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Volterra integral equations and semigroups of operators 
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o. Diekmann 

ABSTRACT 

In this paper we develop a semigroup approach for the study of Volterra 

integral equations of convolution type (renewal equations). Among other 

things we discuss the variation-of-constants formula, the adjoint semigroup 

and the decomposition of the state space according to the spectrum of the 

infinitesimal generator. 
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1. INTRODUCTION 

In the qualitative theory of ordinary differential equations, the vari

ation-of-constants formula 

t 

(1.1) x(t) = eB(t-cr)xcr + f eB(t-cr)h(T)dT 

cr 

takes in a key-position. It gives an explicit representation of the solu

tion of the forced linear system 

{x' (t) = :x(t) + h(t) 

x(cr) = x 

as a sum of two contributions, one of which describes the influence of the 

initial state x0 whereas the other describes the influence of the forcing 

function h. Starting from this formula one can discuss such things as lin

earized stability, the saddle point property (invariant manifolds) and bi

furcation phenomena. In other words, it enables one to describe the (local) 

behaviour of solutions of certain nonlinear problems in terms of the eigen

values of the matrix B (for instance, see HALE [4]). 

The success of the variation-of-constants formula is not restricted to 

ordinary differential equati0ns. Indeed, infinite-dimensional analogues of 

formula (1.1) provide the basis for the qualitative theory of functional 

differential equations (HALE [5]) and of semilinear parabolic differential 

equations (HENRY [6]). The objective of our research is to find a way of 

looking at Volterra integral equations of convolution type (renewal equa

tions) such that this general approach can be applied to this class of equa

tions as well. In this paper we shall describe the first (and most impor

tant) step in this direction, viz., we shall put on the stage the appropri

ate analogue of (1.1). It is our intention to apply in future work these 

ideas to nonlinear problems. 

RE 

So in this paper we consider the linear system of renewal equations 

t 

X(t) = f B(t-T)X(T)dT + f(t), 

0 
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which we shall frequently write in the form 

X = B*x + f. 

First of all, we observe that it is very easy to solve RE, i.e., to give 

an explicit representation for the unknown x in terms of the given kernel 

Band the given forcing function f (see Section 3). Remarkably enough this 

has had, in our opinion, a confusing influence on attempts to find the ana

logue of (1.1). In order to explain the conceptual difficulty involved, let 

us take cr = 0 in (1.2) and integrate the equation from Oto t. We arrive at 

t 

x(t) = f 
0 

0 
Bx(T)dT + X 

t 

+ f h(T)dT, 

0 

which is a special case of RE with B constant and 

t 

f(t) = xO + J h(T)dT. 

0 

Thus we see that f incorporates both the influence of the "initial state" 

x0 and the influence from the "outside world", the function h. As we noticed 

before, the essential feature in (1.1) was that both contributions were 

clearly separated! This motivates our plan to unravel the contributions to 

f and it leads to such questions as: 

- what does an autonomous problem look like in this context? 

what is the "state"-space for RE? 

- how can we associate with RE a semigroup of operators? 

At first we shall address these questions heuristically guided by an inter

pretation of RE in terms of the biological model of age-dependent popula

tion growth. But in the end we shall define a precise mathematical frame

work. 

Our results depend crucially on the restrictive assumption that the 

kernel B has compact support. By this assumption we are able to a,.ro:i.d some 

difficult mathematical problems which are traditionally thought to be in

herent in Volterra integral equations. It leads to a. fairly easy theory 

which is applicable to many concrete situations (especially in mathematical 

biology). Generalizations seem possible but laborious. 
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From the very beginning of our work we were striving for a theory which 

is as much alike the theory of retarded.functional differential equations 

as two peas in a pod. After the conceptual difficulty of defining the right 

setting had been overcome we could imitate quite easily many results and 

proofs of that theory. In order to bring this out clearly we adopt as much 

as possible the notation from Hale's stimulating and inspiring book [SJ. 

The organization of the paper is as follows. In Section 2 we collect 

a number of definitions etc •• In Section 3 we introduce the resolvent and 

we show how it yields explicitly the solution of RE. In Section 4 we de

scribe in some detail the intuitive ideas which underly the choice of the 

state space and in Section 5 we associate with RE a semigroup of operators 

working on that space. In Section 6 we pay attention to forced linear sys

tems and we derive the variation-of-constants formula. In Section 7 we cal

culate the adjoint semigroup and its infinitesimal generator. Moreover, we 

establish the connection between these and the adjoint equation. In Section 

8 we show how one can decompose the state space according to the spe~trum 

of the infinitesimal generator (and in the appendix we make some of the ob

jects involved more concrete). Finally, in Section 9 we demonstrate that 

the theory set forth in the preceding sections, can be a handy tool for 

solving qualitative problems by proving a Fredholm alternative for periodic 

solutions. 

2. ASSUMPTIONS, DEFINITIONS AND NOTATION 

In this section we gather together some information (which might be 

consulted while reading subsequent sections). 

Throughout this paper B denotes an nxn-matrix valued function defined 

on JR+= [0, 00), which is integrable and has compact support. So 

(2. 1) b := inf{$ I supp B c [0,$]} < 00 

loc The symbol L1 (JR+) will denote the space of locally integrable functions 

defined on JR+ with values in, depending on the situation at hand, the space 

of n-column vectors or n-row vectors or nxn-matrices. In general, it should 

be clear from the context to which of these spaces the range of a given 
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function belongs! 

(2. 2) 

(2. 3) 

The Laplace transform and the convolution product are defined as usual 

00 

g(;\) I -;\.t 
= e g(t)dt, 

0 
t 

B*f (t) = I B (t-T) f (T) dT. 

0 

For a given function x = x(t) we denote by x = x (t) its translate 
s s 

to the left over a distances: 

(2. 4) X (t) := X (t+s). 
s 

We shall write f E AC to denote that f is absolutely continuous and 

"f E Lip to denote that f is Lipschitz continuous (recall that in both cases 

f(t) = J~ f' (T)d-r + f(0) with f' E Lioc in the former and f' E L00 in the 

latter). 

For a given operator A on a Banach space X the spectrum of A will be 

denoted by o(A) and the point-spectrum by Po(A). 

If P and Qare linear subspaces of X and if each f EX can be written 

uniquely as f = p + q with p E_ P and q E Q, one writes X = P ~ Q and one 

says that Xis the direct sum of P and Q. 

3. PRELIMINARIES: THE RESOLVENT 

To begin with, let us do some formal calculations. Applying the Laplace 

transform to both sides of RE we obtain 

X =Bx+ f 

and subsequently 

- - -1-
x = (I - B) f. 

To this identity we may apply the inversion formula to obtain an explicit 
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expression for x. Unfortunately (I - B)-l is not the Laplace transform of a 

matrix-valued function (it tends to I as Re A ➔ +00). But if we split off 

the limit then probably the remaining part is! So we write 

X = f - Rf, 

where by definition 

(3. 1) 
- - -1-
R = -(I-B) B, 

(the minus sign is a matter of convention), and subsequently 

(3.2) X = f - R*f. 

-
Moreover, multiplying (3.1) with I - B we obtain 

- -
R = -B + BR 

and 

(3.3) R = -B + B*R. 

As a first step towards the justification of these manipulations, we 
- -1 . . . observe that (I - B) 1.s nonsingular 1.n a right-half plane. More precisely, 

there exists a real number "o such that det (I - B (A)) "I O for Re;>,. ~ ;i,_0 • 

This fact enables one to arrive at the following result. 

THEOREM 3.1. Equation (3.3) has a unique (matrix-valued) solution 
loc 

RE L1 (lR+). The function R, which is called the resolvent, has the follow-

ing properties: 

(i) -;>,.at the £"unction t 1+ R(t) e belongs to L1 (lR+) (so R is defined for 

ReA 2::: "o and satisfies (3.1) there); 

(ii) for any f E Lioc (lR+) the unique solution of RE is given by (3.2); 

(iii) R also satisfies the equation 
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R = -B + R*B 

(in other words, B*R = R*B). 

For the proof, which is based on the theorem of Wiener & Levy, we refer 

to PALEY & WIENER [15, Section 18], MILLER [12, Section IV.5 and Appendix 

I.4] or CORDUNEANU [3, Section I.3]. 

4. WHEN IS THE PROBLEM AUTONOMOUS? 

Let x(t) denote the frequency of newly born individuals in a closed 

population (of one sex) at time t. In a classical model from population 

dynamics one assumes that x satisfies the dynamical equation 

(4. 1) 

b 

x(t) = f B(T)x(t-T)dT. 

0 

Here the function Bis given as the product of two factors, one describing 

the fertility of an individual of age T and the other the chance that an 

arbitrary neonate will reach that age.Bis supposed to be known and to 

vanish for T ~ b. The model goes back to historical papers of A.J. Lotka 

(see KEYFITZ [9] or HOPPENSTEf,DT [8] for more details and references). 

The equation (4.1) is autonomous in the sense tnat it is translation 

invariant. This reflects the fact that the model does not take into account 

any time inhomogeneous effect from or interaction with the outside world. 

In order to obtain a well-defined initial value problem we suppose that 

equation (4.1) does only hold from some time on, say fort~ 0, and that we 

know at time t = 0 the relevant facts from the past: 

(4. 2) x(t)=cj)(t), -b :,; t :,; 0, 

where cjJ is a given function. 

The problem (4.1) - (4.2) can be rewritten as the usual renewal equa

tion RE (note that the model elucidates this name) with f given by 

(4.3) 



where LB: L1 (JR_) ➔ L1 (JR+) is defined by 

b 0 

(4.4) (LB<p) (t) := I B(T)<p(t-T)dT = I B (t-T) <p (T) dT. 

t t-b 

So it seems reasonable to call RE autonomous if f = LB<p for some <p. Note 

that in this case f vanishes fort~ b. 

7 

However, working in the incomplete space R(LB) is troublesome from a 

mathematical point of view. The remedy is obvious, we simply take the clo

sure. The next result gives concrete form to the outcome of this abstract 

·operation, in this special case of n = 1 (one equation). 

THEOREM 4.1. Let n = 1 then 

R(LB) = {f E L1 (JR+) I f(t) = 0 a.e. on (b,oo)} 

where 

b = inf{$ I supp B c [0,(3]}. 

PROOF. From functional analysis we know that 

and this motivates us to calculate the adjoint 

* L : L (JR ) ➔ L (JR ) • 
B 00 + 00 -

00 0 

<1/J,L <p> = f 1~ (t) I B (t--r) <p (-r) d-rdt 
B 

0 -oo 

0 00 

= f f ij,(t)B(t-T)dt<p(T)dT 

-00 0 
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So 

00 

(L;i/J) (t) = f 1/J(T)B(T-t)dT 

0 

b 

= f 1/J(T+t)B(T)dT, 

-t 

* ~ and in particular, L81/J vanishes for t ~ -b. Putting s = t + b and B (T) = 
B(b-T) we can write 

= 1 1/J(s-T)B(T)dT ~ = 1/J*B(s). 

0 

* Now suppose LBi/J = 0, then it follows from the theorem of Titchmarsh (see 

TITCHMARSH [18, p. 327]) that 1/J(s) = 0 a.e. on (~,a1) and B(s) = 0 a.e. on 

(0,a2) with a 1+a2 ~ b. The definitions of band B imply that a 2 = 0 and 

consequently a 1 ~ b. On the other hand, the condition a 1 ~bis also suffi-

* cient to have LBi/J = 0. Hence 

N (L;) = {i/J E L00 (Il\) I 1/J (t) = 0 a.e. on (0 ,b)} 

and the result follows. 0 

On the basis of these heuristic considerations we now choose as the 

underlying state space for the study of RE in the general case of arbitrary 

n, the Banach space 

( 4. 5) X = {f E L 1 (lR) I f (t) = 0 a.e. on (b, 00)} 

with the norm given by 

b 

llfll = f If<,> Id,. 

0 

We shall call RE autonomous iff f EX. 

REMARK. In a study of Volterra integrodifferential equations [13] Miller 
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uses a state space resembling R(LB). However, the space remains less con

crete and the interpretation less explicit. 

In the definition of X, the fact that the functions have compact sup

port is more important than the specific topology chosen. For instance, one 

can develop the theory in a space of continuous functions, or of L2-func

tions (if BE L2). Then all operators involved are formally the same as 

those to be discussed in the following sections, but the domains of defini

tion require an appropriate modification. 

5. THE SEMIGROUP T(s) AND ITS INFINITESIMAL GENERATOR A 

In this section we address ourselves to the problem of associating 

with RE a semigroup of bounded linear operators on the Banach space X. Sev

eral years ago, R.K. MILLER and G.R. SELL published a memoir [14] in which 

they constructed a topological dynamics framework for a much more general 

class of Volterra integral equations. The main idea of their approach is 

simple to describe. The equation corresponds to an initial value problem. 

If time has gone on for a while we can, in thoughts, do as if we start again 

with new data. The mapping from old to new data defines, similar to the case 

of ordinary differential equations, the dynamical system. In the present 

situation this idea amounts to the following. 

If we take in RE the argument equal to t+s then some straightforward 

manipulations yield the identity 

B(t-T)X (T)dT + f(t+s) + 
s 

which can be written as 

(5.1) X = B*x + T(s)f, 
s s 

if we define 

(5.2) T(s) = U(s) + V(s), 

s I B(t+s-,)x(,)d,, 

0 
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where 

(5.3) 

(5. 4) 

(U(s)f) (t) = f(t+s), 

(V (s) f) (t) 

s 

= J B(t+s-T)X(T)dT 

0 

= (B -B *R)*f(s) 
t t 

(the second expression for V(s)f is obtained by inserting the explicit for

mula (3.2) for x into the first). First of all we observe that, for fixed 

s ~ 0, U(s) and V(s) are well-defined as (linear) mappings from Lloc(IR) 
1 + 

into itself (for V(s) the proof follows the same lines as the proof of 

"g,h E L1 ~ g*h E L1 11 ). Clearly U(s) leaves X invariant and for V(s) we 

have the even stronger property that it maps all of Lioc(IR+) into X (note 

that Bt vanishes identically fort~ b). Standard estimates show that T(s) 

is bounded as a mapping from X into itself. We are now ready to formulate 

the first of our main results. 

THEOREM 5. 1. The mapping s 1+ T (s) from IR+ into L (X) defines a strongly 

continuous semigroup, i.e., 

(i) T(s)T(O) = T(t+a), 

(ii) T(0) = I, 

(iii) lim IIT(s)f- fll = 0, 
s-1-0 

s,cr ~ 0, 

Vf E x. 

PROOF. From (5.1) it follows that 

and 

= B*(x) + T(s)T(a)f 
CJ s 

X = B*X + T(s+a)f. cr+s a+s 

Since (x) = x this implies the identity (i) (note that we use implicit-as a+s 
ly the uniqueness of the solution of RE). The identity (ii) is a direct 

consequence of the definitions and (iii) follows from standard estimates 

(recall that translation is continuous in the L1-topology). D 



The infinitesimal generator A is defined by 

Af = lim T(s)f-f 
s 

si0 

11 

the domain of A being precisely the set of functions for which this limit 

exists. From the general theory we know that, for Re). sufficiently large, 

and 

-1 
V(A) =R((Al-A) ) 

CX) 

= f -11.s e T(s)f ds 

0 

(see, for instance, YOSHIDA [19, Section IX.4] or BUTZER & BERENS [2, Sec

tion I.3]). These formulas enable us to characterize V(A) and -to give con

crete form to A. 

THEOREM 5.2. 

V (A) = { f I f E AC and f' E X}. 

(Af) (t) = f' (t) + B (t) f (0). 

PROOF. Take any f EX and let g 
-1 = (11.I-A) f then 

CX) CX) 

g(t) = J e-11.s(T(s)f) (t)ds = J e-11.s{f(t+s) + (Bt-Bt*R)*f(s)}ds 

0 0 

CX) CX) 

t t 

Hence g E AC, 

g(0) = f(A) + B(A) (I-R(A) )f ().) = (I-R(A) )f(A) 

and 
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g'(t) = Ag(t)-f(t)-B(t)(I-R(A})f(A) = Ag(t}-f(t)-B(t)g(0), 

-1 
showing that g' e: x. From (AI-A) f = g we infer that Ag-f = Ag which, by 

cqmparison with the identity above, shows that 

(Ag) (t) = g' (t) + B(t)g (0). 

On the other hand, let now g be any function such that g e: AC and g' e: x. 
Define f e: X by 

f(t) = Ag(t) - g' (t) - B(t)g(0) 

-1 
and define he: X by h = (AI-A) f. We intend to show that h = g since this 

implies that g .e: V(A). It follows, as above, that 

f(t) = Ah(t) - h' (t) - B(t)h(0). 

So if we put z = g - h then 

Az(t) - z' (t) - B(t)z(0) = 0 

and consequently 

t 

At I -AT z(t) = e (I - e B(T)dT)z(0). 

0 

Finally, the fact that det(I-B(A)) ~ 0 implies that z e: X iff z(0) = 0 (and 

then z(t) = 0 for all t). D 

REMARK. Let x(t,f) denote the solution of RE and let f e: V(A). Then differ
dx 

entiation of RE shows that x(t,Af) = dt (t,f). 

THEOREM 5.3. The operator A is closed, has compact resolvent and 

cr(A) = Pcr(A) = {A I det t:.(A) = 0} 



where 

b(A) :=I-B(A). 

PROOF. Let us first concentrate on the eigenvalues of A. The eigenvalue 

problem Af = Af corresponds to the differential equation 

f' (t) = Af(t) - B(t)f(0), 

which has the solution 

t 

At J -As f(t) = e (I - e B(s)ds)f(0). 

0 

So if det b(A) = 0 we can achieve that f EX by choosing f(0) E N(t.(A)). 

Hence A is an eigenvalue of A in that case. 

13 

On the other hand, suppose now that det b(A) f 0. We shall show.that 

(A-AI)-l exists and is bounded and compact. With the abstract problem 

(A-AI)f = g there corresponds the differential equation 

f' (t) - Af(t) + B(t)f(O) = g{t), 

which has the solution 

t t 
At J -As f(t) = e {(I- e B(s)ds)f(0) + I -As 

e g(s)ds}. 

0 0 

We can achieve that f EX by choosing 

f (0) = - (b (A)) -lg (A). 

So f 
-1 

= (A-AI) g is given by 

t t 

(5. 5) f (t) = e At { I e -As g ( s) ds - (I - I -As -l-
e B(s)ds)(b(A)) g(A)} 

0 0 

b 

-As I e g (s) ds -
-As -l-

e B(s)ds(b(A)) g(A)}, 

t 
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and from this explicit expression the correctness of the theorem follows 

(see, for instance, KUFNER et al. [10, Th. 2.13.1] for the appropriate com-

pactness criterium). D 

At this point some remarks seem to be in order. The family of operators 

{T(s)} forms a strongly continuous semigroup on L1 (:m.+) as well. Then the 

infinitesimal generator is given by the same formal operator, the domain 

being the appropriate extension of V(A). However, in this setting the open 

left-half plane { ;\ I Re;\ < 0} belongs to the (point) spectrum of the infin

itesimal generator. This is the price one has to pay if one abandons the 

autonomous point of view! 

6. FORCED LINEAR SYSTEMS AND THE VARIATION-OF-CONSTANTS FORMULA 

At first, let us resume the heuristic exposition of Section 4. Suppose 

we perform an experiment, viz., we constantly add to the population neonates 

emanating from somewhere else. The equation then takes the form 

( 6 .1) 

b 

x(t) = I B(T)x(t-T)dT + h(t), 

0 

where h describes how many neonates are added. Since now the equation is 

nonautonomous (not translation-invariant), the exact time from which the 

equation is supposed to hold, matters. We denote this time by cr and we sup

plement (6.1) with the initial condition 

(6. 2) X (t) = <p (t), 
a 

-b :<=; t :<=; 0, 

i.e., we prescribe x on the interval -b+a :<=; t :<=; cr, but we choose our nota-

tion such that the data are made up of a function on the (a-independent) 

interval [-b,0]. Let f = L8 </> then (6.1) - (6.2) yields 

t 

x(t) = J B(t-T)x(T)dT + f(t-cr) + h(t), t:::: cr, 

a 

or, 



X (t) 
cr 

t 

= I 
0 

15 

B(t-T)X (T)dT + f(t) + h (t), 
cr cr t ~ o. 

The forcing function contains two terms, the state f and the "true" forcing 

h0 • Actually, f is the state at time cr. We embody this in the notation by 

writing f = f 0 • This leads to 

(6. 3) 

s Subsequently, we define, for s ~ cr, f by the formula 

(6. 4) x = B*x + fs + h, 
s s s 

the interpretation being that fs is the state at times, and we investigate 

the relation between fs and f 0 • It follows from (6.3), (6.4) and the defini

tion of T(s-cr) (as an operator on L~oc, at first) that 

Hence 

(6. 5) 

fs + h = T(s-cr) (f0 +h ). 
s cr 

s cr . 
f = T(s-cr)f + V(s-cr)h cr 

which shows that fs EX indeed. Already this formula can be termed, with 

some right, the variation-of-constants formula since it has the properties 

mentioned in the beginning of Section 1. However, we can gain a lot by elab

orating it a little bit more. 

From the definition of T(s) (cf. (5.2) - (5.4)) and the resolvent equa

tion (3.3) it follows that 

(6. 6) 

(The fact that we apply T(s) to a matrix-valued function should not lead 

to confusion; it works on each column separately.) Inserting this identity 

into the formula (5.4), which defines V(s), we obtain 
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( 6. 7) 

s 

(V(s)f)(t) = J (T(s-T)B)(t)f(T)dT., 

0 

which upon substitution into (6.5) yields 

(6. 8) 

s 

f 8 = T(s-cr)fcr + J T(s-T)Bh(T)dT. 

a 

This is the formula which we shall call the variation-of-constants formula. 

Note that, once the argument has been filled in, the integrand is an lRn

valued function, so that the integral has a well-defined meaning. We sum

marize the results of this section into the following theorem. 

THEOREM 6.1. Let h E Lioc (lR) be given. Also, let a E lR and fa E X be given. 

Define, fort?: er, x(t) as the unique solution of the renewal equation 

a 
X = B*X + f + h, a a a 

and define, for s ~ a, fs EX by the relation 

Then 

X 
s 

B*x + fs + h. 
s s 

s 

fs = T(s-cr)fcr + J T(s-T)Bh(T)dT. 

a 

REMARK. By formal differentiation of the variation-of-constants formula we 

obtain an inhomogeneous ordinary differential equation in the Banach space 

X: 

s 
Af + Bh (s) 

Hence the general theory of such equations can be made to bear on renewal 

equations. 

REMARK. On the basis of the considerations above one can, if one w~shes to 

do so, define a process on X, i.e., a two-parameter family of operators 

which satisfies a product relation analogous to the one for the solution 
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of a nonautonomous ordinary differential equation. 

REMARK. The definition of T(s) as given by (5.1) and the resolvent equation 

(3.3) imply that 

T(s)B = -R 
s 

+ B*R • 
s 

Consequently the following identity holds: 

7. THE ADJOINT SEMIGROUP AND ITS RELATION WITH THE ADJOINT EQUATION 

In order to obtain explicit representations of projection operators 

associated with a splitting of X according to the spectrum of A, it is use

ful to calculate adjoints. Moreover, this has some interest in itself. 

As a realization of the dual space we take 

* X = L00 (-b,O), 

the pairing being given by 

b 

<ijJ,f> = J ijJ(-T)f(T)dT. 

0 

Then some straightforward manipulations yield 

(7. 1) * (T (s) ijJ) (t) {

ijJ (t+s) 

= f~ ijJ{-T)Q(,,s+t)dT 

where by definition 

(7. 2) 

for -b ~ t ~ max{-s,-b} 

for max{-s,-b} ~ t ~ 0, 

It is known that the adjoint operators form a semigroup again which in 
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general, howev~r, need not be strongly continuous (see BUTZER & BERENS [2, 
. * Section I.4] or YOSIDA [19, Section IX.13]). Let x0 denote the set on which 

it is, i.e., 

* * I * x0 = { 1/J E X lim 11T ( s) 1/J - 1/J II * = 
s,l,-0 X 

From (7.1) we deduce that in this case 

(7.3) x; = {1/J I w E c[-b,O] and K(i/J) = O} 

where by definition 

(7. 4) 

b 

K(i/J) = 1/J(O) - f 1/J(-T)B(T)dT. 

0 

O}. 

*" Next we bend our thoughts towards the determination of A. We shall 

utilize the abstract results 

* * -1 V (A ) = R ( (AI-A ) ) 

and 

* -1 -1 * (AI-A) = ((AI-A) ) 

for Re A sufficiently large (YOSTIDA [ 19, Section IX. 13]) • 

THEOREM 7. 1 • 

V(A*) = {1/J I 1/J E Lip[-b,O] and K(i/J) = O}. 

* (A 1/J) (t) = 1/J' (t). 

-1 PROOF. Let f,g EX be related by f = (A-AI) g and suppose <~,f> = <1/J,g>, 

then it follows from the explicit formula (5.5) that 

b 

(7. 5) 1/J (t) AO f AO ~(-o)e do+ ~(-o)a(o)e do}, 

0 



where by definition 

(7. 6) 

b 

a(t) = -J 
t 

-AO -1 e B(o)do(~(A)) • 

We can rewrite this as 

-t 

1/J(t) = eAt{ijJ(O) - J ¢(-o)eA0 do}, 

0 

b 

ijJ (0) = I 
0 

AO 
¢(-o)a(o)e do. 

Since¢ E L00 , clearly l/J E Lip. Moreover, 

b b 

J ijJ(-cr)B(o)do 1/J (0) J 
-Ao 

= e B(cr)do -

0 

b 

= I 
0 

b 

= I 
0 

AT 
¢(-T)e fo(T) 

AT 
¢(-T)e et(T)dT 

or, in other words, K(ijJ) = 0. 

0 

b b 

J 
-ACT 

e B(cr)do - I 
0 T 

1/J (0) , 

b b 

I J 
AT -AO 

¢(-T)e e - B(cr)dOdT 

0 T 

-AO e B(cr)dcr}d, 

On the other hand, let now ijJ E Lip be given and such that K(ijJ) = 0. 

Since l/J E Lip it has a well-defined derivative¢' E L00 • Define¢ by 

¢ = ijJ ' - A 1/J then 

-t 

ijJ ( t) - f AO 
¢ (-0) e do}. 

0 

Hence 

b 

ijJ (0) = f ijJ(-o)B(o)dcr 

0 

b b b 

l/J (0) J 
-AO I AO I -AT 

= e B(o)do - ¢(-o)e e B(T)d,do, 

0 0 0 

19 
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or, 

b 

1/J (0) = J 
11.cr 

cf>(-cr)e a(cr)dcr. 

0 

Inserting this into the expression for 1/J we obtain 

-t b 

1/J(t) = e11.t{-J cf>(-cr)e11.crdcr + J cf>(-cr}a(cr)e11.crdcr}, 

0 0 

which upon comparison with (7.5) shows that 

-1 * 1/J = ( (A- AI) ) "cf> , 

* from which we conclude that 1/J E V(A ). This completes the characterization 

* of V(A). 

Hence 

* Finally, let f E V(A) and 1/J E V(A) then 

b b 

<i/J ,Af> = J 1/J (-T) f' (T) d-r + J 1/J (-'-T) B (T) d-rf (0) 

0 0 

b 

= 1/J(-T}f(T) ,: + J 1/J' (-T)f(-r)dT + 1/J(O)f(O) 

0 

b 

= J 1/J' (-T)f(T)d-r 

0 

* = <A l/J,f>. 

* (A 1/J) (t) = 1/J' (t). 0 

We observe that, in accordance with the abstract theory, V(A*) = x;. 
* * * * Let T0 (s) denote the restriction of T(s) to x0 • Then {T0 (s)} forms a 

* strongly continuous semigroup. Let A0 denote its infinitesimal generator 

* * with domain V(A0 ). It is known (Phillips' Theorem) that A0 is the largest 

restriction of A* with both domain and range in x~. In this case 

V(A;) = {i/J I 1/J E c1[-b,O] and K(i/J) = K(i/J') = O}, 
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as one can conclude from direct considerations as well. 

REMARK. 

Next we turn our attention to the adjoint equation, by which we mean 

b 

(7. 7) y(t) = I y(t-T)~(T)dT. 

0 

If we supplement (7.7) with the initial condition 

(7. 8) y (t) ljJ (t), -b st s 0, 

where ljJ E x* is given, it has a well-defined unique solution y E L:;oc (JI\). 

This can bei concluded most easily by rewriting (7. 7) - (7. 8) as the renewal 

equation 

t 

y (t) = I y(t-T)B(T)dT + g(t), 

0 

where 

b b 

g (t) = I lj;(t-T)B(T)dT = I lj;(-T)B(t+T)dT, 

t 0 

and by applying the results of Section 3. It follows that 

y = g - g*R, 

from which we deduce, fort>- 0, 

b t b 

y(t) = I lj;(-T)B(t+,)dT - f I ijJ(-T)B(a+T)dTR(t-a)da 

0 0 0 
b t b 

= I 1/J(-T){B(t+T) - I B(t-O+T)R(a)da}dT I 1/J(-T)Q(T,t)dT. 

0 0 0 
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Comparison with (7.1) leads to the identity 

* T(s) $ = y. s 

In words this says that the action of the adjoint semigroup corresponds to 

translation along trajectories of the adjoint equation. 

In the special case of a symmetric kernel B (so in particular for 

n = 1, the case of one equation) we can say even more. Then the equations 
* (7.7) and (4.1) are identical and the semigroups {T(s)} and {T(s) } con-

stitute just two different ways of looking at the same problem. In view of 
* Section 4 we can interpret the condition K($) = 0, which characterizes x0 , 

as a compatibility condition on an initial function. 

Since the spaces we are working in are not reflexive, the process of 

taking adjoints does not end. In fact, readers familiar with the theory of 

retarded functional differential equations might wonder why we did not start 

directly with the problem (7.7) - (7.8), defining the semigroup by transla

tion along the solution, and then take adjoints. This can be done, but it 

is technically more complicated. The semigroup thus defined is strongly 

* continuous only on x0 , a space which depends on the specific kernel B. So 

even the definition of the dual space needs more care in this situation. 

In our opinion, starting with· {T(s)} defined on Xis advantageous. 
*-If one chooses L00 (0,b) as the realization of X, instead of L00 (-b,0), 

the correct expressions are obtained from the corresponding ones above by 

performing a reflection of the time axis. Among other things, this changes 

the appearance of the adjoint equation which, in that case, defines a solu

tion backwards in time. Of course, everything remains essentially the same. 

In conclusion of this section we refer to BURNS & HERDMAN [1] for a 

treatment of related problems in the context of Volterra integrodifferential 

systems. 

8. DECOMPOSITION OF X 

Since A has compact resolvent we can apply the spectral theory for such 

operators (HILLE & PHILLIPS [7, Section 5.14]; also see TAYLOR [17, Th. 

5.8A p. 306]). It follows that for each A E cr(A) = Pcr(A) there exists a 
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smallest integer k = k(A) such that N(A-AI)k 

Moreover N(A-AI)k is finite dimensional and 

k+i 
= N(A-AI) for i = 1, 2, ••.• 

(8. 1) 

Let p = p(A) = dim N(A-AI)k and let F = F(A) be a basis for N(A-AI)k. Since 

N(A-AI)k is invariant under A (A commutes with A-AI!) there exists a pxp 

constant matrix D = D(A) such that 

(8. 2) AF= FD. 

From the fact that 0 = (A-AI)kF = F(D-AI)k we infer that A is the only 

eigenvalue of D. 

On the one hand we have the identity T(t)AF = T(t)FD and on the other 

T (t) AF = d~ T (t) F. Hence T (t) F satisfies the first order ordinary differen

tial equation :t T(t)F = T(t)FD, which, together with the initial condition 

T(0)F =IF= F, implies that 

(8. 3) T(t)F 
Dt 

= Fe 

We observe that this formula defines the action of T(t) on N(A-AI)k for all 

t E ( -co , co) ! 

On the account of the general theory again, we know that 

(i) 

(ii) 

* k * k+i N(A -AI) = N(A -AI) , 

* k dim N(A -AI) = p; 

(iii) R(A-AI)k = ~N(A*-AI)k. 

i = 1,2, ..• ; 

Let I¥= ll'(A) be a basis for N(A*-AI)k. From (8.1) and (iii) above we 

infer that <ll',F> is nonsingular and consequently we may assume that I¥ is 

constructed such that <ll',F> = I (here <ll',F> denotes the pxp-matrix with 

entries <$.,f.> where$. and f. are the basis elements which constitute I¥ 
i J i J 

and F, respectively). Hence 

* <A ll';F> = <'ll',AF> = <ll',F>D = D = D<ll',F>, 
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from which we conclude that 

(8. 3) 

and 

(8. 4) 

* * k The formula ( 8. 4) defines the action of T ( t) on fJ (A -AI) for all t E (-co ,co) • 

At this point the subspaces occurring in the splitting (8.1) (as well 

as the corresponding projection operators) are described in terms of the 

bases F and 1'1', which are abstractly defined. In the appendix we shall show 

how the elements of F and~ can be computed in terms of quantities related 

to L'I ( A) • 

Next, 

denote the 

under T (t) 

let A be a finite set {A 1 , •.. ,A } of eigenvalues of A and let P 
q k 

subspace spanned by F(A 1) , ... ,F(A). Since R(A-AI) is invariant - q 
(note that A and T(t) commute on V(A)) we can repeat the split-

ting described above. It follows that Xis decomposed by A as 

(8. 5) X = PEBQ, 

where both P and Qare invariant under T(t). On the finite dimensional sub

space P, the action of T(t) is described by an ordinary differential equa

tion. It remains to derive an exponential estimate for the action of T(t) 

on the complementary (infinite-dimensional, invariant) subspace Q (cf. HALE 

[5, Section 7.4]). 

In general the relation between the spectrum of A and that of T(t) can 

be quite complicated (see, for instance, the discussion by SLEMROD [16]). 

However, it is known that Pcr(T(t)) c etPcr(A) U {O} (HILLE & PHILLIPS [7, 

Th. 16.7.2, p. 467]). We know that T(t) = V(t) fort~ b. Since V(t): X + X 

is compact, we conclude that T(t) has only point spectrum for those values 

oft. So we have detailed information fort~ b. Next, exploiting the semi

group property one can convert this information into an estimate for T(t)f 

for all values oft. This is expressed in the following result, which is 

due to HALE [5, Lemma 4.2, p. 180]. 
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LEMMA 8.1. If for some r > 0 the spectral radius p = p(T(r)) # 0 and Bis 

defined by Br = log p , then, for any e: > 0, there is a constant K = K ( e:) ~ 1 

such that 

IIT(t)fff ::;; Ke (B+e:)tllfff for all t ~ 0. 

This lemma is the main technical tool in the proof of the next theorem 

(cf. HALE [5, Th. 4.1]). 

THEOREM 8. 2. For any real number B, let A = A ( 8) = 0. E Po (A) I Re A ~ S} 

and suppose Xis decomposed by A as in (8.5). TJ-En there exist positive con

stants Kandy such that 

t :S O. 

t ~ 0. 

p 0 
Here f and e- denote the projection of an arbitrary element f of X onto 

P and Q, respectively. 

PROOF. First of all we observe that A consists of finitely many eigenvalues, 

J.. 1 , ••• ,Aq say, and that o :=· sup{ReA I A E Po(A)\A} < 8. Let T(t) den~te 

the restriction of T(t) to Q. The compactness of T(o) implies that p(T(b)) = 
ob 

e and consequently, by Lemma 8.1, for any e: > 0 

t ~ o. 

If we choose e: < 8-o the desired result follows. 

Finally, the estimate for T(t)fp follows from the explicit expression 

(8.3) by noting that the set of eigenvalues of the matrix D = diag(D(J.. 1 ) , ••• 

••• ,D(A )) coincides with A. D 
q 

We observe that it follows from the theorem above that f = 0 is expo

nentially asymptotically stable if all the roots of the characteristic equa

tion det ~(A) = 0 have negative real parts. 
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In Theorem 8.2 we have obtained very useful information about autono

mous problems. ·As a next step we investigate how one can exploit the split

ting of X in the study of forced systems. More precisely, we want to obtain 

a_decomposition of the variation-of-constants formula (cf. HALE [5, Section 

7.6]). 

* LEMMA 8. 3. (A useful identity). Let a.,S E lR, f°' E x, 
h E Lloc (lR) be given. Let x denote the solution of 

1/Js EX and 

1 

a 
X = B*X + f + h a a a 

and let y denote the solution of the adjoint equation 

t::::: o, 

-b ~ t ~ O. 

Then 

s <y ,f > 
-s 

for a~ a~ s ~ -S. 

s 

= <y ,f0 > + f y(-,)h(,)d,, -a 
a 

PROOF. From the variation-of-constants formula (cf. Theorem 6.1) 

s 

fs = T(s-cr)f0 + J T(s-,)Bh(T)dT 

a 

s 

= T(s-cr)f0 + f Q(•,s-T)h(T)dT, 

a 
s 

we deduce that we can write <y_s,f > = c1 + c2 with 

and 

a c1 = <y ,T(s-cr)f > 
-s 

* a = <T (s-cr)y ,f > = 
-s 

a <y ,f > 
-a 



b s 

c2 - J y(-s-t) f Q(t,s-,)h(T)d,dt 

o a 

s b 

= f J y(-s-t)Q(t,s-T)dt h(T)d, 

a O 

s 

= I 
a 

s 

* (T (s) y ) (-T) h (T) dT 
-s 

= I y(-T)h(T)dT. □ 
a 

Let, as before, X be decomposed by A= {A 1 , ••• ,Aq} as P~Q and let 
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F = (F(A1), ..• ,F'(Aq)), '¥ = ('¥(A 1), ..• ,'¥(Aq)), D = diag(D(A 1), •.• ,D(Aq)). 

Since eDt'¥(0) is a solution of the homogeneous adjoint equation defined for 

-oo < t < 00 we can write 

s p s 
(f ) = F<'+' tf > 

s 

= F{<'¥ ,f0 > + J '¥(s-,)h(,)d,} s-a 
a 

s 

= FeD(s-cr)<'¥,f0 > + J FeD(s-T)'¥(0)h{,)d, 

a 

s 

= T(s-cr)F<'¥,f0 > + J T(s-T)F'¥(0)h(,)dT 

a 

s 

a p I p = T(s-cr) (f) + T(s-T)B h(T)dT, 

a 

where by definition 

BP= F'¥(0). 

Clearly this is a variation-of-constants formula involving only the P

component offs. Finally, using this formula, the variation-of-constants 
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formula (6.8) and (fs)Q = fs - (fs)P we obtain a similar formula for the 

Q-component: 

where 

s 

(fs)Q = T(s-cr) (fcr)Q + I T(s-T)BQh(T)dT, 

cr 

BQ = B - BP= B - Fo/(0). 

In conclusion of this section we observe that the calculations above also 

show that the coefficients of (fs)p with respect to the basis F satisfy 

an (inhomogeneous) ordinary differential equation. Indeed, if we define 

z (s) 
s = <'¥,f >, 

then 

s 

z (s) D(s-cr) ( ) = e z cr + f eD(s-T)o/(O)h(T)dT, 

cr 

and consequently 

z'(s) = Dz(s) + o/(0)h(s). 

9. A FREDHOLM ALTERNATIVE FOR PERIODIC SOLUTIONS 

P() d t h f · d' loc f t· h 11 1 · Let w1 eno et e set o w-perio ic L1 - unc ions. Wes a exp oit 

the machinery developed in the preceding sections in the proof of the fol

lowing theorem. 

THEOREM 9.1. For given h E P(w) there exists x E P(w) such that 

b 

(9. 1) x(t) = f B(T)x(t-T)dT + h(t), 

0 

if and only if 



(9. 2) 

w 

f y(-T)h(T)dT = 0, 

0 

for all w-periodic y EL~ which satisfy the homogeneous adjoint equation 

b 

(9.3) y(t) = I y(t-T)B(T)dT. 

0 
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PROOF. Leth E P(w) be given. Let fo be an arbitrary element of X and let 
0 

x = x(t;f) denote the solution of 

(9. 4) x = B*x + fo + h. 

We note that x satisfies (9.1) fort~ b. So if x E P(w) then, on account 

of the periodicity, (9.1) is satisfied for all values oft. So our problem 

is to determine necessary and sufficient conditions on h for the existence 

of fo Ex such that x(•;fo) E P(w). From the formula 

(9. 5) X 
w 

= B*x + fw + h, w w 

we deduce that x E P(w) if and only if fw = fo Since fw = T(w)fo + V(w)h 

it follows that we are interested in obtaining solutions in X of the opera

tor equation 

(9. 6) 
0 

(I-T(w))f = V(w)h. 

We recall that T(w) = U(w) + V(w) and that U(w) is nilpotent and V(w) com

pact (this follows from the definitions in a straightforward manner). Con

sequently I - T(w) has closed range and 

R(I-T(w)) = iN(I-T(w)*). 

So (9.6) has a solution if and only if <y,V(w)h> 

Furthermore, 

* = 0 for ally E N(I-T(w) ). 
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b w 

<y,V(w)h> = I y(-T) I Q(T,w-cr)h(cr)dcrdT 

0 0 

w b 

= I I y(-T)Q(T,w-cr)dT h(cr)dcr 

0 0 

w 

I * = (T(w) y) (-cr)h(cr)dcr 

0 

w 

= I y (-cr) h (cr) dcr. 

0 

Finally, we observe that there is a one-to-one correspondence (given by 

restriction or extension, respectively) between elements of N(I-T(w)*) and 

w-periodic solutions of the adjoint equation (9.3). D 



APPENDIX 

THE RANGE AND THE NULL SPACE OF (A-AI)k 

Our presentation follows closely HALE [5, Section 7.3]. 

· (A-AI)f = g implies 
1 

t t 
At 

fl (t) = e {(I - f -AS 
e B(s)ds)f1 (0) + f -AS 

e g(s)ds}. 

0 0 

By induction it follows that if (A-AI)kfk = g and (A-AI)fl = fl-l' 

l = k,k-1, •.. ,2, then 

(Al) 

(t-s) -As k-1 } 
(k-l)! e g(s)ds. 

0 
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Taking t = b, using the binomial expansion for (b-s)j and interchanging the 

order of the summation we find 

Ab = e 
k m-1 {k-m 

l (~-1)! i·--lo Pifk-i-m+l (0) + 
m=l 

b 

1 J k-m -As } + -(-k--m-)-! (-s) e g(s)ds, 

0 

where by definition 

(A2) 

Clearly 

(A3) 

1 di 
P. = -.-, -. A(A). 

1 i. dA 1 

fk E V(A-AI) 
k 

iff f (b) 
m 

m-1 
1 

= 

I P.f .(0) + 
(m-1) ! 

i=O 
i m-i 

0 form= 1, ••• ,k, i.e., iff 

b 

f m-1 -AS 
(-s) e g(s)ds = 0 form = 1, .•• ,k. 

0 

In order to arrive at a compact formulation of this condition we introduce 

matrices¾ of dimension (kn) x (kn) and column-vectors Fk and Gk as follows: 
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Po 0 0 0 

Pl Po 0 0 

p2 Pl Po 0 

I\ = 

Fk col(f1 (0), ... ,fk(0)), 

b 
-AS 

e g (s) ds, f -AS 
(-s)e g(s)ds, ... , 

0 
b 

1 
•.. ,(k-1)! f k-1 -As 

(-s) e g (s) ds) . 

0 

With this notation (A3) is equivalent to the condition 

(A4) = 0. 

THEOREM A. 1. 
k 

(i) N(A-AI)' consists of functions f of the form 

f (t) 
. A ek . 

(t-s) Je - sB (s) ds)~} , 
J. 

where E = col(e1 , ... ,ek) satisfies AkE = 0. 

(ii) g E R(A-AI)k iff CkGk = 0 for all row vectors Ck such that CkAk = 0. 

PROOF. 

(i) is a consequence of (A 1) and (A4 ) in the special case g = 0. 

(ii) is the standard solvability condition for the matrix equation (A4) as 

obtained from Fredholm's al terna ti ve. D 

Next·we calculate the null space of (A*-AI)k. Clearly (A*-AI)k¢k = 0 

implies 



¢k(8) = 

Hence 

k 

I 
m=l 

C 
m 

em-1 

(m-1) ! 
>.. 8 

e 

k-l m-1 

l cm+l c!-1) ! 
m=l 

>..e 
e 
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* l * and the condition (A ->..I) ¢k E V(A) for l. = O, .•. ,k-1, can be written as 

k-l 
l cm+l.Pm-1 = 0 

m=l 

or, in other words, as 

for l. = O, ... ,k-1, 

where by definition Ck= row(c 1 , ... ,ck). Thus we obtain 

THEOREM A. 2 .. 

(i) N(A*->..r)k consists of functions¢ of the form 

cp(8) 
>..e 

e 

where C = row(c 1 , .•. ,ck) satisfies CAk = 0. 

(ii) g E R(A->..I)k iff <¢,g> = 0 for all¢ E N(A*->..r)k. 

In the special case of one equation (n = 1) things simplify a little. 

Suppose P. -- 0 for 
l 

i == 0,1, ... ,M and PM+l =f o, 
b b 
r ->..s I i ->..s 

J 
e B(s)ds = 1, s e B(s)ds 

0 0 

and 

b 

J M+l ->..s 
s e B(s)ds =/ 0. 

0 
k 

From (A3) we deduce that g E R(A->..I) iff 

i. e • I 

= 0 for i = 1 , ... , M 
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b 

f m -:>ts 
s ·e g(s)ds = 0 form= 0,1, .•• ,min(M,k-1). 

0 

Moreover, it follows at once from Theorem A.l(i) that the dimension of the 

generalized eigenspace equals the multiplicity of;\ as a zero of det 6(:\). 

This is true in the general case as well, but the proof requires some more 

linear algebraic manipulations, We refer to LEVINGER [11] for a proof in 

the context of retarded functional differential equations which applies, 

mutatis mutandis, to the present situation equally well. 
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