r(n+1) R, *" (cos 8)

n=0

(0=1,2,...).

From the expression of the Jacobi polynomials in terms of hypergeometric

functions

o .. 28
Ré ’B)(cos p) = 2F1(—n,n+a+6+1);a+1;s1n EJ

we easily derive

(2.6) 1 - Ria’s)(cos 6) =

_ % (_q)E*H I (n+o+B+k+1 )T (n+1)T (o+1)

=1

. 2k 6
T(n-k+1)T (n+o+B+1)T (k+a+1 )T (k+1) % 2 °




If the trigonometric moment of order 2¢ (0=1,2,...) is defined by

m
_ . 8,2
T(Un,QU) = [ (sin 2) dun(cos 9),

0

we obtain by (2.5), noticing the value of (2.5) at 6 = 0,

(2.7) T(u 320) =

_ . |
_ T(o+1)T(o+0+1) k+1 (2k+oa+B+1) T (k+a+B+1) v
B T(a+1) kZ1 (-1) F(o-k+1?P(k+a+B+oiz)F(k+1) (1'un(k))'

On the other hand (2.6) leads to

(2.8) 1 - u) (k) =

_ T(k+1)T(a+1) g (_1)o+1 F(k+a+séo+1)

T TT(k+a+B+1) T(k—o+1)T(o+a+1)T(o+1) T(un;éo). t

o=1

Hence, we easily derive from (2.7)

(2.9) T(n32) = =22 (1o (1)

and

( \Y)
T(u3h) _ _(a+2)(a+B+2) |2(o+B+3) 1-u (2)

T(u 32)  (a+B+3)(a+B+l) | a+p+2

(2.10)
1—u:(1)

From (2.8) and (2.9) we conclude

v
1 - u (k)
(2.11) ————:%}—-— =
1 - (1)
k(k+a+B+1) I'(k+1)T(o+2) E ( 1)0 T (k+a+B+0+1) T(“n;20)
at+B+2 (a+B+2)T(k+o+B+1) oo [(k-o0+1)T(o+a+1)T(o+1) T(un;Q) '

Similar relations between trigonometric moments and Fourier coefficients

have been established by Stark [8]. We also have the following theorem,
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vhich generalizes a result of GSrlich and Stark [6] (see also Stark [8]).

2.3. Theorem. For a sequence {Ln} of positive convolution operators of the

form (1.12) the following assertions are equivalent:

\Y)
1 - u (k)
. k(k+a+B+1)
(a) lim z— = (k=1,2,...),
e 1 - uV(1) o+BR+2
n
1 - u(2)
() 1im | 7 %2 o(a+ge3)
= 9
n>e 1 - uz(1) o+B+2
T(un;h)

c 1i = 0.
() lngn oy

Proof. Relation (b) is a trivial consequence of (a). Relation (c) follows
from (b) by (2.10). Since 0 §_sin2 % < 1 and the measures u  are positive

it 1is obvious that

T(un;2o) j_T(un;h) for o > 2.
. T(u_320)
Therefore relation (c) implies that iiﬁ TTE;?§7~ = 0, o > 2. Thus, by

formula (2.11) relation (a) follows.



3. Proof of lemma 1.L.

L
m and N(e) as

given in B, we have using (2.2) and (2.9) for n > N(eg)

We first show that B implies A. If we take € <

1 - u;(k) = | (1 - Ria’s)(cos ) dun(cos 8)

O Y—3A

(o,8)
k

> (1 -R (cos 8)) dun(cos 6)

O Y—m

€

k(k+a+B+1) . 28 :

>c, g J sin” 3 dun(cos 9)
0]

| v

m

k(k+o+B+1) .28 o

o ] CB J sin® 3 dun(cos 9)
0 :

caCB

\"
= S+B+D k(k+a+B+1) (1 - un(1)).

c C

. _ _ o B
Therefore, A holds with N(k) = N(e) and Cy = vl
We will now show that A implies B with CB = CA Lﬁigigl . Suppose B
+B+ .
does not hold for CB = CA Lg_g_gl ,» then there is an eo > 0 and a sequence
(nj) such that
€ m
(3.1) ° in® 2 au (cos 8) < c; LXB2) | 520 5 (oos b)), ju1,2
. sin” Z du_ i > 5 du (cos s J=1,25040
0 J 0 J
We consider the measures -
0, 0 <6< €07
= 4
vnj(cos ) 1
m-)-u.(cos 6), eoief_w
LB J
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- 1
dun.(cos 8) = -
J 2

—
—
o ——3

0
[ o
a

N

o

U
v ) < L
Then J d n.(cos ) < IR
0 J sin2 0 nj sin” —
2 2
. *
By the weak compactness of a closed sphere in M there exists a subsequence

(nj)‘g (nj) and a measure v such that vn. converges weak* to v. In particular

J
we have for each k (k=1,2,...)

(

m n
lim J‘{1-R£a’8)(cos 9)} dvn!(cos 8) = J'{1-Rka’8)
0 : J 0

n'->w

T
(cos 8)} av < 2 J dv.
0

Choose k. so large that

0
~ C, k (k_+a+B+1)(a+B+2) P
0

Then there exists an N such that for né >N

:
T(un1;2)

J

© (e
[ {1-R; "*"’(cos 6)} du_y(cos B) =
k n.
0 0 J

™

= ____;L___ ' ( aB)

= T(UE_;Q) J {1-sz ‘cos 8)} dunj(cos )
0

J

m
- J'{1_Rk(a’6)(cos 0)} dvn!(cos 9)
0 0 J

m
> L J'{1- (a’e)(cos 8)} du_,(cos 8)
_.TZun ;25 ) Rko nj

J

CA ko(k0+a+8+1)(a+6+2)

2(a+1)

By virtue of condition A we have for nj z_max(N,N(ko))
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[ e Vo
{ R, (cos 6) dun! cos 6) >
0 0 J

m
{a+g+2) [ . 28
>C, ko(k0+a+8+1) 2(a+1) sin® 3 dun!(cos 0).
0 J
Finally, by (2.1) we have
€ €
0 : 0
.28 : (at1) (a,8)
J sin” 3 dun!(cos ) 2 ¥ Tk _+oB+7) J {1-—Rk (cos 0)} dun!(cos 9)
5 j 0" %o 5 0 j

m .

(a+B+2) .28 '

3_CA 5 sin” 3 dunj(cos 8),
0

which is a contradiction to (3.1) and proves lemma 1.L.
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4, Proof of theorem 1.5

Let {Ln} be a sequence of positive linear operators of the form (1.12)
which sstisfy either condition A or B. On account of lemma 1.4 both con-
ditions A and B are satisfied and we will interchange them appropriately.

We first show that'{Ln} is saturated with order (1—ﬁ;(1)). If feX

and
[z (£)-2] |, = o(1-u2(1)) (m>=)
then

(k) - £ (0n (k) = o(1-u' (1)) S (e

. .y . . . . A
In view of condition A this implies f (k) = 0, k = 1,2,..., and there~
. . .6 .
fore f is a constant. The function fo(cos 8) = (sin 5)2 is an example of a

non-constant function which satisfies .
||L_(£)-£]], = 0(1-u (1)) ().
n X n

: . v ..
Hence {Ln} is saturated with order (1—un(1)). The "trivial" subspace used
in section 1.3 is here the space of constant functions.
We now whish to characterize the saturation class F(XsLn).

An element f € X belongs to F(X,Ln) if and only if
T .
v
1] (2,(cos 0)-2(cos ©)) an (cos )] Iy = 0(1-07(1))  (w),
¢ n X n
0

or equivalently

T (T¢f(cos 8)-f(cos 6))

3 ay (¢) ][4 = o(1) (),
0 sin >

where
(at+B+2) sin2 g-dun(cos ¢)
(t1) (1= (1))

ay_(¢) =
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T
By (2.9) J dwn(¢) =1, n=1,2,... and consequently it is clear that
0

fe F(X,Ln), if £ e Lip(2,X) (see (1.1L4)).
We still have to prove that f € F(X,Ln) implies f € Lip(2,X). If we
denote by A the operator defined by (1.1L4), then we will first show that

for £ € D(A) satisfying
v
(k.1) [e-r, (£) ][]y < MC1-u (1)) (n>),
the following inequality is valid:
(4.2) [lae] ]y < clur||g]]y)

Here C is a constant independent of f.
Since the measures w all have norm 1, there exists a subsequence {n }

and a measure Y such that {w } converges Weak to y. By condition B and

J
*
the weak convergence it follows that for each € > 0O

€ €
(4.3) J dp = lim J dy > Co.
0 0’

We choose eo so small that EO j_g-and

. C
(L.h) ay 5_53 with 8 > 242872,

(O’EO)

For £ € D(A) satisfying (L4.1) we have
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Hence,
€ i .
0T.f - f T.f - f
(L.5) HJ -i—é—(b—d\P(MHXiM*HJ Lﬂ—dww)ll <
sin_ = sin” = X
0 2 ; 2
0
2| |£]|
§_M + X
.2 €
sin 2_
T,f - T : +
From (1.18) and (1.20) we know that 23 > - ra Af in X if ¢ >~ 0 .
sin
In virtue of (4.3) and (k4.k4) 2
€0T¢f-f
6) ] Ly auo)lly >
0 sin "2'
: ] ' ‘T¢f-f ‘ _
2 (=) oy el - 1 o avwly
(0,€) 2
‘Since by (1.17) and (1.21)
JiCIY ARV 1
< Af R 0<¢ <35,
g2 & X =a X 2

2

we derive from (4.6) and (L4.k4)

€O T.f - f

(k7)) | IJ —%—Q av(o)| |y >
0 sln )

C B+1
1 1 °B 2

2 2(0“.1) CB HAfI le

as we have chosen S > 2+2B+2.
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Hence (4.7) and (4.5) yield

2| £

2(a+1) X

[1ag] |y S M+ ——=)
sin re

which establishes (L4.2).
If we take an arbitrary element of F(X,Ln) such that

v
|-|f-Ln(f)||X §.M(1—un(1)) (n=1,2,...),
then we study the convolution of f with a positive polynomial kernel Km
(for ‘instance the de la Vallée-Poussin kernel (see section (5.1))

£ =f*K, which clearly belongs to D(A). Then for £

£, (20 |y = |18 -rxk xau ||y = | (e-pxan )* [y <

\%
< Hg-gxau |1y < M(1-u (1)) (n=1,2,...).
Since llfm||X < ||£]]4 holds, it follows from (k4.2) that
| lag |y < cOul 2, ]| < chesll2]],).

Hence for ¢ > 0 it follows from (1.17) and (1.21)

Tf -7 g-1
) 2
(.8) | ”‘¢2 By < 557 Hag g < c,0sl g1, (@=1,2,...).

If we take the limit as m > «» in we get

T¢f - f
lITl IX S C1(M+| If‘ ‘X)

which is equivalent with f e Lip(2,X).
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5. Applications

We will show in this section, that many of the classical approximation
processes which have a positive kernel, satisfy the conditions of theorem
2.3. Since condition (a) of theorem 2.3 is essentially stronger than con-
dition A of theorem 1.5, we may conclude by theorem 1.5, that these approx-
imetion processes are saturated with order (1-u (1)) and that their
saturation class in Lip(2,X). For some of the examples given here, these

results have already been obtained by different methods in Bavinck [2].

5.1. The de la Vallée-Poussin summability process

The de la Vallée-Poussin kernel is defined by

(5.1) VN(cos 8) = wéa’B+N)(cos %02N N=1,2,00.,
where w(a’B+N) is given in (1.3).

0
The trigonometric moments of VN are very easy to calculate:

(o, B+N)
w
T(VN;QU) = wo(a+0,B+N) .
Hence
‘ +1,8+
T(VN.M) w(a 1,B+N) vo

lim = lim —/————— = lim ———— = 0.
N TZVN,ZS Noveo (a+2 B+N) Noo N+a+B+3

By theorem 2.3 and theorem 1.5 we conclude that the summability process

. . A .
VNf(cos 8) = (f*VN)(cos #) is saturated with the order 1 - VN(1), which by
(2.9) is

A _ (o+B+2 . _ _a+B+2
1 - VN(1) - _(o_tﬁfl T(VN’e) T N+ot+B+2 °

The saturation class is Lip(2,X).
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5.2 The Jackson kernel

We now direct our attention to the Jackson kernel

-1 sin n > 2r
(5.2) L _(8) =2 B (r and n positive integers,
n,r n,r\ ;8
2 r > a+2),
where

: B sin n s 2r
A = (-—-7§3> p(a’s)(e) a0 m por~20"2,
- n,r . 6

0 sin )

In order to find the saturation order and the saturation class, we show
that the kernel (5.2) satisfies condition B of theor’e}m 1.4, Using the well-
known estimates %isin-g-i-g- for 0 <6 <m and —g—icos—g—i1 for

Oief_l we have

2
m™
(sin n —)
6, 28+1
= g <
An’r.T J oim 9_ ) (cos ) ae <
0 5) n
n ™
§-ﬂ2r-2a-3 (%02r J g20+3 4o,  2r-20-3 J g20+3-2r 4o <
0 us
n
) (_11)2r+1 n2r-2a—’+ . n2r-2a—h .
-2 a+2 2r-2a-U4
_ 2r-2a-k .7 or+1 1 ol
=n ((3) w2t Zroal)"
On the other hand (n > 2)
r jus
? (sinn qu 0\ 28+1 n.2r . 2r-20-3-f-1 i 2a+3
A (cos %) ae > (=) 2 ToTFTe ) de =
’ n,r (S in 9)21'-20.-3 2 - T
0 2 0
2r-20-4-p-3

.

= (B)2r-20-k 2
m (a+2)
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m
If we choose € > 0, then for n > z

B

€ ™
j Ln,r(e) p(G,B)(e) as z'CB J Ln,r(e) p(G,B)(e) dae,
0 0

where

22r-2a—h—8—%
B~ "2r-2a-h

((1)2r+1 LI Ul

-1
¢ 2 a+2 2r-2a-ﬂ) :

(at+2)

Since T(Ln r;2) ~ 02 it follows from (2.9) and theorem 1.5 that the kernel

H]

L r(6) is saturated with order n > and that the saturation class is Lip(2,X).
] : ) .

5.3. The Weierstrass kernel
The Weierstrass kernel, defined by

E e-k(k+a+s+1)t w(a,B) (“’B)(cos 0) | (t > 0)

L kT

(5.3) wt(cos 8) =

. is & positive kernel (see Bavinck [2], section 5.8). If we take a sequence

of numbers'{tn} with lim t = 0, then it is easy to show that the sequence
n-o

of convolution operators W, satisfies condition (a) of theorem 2.3. In fact

n
~k(k+a+B8+1)t
1ig L-e P _ k(kto+p+1)
¥ »ot -(a+3+2)tn a+BR+2
n 1 - e

Hence by theorem 1.5 the sequence Wt is saturated with order

—(a+8+2)tn n
1 -e ] tn (n>) and the saturation class in Lip(2,X).
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