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1. A convolution structure for Jacobi series. 

Let P(a,S)(x) be the Jacobi polynomial of degree n, of order (a,S), 
n 

defined by 

2n I n. 

These polynomials are orthogonal on the interval (-1,1) with respect 

to the weight function (1-x)a (1+x) 6 and normalized by 

( 1. 1 ) = r(n+at1) _ ro,( a) 
r(a+1)n! - v n • 

For convenience we often change the variable x = cos 0. Then the 

functions P(a,S)(cos 0) are orthogonal on (0,TI) with respect to 
n 

( 1.2) (a,S)( 0 ) ( . 0)2a+1( 0)2S+1 p - = sin - cos -2 2 

and with 

( 1.3) 

= r(n+a+1 )r (n+S+1) _ = C9'(n -1). 
(2n+a+S+1)r(n+1)f(n+a+S+1) 

The functions P(a~S)(cos 0) are the eigenfunctions of the differential 
n 

operator 

p(.2:-) = _ (d2 + (a-S)+(a+S+1)cos 0 d) 
d0 d02 sin 0 d0 

which can be written in the form 

( 1 • 4) 
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with the boundary conditions 

( 1.5) 

dP(a,S)(cos 0) 
n 

d0 = O, 0 = o, 0 = 1f, 

The eigenvalues are A = n(n+a+S+1). n 
The differential operator is selfadjoint with respect to the scalar 

product with the weight function p(a,S)(0): 

( 1. 6) f1r Pf(0) g(0) p(a,S)(0) d0 = J1r f(0) Pg(0) p(a,S)(0) d0 
0 0 

as follows easily from (1.4). 
1 

By A = A· we shall denote the corresponding realization of Pin 1 1. 
0 0 

Let f(cos 0) be in 1 1(O,n) with respect to p(a,S)(0), i.e. 

J JrJ J = Jn lr(cos 0)Jp(a,S)(0) d0 < 00 Then we associate with f(cos 0) 
1 0 

the formal Fourier-Jacobi series 

( 1. 7) f( cos 0) "-' 

where 

( 1. 8) a = fn f(cos 0) 
n 0 

Following the paper of Askey and Wainger [3], we introduce the kernel 

( 1.9) 

and define 

00 

w(a,S) P(a,S)(cos 0) P(a,S) (cos ¢) K (0,¢,l/J) I n = r r n=O n n n 

P(a,S\cos 1/J) [pi C( 's) ( 1 )J -1 
n 

f (cos 0,cos ¢) = fn K (0,¢,l/J) f(cos 1/J ) p ( a , S \ 1/J ) dl/J 
r 0 r 

00 

w(a,S) P(a,S)(cos P(a,S)(cos I n 0) = r a 
n=O n n n n ¢). 
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In order to show that lim f (cos 0, cos$)= f(cos 0,cos $) for almost 
~1- r 

every 0 and$, a property clearly satisfied for a dense set of functions, 

it .is necessaty and sufficient to show that 

(1.10) 0 < r < 1. 

See Ljusternik and Sobolew [J], theorem 4, p. 103. 

Relation (1.10) has been shown by Askey and Wai~ger by a long and 

tedious calculation [3]. 
Furthermore for a dense set of functions 

fTI Ir (cos 0,cos $) - f(cos 0,cos $)I p(a,a)(0) d0 + O as r + 1 
o r 

for almost every$. 

Moreover, using (1.10) and the symmetry of the kernel, 

J: lrr(cos 0,cos $)I p(a,a)(0) d0 = 

= fTI fTI K (0,$,~) f(cos ~) p(a,a)(~) d~I p(a,a)(0) d0 
O O r 

Hence it follows that for almost every~ 

fr'(cos 0,cos $) + f(cos 0,cos $) as r + 1 

in L1 with, respect to the measure p(a,a)(0) d0 and almost everywhere 

in 0. 
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In the special case that~= 0, the kernel 

K (0 • 0) = ~. rn w{a,S) P(~,B)~cos 0) P(a,B}(cos •) 
r ' ' l n n n 

n=0 

is positive as is shown by Bailey [5] by explicit calculation. 

In that case it follows from the orthogonality that 

fw K (0,.,0) p(a,B)(.) d. = 1. 
0 r 

Hence f (cos 0) + f(cos 0) as r + 1- for almost every 0, which shows r . 
the Abel summability of the series (1.7). In a recent letter to Prof. 

Askey, G. Gasper. announces to have shown·~the positivity .of' the .kernel ( 1.9). 

If we assume g{cos 0) to be in L 1(o,w) with respect to p(a,B)(0) we 

can define 

(1.11) h(cos 0) = fw f(cos 0,cos •) g{cos •) p(a,$)(•) d •• 
0 

From Fubini' s theorem it follows that h( cos 0) is in L1 ( 0, w) with 

respect to p{a,B)(0) and that 

(1.12) 

Also it is not hard to derive that if g is in L (0,w) then 00 

(1.13) 

where 

11g1100 = sup I g{ cos 0) I < 00 ' 
0<0<w 

We shall callh(cos 0), defined by (1.11), the convolution of f(cos 0) 

and g{cos 0). From the fact that 
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h(cos 0) f(cos 0,cos ~) g(cos ~) p a,S (~) d~ = J~o ( ) 

= J~ f(cos ~) g(cos 0,cos ~) p(a,S)(~) d~ 
0 

which is easily verified, and from the inequalities (1.12) and (1.13) 

many important properties follow. See O'Neil [1 iJ . 

We shall call f(cos 0,cos ~) the generalized translation of f(cos 0). 

It is a generalized translation in the sense used by Lofstrom and Peetre 

[1Q]. In their paper they make the connect~on between a generalized 

translation operator and a differential operator of the form (1.4) with 

boundary conditions ( 1. 5) •. They show that the remainder term of the 

Taylor a,eries can be estimated by 

(1.14) 

We shall use this estimate in the last section. 

It is clear that if f(cos 0) has a Fourier-Jacobi expansion (1.7), 

then 

(1.15) A f(cos er~ I a n(n+a+S+1) w(a,S) p(a,a)(1) p(a,S)(cos 0). 
0 n=O n n _ n n 

Furthermore it follows from (1.10) and the definition of f(cos 0,cos ~) 

that 

(1.16) 11 f( cos 0 ,cos ~) I 100 ~ A 11 f( cos 0) I I 00 • 

In the following we shall study a special class of Jacobi series such 

as 

F(cos 0) ~ I 
n=1 
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We do this in a way similar to Llf], where Askey and Wainger treat the 

same problem for ultraspherical series. At a few places the proofs 

could be simplified a little. 

In the last section this special class of Jacobi series is used to 

define fractional integration and differentiation by means of the 

convolution structure and the differential operator A0 defined· ,above 

We shall prove that all the usual properties of fractional integration 

and differentiation remain valid. 

We shall use & and o in the usual manner. We write F(x) ~ G(x) as x 

tends to a, to mean F(x)/G(x) tends to 1 as x tends to a. 
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2. Summation by parts and a criterion for Fourier;Jacobi series. 

In this section we develop a method of summation by parts, which 

depends strongly on the Christoffel-Darboux formula. It can be used to 

do some work normally done by integretion by parts in the theory of 

the Fourier integral, when one uses the fact that 

exp(itx) = (ix)-1 !t exp(itx). 

As an application we shall prove a simple sufficient condition for a 

series 

to be a Fourier-Jacobi series of some function. 

Lemma 2.1 • 

. Let a(n) be a function defined on the positive integers. Let 

H(N,cos 0) 
N 

= I a(n) w(a,S) P(a,S)(1) P(a,S)(cos 0). 
n n n n=O 

Then 

( 2. 1) 
N 

H(N,cos 0) = I A' ( ) (a+l) (a+,,a) P(q+,,a)(1) P(a+1,a)(cos 0) 
an (2n+a+8+2) wn n n 

n=O 

where, if d(n) is a sequence of numbers, 

A' d(n) = A d(n) = d(n) - d(n+1) 

A I d(N) = d(N). 

( n=O, 1 , ••• ,N-1 ) 

In particular, if a(n) = (9-(-en) (e>O), we have 

(2.2) 

H(cos0) = I 
n=O 

= 
00 

, A a(n) (a+1) w(a+1,8) p(a+1,8)( 1) p(a+1,S)( 0 ). 
l 2n+a+8+2 n n • n cos 

n=O 
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Proof. 

The proof is essentially the application of the Christoffel-Darboux 

formula for Jacobi polynomials. (Szego [1~ , ( 4. 5 .3)). 

N n 
w(a,S) P~a,S)(1) P~a,S)(cos 0) H(.N,cos 0) = I !J.' a(n) I 

n=O k=O k 

N r{n+a+S+2) p(a+1,S) (cos = I !J.' a(n) 0) 
n=O r(a+1)r(n+S+1) n 

= I !J.' a(n) (a+1) w(a+1,S) p(a+1,S)(1) p(a+1,S)(c~s 0) 
2n+a+S+2 n n n n=O 

( 2. 2) follows by taking the limit as N -+ 00 , since P (a,' 13 \ cos 0) does 
n 

not grow faster _. than a polynomial in n. 

We shall need a lemma, which deals with the repeated application of 

lemma 2.1. We shall state the results in terms of derivatives rather 

than finite differences. 

Lemma 2.2. 

Let v be any possitive integer and let a(t) be a function of a real 

variable t. possessing v continuous derivatives. Assume that 

I dJ a\ t) I = {9'-( exp -e:t) for J = 0, 1 , , ••• , v, 
dtJ 

and any e: > O. Define 

00 

w(a,S) p(a,s\1) P(a,S)(cos H(cos 0) = I _a(n) 0). 
n=1 n n n 

Then we may write 

(2.3) 
00 

H(cos 0) = (-1)v r(a+v+1) I 4v(n) 
(a+v,s) p(a+v ,S\ 1) p(a+v,s)( 

r(a+1) w n n n n=1 
cos 

+ E1 (cos 0) 1 

0) + 
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Also 

(2.4) 
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d 
= 2t+a+S+2 dt a(t) 

v-1 
H(cos 0) = I 

j=O 
c(j,v) 

00 

I 
n=1 

(k,:_2). 

v-j 
n-v-j {d . ( )} 

at t=n dtV-J 

(a+v,8) w , 
n 

P(a+v,S)(1) P(a+v,S)(cos 0) E ( 0) n n - + 2 cos - . 

The c(j,v) are numbers. 

For i = 1, 2 

E. ( cos 0) = 
l 

v-1 
I 

j::;:O 

where d.(j,v) are numbers and 
l 

h n -I .:. max 
,J n<t<n+a 

00 

d.(j,v) 
l I 

n=1 

V 

a is some integer depending only on v. 
V 

Proof. 

n-V-J 
Yn,v-j+1 

(a+\J,8) 
w 

n 

We start with equation (2.2) and then apply lemma 2.1 again. We repeat 

the process v times in all and then we use the mean value theorem to 

replace differences by deriYatives. This finishes the proof. 
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Theorem 2.1. 

Let a~ a.::_-~ and let v be an integ¢r > a 1· Assume a(t) is continuous 

on [o ,00 ) and that a( t) approaches zero as t + 00 • Furthermore assume a( t) 

has v + 1 continuous derivatives on [o,~) and let 

max 
n<t<n+a 
-- V 

ldja~t) I, 
dtJ 

with a as ip lemma 2.2. 
V 

Finally suppose 

00 

I 
n=1 

j-1 n Y • 
n,J 

j = 1,2, ••• ,v. 

Then there is a function F(cos 0) such that 

and 

Proof. 

Let 

(1T IF( cos 0) I p (a, a\ 0) d0 < 00 

Jo 

an -- J1ro F(cos 0) 

F (cos 0) = f e-en a(n) w(a,S) P(a,S)(1) P(a,S)(cos 0). 
e n= 1 n n n 

By lemma 2, equation 2.4 (withe-en a(n) instead of a(n)) 

~ 

F (cos 0) = ' € . I.. 
k,j ,m 

, -en -v-j+1 m 
1.. ck . e n e 

n=1 ,J ,m,n 

k 
{L a(t)} _ p(a+v,a)(1) p(a+v,a)(cos 0) + E1. 

dtk t-n n n 
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The coef'f'icients ck . are bounded for fi~ed v and the summation is ,J.,m,n 
extend~d over non-negative integers k,j and m such that k + j + m = v, 

and what is very important, at least one of' m and k is equal to or 

greater than one. The remainder term E1 is of the same form, but here 

k + j + m > v. It &an be handled in the same way as the main term. Let 

S (cos 0) denote those terms with k > 1. We use the trivial estimate 
e: 

e:m exp(-e:n) =&(n-m). So, by (1.1), 

Is ( cos e) I =. G'{ I e: . 
k,J ,m 

00 

l na-j-m+1 y k IP(a+v,S)(cos 0)1} 
n=1 n, n 

where k + j + m = v and k > 1. 

We need the following estimates ( see Sze go [12] , 7. 32. 6 and 4. 1 • 3) 

(2.5) 0 < 0 < 'If ) < IP(a,S)(cos 0)1 
, 6 , , 

O'( -a-2( )- -2 -2) = 0 'lf-0 n n 

(2.6) 0 < 0 < Ti ') IP(a,S\cos 0) I = <9'(na) a > a. n 

We then f'ind 

(2.7) 

Thus by hypothesis 

I'lfo Is (cos 0)1P(a,S)(0)d0 =~( l I na-j-m+ 1y nv-a-2 ) 
e: k . 1 n ,k ,J ,m n= 

00 

IOI( l k-1 ) =~ n y < M < co. 
n=1 n,k 

M does not depend one:. Therefore S (cos 0) p(a,S)(0) converges weakly e: 
to a measure ( see Ljusternik and Sobolew IJJ , p. 175). Moreover, using 

(2.5), we see that S (cos 0) p(a,S)(e) converges pointwise as e: ~ a+ 
e: 

f'or O < 0 < 'If and uniformly in any compact subinterval of' (O,'lf7 • 
- 1 '...J 

( )-S-2 ( ) . 0 26+1 The term 'lf-0 of 2.5 is compensated by the f'actor (cos 2) 
of' p(a,S)(e). The factor (sin ~) 2a+ 1 cannot compensa~e the singularity 

at O completely because we have here a factor 0-a-v-2 due to the 

summation by parts. 
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We put T (cos 0) = F (cos 0) - S (cos 0). In these terms k = 0 and 
€ . € € 

m .:_ 1. Using again the fact that El exp(-~) = O'(n-1 ) we see 

T (cos 0) 
€ 

Thus 

" 00 

= l c. l e-En n-v-j+1 Ev-j a(n) p(a+v,S)(1) p(a+v,S)(cos 0). 
j=O J n=1 n n 

I T ( cos 0) I = ('1( l 
€ n=1 

€ 

=C9'( I Ee? n-v+2+a la(n)I IP~a+v,S)(cos 0)IL 
n=1 

Since a(n) is bounded and (2.7) holds we have 

f1T ITE(cos 0)1 P(a,S)(0)d0 = C9'(E I exp(-½i)) = <9'(1)1 

O n=1 

Thus we may conclude that F (cos 0) p(a,S)(0) converges weakly to a 

measureµ as E + O+. Moreov:r F (cos 0) p(a,S)(0) converges uniformly 
€ 

on any compact subinterval of (O,,u. This implies that the singular 

part ofµ is concentrated at O and therefore is a a-function at 0. 

We wish to show thatµ is actually absolutely continuous, that isµ 

has no singular part. Letµ=µ, + µ ,whereµ is absolutely continuous 
a s a 

andµ a a-function at O. 
s 

We have 

P(a,S)(cos 0) dµ I 
n a 

From (1.1) it follows that ifµ is not zero, 
s 

I1T P(a,S)(cos 0) dµ is not o(n°) as n + 00 • 

0 n s 
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On the other hand 

ITI P(a,S)(cos 0) dµ = lim fTI P(a,S)(cos 0) F (cos 0) p(a,S)(0)d0 
O n e+O+ 0 n € 

= a(n) P(a,S)(1) = o(na). 
n 

This is a contradiction soµ is zero. 
s 

We let H(0) be the derivative ofµ and take F(cos 

Since H(0) is in 1 1, F(cos 0) p(a,S)(0) is in 1 1• 

tends to F(cos 0) p(a,S)(0) weakly, Therefore 

0) = H(0) {p(a,S)(0)}-1. 

Also F (cos 0) p(a,S)(0) 
€ 

TI p(a,$)(COS 0) 
a(n) = I n ( ) F(cos 0) p(a,S)(0) d0. 

0 p a,8 (1) 
n 

This finishes the proof, 



14 

3. Elementary properties of slowly varying functions. 

We begin with two definitions. 

Definition 3.1. We shall say that a function b(t) is slowly varying if 

b(t) satisfies the following three conditions: 

i) b( t) is in C00 {0, 00 ). 

ii) For any 0 > O, there is a t 0 > 0 such that to jb( t) I is increasing 

for t > to. 
iii) For 0 > O, there is a t 1 >Osuch that t-0 jb(t)j '. decreasing any is 

for t > t 1 • 

We shall need a more restricted class of functions S. We shall use the 

following notation: 

h (t) 
n 

We use h (t) in the following definition. 
n 

n = 1, 2, 3, •••• 

Definition 3.2. A slowly varying function b(t) is said to belong to 

the class S if all its associated h (t) are slowly varying. 
n 

Common examples of functions of the class Sare 

loga(t+10), log loga(t+100) and loga(t+10) log logc(t+100) 

(a and care arbitrary numbers). A large class of slowly varying 

functions using Hardy's L-functions is given in the appendix to Wainger 

Q:f]. 

We shall give some simple properties of slowly varying functions. They 

can also be found in [4] , [13] and [1 €] , but they are so easy that we 

include the proofs. 
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Lemma 3.1. 

Let b(t) be slowly varying. Then 

i) b(t) is either non-positive or non-negative for sufficiently ... 

l.a.rge:, t ~ . 

ii) lb'(t)I = o(t-1lb(t)I) as t-+ 00 • 

Proof. 

i) There is a t O such that t lb(t)I is increasing fort.::, t O;- there

fore t b(t) must be either non-positive or non-negative fort.::, t O• 

Thus b(t) must be either non-positive or non-negative fort;.::_ t O• 

This proves i). 

ii) Leto be any positive number. It suffices to exhibit a t 2(o) such 

that 

( 3. 1) 

(3.2) 

(3.3) 

fort.::, t 2(o). By part i) of this lemma, we may assume with no 

loss of generality that b(t) > O. Then by definition of slowly 

varying, there is a t O(o) such that t 0 b(t) is increasing for 
d o t,.::. t O(o). Therefore~,dt {t b(t)},.::. o fort.::, t O(o). Hence, for 

t.::, t 0(o), o t 0- 1 b(t,) +(t~ b'(t)·-~·•O·, and we see 

b'(t) .::_ - ot-1 b(t) 

Similarly, differentiation of t-0 b(t) shows 

b' ( t) < ct - 1 b ( t), 

(3.2) and (3.3) imply (3.1) with t 2 = max (tO(o),t 1(o)). 

This completes the proof. 
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Lemma 3.2. 

Let b(t) be a slowly varying function. Let ; 2 and ; 3 be positive 

numbers with ; 2 < ; 3• Then 

as R-+ O. 

Proof. 

We may assume without loss of generality that ; 2 < 1 < ; 3 • 

Suppose ; 2/R .::_ t .::_ 1/R. Leto> O. Then by lemma 3.1, there is an R1, 
1 1 

such that lb' (t) I .::_ o t- lb(t) I for t ~ ; 2/R 1, and such that t 2 lb(t) I 

is increasing fort~ ; 2/R 1• Thus for R < R1, 

I1/R 
I b ( t ) - b ( 1 /R) I = I b ' ( t ) dt I 

t 

1 

< 20 ;;2 lb( 1/R) I. 

A similar argument shows that there exists an R2. such that if R < R2 , 

and 1/R ,:_ t .::_ ;iR, 

1 
lb(t) - b(1/R)I < 20 ;; lb(1/R)I. 

Since o is an arbitrary positive number, this completes the proof. 
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Lemma 3.3. 
Let b(t) be in the class S. Then for n > 1 

d°b(t) = t-n ~ ( ) t.. B. h. t . 
dtn j J J 

The s. are some numbers. The h,(t) are the slowly varying functions 
J J 

associated with b(t). The sum is extended over a finite range of 

summation, and the value j = 0 does not occur. 

Proof. 

The proof is by induction. For n = 1, the statement is obvious since 

t b'(t) is h 1(t). Suppose the lemma is true for n = k; ~hen 

Now the conclusion for n = k + 1 follows easily from the inductive 

hypo.thesis and the definition of the h. 's. 
J 

Lemma 3.4. m 

Let b(t) be in the class Sand let b(t) ~ 0 as t ~ m, Then l I b ' ( n) I 
n=1 

Proof. 

By lemma 3. 1, there exists a number N, such that b( t), b' ( t) and b"( t) 

are of constant sign if t ~ N. 

< m. 

We may assume without loss of the generality that b(t) ~ 0 fort~ N. 

b'(t) is of constant sign it follows that b(t) tends to zero monotonically 

fort> N. From the fact that t lb'(t)I =,:o(b(t)), see lemma 3.1, it 

follows b'(t) tends to zero and because b"(t) has a constant sign for 

t ~N, b'(t) tends monotonically to zero fort> N. 
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But then 

M M 
l b' (n) .:. l 

n=N n=N 
Jn+1 

b'(u) du= - b(N) + ~(M) + 0 
n 

as M,N + 00 • 

Lemma 3.5. 

Let b(t) be slowly varying. 

i) jb(kt) I ~ lb(t) I for every fixed k > 0 and uniformly in every 

interval n < k < l, O < n < 1 ; 
- -n 

. t * It) 
If we write B(t) = f 1 

. -1 lb('t) I -1 lb(n) I, ii) 't d't' B (t) = l n 
n=1 

as t + 00 and B(t) ~C)'(1) then 

lb(t)I = o(B(t)) and B(t) * ~ B (t). 

Proof. 

i) If 1 .::_ k .::_ 1/n, then 

I b(kt) I 

(kt) 0 
.::_ lb(1)1, lb(kt)I < k0 jb(t)I.:. n-0 lb(t)I for sufficiently 

t 

large t. Similarly lb(kt)I ~ n° lb(t)I. Making o arbitrarily small, 

this proves statement i) for 1 .::_ k .::_ 1/n, The case n .::_k .::_ 1 is proved 

in an analogous way. 

ii) Let k > 1. For large t, using i) we obtain 

B(t) > ft T-1 lb(T)I dT ~ lb(t)I ft 
t/k t/k 

-1 T dT = 

Taking k large we obtain lb(t)I = o(B(t). 

Since t- 1 lb(t)I is ultimately decreasing we have for large k 

lb(k) I < B(k) - B(k•1) < lb(k-1) I 
k - - (k-1) which implies 

0 .::_ B(k) - B(k-1) - lb~k) I < I b(k-1) I 
k-1 

lb(k) I 
k 

I b ( t ) I log k. 
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Since l {lb~~~,)! - lb~k)!} converges, so does the series 

l {B(k) - B(k-1) - lb~k) I}; but the n th partial sum is 

B(n) - B'""(n) + constant, which proves ii). 
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4. Behaviour of a special class of Jacobi series. 

The main goal in this section is to study the behaviour near 0 = 0 of 

a Jacobi series of the form 

with y ,:_ O. b(n) is a slowly varying function. (See section 3), Theorem 

4.1 treats the case O < y < 2a + 2. In theorem 4.2 we shall investigate 

the case y = 0. Finally, theorem 4.3. will deal with the case y ,:_ 2a + 2. 

We need the following lemma 

Lemma 4. 1. 

Let y >a+~

For O < 0 < 1T 

F(cos 0) = lim 
N-+o> 

exists. Also F(cos 0) is continuous for O < 0 < 1r. 

If y > 2a + 21 F(cos 0) is continuous for O < 0 < 1r. 

At 0 = 0 

F(cos 0) = 
r(a+1-½) 

r(½ )r(a+1) 

0 y-2a-2 
(sin 2) + E(cos 0). 

y-2a-1 
E(cos 0) = CY{(sin !) } if a+~< y < 2a + 1; 

if y > 2a + 1 E(cos 0) is continuous and has the form 

,n, 0 y-2a-1 
E(cos 0) =A+ \.7{(sin 2)} 
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Proof. 

As is easily derliived from the formula (Erdelyi [6] ( 10.20. (3))) 

( 4. 1) 
r(a+1-f) 

r(f )r(a+1) 

y-2a-2 
0 (sin 2) 

00 

= I 
n=O 

r(n+a+1)r(n+a+1-f) 

r(n+a+1)r(n+a+1) 

= 

For any positive j there exist A. such that 
J 

r(n+a+1)r(n+a+1-f) 1 ______ ____;;;; __ = - + 

f(n+a+1)f(n+Sl~11) nY 

Y+l 
r(n+a+1)r(n+a-'""-=+2 1) · ________ +<9'(n-Y-J-1). 

r(n+a+1)r(n+o1x;1 11) 

{y>a+~) 

If we choose j sufficiently large, lemma 4.1. follows immediately from 

( 4 • 1 ) and ( 2 . 6 ) • 

Lemma 4.2. 

Let wand n be fixed. 

Then 

i) If y < 2a + 2 

[we- 1] l n-Y w(a,a) p(a,a)(1) IP(a,a)(cos e)I =C.9'{{0-1w)2a+2-y} 
n= 1 n n n 

(4.2) 

ii) If 0 tends to O +:. and if y > a + l 
2 

(4.3) 
00 

I r, -111 n -y w (a, a) p (a, a) ( 1 ) I pn( a, a\ cos e) I = 
n=Ln0 J n n 

-y+a~ 
= (9'{ 0-(2a+2-y) n 2}. 

The <9'1 s do not depend on w or n • 
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Proof. 

(4.2) follows from (2.6) by application of 

N 
l np = (.9'(Np+1) p > - 1. 

n=1 

(4.3) follows from (2.5) by using 

00 

I np = &(ip+,) if p < - 1. 
n=N 

Lemma 4.3. 

i) Let a+~< y < 2a + 2, assume b(t) is slowly varying and let 

w < 1 < n. Choose o < min{y-a-¾,2a+2-y). 

Then 

(4.4) 
G>e:-: b ( ) ( ) ( ) l n-Y lb(n) I w a,S P a,S ( 1) IP a,S (cos 0) I 

n n n n=1 

ii) Let y >a+¾ and let o < y - a - ¾· 
+ As 0 ➔ 0 

(4.5) 

The G'1 s do not depend on wand n. 

Proof. 

i) Choose o < min{y-a-¾,2a+2-y) and let m be an integer so large that 

t 0 jb(t)I is increasing fort ~m and t-0 lb(t)lis decreasing for 

t > m. (Such m exist.a.:, see section 3). Then, using (4.2), 
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ii) Let 0 be so close to O that [n0- 1J > m. Then application of (4.3) 
leads to 

CX) 

= I n-y+o n-0 jb(n)I P(a,S)(1) IP(a,e)(cos 0)1 
n= [n0- 1.J n n 

-y+a-il+o 
~ (o/{jb(0-1)1 0y-2a-2 n 2 }' 

Lemma 4.4. 
Assume b(t) is slowly varying, Let 

(4.6) F(cos 0) = I 
n=1 

with a+~< y < 2a + 2. 

The sum of (4.6) converges absolutely and uniformly in any compact 

subinterval of (O,~). 
+ As 0-+ 0 

(4,7) 
r(a+1-f) 0 y-2a-2 _1 

F(cos 0) = (sin 2) b(0 ) + E(0). 
r(f )r(a+1) 
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Proof. 

The fact that the series (4.6) converges uniformly and absolutely in 

any compact subinterval of (O,1r)follows from the estimate (2.5). 

Now let wand Q be fixed (but arbitrary) numbers w < 1 < n. 

Then 

F(cos 0) = b(0- 1) 

00 

w(a,8) p(a,8) ( 1) P(a,S)(cos E2(0) = - b(0- 1) L -Y n 

n=[n0- 1J 
n n n 

G -1J w0 
w(a,8) p(a,8)( 1) p(a,8\ E3(0) (-1)· L -Y 0) = - b 0 n cos 

n=1 n n n 

00 

w(a,8) p(a,8)(,) p(a,8\ E4(0) = I b(n) -Y 0) n cos 

n= [n0- 1J 
n n n 

[w0- 1J 
n-yw(a,8) p(a,8)( 1) P(a,S\cos 0) E5(0) = L b(n) 

n=1 n n n 

Now by lemma 4.1 it suffices to such that the terms E1 to E5 satisfy 

(4.8). 

0) 

Consider first E1. If we choose E > O, then by lemma 3.2 and lemma 4.2 

it follows that 

max /b(n)-b(0- 1) I 
-1 -1 w0 <n<Q0 
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E2 and E3 may be estimated by lemma 4.2, E4 and E5 by lemma 4.3. 

We observe that each of these terms is 

. -y+a+lro 
c.9'{lb( 0-1)1 0y-2a-2 (n 2 + w2a+2-y-o) + 1} 

where &is independent of w, Q and 0 and o < min(y-a-j,2a+2-y). The 

desired conclusion now follows by taking w sufficiently small and Q 

sufficiently large. 

Theorem 4.1. 

Let b(t) be in Sand let O < y < 2a + 2. For£> 0 define 

(4.9) F (cos 0) 
£ 

= I 
n=1 

Then, for each closed subinterval of (o,~), F (cos 0) converges 

uniformly in£. For 0 ~ O, F(cos 0) = lim F (cos 0) exists in the 
+ £ 

. £+0 

pointwise sense. Also, F(cos 0) is continuous for. 0 < 0 < ~. 

At 0 = 0 

(4.10) 
r(a+1-f) _1 

F(cos 0) = ----b(0 ) 
r(½)r(a+l) 

Finally, I: IF(cos 0)1 p(a,S)(0) d0 < ~ 
and 

(4.11) F(cos 0)"' l 
n=1 

0 y-2a-2 + E(0) 
(sin 2) 
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Proof. 
( ) ( ) -y -Et We are going to apply lemma 2.2 with at = b t t e • We take 

the integer v so large that y + v >a.+}. 

We obtain 

F {cos 0) = M (0) + E 1(0) + E 2(0) + E 3(0). e: e: e:, e:, e:, 

The terms M (0), E 1(0) and E 2(0) all come from the main term of e: e:, e:, . 
equation (2.3) which in the present context is 

1 d { 1 d { 1 d { 1 d { ( ) -Y e-e:t}}}} t dt ~ dt t dt • • • t dt b t t 

The main term Me: arises from taking derivatives only on powers oft. 

Ee:,· 1 consists of the remaining contribution of terms not involving 
, . . -e:t . . . 

derivatives of e . . • E 2 is made up by terms in which at least one 
e:, t 

derivative is taken on e-e: • Ee:, 3 corresponds to the term E1(cos 0) 

in equation (2.3). 

M (0) e: 
(-1) \) 

= -----
r (a.+v+1) 
r ( a.+ 1 ) 

00 

I 
n=1 

b(n) -e:n 
e [ 1 d 1 d 1 d ( -Y ~ t dt [t f.t{ ... t dt t ) } } 

t=n 

( a.+v, f3) p(a.+v,f3)(1) p ( a.+v ' f3 ) ( 0) w cos n n n 

r(a.+v+1) r(tv) 
= r ( a.+ 1 ) r(1.) 

2 
00 

( a.+v, f3) p(a.+v,(3)(1) P( a.+v, f3 \ I b(n) -e:n -y-2v e n w cos 
n=1 n n n 

As y + v >a.+~ it follows immediately from (2.5) that the series 

M (0) converges uniformly in e: in any closed subinterval of (O,n). e: 
M (0) withe:= 0 is a sum of the type treated in lemma 4.4. Hence e: 
applying lemma 4.4 and using the regularity of Abel summability, we 

find that M(0) = lim M (0) exists and is continuous for O < 0 < n. e: e:-+Q 

0). 
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r(a+v+1) 
= r(a+1) 

r(½+v) 

r(½) 

r(a+1-l.) y-2a-2 
2 ( . 0) ( -1) M(0) -------, sin 2 b 0 + E4 

r(½+v)r(a+v+1) 

r(a+1-½) 1 
= ----b(0-) 

0 y-2a-2 
(sin 2) + E4 

r(f )r(a+1) 

We now investigate E 1(0), e: , 
CX) 

Ee:,,(~) = I 
n=1 

V 
e-e:n ( 2 

j=1 

-y-2v+j c. n 
J 

where c. are numbers, independe~t of n. 
J 

We now tj.se le~a 3,3 an9- write djb~t~ 
dtJ t=n 

We obtain 

V CX) 

= n-J f 
k=1 

t E 1 (0) = I d(j,k) I -e:n -y-2v 
hk(n) e n 

e: ' j=1 k=1 n=1 

d. k are numbers. 
J' 

' 

Sk hk(n). 

Thua Ee: 1(0) consists of a finite lineair combination of series, which 
' converge uniformly in e: in any closed subinterval of (O,n). Moreover 

the functions ~(t) are slowly varying because b(t) belongs to the 

class S. From lemma 3,1 and lemma 4.4 it is easily seen that 
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= lim+ Ee:: 1(0) exists and is easily continuous for 
e::-+Q , 

+ Also as 0-+ 0 

Next we consider E 2(0). e::, 

E 2 (0) = e::, I 
j,l,m 

0 < 0 

Here g. 1 are numbers. The first summation is over nonnegative 
J, ,m 

< 1f. 

values of j, 1, m with m ,:_ 1 and j + 1 + m = v. Application of (2.5) 

and the fact that e::m- 1 e-e::n = (9(n-m+1) gives 

E 2 (0) 
e::, = e: -a-v-i 0 (ir-0)-B-~ \o/( l 

00 

l n-y-v-j-m+1+a+v+~lb(l)(n)I) 

= e: -a-v-~ 0 

j,l,m n=1 

, 00 

( ir-0 )-~-2 '9'( I 
n=1 

n 

3 -y-v+='+a . 2 
lb(n)!). 

Thus E 2 converges uniformly in e:: in any closed subinterval of (O,ir). e::, 
Now we see that for O < 0 < ir, E 2 -+ 0 as e::-+ O, since y + v >a+ -25 

0 e::, 
and lb(n)I = (n) for any o > 0. 

Finally we consider E 3(0). E 3(0) contains terms similar to those 
e::, e::' 

of M, E 1, E 2 , except that here m + j + 1 = v + 1 instead of v. 
e:: e::, e::' 

Hence, if we apply to E 3(0) reasoning similar to that of the previous e::, 
terms, we find that E 3 is a e::, 
any subinterval of O < 0 < ,r. 

series which converges uniformly in e: in 

Also we find E3(0) = lim E. 3(0) exists 

and is continuous for O < 0 < ir. 
O+ e::, e::-+ 
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We now examine the behaviour of F(cos 0) near 0 = n. 

It suffices to show that Fe:( cos e·) converges uniformly for 0 sufficiently 

close to TI. For 0 = n the convergence follows from the well-known 

relation 

. [ ;i • n and theorem 7 of Wa1nger 13.J , with x = 2. 
We use the Bateman integral, (see Askey and Fitch [2], formula 3.4) 

p(a,13\x) f(/3+1) P(a+e+L-1) 
Ix , 13 1 

( 1+x) 13 n (1+y)-2 n (\) 
p(a,'3)(-1) 

= (x-y) -2 dy 
P(a+e+2,-I) rO)r(e+i) . -1 

n n (-1) 

writing x = 2u2 - 1, 2 
-'i. 1, or, y = 2z 

u a,'3 (2 2. 1) _ 2 p a+/3+2,-2 (2z2_1)(u2-z2)'3-2dz. 213 ( ) f u ( 1 1 ) 1 

r(n+e+1) Pn u ~- - r(e+l)r(n+I) 0 n 

Thus , applying Szego [ 1 ~ , ( 4. 1. 5 ) , 

2u-213 r(n+'3+1)r(n+a+e+¾)r(2n+1) 

r(e+i)r(n+i) r(2n+a+ei)r(n+1) 

fu p(a+e+i,a+'3+i)( 2 2)13-1 d 
o in (z) u -z z 

_ IOI{ /3+i -2/3 fu p (a+/3+i_ ,a+/3+i)( 2 2)/3-i } - v n u 2 ( ) u -z dz • 
0 n · z _ _ 

We investigate F (cos 0) near n. If we put cos 0 = 2u2 - 1 we have to 
e: 

study u in the neighbourhood of O. 
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b(n) n-y -En (a+S+~,a+S+~) e w 
n 

In the first part of this theorem we have shown that the series in the 

integrand converges uniformly in E in any closed subinterval of (-1 , 1 ) 

and that its lim+ exists and is continuous. Indeed, if Ia P(a,a)(x) 
EjO n n 

and I a P(a,a (-x) are continuous functions for xnear x=O, then so is their 

sum I an2 ~2(cx,a) (x) which is a series of the kind used in the integrand. 
n n 2 

By the dominated convergence theorem FE(2u -1) converges pointwise to 

a limit as E ➔ O+, at least if u is sufficiently small. 

Moreover 

2 2s Ju 2 2 s 1 
l:i' ( 2u - 1 ) = &( u- C ( z ) ( u -.z ) - 2 dz ) 

0 

where c(z) ii; continuous near z = 0. And the convergence is uniform 

since 

is uniformly bounded near u = 0. 

To finish thE~ proof we need to show that 

Ii'( cos 0) '\, I 
n=1 

By theorem 2, 1 the sum of the right is a Fourier-Jacobi series of a 

function G(cos 0). In section 1 we showed that this series is Abel 

summable to G(cos 0) almost everywhere. 

So G(cos 0) -- lim+ FE(cos 0) = F(cos 0). 
E➔O 
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00 

F (cos 0) = ~ b(n) e-En w(a,B) P(a,B)(1) P(a,B)(cos 0) 
E l n n n 

n=1 

with b(t) in S. Then F(cos 0) = lim+ FE(cos 0) exists in the pointwise 
E-+Q 

sense for 0, O. Moreover F(cos 0) is continuous for 0, 0. 

At 0 = 0 

. 0 -2a-3 b'(e-1) 
F(cos 0) ~k(sin 2) 

provided b'(t) is not zero for all large t. k, O. 

Finally 

r l F( cos 0) I p (a, B) ( 0) d0 < 00 

0 

if and only if b(t) tends to Oas t-+ 00 • If b(t) tends to zero 

F(cos 0) 'v 

Proof. 

The proof of theorem 4.2. is essentially the same-as the proof of 

theorem 4.1. As in theorem 4.1, the proof of the first part is reduced 

to lemma 4.4 by lemma 2.2, where we take a(t) = e-ttb(t). The fact 

that a(t) contains no power oft accounts for the different conclusion 

of theorem 4.1 and 4.2. For the second part of the theorem we apply 

theorem 2.1 which is possible in view of the lemmas 3.3 and 3.4. 
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Theorem 4.3. 

Let b(t) be in Sand let y .::_ 2a + 2. Fore> 0 define 

00 

F (cos 0) = L b(n) n-y e-en w(a,B) P(a,B)(1) P(a,B)(cos 0). 
€ n=i n n n 

Then 

F(cos 0) = lii+ Fe(cos 0) exists for O < 0 ~~and F(cos 0) is continuous 
e+O 

in this interval. 

Furthermore 

and 

F(cos 0)"" 

Let 

B(y) = I: b(t) t-1 dt. 

+ 
As 0 + 0 

i) F(cos 0) = 2 B(0-1 ) + CJ( lb(0- 1 ) I) if y = 2a + 2 and if 
{r(a+1 )}2 

f00 

lb(t)I t- 1 dt = m. 
1 

ii) If y > 2a + 2 or if y = 2a + 2 and f~ lb(t)lt-1 dt < 00 

lim+ F(cos 0) exists and thus F(cos 0) is continuous on O < 0 < ~. 
0+0 
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Proof •. 

Everything except i) and ii)fd1lows as in the proof of theorem 4.1. 

The proof of ii) is trivial since the hypothesis implies that 

converges uniformly in view of (2.6). 
So we only need to prove i). By lemma 4.3, equation (4.5), 

00 

, -2a-2 
t.. 1 n 

n=[e- J 
= l9'{b(0-1 )}. 

Now 

where 

and 

We consider first A2(e). 

max I £-x P~a,B)(x)I ). 
-1<x<1 
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By Szego [12] , 7. 32. 10 we have 

So 

IA2(0) I = (9, {02 rr~ n lb(n) I) = '9'{ lb(e-1 ) !} , 
n=1 

We now examine A1(0). 

2 

{r(a+1 )} 2 

[0-1] 
l n- 1 b(n) + l9'(1) 

n=1 

Hence we have 

[0-1] 
2 F(cos 0) = · 2 

{r(a+.1)} 
L n - 1 b ( n ) + l9'{ I b ( 0 - 1 ) I } . 

n=1 

Now according to lemma 3.5, lb(t)I = Q(B(t)) as t + 00 and 

[t] 
\ -1 B(t) ~ l b(n) n which gives us the proof of i). 

n=1 

Remark 4. 1. 

Theorem 1 and theorem 3 yibld more information in the special case 

b(t) = 1. Let 

with y > 0. 

Then 

(4.12) 

F(cos 0) 'v 

k 
F(cos 0) = l s. (sin .§_)y-2a-2+j +µlog 10-11 + E(0). 

j=0 J 2 

E(0) is at least l.9(1) and has at least y - 2a - 2 + k continuous 

derivatives. The s. andµ are numbers.µ is zero unless y + j = 2a + 2 
J 

for some integer j, 0 ~ j ~ k. 
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Remark 4.2. 

An important part 

When F (cos 0) is 
€ 

of theorem 4.1 goes through if y < 0 (y,2k,k=0,1,2, ••• ). 

defined by (4.9) with y < O, then for 0 j 0 

F(cos 0) = lim+ FE(cos 
,. €➔0 

At 0 = 0 (4.10) holds. 

0) still exists and is continuous for O < 0 < ~-

In this case the series (4.10) does not satisfy the conditions of 

theorem 2.1 and therefore we cannot conclude that it is the Fourier

Jacobi series of F(cos 0). 

Although F(cos 0) is no longer a function in L1(o,~) with respect to 

p(a,S)(0) but a distribution, we are still able to convolve the function 

F(cos 0) with another function G(cos 0) whenever G(cos 0) is sufficiently 

smooth near to the origin. 



5. Fractional integration. 

Let f(cos 0) be a. function in L1(o,~) with respect to p(a,S)(0) 

defined by 

( 5. 1 ) f(cos 0) = I a w(a,S) P(a,S)(1) P(a,S)(cos 0). 
n=O n n n n 

In section 1 we introduced the differential operator A0 and defined 

00 

A0 f(cos 0) = a0 +. I an n(n+a+8+1) P(a,S)(1) P(a,S)(cos 0). 
n=1 n n 

We now introduce the inverse operator I 2 given by 

such that A0 I 2 f(cos 0) = f(cos 0), or by (1.4), 

(5.2) 

If we have 

(5.3) 

. f 0 d~ f <P ( 8) I 2 f( cos 0) = ( S) f( cos t) p a' ( t) dt + c. 
0 p Gt, (q,) 0 

ga(cos 0) = 1 + l 
n=1 

a 
[.ii(n+a+8+1)]-2 w(a,S_)p(a,S)(1) P(a,S)(cos 0) 

n n n 

I 2 f(cos 0) can be generalized to the fractional integral Ia f(cos 0) 

by taking the convolution of f(cos 0) and g {cos 0) which is 
a 

(5.4) Ia f(cos 0) = I: f(cos 0,cos q,) ga(cos q,) p(a,S)(q,) dq,. 

C!9 

where f(cos 0,cos <P) = l 
n=1 

(see section 1). 

It follows that 

·-:,a 

(5.5) 
00 ---

I f(cos 0) = a + l a [n(n+a+8+1)] 2 w(a,B)p(a,S)(1) 
a O n n n n=1 
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It is clear that this fractional integration satisfies the semi-group 

property 

(5.6) I (I f(cos 0)) = 
01 02 

I + f( cos 0). 
01 02 

Many of the classical theorems for fractional integration (see Zygmund 

[14], ch XII) can be carried over. This will be done in this section. 

We first introduce Lipschitz classes. 

Definition 5!1. 

Let f be in L (O,n). 
00 

For O <, ~ 2 we define f to be in Lip, if 

T 

I lf(cos 0,cos cf>) - f(cos 0)11 < A(1-cos <t>? =£9t<t>'). 
00 

For T > 2 we can write,= 2k + , 1 (k integer~ 1, 0 < , 1 ~ 2) and 

we say that f is in Lip, if the k times repeated application on f 

of the differential operator A0 leads to a function in Lip , 1• 

Theorem 5.1. 

Let O < o < 2, 0 <, < 2 and suppose f £Lip,. 

Then I f(cos 0) e Lip(o+,) if o +, < 2. 
a 

Proof. 

We need the following inequalities 

(5.7) lg (cos 0)1 = C9'(0°-2a-2 ) 0 < o < 2a + 2 
a 

where g (cos 0) is defined by (5.3). This estimate can be derived 
a 

from theorem 4.1 noticing that 

£ [2a+2-cu 
[n(n+a+/3+1 )] - 2 = n -o + l 

j=1 

-a-j ( -(2a+2)) c. n + o n 
J 
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for certain numbers c j • ( 5. 7) foll·ows applying ( 4. 12) and ( 2. 6) • It 

is clear that (5.7) can only be used for values of cr less than 2a + 2, 

However, we can come beyond this value by breaking up cr in parts 

cr = cr 1 + cr2 + ••• + crk (crj < 2a + 2, 1 ~ j ~ k) and applying (5.6). 

(5.8) lg0 (cos 0,cos t) - g0 (cos 0)1 ~ C t 2 ls0 _ 2(cos 0)1 = 

= C1 .2 0cr-2a-4. 

This follows from (1.14) and remark 4.2. 

We can now go on with the proof and follow Zygmund [1 fl II , p 1,36. 

. 0 n Suppose f 6 Lip T and < t ~ 2 • 

I f(cos t) cr 

I f(cos t,cos t) cr 

Thus 

(5.9) 

f(cos 0,cos t) g (cos 0) p(~tS)(0) d0 
cr 

{f(cos 0,cos t) - f(cos t)} g (cos 0) p (a,(3)(0) d0 
cr 

f(cos 0,cos t,cos t) g (cos 0) p(a,(3)(0) d0 
cr 

(f(cos 0,cos t) - f(cos t) g0 (cos 0,cos t) 

10 f{cos t,cos t) - I f(cos t) = In {f(cos 0,cos t) - f(cos t)} 
cr O 

{g0 (cos 0,cos t) - gc1(cos 0)} p(a,(3)(0) d0 

= f• + In =A+ B. 
0 • 

l9-(0T) {lg (cos 0,cos t)I + lg (cos 0)!} p(a,S)(0) d0 
cr cr 

l.9'( 0 T) I g ( cos ec) J p (a' 8 ) ( 0) d0 ( this follows from ( 1. 16) ) 
cr 
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= f~ e• lg (cos 0,cos <1>) - g (cos e)I p(a,S)(0) d0 
cj> 0 0 

< (.o/( <I> 2) f 00 0 ,+o-2a-4 02a+ 1 de = 

<I> 

= l9'(l) f00 eo+.-3 d0 = ~(<l>o+.) 

<I> 

Since o +. < 2. Hence A+ B = l.9'(<1>0 +') which proves theorem 5,1. 

Remark 5.1. 

Theorem 5.1 is valid for all positive values of o and. except the 

case that o +.=even integer. 

Leto= 2k + o1 and•= 21 + , 1 (k,l integer.::_ O, 0 < o1 < 2, 

O < • 1 < 2). If o1 + • 1 < 2 we apply the differential operator A0 
k + 1 times in (5.9) and show that the result is {9'(4>01 +' 1). If 

o1 + • 1 > 2 we apply the differential operator A0 k + 1 + 1 times 

in (5.9) and show that the result is (9'(4>01 +• 1- 2 ). If we had been 

working with another definition of Lipschitzs~paces(, > 2) using 

higher order differences, defined by 

k 

6.k f(cos 0) = ~ , 

instead of the differential operator A0 , we would not have to make 

an exception for o +.=even integer. 

Theorem 5,2, 

Suppose f € L , 1 < q < 00 . 
q 

2a+2 ,. 2a.+2 . . 2a.+2 
If -q-· < o < 2 + -q- then I 0 f € Lip(d - ~) 

Proof. 

By Holder's inequality 

(5.10) 11 I f(cos 0,cos <1>) - I f(cos 0) 11 = 
0 0 00 

= I 1J: f(cos 0,cos t) {g0 (cos t,cos <1>) - g0 (cos t)} p(a,S)(t) dtl 100 
1 

~ { I: lf(cos t)lq p(a.,S)(t)dt} 4{J: lg0(cos t,cos cj>)-g0 (cos t) lq~ 

p (a,S) (t)dt}41 
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1 1 where - + - , = 1 • 
q q 

We have to show that the last factor is l9'(cr - 2a+2 ). 
q 

Using (5.7) and (5.8) we write 

p(a,B)(t) dt = Jcp + JTI =A+ B. 
0 cp 

A.:_2q' J·cp·lg (cos t)!q' P(a,B)(t) dt = Jcp {9,(t(cr-2a-2 )q')p(a,B)(t)dt 
o cr 0 

2q' B < C cp JTI I g ( t) I q' p (a' B \ t) dt = 
cp cr-2 

Joo t(cr-2a-4)q'+2a+1 dt = t9'(4'(cr-2a-2)q'+2a+2) 

cp 2a+2 
cr-

So the last factor of {5.10) is &(cp q ). The inequalities 

(cr - 2a - 2)q' + 2a + 1 > - 1 and (cr - 2a - 4)q' + 2a + 1 < - 1, 

which we used in estimating A and B, are equivalent to the hypothesis 

2a+2 
--< 

q 
2a+2 

cr < 2 + --. 
q 

Theorem 5 • 3 • 

If q > 1, O < cr < 2a+2 and if f S L , then I f is in L where 
q q cr r 

1 1 cr - = - -r q 2a+2 

Proof. 

This is a consequence of our theorem 4. 1 and theorem 2.6 of O'Neil [11]. 

To use this theorem we need to calculate g~(cos 0). 
cr 

We define the set E = {0:jg (cos 0)1 > y} and define g*(cos 0) as y cr cr 
the inverse function of m(g (cos 0),y) = mea$ (E ). 

cr . Y 1/{cr-2a-2) 
In view of (5.7) we have essentially E = {0:0 > y · } and 

y 

ITI 0 2a+1 0 28+1 (2 2 )/( 2 2) 
meas(E) = (sin 2) (cos 2) d0 = (9,(y a+ cr- a- ). 

Y 1/(cr-2a-2) 
y 
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So the inverse function g;(cos 0) = 0(0(P--2~~2 ~/(~a_+2 )) and 

s;'"(cos 0) = ¾ J: g;(cos a) de = G{e(o-2a-2).f(2a+2)), 

We use the norm I lg (cos 0)1 I = sup 0P g~(cos 0) and it follows 
0 p,~ x>O 
2a.+2 

that g(cos 0) S L( 2a.+2_0 ,~). 

O'Neil's theorem 2.6 now states that if f€ L(q.q) = L and 
q 

. ( 2a.+2 ) . . . 1 2a.+2-a g ~ L 2 +2 ,~ with the conditions - + 2 +2 > 1, then a a.-a - q a 
1 1 a 

I 0 f € L(r,s) where;= q - 2a.+2 and any numbers;:_ q. 

If we chooses= r theorem 5.3 is proved. 

We now define the fractional derivative of order a by 

D f(cos 0) = A0 .I f(cos 0). 
a - 2-a 

Theorem 5.4. 
Let O <a< T < 2. Then D f € Lip(T-a) if f € Lip T. a 

Proof. 

We have to show that D0 f(cos 0) = A0 I 2_0 f(cos 0) exists and is in 

Lip(T-a). We write 

I 2_0 f(cos 0) = I: At {I2 f(cos 0,cos t) - I 2 f(cos 0)}g2_0 (cos t)p(a,B)(t)dt 

= I: {I2 f(cos 0,cos t) - I 2 f(cos 0)} At g2_0 (cos t)p(a,B)(t)dt 

because of the selfadjointness of the operator At. 

Then 

D0 f(cos 0) = A0 I 2_0 f(cos 0) = 

= I: {f(cos 0,cos t) - f(cos 0)} At g2_0 (cost) p(a,B)(t) dt 
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exists, since the integral on the right converges absolutely and 

uniformly. We have 

where ~(0,t,~) = f(cos 0,cos t,cos ~) - f(cos 0,cos ~) - f(cos 0,cos t) + 

+ f(cos 0). Clearly, PY (1.16), ~ = &(tT) and regrouping terms we also 

find that~= '9'(~T). Applying these estimates and (1.15) combined with 

remark 4.2, we find 

I ID0 f(cos 0,cos ~) - D0 f(cos 0) 11 00 = 

(9-(tT) t-a-2a-2+2a+1 dt + ~T (9'(t-a-2a-2+2a+1) dt = = I~ ITI 
0 ~ 

Remark 5,2. 

Theorem 5,4 is valid for all positive values of a and T with O <a< T 

except the case T - a= even integer. This can be done by using A0 in 

the same way as mentioned in remark 5.1. 

As an application we give sufficient conditions for f(cos 0) to have 

a uniformly convergent or an absolutely convergent Fourier-Jacobi 

series. The partial sum SN(ccs 0) of the series (1,7) can be written 

as the convolution of D f(cos 0) for some a with a kernel gN(cos 0) 
a a 

where 

a 
N g (cos 0) = 
a 

N 
, + I (n(n+a+S+1))-2 w(a,S) P(a,S)(1) P(a,S)(cos 0). 

n n n n=1 

If there exists a a 1 such that D f(cos a, 
is in L1(0,TI) with respect to p(a,S)(0) 

0) is continuous and gN (cos 0) a, 
it follows from (1.13) that 

which implie:s that f(cos 0) has an uniformly convergent Fourier-Jacobi 

series. In order to find the behaviour of lgN (cos 0)1, a straight-
0"1 
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forward calculation similar to those in section 4, using a summation 

by parts (lemma 2.1) and splitting up the sum in 

[,;f[J 
I 

n=1 

N 
and I , leads to the estimate 

n=[,/0]+1 

lgN (cos 0) 
CJ1 

CJ -2a-2 CJ -a-S-1 
= /J(0 1 (~=0) 1 ) if CJ 1 >a+~, 

and in this case I lgN (cos 0)11 1 < ~. 
CJ1 

From theorem 5.4 it follows that for certain cr 1 >a+~ D f. is still 
CJ1 

continuous if fe Lip(a+~+e). Therefore if f E. Lip(a+~+e) f(cos 0) 

has a uniformly 

Let g0 (cos 0) = 

convergent Fourier-Jacobi series. 

lim gN(cos 0) as in (5.3). 
N-+oo cr 

If there exists a CJ2 such that D f(cos 0) is continuous and 
cr2 

g (cos 0) is in the weighted L2(o,~) it follows from the Canchy-
CJ2 

Schwarz inequality, that f(cos 0) has an absolutely convergent Fourier-

Jacobi series. 

From (5.7)it follows that'g0 (cos 0) is in the weighted L2(o,~) if 

cr2 >a+ 1. Therefore f(cos §) has an absolutely convergent Fourier

Jacobi series if f €. Lip(~+1+e). 

We have to mention that these results are not best possible, but 

almost best possible, whereas the proofs are very simple. Best possible 

results concerning uniform convergence are given by Agahanov and 

Natanson [1] (or by the much older results of Gronwall [8] for 

Legendre polynomials). For slightly better results on absolute 

convergence we refer to the paper of Ganser [7 J . 
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