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1. A convolution structure for Jacobli series.

Let Pia’s)(x) be the Jacobi polynomial of degree n, of order (a,B),
defined by

n .n
(1-x)% (14x)° Pr(la’e)(x) D AT L P s

2n n!  ax®

These polynomials are orthogonal on the interval (-1,1) with respect

to the weight function (1-x)% (1+x)® and normalizea by
(a,8),,y - [ntot1) _ a
(1.1) P (1)—F(a+1)n!_ C(n™).

For convenience we often change the variable x = cos ©. Then the

functions Pia’s)(cos ©) are orthogonal on (0,m) with respect to
(1.2) 0(*8)(0) = (sin 22" (cos )%
and with
(1.3) !B JZ (%) (o5 0))2 o (%28 () ap
_ I'(n+a+1)T(n+B+1) _ G’(n_1).

(on+o+B+1)T (n+1)T (n+o+B+1)

The functions Péa’ﬁ)(cos 0) are the eigenfunctions of the differential

operator

; {o-B)+(a+B+1)cos © g_)

d@2 sin © do

which can be written in the form

(1.1) P = - (o) L (%) e) 4



with the boundary conditions
dP(a’B)(cos 0)

(1.5) . = =0, 0=0,0=m.

The eigenvalues are A = n(n+a+B+1).
The differential operator is selfadjoint with respect to the scalar

product with the weight function p(a,B)(e):

" — (a,B) " = (o,B)
(1.6) Pr(e) g(e) o (0) ae = | £(e) Pg(o) p* >""(0) do
0 0
as follows easily from (1.k4).
1 . . . .
By AO = Aé we shall denote the corresponding realization of P in L1.
Let f(cos 0) be in L1(O,ﬂ) with respect to p(a’B)(O), i.e.
K (a,B) . .
||f||1 = |£(cos ©)]|p" *"/(0) A0 < =, Then we associate with f(cos 0)
0

the formal Fourier-Jacobi series

o

(1.7) f(cos 0) n ZO a wﬁa’B)Pia’B)(]) Pia’g)(cos 0)
n:
where
(a,B)
m P77/ (cos 0)
(1.8) a = J f(cos 0) ?a 3 cos p(u’B)(O) 0.
0 P > (1)

Following the paper of Askey and Wainger [i], we introduce the kernel

asB)(

cos 0O cos ¢)

o~ 8
s

Q

®
Lav)

(1.9) K,(0,0,0) = ) BB

n=0

(
n
Pia’s)(cos V) [?ia’ﬁ)(1)J—1

and define

J K_(0,6,9) £(cos ¥) o(8)(4) ay

f (cos O,cos ¢)
t 0

a,B)(

n (OL,B) (OL’B)
) r a o P (

cos 0) P(
n=0 n

cos ¢).



In order to show that lim fr(cos 0, cos ¢) = f(cos O,cos ¢) for almost
r>1"
every 0 and ¢, a property clearly satisfied for a dense set of functions,

it is necessary and sufficient to show that

m
(1.10) J |Kr(e,¢,w)l p(“’B)(¢) ay < A 0<rc<1.
0

See Ljusternik and Sobolew [9], theorem 4, p. 103.
Relation (1.10) has been shown by Askey and Wainger by a long and
tedious calculation Eﬂ.

Furthermore for a dense set of functions

T
f (cos @,cos ¢) - f(cos O,cos ¢)] p(“’s)(o) ®+0 as r > 1
o T

for almost every ¢.

Moreover, using (1.10) and the symmetry of the kernel,

J“ |£_(cos ©,cos ¢)] o(%:B) () 4o =
0 r

™ )

= J | Jo K.(0,4,9) f(cos ¥) o (B (y) ay] o(*F)(e) a0
0

m

(a,B)(

i ,
E.J |£(cos y)| p(a’B)(w) {J 0) do} ay

0 |Kr(@,¢,w)| P

0

m
<o leteos )] o (*By) .
0

Hence it follows that for almost every ¢

fr(COs 0,cos ¢) > f(cos O,cos ¢) as r > 1~

in L, with respect to the measure p(a’B)(G) do and almost everywhere

1
in 0O.



In the special case that y = 0, the kernel

b w(a’s) Pga’e)(cos S cos ¢)

n

(a,B)
) B %2R

o~ 8

K (0,9,0) =

n=0

is positive as is shown by Bailey'[}ﬂ by explicit calculation.
In that case it follows from the orthogonality that

™
[ x,00,0,00 0 (%8 (9) 0 = 1.
0

Hence fr(cos 0) » f(cos ©) as r » 1~ for almost every 0, which shows
the Abel summability of the series (1.7). In a recent letter to Prof.
Askey, G. Gasper announces to have shown the positivity of the kernel (1.9).

(a,B)(@)

If we assume g(cos ©) to be in L1(O,ﬂ) with respect to p we

can define
T

(1.11) h(cos 0) = [ f(cos 0,cos ¢) gl(cos ¢) p
0

(a,B)(¢) a6,

From Fubini's theorem it follows that h(cos 0) is in L1(0,n) with
respect to p(a,B)(O) and that

(1.12) [nll, <allell, [lell,-

Also it is not hard to derive that if g is in Lm(O,w) then

(1.13) lall, <a llzll, |lell,
where

lleg|ll, = sup |glcos 0)] < =,
0<o<m

We shall call h(cos 0), defined by (1.11), the convolution of f(cos 0)
and g(cos ©). From the fact that



T
J f(cos @,cos ¢) glcos ¢) p<a’6)(

0

h(cos ©) $) d¢

T
J f(cos ¢) g(cos ©,cos ¢) p(a’B)(¢) aé
O .

which is easily verified, and from the inequalities (1.12) and (1.13)

many important properties follow. See O'Neil E1U.

We shall call f(cos 0,cos ¢) the generalized translation of f(cos 0).

It is a generalized translation in the sense used by L&fstrém and Peetre
[ﬁ@]. In their paper they make the connection between a generalized
translation operator and a differential operator of the form (1.4) with
boundary conditions (1.5). They show that the remainder term of the

Taylor series can be estimated by
(1.14) ||£(cos ©,cos ¢) - f(cos @)Hp < c ¢° [IA@f||P’ 1<p<w,

We shall use this estimate in the last section.
It is clear that if f(cos ©) has a Fourier-Jacobi expansion (1.7),

then

(1.15) Ay f(cos ) nZO a_ n(nta+g+1) wié’s) Pé“’s)(1) Péa’s)(cos 0).

Furthermore it follows from (1.10) and the definition of f(cos ©,cos ¢)
that

(1.16) || £(cos ©,cos ¢)H°° < A ||f(cos (’:))He° .

In the following we shall study a special class of Jacobi series such

as

F(cos 0) n n£1 n—Y(log“n)d wéa’8> Pia’s)(1) Pia’e)(cos 0).



We do this in a way similar to [E], where Askey and Wainger treat the
same problem for ultraspherical series. At a few places the proofs
could be simplified a little.

In the last section this special class of Jacobi series is used to
define fractional integration and differentiation by means of the
convolution structure and the differential operator Ae defined .above
We shall prove that all the usual properties of fractional integration

and differentiation remain valid.

We shall use (¥ and o in the usual manner. We write F(x) v G(x) as x

tends to a, to mean F(x)/G(x) tends to 1 as x tends to a.



2. Summation by parts and a criterion for Fourier=Jacobi series.

In this section we develop a method of summation by parts, which
depends strongly on the Christoffel-Darboux formula. It can be used to
do some work normally done by integretion by parts in the theory of
the Fourier integral, when one uses the fact that

exp(itx) = (ix)-1 %E exp(itx).

As an application we shall prove a simple sufficient condition for a

series

I alm) o{®8) p(%B)(1) ples) (coq o)
n=1 '

to be a Fourier-Jacobili series of some function.

Lemma, 2.1.

_Let a(n) be a function defined on the positive integers. Let

N
H(i,c0s 0) = | aa) w{®o8) plB) () pleaB)(cog o),
Then
(2.1) N »
H(N,cos 0) = nZO A' a(n) TEEégE%%ET wia+1’8) PiQ+1’B)(1) Pia+1’6)(cos 0)
where, if d(n) is a sequence of numbers,
A'" d(n) = A d(n) = d(n) - d(n+1) (n=0,1,...,N-1)
A' a(N) = 4a(N).
In particular, if a(n) = Y (-en) (e>0), we have
(2.2) -
B(cos0) = [ a(n) ul®®) p{®:B)(q) plaB)(ooq )
n=0
T (a+1)  (a+1,8) (a+1,8) (a+1,
= ) 4 a(n) EEI%IE:E na Pna (1) PnOL+ B)(cos 0).



Proof.
The proof is essentially the application of the Christoffel-Darboux
formula for Jacobi polynomials. (Szego [12], (L4.5.3)).

N n
E(N,cos ©) = ) 4" a(n) | wol®®) pl®8)(1) plesB) (oo o)
n=0 k=0
- § A" a(n) I (n+a+p+2) P(oz+1,3)(cos 0)

n=0 I'(a+1)T(n+B+1) “n

1§ A a(n) __(_ﬁi_ ((X.+1,B) Pia+1,8)(1) P(a+1 36)(

2n+o+B+2 n n cos 0)

n=0

(0'-,8)(

(2.2) follows by taking the limit as N - =, since P

cos 0) does

not grow faster : than a polynomial in n.

We shall need a lemma, which deals with the repeated application of
lemma 2.1. We shall state the results in terms of derivatives rather

than finite differences.

Lemma 2.2.
Let v be any possitive integer and let a(t) be a function of a real

variable t. possessing v continuous derivatives. Assume that

e

’ = (Flexp -et) for j =0, 1, ..., v,
datd

and any € > 0. Define

H(cos 0) = Z a(n) w(a’s) P(a’B)(1) P( ’S)(cos 0).
n=1 n n
Then we may write
(2.3) ©
(eos 0) = (1" TERTL T () o8 BB ) 218 cos o) +
n=

+ E1(cos O)1



where
. ) 1 N
q1(t) T Dt+ot+B+2 At a(t)
o (t) = s L g (£) (k2)
Kk Dt+a+B+k+1  dt k-1 Ze/
Also
v=1 ® B
(2.1) H(cos ©) = J c(j,v) J nv7d (& - a(t)}, wi“*”’B)
J=0 n=1 at¥d =n
Péa+v’6)(1) Piu+v’8)(cos 0) + E2(COS 9).

The c(j,v) are numbers.

For i =1, 2

v=1 o .
. _ . -v=-] (o+v,B)
Ei(cos Q) = _Z di(J,v) Z. n Yo o1 Un
J-.-O n"1
n n

where di(j,v) are numbers and

| < max

J
d“alt
Iy < ‘_(_.)_ .
n<t<n+a
ALAZILAS

2 9
at?

n,J

a, is some integer depending only on v.

Proof.
We start with equation (2.2) and then apply lemma 2.1 again. We repeat
the process v times in all and then we use the mean value theorem to

replace differences by derivatives. This finishes the proof.



Theorem 2.1.

Let o > B > -3 and let v be an integer > a

10

3
+§.

Assume a(t) is continuous

on [0,») and that a(t) approaches zero as t - =. Furthermore assume a(t)

has v + 1 continuous derivatives on [b,w) and let

n,J

max
n<t<n+sa
- = \Y]

g

atY

I

with a, as in lemma 2.2.

Finally suppose
© .
) ndTly L <=,
n=1 sJ

Then there is a function F(cos ©) such that

[ﬂ |F(cos )] p(a’e)(@) d0 < =

o
and
T P(Q’B)(cos 0) (0.8)
a = J Flcos 0) = o 8) p' "/ (0) de.
B o p %P/ ()
n
Proof.
Let
F (cos 0) = ) ~€ a(n) w(a,B) P(a’s)(1) P(a’B)(cos 0).
£ Iy n n n
By lemma 2, equation 2.4 (with e ®® a(n) instead of a(n))
F (cos 0) = ) ) oe, - -€n -v-j+l @
€ k,j,m n=1 k,J,m,n
k t=n "n n cos 1°
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The coefficients c are bounded for fixed v and the summation is

k,j,m,n
extended over non-negative integers k,j and m such that Xk + j + m = v,
and what is very important, at least one of m and k is equal to or

greater than one. The remainder term E, is of the seme form, but here

1
k+ j+m>v. It can be handled in the same way as the main term. Let
Se(cos ©) denote those terms with k > 1. We use the trivial estimate

e™ exp(-en) =@ (n™). So, by (1.1),

|S€(cos 0)|=01 ) ) &I Yok IPéa+v’B)(cos 0)|}
k,j,m n=1 ’

where k + jJ + m = v and k > 1.

We need the following estimates (see Szegd [12], 7.32.6 and 4.1.3)
1 1.2

(2.5) o<o<m < - IPI(IQ’B)(COS 0)| = (0™ 2(r-0)"P"2172)

(2.6) 0co<n o [B%F)(cos 0)] = () @ > 6.

We then find

njw

™
(2.7) f lPia+v’B)(cos 0) p(a’B)(O) a0 =Fn¥™2) oy > g o+
0

Thus by hypothesis

5]

‘n .
J |S€(cos 9)|p(“’6)(e)de =09( z Z na—J-m+1Yn . nv-a-2)
0 k,j,m n=1 ’

=(9’(n§1 w Yn,k) <M<

(a,B)(

M does not depend on e. Therefore Se(cos 0) p 0) converges weakly
to a measure (see Ljusternik and SoboleW'[Eﬂ, p. 175). Moreover, using
(2.5), we see that Se(cos 0) p(a’B)(G) converges pointwise as € + 0

for 0 < © < m and uniformly in any compact subinterval of (O,i].

1
The term (m-0) B-2 of (2.5) is compensated by the factor (cos 8)28+1
of p(a’B)(@). The factor (sin~9)2a+1 cannot compensate the singularity

2 1
at 0 completely because we have here a factor © © ° 2 due to the

summation by parts.
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We put Ts(cos Q) = Fe(cos 0) - Se(cos 0). In these terms k = 0 and
m > 1. Using again the fact that el exp(—%n) = C?(n—l) we see

©o

RV . .
T (cos ©) = e, )} e R 2™V V7 o) P(a+v,6)(1) P(a+v’6)(cos 0).
j=0 Y n=1 n n
Thus
w —n
ITe(cos )] =®( ) ee 20 pTVmdtT ok |a(n)|na+v ]Pﬁa+v’8)(cos 0)])
n=1
@ ~=n
=% ) ee 2" gVt la(n)| |P£a+v’8)(cos 0)]).
n=1

Since a(n) is bounded and (2.7) holds we have

(o]

™
J ITE(cos 0)] p(a’s)(G)dﬁ =We ) exp(a%n)) = (),
0 n=1

(

Thus we may conclude that Fe(cos 0) p 0"B)(@) converges weakly to a
measure  as € + 0'. Moreover Fe(cos 0) p(a’B)(O) converges uniformly
on any compact subinterval of (O,ﬁ]. This implies that the singular
part of u is concentrated at 0 and therefore is a S-function at O.

We wish to show that p is actually absolutely continuous, that is u

has no singular part. Let u.= My t us,where M is gbsolutely continuous
and Mg @ §-function at O.

We have

€

IJO Pia’e)(cos 0) dual i_JZ |Pga’8)(cos 0)| Idual +

m
+ J |Pia’6)(cos 0)| ]dua| = o(n%).

From (1.1) it follows that if Mg is not zero,

T _(a,8)
j P'%*"/(cos 0) du_ is not o(n%) as n -+ «.
o B s
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On the other hand

- T
J Pia’s)(cos 0) du lim J Pia’s)(cos o) FE(COS o) D(a’s)(@)d@

0 e*0 ‘0
= a(n) Pé“’s)(1) = o(n).

This is a contradiction so Mg is zero.

We let H(©) be the derivative of p and take F(cos 0) = H(0) {p(“’e)(e)}'1.
Since H(©) is in L, F(cos ©) p(a,s)(@) is in L. Also F_(cos ©) p(a’s)(O)
tends to F(cos 0) p(a’B)(O) weakly. Therefore
P(a,B)

n
0 Pr(lo"aB)(1)

1

m (cos 0)

F(cos 0) 0 %*8)(0) ao.

a(n) =

This finishes the proof.
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3. Elementary properties of slowly varying functions.

We begin with two definitions.

Definition 3.1. We shall say that a function b(t) is slowly varying if

b(t) satisfies the following three conditions:

i)  b(t) is in Cw(O,w).
ii) For any § > 0, there is a t; > 0 such that £8 |o(t)| is increasing
for t > to. 5

|

iii) For any 8 > O, there is a t, > 0 such that t7 |b(t)| is decreasing

for t > t1.

We shall need a more restricted class of functions S. We shall use the

following notation:

ho(t) = b(t),
d
h(t)=tgrh (t) n=1,2,3, ...

We use hn(t) in the following definition.

Definition 3.2. A slowly varying function b(t) is said to belong to

the class S if all its associated hn(t) are slowly varying.
Common examples of functions of the class S are

1og?(t+10), log log®(t+100) and log™(t+10) log log®(t+100)
(a and ¢ are arbitrary numbers). A large class of slowly varying

functions using Hardy's L-functions is given in the appendix to Wainger

O3]

We shall give some simple properties of slowly varying functions. They
can also be found in [L], ]:13] and [1L], but they are so easy that we

include the proofs.
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Lemma 3.1.

Let b(t) be slowly varying. Then

i) ©b(t) is either non-positive or non-negative for sufficiently ..
large. t.i.
i) ()] = o(+7 |b(t)]) as t > =

Proof.

i) There is a t. such that t |b(t)| is increasing for t > t_.; there-

0 0’
fore t b(t) must be either non-positive or non-negative for t >ty
Thus b(t) must be either non-positive or non-negative for t> b
This proyes 1i).

ii) Let 8 be any positive number. It suffices to exhibit a t.(8) such

that

2

1

(3.1) ot (t)] <6t |b(t)]

for t z_tg(é). By part i) of this lemma, we may assume with no

loss of generality that b(t) > 0. Then by definition of slowly

S

varying, there is a t.(8) such that t~ b(t) is increasing for

t > t,(68). Therefore,?%f % (1)} > 0 for t > t,(8). Hence, for
t i_to(d), 8 t6_1 b(t) +{t§ b'(t)->°0, and we see

(3.2) b'(t) > - 8t7 b(t) t > t(8),
Similarly, differentiation of t—6 b(t) shows

(3.3) br(t) < 687 b(t), t > (6).

(3.2) and (3.3) imply (3.1) with t, = max (to(é),t1(6)).

This completes the proof.
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Lemma 3.2.
Let b(t) be a slowly varying function. Let £y and £3 be positive
numbers with az < £3. Then

max Io(t) - b(1/R)| = &({b{1/R)])
52/Riti£3/R

as R+ 0.

Proof.

We may assume without loss of generality that §2 <1< 53.
Suppose &2/R <t < 1/R. Let 6 > 0. Then by lemma 3.1, there is1an R,,
such that |b'(t)| < 6 £ |o(t)]|for t > £,/R;, and such that t? |v(t)]
is increasing for t 3_52/R1. Thus for R < R1,

1/R
|o(t) - v(1/R)]| = IJ b'(t) at|
t

1/R 1
< 6 [ t7 |o(t)] at

£,/R
R 2
<8 J t <t |b(t)| at
£,/R _
/R 2
< 8§ R72 |b(1/R)] J t < at
£,/R

1
< 28 g)F |o(1/R)].

A similar argument shows that there exists an R2.such that if R < R2,
and 1/R < t §_£3/R,

[6(1/R)].

w =

|o(t) - b(1/R)| < 26 ¢

Since 8§ is an arbitrary positive number, this completes the proof.
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Lemma 3.3.
Let b(t) be in the class S. Then for n > 1

a'b(t) _

-n
t . h.(t).
e § B J( )

The Bj are some numbers. The hj(t) are the slowly varying functions

associated with b(t). The sum is extended over a finite range of

summation, and the value j = 0 does not occur.

Proof.
The proof is by induction. For n = 1, the statement is obvious since

t b'(t) is h1(t). Suppose the lemma is true for n = k; then

k+1
L—v(t) = & T RE dole),

dtk+1 dtk
_ k-1 k ab(t) k-1rd .k &
= -kt [t —dtk ]+t e (¢ " b(t))].

Now the conclusion for n = k + 1 follows easily from the inductive

hypothesis and the definition of the hj's.

Lemma 3.k. : -

Let b(t) be in the class S and let b(t) > 0 as t » ©. Then ) |b'(n)| < =.
n=1

Proof.

By lemma 3.1, there exists a number N, such that b(t), b'(t) and b"(t)

are of constant sign if t > N.

We may assume without loss of the generality that b(t) > O for t > N.

b'(t) is of constant sign it followsthat b(t) tends to zero monotonically

for t > N. From the fact that t |b'(t)| =o(b(t)), see lemma 3.1, it

follows b'(t) tends to zero and because b"(t) has a constant sign for

t > N, b'(t) tends monotonically to zero for t > N.
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But then

n+1
} b'(n) < ) J b'(u) du = - b(N) + B(M) > 0
n= n=N n

as M,N » «,

Lemma 3.5.

Let b(t) be slowly varying.

i) |b(kt)| ~ |b(t)| for every fixed k > 0 and uniformly in every

interval n < k j_%; 0<n<1;

ii) If we write B(t) =

as t » = and B(t) #0(1) then
|[b(t)] = o(B(t)) and B(t) ~ B (t).

Proof.

i) If 1 <k < 1/n, then

[pet)] _ |o(t)] § -
"

large t. Similarly |b(kt)| i_né |o(t)|. Making § arbitrarily small,

, |o(xt)] <k |o(t)] < n” |v(t)| for sufficiently

this proves statement i) for 1 <k < 1/n. The case n < k < 1 is proved

in an analogous way.

ii) Let k > 1. For large t, using i) we obtain

. i t 1
B(t) > J © |b(t)| at ~ |b(t)] J 1 dt = |b(t)]|log k.
t/k t/k

Taking k large we obtain |b(t)| = o(B(t).

. -1 . . .
Since t Ib(t)l 1s ultimately decreasing we have for large k

b(k-1)

b(k)
k (k=-1)

< B(k) - B(k=1) < which implies

OiBm)-MmU-'%M|<bW4H_INmL

- k-1 k
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} converges, so does the series

Since ] {Ibl(;lf-”l _ 1ok |

1 k
{B(k) - B(k-1) - ibikll}; but the n th partial sum is

k
~

B(n) - B (n) + constant, which proves ii).
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4. Behaviour of a special class of Jacobi series.

The main goal in this section is to study the behaviour near © = 0 of

a Jacobl series of the form

co

n n n
n=1
with vy > 0. b(n) is a slowly varying function. (See section 3). Theorem
4.1 treats the case 0 < y < 2a + 2. In theorem 4.2 we shall investigate
the case Y = 0. Finally, theorem L4.3. will deal with the case y > 2a + 2.

We need the following lemma

Lemma L4.1.
Let vy > o + 1.

For 0 <O <7
¥y (0,8) (0,8),.y o(asB)
F(cos ©) = lim ) n~ ' w 7/ P %P7(1) P %**®/(cos 0)
N n=1 n n n

exists. Also F(cos 0) is continuous for 0 < 0 < T,

If vy > 2o + 2, F(cos ©) is continuous for 0 < 0 < m.

At 6 =0
P(a+1a%) o Y-20-2
F(cos Q) = —mm—— (sin~§) + E(cos 0).
P(%)F(a+1)
0 Y-20-1
E(cos 0) = (3{(sin E) }if o+ 3 <y <2u+ 13

if y > 20 + 1 E(cos 0) is continuous and has the form

y-20~1
E(cos 0) = A + O{(sin %)}
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Proof.

As is easily derived from the formula (Erdélyi [6] (10.20.(3)))

: F(a+1dl)
(h.1) — 2 (sin %)

rE)r(o+1) 2

Y=-20-2

o T(ne#1)0 (k1Y)
= 2 (a,B) P(a,B) 1 (0"6) o
nZO F(n+u+1)r(n+3+%+1) wn n (1) Pn (cos 0).

(y>a+3)

For any positive j there exist Aj such that

F(n+3+1)r(n+a+1~%)

1
= — +
F(n+a+1)r(n+8+%+1) nY
j P(n+B+1)P(n+a-l§l+1) -
VN 2 ),
1=1 F(n+a+1)F(n+B+l§—+1)

If we choose j sufficiently large, lemma 4.1. follows immediately from

(4.1) and (2.6).

Lemma L4.2.

Let w and  be fixed.

Then
i) If vy < 20 + 2
[wo ]
(h.z) z n‘Y wgass) Pia’e)(1) IPéa’B)(COS e)l =(91(®—1w)2d+2—Y}
n=1
ii) If O tends to 0+ and if y > a + %
(4.3) oo Y (#sB) plosB) gy planB) oo gy) <
n=[06""] n n n '
3
Y+ot+=
= o-(2e2-v) 2

The s do not depend on w or Q.
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Proof.

(4.2) follows from (2.6) by application of

N
) np=(9'(Np+1) p> -1
n=1

(4.3) follows from (2.5) by using

o]

z nf = C?(ﬁp+1) if p < - 1.
n=N
Lemma 4.3.
i) Let a + %‘<'Y < 20 + 2, assume b(t) is slowly varying and let

w < 1 < Q. Choose § < min(y-aa%,2u+2—y).

Then

e
(b.4) 10 Tat] op®) 1) B cos o)

n=

- Cy(1) + EY{Ib(O—1)| @y—Ea-2 w2a+2—y-6}
ii) Let v > o + g-and let § <y - o - %n
As @ > 0"
(4.5) z[sze"] n~' |b(n)] wr(l""s) PI(IOL’B)(1) |Pr(l°"6)(cos 0)]

n:

—ytaHS
-z (Y |p(e™h)| Y722 g ey

The s do not depend on w and .

Proof.
i) Choose § < min(y—a~§,2a+2-y) and let m be an integer so large that
9 |b(t)| is increasing for t > m and 70 |b(t)|is decreasing for

t > m. (Such m exists, see section 3). Then, using (4.2),
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[we ]
PR w{®o8) pleaB)(q) |p(0B) (oq 0]
-1
w0
=M1) + i ) -]n_Y-6 n6|b(n)|wéa’8) Pia’s)(1)|Pia’B)(cos;®)|
n=m

-1 ;
wo

<(31) + 9-5|b(0-1)| ) oY-8 w;a’B)Pia’?)g1)lPia’B)(COS 0)|
n=m ’ o

- (9.( 1) + (9/{ |b(9—1 ) on-2a-2 w2a+2-y-—6}

ii) Let © be so close to O that [99—1] > m. Then application of (4.3)
leads to

Z n~ Ylb(n)l w(u,B) P(G’B)(1) |P(a’8)(cos @)|
n=[Q0" ] n
= g 1 =Y+6 -8 |o(n) ]| P(a’B)(1) |P(a’8)(cos 0)]
n=[po_.] n
3
§
< Y |o(e™"y| o722 g lary }

Lemma L4.L4.

Assume b(t) is slowly varying. Let

(4.6) F(cos 0) =

n

e~ 8

n'Y b(n) w(a,B) P(a’B)(1) Pia,B)(

cos 0)
! n n

with o + %~< Y < 20 + 2.
The sum of (4.6) converges absolutely and uniformly in any compact
subinterval of (0,m).

As 0 » 07

r(a+1-32f-) o Y-2a-2 :
(4.7) F(cos 0) = —————— (sin-E) b(e” ') + E(0).
r(—;-)r(aﬂ)
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(4.8) B(0) = o{b(0™) 07722} 4+ (3(1).

Proof .

The fact that the series (4.6) converges uniformly and absolutely in
any compact subinterval of (0,m)follows from the estimate (2.5).

Now let w and 2 be fixed (but arbitrary) numbers w < 1 < Q,

Then

F(cos 0) = b(6—1) ) n'Yw(a’B) P(a’B)(1) P(Q’B)(cos 0) + E(0)
e n n n

E(9) = E1(O) + EE(@) + E3(G) + Eh(e) + E_(0).

5
S
B (0) = ] {o(m)-bo” )TVl ®BplB) (1)plenB)(og )
n=[wo” 1]
E,(0) = - b(e™") 7 n”Y wga,B) Pi“’s)(1) Pga’s)(cos 0)
: n= [Qe_ 1]
[wo= 1]
B,(0) = - b(e™") nz1 n™Y u{*o8) pleaB)(q) plesb)oq o)
B,(0) = | b(n) 07 w(®eB) pleaB) () pleaB)(oog )
n= EQO_ 1:]
[we™ ]
ES(O) = z b(n) n-Ywiu’B) Péa’s)(T) Pia’s)(cos 0)
n=1

Now by lemma 4.1 it suffices to such that the terms E1 to E5 satisfy
(L.8).
Consider first E1. If we choose € > 0, then by lemma 3.2 and lemma 4.2

it follows that

lE1(@)| < max |b(n)—b(@_1)|

w6—1§p§9®_1

-1

) n”Y wia,B) Pia’s)(1) lPéa’B)(cos 0)]
n=1

20
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= of [b(e™1)| o¥™2%"2},
E2 and E3 may be estimated by lemma k4.2, Eh and E5 by lemma 4.3.
We observe that each of these terms is
-1 —2a-2 ‘Y+°‘%‘S Da+2-y-§
@|ve™")| oY (@ + =TT 4 gy

where ¥ is independent of w, Q and 6 and § < min(y—a~%,2a+2-y). The
desired conclusion now follows by taking w sufficiently small and Q

sufficiently large.

Theorem 4.1.
Let b(t) be in S and let 0 < y < 2a + 2. For € > 0 define

(4.9) FE cos 0) = Z b(n) oY 7R wia’s) Pia’e)(1) Pia’s)(cos 0).

Then, for each closed subinterval of (O,ﬂ), F (cos 0) converges

uniformly in €. For © # 0, F(cos @) = lim+F€(cos 0) exists in the
: e>0
pointwise sense. Also, F(cos 0) is continuous for 0 < © < .

At 0 =0

r(a+1-%) -2q-2
(k.10) F(cos 8) = ——2" 1(6”") (sin gaY "7+ B(e)
I‘(%)I‘(oﬁl)
£(0) = ofb(e™") 0Y72% 21 + (¥(1).
" (a,8)
Finally, J |F(cos 0)] o' B)9) a0 < =
0
and
(4.11) F(cos 0) ~ z b(n) oY wéa’s) Pia,B)(1) P(a’B)(cos 0)

n=1
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Proof.
We are going to apply lemma 2.2 with a(t) = b(t) t77 e, We take
the integer v so large that y + v > a + %u

We obtain

Fe(cos Q) = Me(e) + E€ (0) + Ee,e(e) + E _(0).

51 €,3

The terms Me(@)’ E_ 1(G)) and E_ 2(6) all come from the main term of
H)

H]
equation (2.3) which in the present context is

4

! a_ _1.5_1__ -y -—€t
st Ta o G par ole) £ T

dt

=
2P
=

The main term ME arises from taking derivatives only on powers of t.

Ee”1 consists of the remaining contribution of terms not involving
v - . . .
derivatives of e Ft. E€ 5 18 made up by terms in which at least one
’—
derivative is taken on e Et. Ee 3 corresponds to the term E1(cos 0)
9
in equation (2.3).
\) o] .
_ (=1)" TI(o+v+1) -én (1d 1d . 14 .-y
M (0) = oV T(oT) 21 pla) ey ety et oyl
+ + +
w(a vs8) P(a v,B)(1) P(a v’B)(cos 0)
n n n
Y
I'(a+v+1) F(§+v)

T'(a+1) P(%ﬂ

=n

z b(n) e~ 8 n—y—2v wia+v,8) Pga+v,8)(1) Péa+v’6)(cos 9).

n=1

As vy + v > o + g-it follows immediately from (2.5) that the series

ME(O) converges uniformly in € in any closed subinterval of (0,m).
Me(O) with € = 0 is a sum of the type treated in lemma 4.4. Hence
applying lemma 4.4 and using the regularity of Abel summability, we

find that M(©) = lim Me(e) exists and is continuous for 0 < © < m.
>0
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+
Moreover as 0 + .0

r(Lev) I (a+1-1) -20-2
M(0) = r§%+:ﬁ;) : T (sin g&Y i b(e'1) + Eh
a r(%& P(%+v)P(a+v+1)
I(a+1-L) —2a-2
S oYy (sin gf - B,
r(%)rwm
E, = o{b(®'1) Y222, +W1).

We now investigate Ee

1Y at?

o~ 8
o
I
m
=]
g
(e}

L _y-2v+j adb(t)
5, ,(0) = ERRE e
=n

n=1 J

w(a+v,8) P(a+v,8)(1) P(a+v,8)(
n n

cos 0)
n

where cj are numbers, independent of n.

J .
We now use lemma 3.3 and write Q;PLE%J =n"d % B. h (n).
t=n

at? k=1 & K
We obtain
v ] ot -en _=-y=-2v
E_ 1(@) = 3 % a(j,k) ) e n_Y hk(n)
’ i=1 k=1 n=1
wia+v,8) P£a+v,6)(1) Pia+v’6)(cos o)

d. are numbers.

Jk

Thus EE 1(O) consists of a finite lineair combination of series, which
2

converge uniformly in € in any closed subinterval of (0,m). Moreover

the functions.hk(t) are slowly varying because b(t) belongs to the

class S. From lemma 3.1 and lemma 4.4 it is easily seen that
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E1(9) (0) exists and is easily continuous for

0 <0 <m,

11m+ Ee

>0 >

' +
Also as © > O

E (0) = olb(e™1) 8772%2} 4 (Y(1).
Next we consider E€’2(O).
_ © -en m -y=-v=J . (1)
Ee,g(e) = ) & 1m Z e € n b " (n)
Jsl,m n=1
w(a+v,8) P(a+v,6)(1) P(a+v,8)(cos 0).
n n n

Here gj 1. 2re numbers. The first summation is over nonnegative
299
values of j, 1, m withm > 1 and j + 1 + m = v. Application of (2.5)
- - —-m+ .
and the fact that €& | ¢ P =(Hn 1) gives

oo

—O=Vm3 -B=3 —y=V=Jj-m+1+o+v+i . (1
B ,(0) = e 07V (noo) Ry [ [ pnvvrimmirenvrh (),
? J,l,m n=1
a-v-3 B-3y, v 'Y'v+§+a
=e 0V (r)P 2@V 1 |b(n)]).
n=1 _
Thus Ee , converges uniformly in € in any closed subinterval of (0,m).
b
Now we see that for 0 < O < m, Es 5 ~0as € >0, since y + Vv > a + g
9

and |b(n)| = (ns) for any § > 0.

Finally we consider E_ 3(9). E _(0) contains terms similar to those
9

€,3
of Me’ E E€ 09 except that here m + j + 1 = v + 1 instead of v.
bl

€,1°
Hence, if we apply to Es 3(G) reasoning similar to that of the previous
b

terms, we find that E is a series which converges uniformly in € in

€,3
any subinterval of 0 < © < 7. Also we find E3(®) = lim E_

3(O) exists
>0

2
and is continuous for 0 < © < T.
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Furthermore as 0 > 0+,
B (0) = olb(07 1) Y7242 4 ¥(1).

We now examine the behaviour of F(cos ©) near © = .
It suffices to show that Fs(cos 0) converges uniformly for © sufficiently
close to m. For O = 7 the convergence follows from the well-known

relation
(%) (x) = (c1)® B8 ()

and theorem 7 of Wainger [1:{] , Wwith x = >

We use the Bateman integral, (see Askey and Fitch [é], formula 3.4)

11
8 Pia’s)(x) r(g+1) X _1 Péa+8+23-2) g-1
(1+x) (a,B) ) T(3)r(8+1 J (1) (a+B+z,-2) (x-y)" % oy
2B 1) r(hr(eed) Jo P+
or, writing x = 2u® - 1, y = 22° -1,
2B u 13 1

u (CX.,B) 2. _ 2 (Cx+8+§ ,—2) 2 2 2\B-3
Tarr1) P (2u°=1) = F(B+%)F(n+%) Jo P (2z27=1)(u"-2z")" %az.
Thus, applying Szegd [1%], (4.1.5),

ou~2k r(n+s+1)r(n+a+e+§)r(2n+1)

Pi“’s)(2u2-1)

T(B+3)I(n+3) P(2n+a+e+%)r(n+1)

P

u 1 1 _1
J (a+B+d,otp+d) (2 208-3 .
o 2o (z)

1 _ u 1 1 2
Wafte w28 J A O L
0

We investigate Fe(cos ©) near m. If we put cos 0 = 2u® - 1 we have to

study u in the neighbourhood of O.
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u 2 1 1
FE ( 2112—1 ) = W{u-26 J (u2_22 ) 8-2 ( z b(n) n—'Y e—en wr(1a+8+2 ,(1+B+2 )
0 n=1

P(a+s+%,a+3+%)

(a+B+3 ,a+B+3)
2n (z)

(1) P2n

) dzl.
In the first part of this theorem we have shown that the series in the
integrand converges uniformly in e in any closed subinterval of (-1,1)

and that its lim+ exists and is continuous. Indeed, if Zan Péa’a)(x)

€20
and z a P(a’aj(-x) are continuous functions for xnear x=0, then so is their
sum ) Lo Pég’a)(x) which is a series of the kind used in the integrand.

By the deminated convergence theorem FE(2u2-1) converges pointwise to

a limit as € - 0+, at least if u is sufficiently small.

Moreover

u

F(2u-1) = Hu 2P J e(z) (u2oz2)B? az)

0

where c(z) is continuous near z = 0. And the convergence is uniform

since

u 1
|u=2f J (u2-2%)B2 az] =O(1)
0
is uniformly bounded near u = 0.

To finish the proof we need to show that

F(cos ©) v ) b(n) n_Yw(a’B) P(a’B)(1) P(a’B)(cos 0).
& n n n
n=1
By theorem 2.1 the sum of the right is a Fourier-Jacobi series of a
function G(cos ©). In section 1 we showed that this series is Abel
summable to G(cos @) almost everywhere.

So G(cos 0) = lim Fe(cos ©) = F(cos 0).
e>0
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Theorem L4.2.
Let

Fs(cos Q) = n£1 b(n) e 2 wia’s) P;a’s)(1) Péa’s)(cos 0)

with b(t) in S. Then F(cos 0) = lim Fe(cos 0) exists in the pointwise
>0
sense for © # 0. Moreover F(cos ©) is continuous for © # O.

- At 0=0

-20-3 _ /=1
F(cos ©) » k(sin ) v'(e™)

provided b'(t) is not zero for all large t. k # 0.
Finally

[F |F(cos 0)] ' **8)(0) a0 < =
0

if and only if b(t) tends to 0 as t » ». If b(t) tends to zero

oo

F(cos ©) v ) b(n) w(a’B) P(a’B)(1) P(a’B)(cos 0).
-y n n n

Proof.
The proof of theorem 4.2. is essentially the same as the proof of
theorem 4.1. As in theorem 4.1, the proof of the first part is reduced
to lemma 4.4 by lemma 2.2, where we take a(t) = e—atb(t). The fact
that a(t) contains no power of t accounts for the different conclusion
of theorem 4.1 and 4.2. For the second part of the theorem we apply

theorem 2.1 which is possible in view of the lemmas 3.3 and 3..4.
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Theorem L4.3.
Let b(t) be in S and let vy > 20 + 2. For € > 0 define

Fe(cos 0) = 21 b(n) oY 8 wéa’e) Péa’s)(1) Péa’a)(cos 0).
n=

Then

F(cos 0©) = lim+ F_(cos 0) exists for 0 < © < 7 and F(cos 0) is continuous
>0
in this interval.

Furthermore

{ﬂ |F(cos 0)| p(a’B)(O) do < o

0
and
F(cos 0) n nZ1 b(n) n”Y wia’B) Pﬁa’s)(1) Pia’s)(cos 0).
Let
Ng
B(y) = J b(t) £ at.
1 .
As 0+ 0"
i) F(cos 0) = 2 5 B(o™1) + Gﬂlb(e‘1)]) if y = 20 + 2 and if
{r(o+1)}

J Ib(e)| +7" at = .
1

ii) Ify > 2a +2 or if y = 20 + 2 and J |1o(1:)|t'1 dt < =
1

lim_F(cos ©) exists and thus F(cos ©) is continuous on 0 < @ < .
©~>0
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Proof..
Everything except i) and ii)follows as in the proof of theorem L.1.

The proof of ii) is trivial since the hypothesis implies that

) b(n) n”Y wéa,B) Piu’s)(1) Pia’s)(cos 0)
n=1

converges uniformly in view of (2.6).

So we only need to prove i). By lemma 4.3, equation (k4.5),

=]

z[ —1] n—2a-2 Ib(n)| wflass) |Pr(la98)(cos e)l Plga,B)(1)
n=|0
= @™ ")),
Now
[o7"]
) p-ee-2 b(n) wéa,B) Pia’s)(cos 0) Pia’s)(1) =
n=1
= 4,(0) + A,(0)
where
J:O—1 .
a(0) =] . 07292 y(n) (®sB) p(esB)(qy plasB)(y)
n=1 n n
and

[9_1] 20-2 (a,B) (a,B) (a,B) (a,B)
@] = T 7 a7 o] w B B P () [ %P (1) - B R

|A
n n n

2 n=1

We consider first A2(6)°

lPﬁa’B)(T) - Péa’s)(cos 0)] = W((1-cos ©) max %ﬁ P(Q’B)(x) ).
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By Szegd [12:[ » 7.32.10 we have

%P(G,B)(x) = W(nu+2).
dx n

So
o]
|A2(®)| = $e° ) n|b(n)|} = CV{Ib(o'1)|}.

n=1

We now examine A1(®).

[o”
2 z‘j 2~ b)) + @)

A (0) = ————
1 {I‘(a+1)}2 n=1

Hence we have

o
F(cos 0) = —=—— ) " a7 b(a) +%|n(e™ )3,
{r(a+1)}~ n=1
Now according to lemma 3.5, |b(t)| = o(B(t)) as t > « and

[t
B(t) = i] b(n) n—1 which gives us the proof of i).
n=1

Remark L.1.
Theorem 1 and theorem 3 yikld more information in the special case

b(t) = 1. Let

Floos 0) v ] n7 uw(®F) pl®sB)(q) pleaB)(cog )

n=1
with v > 0.
Then
' K 0 Y-2a-2+] 1
(4.12) F(cos ©) = | B; (sin 27 d + 1 log |07'| + E(0).
J=0

E(0) is at least (M 1) and has at least y - 2a - 2 + k continuous
derivatives. The Bj and YU are numbers. U is zero unless y + J = 20 + 2

for some integer j, 0 < Jj < k.
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Remark L4.2.
An important part of theorem 4.1 goes through if y < 0 (y#2k,k=0,1,2,...).
When Fs(cos ©) is defined by (4.9) with y < 0, then for © # 0

F(cos 0) = lim+ Fe(cos ©) still exists and is continuous for 0 < © < .
. .. €>0
At © =0 (4.10) holds.

In this case the series (4.10) does not satisfy the conditions of
theorem 2.1 and therefore we cannot conclude that it is the Fourier-
Jacobi series of F(cos 0).

Although F(cos @) is no longer a function in L1(O,ﬂ) with respect to
p(“’s)(e) but a distribution, we are still able to convolve the function
F(cos ©) with another function G(cos ©) whenever G(cos 0) is sufficiently

smooth near to the origin.
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5. Fractional integration.

Let f(cos ©) be a function in LT(O,ﬂ) with respect to p(a’B)(O)

defined by

(5.1) f(cos ) = ] a wi“’s) Pé“’B)(1) Pé“’s)(cos 0).
n=0

In section 1 we introduced the differential operator AO and defined

Ae f(cos 0) = 2, +,n§1 & n(n+a+B+1) Péa’s)(1) Pia’e)(cos 0).

We now introduce the inverse operator I, given by

2

I, f(cos 0) = ag + 21 a.n[n(n+a+8+1):|-1 Pia,B)(1) P;a’s)(cos )
n=

such that A, I, f(cos ©) = f(cos 0), or by (1.4),

O "2
. 0 . s
(5.2) I, f(cos ©) = J —dv_ f(cos t) p(a’B)(t) dt + c.
2 0 p(m,s)(¢) Jo
If we have
. e
(5.3) g (cos ©) = 1+ | [n(n+a+g+1]] 2 losBlplasB) iy plasB) i o)
ne n n n

I, f(cos ©) can be generalized to the fractional integral I0 f(cos 0)

by taking the convolution of f(cos 0) and gc(cos ©) which is

m
(5.4) I, f(cos 0) = J f(cos O,cos ¢) gg(cos ) p(a,s)(¢) a6,
0
where f(cos O,cos ¢) = 21 a wia,B) Pia’s)(cos 0) Pia’s)(cos 6)
n=

(see section 1).
It follows that

. ‘o
(5-5) IO’ f(COS @) = ao + z an[n(n+0t+8+1):| 2 (U- B)Pliaas)(.l)

n=1

Pia’s)(cos 0).
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It 1s clear that this fractional integration satisfies the semi-group

property

f(cos 0).

(5.6) I, (I0 f(cos 0)) = Ic1+02

1 2
Many of the classical theorems for fractional integration (see Zygmund
[14], ch XII) can be carried over. This will be done in this section.
We first introduce Lipschitz classes.

{
Definition 5.1.
Let f be in L _(0,m).

For 0 < 1 < 2 we define f to be in Lip 7 if

T
||£(cos @,c08 ¢) - £(cos ©)]|_ < A(1-cos ¢)2 =(Ho").

For T > 2 we can write T = 2k + T, (k integer > 1, 0 < 1, < 2) and

1
we say that f is in Lip T if the k times repeated application on f

of the differential operator A@ leads to a function in Lip Tye

Theorem 5.1.
Let 0 <o <2, 0 <1 < 2 and suppose f e Lip T.
Then I f(cos 0) € Lip(o+t) if 0 + T < 2.

Proof.

We need the following inegqualities
(5.7) |g (cos @) = @©°2%2) 0 <g <20+ 2
o

where go(cos @) is defined by (5.3). This estimate can be derived
from theorem 4.1 noticing that

g
- [:20:,+2-0:] .
[n(n+a+p+1])] 220"+ ¢ n%7Y 4 o(n_(2a+2))
J=1
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for certain numbers cs (5.7) follows applying (4.12) and (2.6). It
is clear that (5.7) can only be used for values of o less than 2a + 2.

However, we can come beyond this value by breaking up ¢ in parts

0 =0, %0, * ...+ (0j <2x + 2, 1< J <k) and applying (5.6).
2
(5.8) Igo(cos 0,cos ¢) - go(cos 0)] < C ¢ |g0_2(cos 0)| =
= O ¢2 @0—2a—h.

1

This follows from (1.14) and remark L4.2.
We can now go on with the proof and follow Zygmund [ﬁ@] II, p 136.

SIE]

Suppose f € Lip T and 0 < ¢ <

™
J f(cos O,cos t) go(cos 0) p(a,B)(@) de

I f(cos t)
° 0

m . \.
J {f(cos 0,cos t) - f(cos t)} gc(cos 0) p(“’s)(o) do
0

" (a,8)
J f(cos 0,cos t,cos ¢) go(cos 0) p o,8 (0) 40

I f(cos t,cos ¢)
° 0

™
J (f(cos O,cos t) - f(cos t) go(cos 0,cos ¢)
o .

- p(a’B)(@) a0
Thus

(5.9)

m
Ic f(cos t,cos ¢) - I, f(cos t) = j {f(cos O0,cos t) - f(cos t)}
0

{gc(cos 0,cos ¢) - gc(cos 0)} p(a’B)(@) ae

¢ Ll
=J +J = A + B.

0 ¢
s .
|a| = J $e") {|g0(cos O,cos ¢)| + |g0(cos o)} D(a’s)(e) ae
0 ,
¢
= lﬁKOT) |gc(cos O)l p(a’s)(O) d® (this follows from (1.16))
0

¢
- J (9(91) e0-20L—2 O20L+1 40 = l91¢o+r)
0
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m™
|B| = J o' ISG(COS 0,cos ¢) - gc(cos 0)| p(a’s)(@) do

)
i G’(d)g) Jm 9T+0—2a—h 620"'1 4o =
¢
= ¥ J 09*T3 g0 = ¥(4°*T)
¢

+ .
Since 0 + T < 2, Hence A + B = Cy(¢0 T) which proves theorem 5.1.

Remark 5.1.
Theorem 5.1 is valid for all positive values of ¢ and T except the
case that o + T = even integer.

Let 0 =2k + 0, and T = 21 + 1, (k,1 integer > 0, 0 < o

1 1 1
0<T,<2)., If o, + 1, < 2 we apply the differential operator Ae

1 1 1
k + 1 times in (5.9) and show that the result is Cy(¢01+T1). If
o, + 1, > 2 we apply the differential operator A _ k + 1 + 1 times

1 1
in (5.9) and show that the result is G«¢01+T1_2). If we had been

<2’

working with another definition of Lipschitzsspaces(t > 2) using

higher order differences, defined by

(a,B) 5
K 3 (a,8) 1) plas) e ©)
A* f(cos 0) = nZo a Pg (1) P (cos 0) [-nPia,B)(1) - ] >

n

instead of the differential operator Ae, we would not have to make

an exception for o + T = even integer.

Theorem 5.2.
Suppose f € Lq’ 1 < q< o,

: ., 2q2
1 22 ¢ 5 < 2 4 222 4hen I £ €Lip(o - ,“q )
Proof.

By HO6lder's inequality

(5.10) IIIG f(cos 0,cos ¢) - I_ f(cos 0)[] =

T
IIJ f(cos O©,cos t) {gc(cos t,cos ¢) - go(cos t)} p(a’B)(t) d'tH°°
0

T bl all 1
{ J | £(cos t)lq p(a’B)(t)dt}q{J lgo(cos t,cos ¢)—g0(cos t)|q1
0 0 L
p(a’s)(t)dt}q

IA
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where é-+ é, = 1.
We have to show that the last factor is (?(0 - gﬁég).

Using (5.7) and (5.8) we write

" ' (a,8) ¢
J Igc(cos t,cos ¢) - gc(cos t)]q 0 %P/ () at = J + J = A + B,
0 0 ¢

1] f ¢ ] ¢ ]
A< 2% J g, (cos t)]% o(%B) (1) gt = J O (9-20-2)a" ) (@:8) ()44
0 0

J‘b L9<t(c7—20z-2)q'+2oz+1 )at = G(¢(c—2a-2)q'+2a+g)
0

B < Y J )] o B (yap =

L9,(¢2qv)J o (0-20-b)q ' ¥20+1 o @(¢(0—2a—2)q'+20c+2)

¢ ,_2a+2
So the last factor of (5.10) is (9(¢ %), The inequalities
(60 =20 -2)g" +20 +1>=-1and (0 - 22 = U)g" +2a + 1< -1,
which we used in estimating A and B, are equivalent to the hypothesis

2042 . 2a+2.

< g < 2

Theorem 5.3.

+
If g > 1,0 <o < 222

and if € L , then I f is in L_ where
q o T

1 g
qQ 2a+2

L
r
Proof.

This is a consequence of our theorem 4.1 and theorem 2.6 of O'Neil [1U.
To use this theorem we need to calculate g:*Kcos 0).

We define the set Ey = {®:|g0(cos ©)| > y} and define g:Kcos 0) as

the inverse function of m(gc(cos 0),y) = meas (E ).

yy1/(c—2§-2)

In view of (5.7) we have essentially Ey = {0:0 > } and

(sin %) (cos %) do = 9y

meas(E ) = Jﬂ © pat ap ( (2a+2)/(0—2a—2)).
y 1/( 2

0-20-2)
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So the inverse function g:(cos 0) = (9(9(9'2?'2?/(?@+2)) and

0 |
g, (cos @) = éﬁjo g (cos 0) a0 = (elo-2a-2)/(2u2),
i

. —p_ .
We use the norm ||g0(cos O)llp w = sup ©° g (cos 0) and it follows
? x>0
20.+2
that g(cos 0) € L(z—5=—,~)

0'Neil's theorem 2.6 now states that if f € L(q.q) = Lq and

2042 . . 1 20+2-0
: —_— s » —_— ==
gce L(2a+2—o’ ) with the conditions 3 ) > 1, then

1 _1 g
Ic f € L(r,s) where r =9 2ov2

and any number s > q.
If we choose s = r theorem 5.3 1is proved.
We now define the fractional derivative of order o by

Dc f(cos 0) = AO'IQ—o f(cos 0).

Theorem 5.4.
Let 0 <o <t <2, Then D f € Lip(t-0) if f € Lip T.

Proof.

We have to show that Dc f(cos ©) = A I f(cos ©) exists and is in

© "2-0
Lip(t-0). We write

I f(cos 0)

2~-0 t 2 2

0

T
Jo {12 f(cos O,cos t) - I, f(cos 0)} A ge_o(cos t)

because of the selfadjointness of the operator At'

Then

D f(cos ©) = Ay I, ~ f(cos 0) =

™
= J {f(cos ©,cos t) - f(cos 0)} A &, (cos t) p(d’B)
o -0

p(a,B)

(t) at

™
J A {1, f(cos 0,cos t) - I, f(cos O)}gz_o(cos.t)p(a’B)(t)dt

(t)at
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exists, since the integral on the right converges absolutely and

uniformly. We have

m

D, f(cos @,cos ¢) - D f(cos 0) = J 8(0,t,0) A gQ—G(CQS t) o(u’s)(

t)dt
0

where A(0,t,¢) = f(cos O,cos t,cos ¢) - f(cos O,cos ¢) - f(cos O,cos t) +

+ f(cos 0). Clearly, by (1.16), A = @(t") ana regrouping terms we also

find that & = Y(¢"). Applying these estimates and (1.15) combined with

remark 4.2, we find
HDo f(cos @,cos ¢) - D_ f(cos o), =

¢ il
- J 9+ Lm0-20-2+20+1 L of J cy(t-o-2u—2+2a+1) at = %67,
0 o)

Remark 5.2.
Theorem 5.4 is valid for all positive values of ¢ and T with 0 < ¢ < T

except the case T - 0 = even integer. This can be done by using AO in

the same way as mentioned in remark 5.1.
As an application we give sufficient conditions for f(cos ©) to have
a uniformly convergent or an absolutely convergent Fourier-Jacobi

series. The partial sum S _(cos ©) of the series (1.7) can be written

N
as the convolution of D f(cos 0) for some o with a kernel gg(cos 0)

where

g

(a,B) P(Q’B)(1) Péa’s)(cos 0).

gN(cos 0) =1+ g (n(n+a+8+1))—2 w
° n=1 n n

If there exists a o, such that D_ f(cos ©) is continuous and gg (cos 0)
1 1

(G,B)(

is in L1(0,ﬂ) with respect to p ©) it follows from (1.13) that

N
IISN(cos o)|_ <A ||g01(cos G))H1 ||D01f(cos 0)| |,

which implies that f(cos ©) has an uniformly convergent Fourier-Jacobi

series. In order to find the behaviour of |g§ (cos 0)|, a straight-
1
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forward calculation similar to those in section 4, using a summation

by parts (lemma 2.1) and splitting up the sum in

[1/6] N
) and ) , leads to the estimate
n=1 n=[1/0] +1
0, -20-2 o,-a-B-1
ey (cos @) =00 (n20) ) if o, > a+ 3,
1
and in this case |lg§ (cos O)||1 < =,

1

From theorem 5.4 it follows that for certain o1 > o0 + 3 D0 f is still
1

continuous if f & Lip(a+3+e). Therefore if f € Lip(a+i+e) f(cos 0)

has a uniformly convergent Fourier-Jacobi series.

Let gc(cos 0) = lim gg(cos ©) as in (5.3).

N>

If there exists a o, such that D0 f(cos ©) is continuous and
2

gce(cos 0) is in the weighted L2(O,n) it follows from the Canchy-
Schwarz inequality, that f(cos ©) has an absolutely convergent Fourier-
Jacobi series.

From (5.7)it follows that'g0 (cos ©) is in the weighted L2(O,n) if

02 > o + 1. Therefore f(cos 8) has an absolutely convergent Fourier-
Jacobi series if f € Lip(at+i+e).

We have to mention that these results are not best possible, but

almost best possible, whereas the proofs are very simple. Best possible
results concerning uniform convergence are given by Agahanov and
Natanson [f] (or by the much older results of Gronwall [8] for
Legendre polynomials). For slightly better results on absolute

convergence we refer to the paper of Ganser Eﬂ.
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