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In this note we continue the dicussion started in
"Universal morphisms I", [1] . We obtain results concerning
the existeﬁce of universal morphisms or bimorphisms in
K(LO,7 ) and K(LO,# ); the study of dual-universal morphisms
in these categories is deferred to a subsequent note.

The same notation is used as in [1] ; propositions,
definitions and sections of [1] are referred to by their
number there.

é 5. The structure of order-preserving maps in linearly

ordered sets.

In the next section we will prove that e.g. K(LO,?Q)
contains universal morphisms and bimorphisms. In order to do
S0, we need some general results about order-preserving maps
of a linearly ordered set into itself.

A mapping ¢ of a linearly ordered set X into a linearly
ordered set Y is called order-preserving if for all xﬂ,xggé X

X/‘é Xg%X”“Pé X2@ °

A map ¢: X-+X is called increasing if for all xeX
X &€ X¢,

and decreasing if for all x¢ X

XX,

The map ® will be called a translation if it is either in-~
creasing or decreasing.

In the remainder of this section, X denotes a linearly
ordered set and ¢ : X—+X an order-preserving map. Further-
more, N will designate the set of all integers, and N' the
set of all non-negative integers.

Definition 1. If Se«X, then § ={xeX : agXxg¢ b for some
a,bes} . If S=8, S is called an interval in X. For certain
kinds of intervals we adapt the well-known bracket notation;
e.g.




Do

[a;b):{xeX: aéxftb}

+ n =7 #)
Definition 2. xAy <= (IneN' ) (x¢eTO(y)) .

n +§
Lemma 1. Xby & (In,m @N+)_ (ycpns x¢" & v )

Proof: evident.

Proposition 1. The relation A is an equivalence relation in X.

Proof. ,

; . m n m-+4
- Certainly always xAx.‘ Suppose X Ay; say y¢ ¢ X¢ ¢ yp .
Then xgong ycpmmé X«pnﬂ; herrﬁce yAnx. Suppose next x4y and y4 2;

mq+1
say Y‘Pm"x?n% y‘?mm and z¢ 44 ye 4«: Zp 1 . Then

m+m1 n+n1 m+m1+2
ze € X & ZY s hence x4A 2.

Proposition 2. If¢ is onto, then x4 y<> xe TO(y).

Prcof. "
Let yo ¢ x¢n§ y¢" . Then there are ae (y¢™")e * and

— /"\
be (yo")e n+1 such that as xg b ; i.e. xeTO(y).

Definition 3. If xeX, then A (x) denotes the & -equivalence
class of x3

A(X):{yex 3 xéy} :
moreover
by(x)={ye B(x)s yeyph;
bo(x)={y= A(x): yoye).
It follows that A (X): ={A(x) T Xe X} is a disjoint
covering of X. For each x we have A (x)= A,‘(x)u &z(x) ,
¢l A,l(x) is increasing, cggﬁg(x) is decreasing. Moreover,

A,‘(X)ﬂ &e(x) consists of all points of A(x) that are fixed
under @.

. e g o e W . R W s Gn e e R oy W e e e

*)  For the definition of TO(y), see §2.
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Proposition 3. b,(x) and 4,(x) are intervals, and y, <y, for
all y1§41(x),yé%&2(x). Moreover, ¢ maps Ai(x) into¥itself (1=1,2).

Proof.

Let ygé;ﬁ(x)é Vo y1@lﬁq(x). As y,8 ¥4, there are n,,n,
eN' such that y,¢ P y2§9n2. As ¥, < ¥4 % 'y,,wn", it follows that
Yo < Vo 5 s0 yo7 8,(x). ’

It is easily seen that 4(x) is an interval. It then fol-
lows that both 1331(x) and AQ(X) are intervals. If y¢yg , then
v+ ¥4 ; hence (4,(x))¢ € &,(x). Similarly (b,(x)ecd(x).

Corollary. Every & (x) contains at most one fixed point. If
a e f#(x) is a fixed point, then Yq¢ asy, for all y,‘éA,‘(x)
“and Yo Ae(x).

Proposition 4. If A(x) contains a fixed point a, then
A(x)=T0(a). If A(x) contains no fixed point, ¢|A(x) is a
translation. -

Proof.

Assume a e A (x) is fixed. As xAa, a@mé x¢n§ a%m+ﬂ, for
some m,n@N+, Then x«;pn=a, or x¢ T0(a). ‘

Assume @{A(x) is not a ’cr'ansJ.ationr.1 Let y& 8, (x),

+ N
Yot Ag(x). Let nqgneé-N Such that y, ¢ =» Vo = Then, by

n 1
prop.3, ¥.% 1 € Aq(x)rwéz(x); hence y,¢ 1 is a fixed point
under @.

Definition 4. A(x)# A(y) <« (Bach(x) (Bbedy) (aghb).

This is logically equivalent to:
(3.1) A(x)< &(y) = (Vaeh(x))(¥beh(y)) (a<b).

As A(X) consists of disjoint intervals, the next proposition
is evident.

Proposition 5. The set A(X) is linearly ordered by £ .

&
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This finishes the first stage of our analysis of ¢ . In
order to know the behavior of ¢ , it is sufficlent to know
the ordering of A(X) and the behavior of the maps ¢lA(x).

In the next stage we study the manner in which A (x) is
built up from the total orbits TO(y), ye A(x).

Proposition 6. Let x<x¢ . For every ye A(x), the set
TO(y)n [x;x¢) is an interval; if y<x and y¢ TO(x), there
1s a unique neN' such that y¢'e [x3x¢ ).

Proof.
Let a,beTO(y)n [x;x% ) and a< z ¢b. There are n,m@N"'
such that a(pn = bafm; then anaz a¢n$ x«pnm and x«pm € b@pm =

= ap" s xg m+1 1

It follows that xq;n%é X@ and chmé X&Pn+ .
If one of these two inequalities is an equality, we find that
z € TO(x) = TO(y). If both X@n«:x«pmﬂ and xcym«tx«pnM, then
n<m+1 and m< n+1, hence n=m, and zg" = ag" € TO(y).

Hence TO(y)n [x3x¢) 1s an interval. Now let y <x. As

n, m, ' n
yAx, x¢ € yp ', for some n,l,m,lé,N . A3 x&£x¢p ', we have
X € y@mq; let n be the smallest non-negative integer such that
xsy¢". As y<x, n £ 0; y@n"1< x = y¢ & x@. As
y¢ T0(x), yq»n< xcf«.:y«pnﬂ. This shows that for every
y¢x,7eM(x)NTO(x), there exists one and only one integer
neN such that yc?né [x:x¢).

If x>x¢ , similar results are obtained, (with [x;xy)
changed into (x¢;x7] ); in fact, we need only take into account
that if we reverse the ordering of X, then X remains linear-
ly ordered and ¢ remains order-preserving.

Corollary. Let x < x¢iifmd vy ¢A(x)\ TO(x). Then TO(y)n [x;x¢] is
an interval, |

If yeTO(x), then TO(y)n [x;x¢l= (T0(y)n [x;x¢) v ix@% need
not be an interval,
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Definition 4. Let 2(x) ={T0(y): y@A(x)% , and let ¢ be
the binary relation in 2_(x), defined as follows.
If A(x) contains a fixed point a, ¢ is the identity
relation in ¥ (x)={To0(a)} |
If A(x) contains no fixed point, and @3 A(x) is increasing
then, forS , 2@ 7.(x),

Sq € <}; 2@(&1@1@ ) (Eae S,‘) (gb@,s )(X‘P < a«b@x@n“)a

If A(x) contains no fixed point, and glA(x) is decreasing
then, for S,8,& Z(x),

' + ' +1 ) n
Sq 6, S, &> (IneN’) (Jaes,) (Eb@SE)(qun < aghe xp ).

Proposition 7. The relation gx linearly orders Z(x).
Proof.

To s:mel:LIy the notation, we will wrlte 7. and < instead
of Z(x) and € . It suffices to consider the case that A(x)
contains no flxed point and X< x@

Evidently S« 5, for all 8@2 Let Sq,S @aZ such that -

§ L]
S,‘ Sa and Sgé S,‘ Take n, meN' 3 a béS,‘, C, d@;sg, such that

x¢'s agde xcpnM :

. and

X&pmé ceb« x«pmm .

nH+ 3 pence it

Then an’ d@p, c%p and b@n € Exw , X
follows from prop.6 and its corollary that Sq=82,
Suppose now that §,¢ S5, and S,¢ S,. Let n,meN', aeS,,

)
b,ce S, and d eS8, such that

2 3
x»:gzné a<b< xqpnM 3

qumé cgd¢< qu)m-*—ﬂ .



It follows that

X@ﬂ@rwm < a@@m§ b@m & K%&)n+m+"13
n+tm ., _n n n+m+1
X¢ € cp € dp & X .
4
If bg" = x¢ "' , then beTO(x) ; both x and beTO(x)a[x;x¢)
hence, by prop.6, ae&T0(x), and 84=8, ¢ S,. Similarly,
n n+m+1 . 2 5
dg = x¢ implies S,¢ S,= Sj. Assume
X%?nﬂné a%@m é b?m < X&?1r1+m+’t
and “
x (Pn+m < c@né d@pn < X@E}nfkrrﬁ .
m n
Then, by prop.6, ayp « dg ; hence 84 S}'

Finally we must show that the relation ¢ 1is total.
Let S,, S.e¥ ; take y.e S, (i=1,2). As y,& x and y,A x, there
1 2 + i i n; n 1 2
are n,n,,n,& N’ such that y,¢ ~¢ x¢ (1=1,2).
It is easily seen that $;n [mpn; anm )f¢ (i=1,2); hence
either S,]é S2 or SQ§ S,‘.
Remark 1. As '?EO(:«:)%‘X S, for all Sey (x), the relation £
in general differs from éy , even if J (x)=3.(¥y).
Remark 2. Suppose A(x) contains no fixed point; let e.g.

XX . Then by logical inversion, we have

n+4 ;\’

(Vbes,n Exg@n;x@;}nm)) (a <b).

(3:2) 84 <, S, (VneN)(aesynlxgng

From this we conclude:

(3.3) If z eTO(x), then Sq 45 S, &> 5, £, S,
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This remains true 1f x> x¢ or if A(x) has a fixed point.

Proposition 8. Let ¢ be 1-1 and onto. If A(x) contains a
fixed point a, then A(x) = {a} . If x<x¢, then for every
ye A(x) the set TO(y)n [x;x¢) contains exactly one point.
Moreover, there 1s a unique neN such that y¢'e [x;x¢).
Similar results hold if x>x¢ . |

Proof.
If ag = a, then TO(a) _.{ } as = 1-1, and hence A(a)=

={a}.

Suppose x <x¢ ; let yeA(x), It 1s easily seen that
y«@n@ TO(y)n [x5x¢ ), for some neN, As yrpn",lc X and

yﬁpnﬂ?rx%the integer n is unique.

The third stage 1n these conslderations about order-
preserving maps consists of an analysis of one single total
orbit TO(x).

Definition 5. Let E be the followlng equivalence relation
in TO(x):

yEz @(ﬁneN'}‘) ('y(pn = z¢).
If yeTO(x), we denote by E(y) the equivalence clasgs of y:
| E(y) m{zeTO(x) s yEz % .

Proposition 9. Every E(y) is an interval in X. For each neN",
(E(y)@ cE(ye ﬂ If TO(x) contains no fixed point, then
n,meNT , n £ m imply

(BE(y))e"n (E(v )" = ¢

Proof.
Let y 6 2z¢¥o3 y,‘,yze.E(y); z ¢X. For some n@NJ',

n n ¢ n
Vof = I4P € 29 £ Y59 ; hence zeE(y).

I‘c is trivial that (E(y}q: = E(y¢"). Suppose ye TO(x);
,meN ,n#mg and ygaEycp
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There is a ke N such that y¢n+k = y@m+k. It follows that

TO(y)= TO(x) contains a fixed point.

Corollary. If TO(x) contains no fixed point, then TO(x) can
be written as the union of countable many intervals
(possibly void), each of which an E-equivalence class:
TO(X) = U En:
neN :
in such a way that Encp e En+'1' Moreover, if aeEn,b e,Em,n< m,
then a<b if x<x¢ , and a>b if x> X¢ .

§HwUniversal order~preserving mappings in linearly ordered
sets.

In this section we consider the category K(LO,#) of all
order~pfeserving maps of a linearly ordered set of power #
into another such a set.Except if the converse is explicitly
stated, it is assumed that# is transfinite.

The monomorphisms in K(LO, 72), and also in K(LO,%Z), are
the one-~to-one maps; the epimorphisms are the mappings onto.

In the introduction to [1] it was remarked already that
the existence of universal morphisms or bimorphisms implies
the existence of universal objects. For the categories that
we want to consider in this section, we are in the sad
position that the existence of universal objects is an open
problem for all ﬁ%?ﬁ%. (1f ﬁzsjﬁo, the set @ of all rational
numbers, with the usual ordering, is a well-known universal
object).

However, for those who are inclined to accept the
generalized continuum hypothesis as valid, there is no pro-
blem after all. For it follows from results of
W. Sierpinski [5] and L. Gillman 2] , that K(10, ¥ .)
contains a universal object if 2~ % =7 ouqs 1 & is a limit
number, then K(LO,X%) contains universal objects as soon as

Moy v
2 pé«E&B for all p<« .(A very short proof of these facts
is given in [47 .)
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We will prove that the existence of a universal object

suffices to guarantee the existence of universal morphisms and
bimorphisms:

Theorem 1. Let # be a transfinite cardinal, and suppose
K(LO,#2 ) contains a universal object. Then the categories

K(LG, #¢; and K(LO,#) contain universal morphisms and bi-
morphisms.

In particular we find that the categories K(LO, N ) and
K(Lo, BC ) contain universal morphisms and bimorphisms. Let
@O: S -=&~S be a universal bimorphism . If S,‘..S XQ, lexico~
graphically ordered and if @,‘. S,]-»»Sq is defined by

(X,I’) @4 = (X @O’r)

then it is immediate that @M is agaln a universal bimorphism.
But the order type of 84 is 7w, where v is the order type of Q
and @ 1s the order type of S ; and W& =% for every countable
order type « (see e.g. [3] Ch v §7) Thus S, is order-
isomorphic to Q.

Using similar arguments in the case of a universal
morphism, we arrive at

Theorem 2. The categories K(LO,T%B) and K(LO,]@O) admit a

universal bimorphism @)3Q“®Q and a universal morphism §%3Q§>Q
the object Q, - - .. mapped into itself by these morphisms,
being the set of rational numbers.

The proof of theorem 1 will be given in several steps.
Lemma 1. Let K = K(LO,#) contain a universal object A.
Then K contains a bimorphism T:T=+T with the property: for
every bimorphism ¢: B-»B in K, and for every xe«B, there
exists a 1-1 order-preserving map;& A(x)=>=T such that

M= (@A(x))p .
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Proof., .
Let E= {-1,0, 1}- , ordered as usual; we put T=FxNxA,

ordered lexicographically, and we define t©:T=T by

; (e’n:a)‘t‘ = (e:n"e:a):

for arbitrary (e,n,a)e T. Then T is a bimorphism of K.

Let ¢:B-+B be an arbitrary bimorphism of XK, and let
x eB. If X=x¢ , then A(x):{x} ; for xu we may then take any
point (o,n,a)e T. Suppose x# x¢ ; i.e. A(x) is infinite.

As A is universal,there exists a 1-1 order-preserving
map ¢: S-»A, where S= [x; x&p) if x<xe , and S:(xcp;x] if x»xe.
We now define AM: A(x)=->T as follows.

If ye A(x), there is a unique ne N such that y«p €S (by

¢ 3 prop.8). Put

n
J M= (e:e-n’-Y‘f" F),
‘where e= -1 if x<x¢p and e= +1 if X >x¢ .
We will show that u is af‘l»'] order~preserving map. Let
y1,y2@A(x), ¥4<¥o. Say x<x¢ . There are n,,nyeN such that
ny n, n,
V49 esS(1=1,2). If n,=ny, then y, ¢ '« yew s hence y,]/mayE,Ma
If ny # ny, we must have npn, (as n,<ngHy, ¢ 1<y ¢ "@é«p &S =y

y1<p ¢S); then e.n < e.n,, and again y ey . Similar if
X>X Q.

Finally, ms = (¢|A&(x))p . For let ye A(x), and let neN
such that yq:nes ; then

(e,e.n, y¢'e)T =

(e,e(n-1),(y¢) ?rM &)= Y@M,

it

y e

U]

Proposition 1. If K=K(LO,#) contains a universal object,
then K also contains universal bimorphisms.
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Proof.

let T : T=T be as described in lemma 1. Let A be a
universal obJject of K, and let S = AXT, ordered lexlico-
‘gr’aphically . Define @ S—»S by

(a,t)P = (a,t7T)

for arbitrary (a,t)eS. It is easily seen that @ is a
bimorphism of K. ’

Let ¢ : B-B be any bimorphism of K. The set A(B) 1s a
linearly ordered set of power & ; hence there is a 1-1 order-
preserving map J: A(B)=»A, For every De &(x), let Jp be a
1-1 order-preserving map D-T such that jLDt =@¢ID»uD ;s The
existence of My 1s guaranteed by lgmma 1,

We define map M : B—»A 1n the followlng way: 1f x ¢B,

“we putb

XW ((A(x))g £ XP’A(X))”

Then M 1s a monomorphism, For let x,yeB, x<y. If &(x)< &(y)
in A(B), then (&(x))d <(A(y))d , hence xpeyu. If xAy then

€

X}LA(X)& W&A(x)’ and agaln xfle y it .
Finally, p§ =M. For let xeB; then

il

((8(x))T 5 w8 =

((a(x))d , Xﬁkﬁ(x)t) =

xp§

(i

i

(BET , (5@ y(5)) = XEH,

as A(x) = b(x¢).
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Corollary. If K(LO,7) contains a universal object, it con-
tains universgl bimorphisms.

We have proved now half of theorem 1. The second half -
the existence of universal morphisms - 1is considerably more
complicated.

Lemma 2. Let K=K(1LO,72) contain a universal object A. then

K contains a morphism T, PduvPo, with the followling property.
If ¢ : B-»B is any morphlism of K, and 1f a 1s a fixed point
under @, then there exists a 1-1 order-preserving map Ab: &
A(a)«-—wo such that }L?ﬁo:(fp(A(a))iM .

Proof. :
Let Aoz {O}-, and,-forxaao, An+1 = AnxA, ordered
lexicograpically, Distinct sets An,'Am are disjoint. Let

s = U A ; if xeS, then w(x) designates the neN such that

n=0

xeAn.

It is immediate that S 1s linearlykordered by the relation
& defined by '

'xsyiév(qu)>w(y)) or (@(x)=w(y)= n, and x¢y in the
ordering of An).

If n»Q, we define ¢ 3 A A , a8 follows: if a'eA _, and

aeA, then
(a',a) o, = a'

let o  be the identitymap A » A  Iet ¢: S» S be the "union"

of the maps €t

w]An =0, s n=0,1,2,0000

Then & is increasing and order-preserving.
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Let ¢ : BB be any morphism of K, and let ag= a &B,
Then A(a) = T0(a). We will define a 1-1 order-preserving
map ¥ : A,(a)->S such that veo= (q#%(a))v A

Let D, = {a} s Dy = a¢'1\ Azz(a)’ Doy = Dn@'1 for
n »1. The sets D _, neN', are disjoint and cover A1(a).

We define v 3 Dowao in the only possible way: ay, = 0.

0
Suppose ¥ : D -A_ (n»0) already defined in such a way that

(1) », is 1-1 and order-preserving;

Then it is possible to define »_ 4 : D, A ., such that

Vo4q 2180 satisfies (1) and (11) (with all n's changed in
n+1's). For let bel%]; the set bqfq has power £ # . Hence
there 18 a 1-1 order-preserving map Ty ¢ b@'qawA, If x«aDn+4,
we define

XV q = (xqw%,XtX$).

Finally we define v : 4 (a)-»S by: v | D =¥, n=0,1,2,... .
Then ¥ 18 indeed a 1-1 order-preserving map, and v& =
(@]&1(3));4

It follows that there is also a 1-1 order-preserving map
T : T->T in K such that if ¢ : BB in K and if aeB, a=a¢ ,
there exists a 1-1 order-preserving map ¥v' . Ae(a)ﬁ@T such
that ¢'7 - (@ﬂﬂg(a))v'. We can take care that SAT consists
of exactly one point O, and that this point O 1s fixed under
both ¢ and T : 06=0=0%, Then we put PO= SuT, ordered such that
every aeS precedes every bel, and we define ‘mb:PocﬁPo by

ﬁbj S= 6; ﬁ%i T=7.

Lemma 3: Let K=K(LO,#) contain a universal object A. Then K
contains a morphism sb:NO«%NO with following property. If ¢:
B=»B- {8 any morphism of K, and if xeB such that TO(x) contains
no fixed point, while moreover |TO(x) is increasing, then
there exists a 1-1 order -preserving map jt: TO(x)u»NO such that

P o= (¢]To(x))p .
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Proof.
Let A" = A'x{1,2} U {’O% , ordered as follows:

(a,1) <0 < b,2) , for arbitrary a,be A
(a,i) ¢ (b,i) &= a<b (i=1,2)

Then A* is again a K-universal object. Even more 1is true:
if Y is any object of K, and y any point of ¥, there exists a
monomorphism % : Y—qu* such that ym = 0. Mn
For neN, let M ={keN : kan}» ,» and let C =A ", C=4).C .
~ If n#m, then C,0Cp = #. For xeC, we write w(x)=n iff x €C_ .
The set C is constructed in the same way as in the proof
of §2 lemma 3; let ¢: C—=C be defined as over there:
if xeC, , then x& is the point of C such that‘(x.@)i= X
for all iz n+1,
Let Xo be the element of CO such that X
let N, = TO(x,) and o, =6"NO. |
If x€C, then X eN_<&=» (Fkzw(x))(V¥izk) (xi=o). Hence
if x,yeaNO, the following integer is well defined:

n+1

i==O for all i» 0;

(4.1)  k(x,¥) = the smallest k €N such that k2 w(x),ks w(y),
mm(Vi>kM%;ﬁ).

The set NO is linearly ordered by the binary relation € such
that

(4.2) x<¢y & (W(x)< w(y)) or (w(x)=w(y) and X (x,7) € yk(XsY))'

It is immediately verified that in this ordering the map @o
is increasing and order-preserving.

Now let ¢ : B—=B be a morphism of K; let xe B such that
- TO(x) contains no fixed point, and let x<x¢ . We define a
1-1 map TO(x)a%»NO as in the proof of §2 lemma 4, with
slight modifications, in order to obtain an order-preserving
map.

. L. n + -1 =
In detail: let AO={A@ :neN $,A4=AO@ \‘Ao’An+1=An$ (n31).

If ngm, A nA = @. We first define i | (AJUA,).
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+.
If neN , let

. . _ n
‘I‘n = {uaNo. Ue = X 6, } .
Then ueT ¢+ w(u)= n-1 and (Vian)(ui=0). Hence u—u,_, 1s an
order-isomorphism of Tn onto A*; it follows that for every
neNt there 1s a 1-1 order-preserving map Tt (x¢P) ¢'4~an,
while in case n» 1 we can take care that

- n-1 " n-1
p Y t“ = X%, .
We put

p|(xe™)e™ =t

for each neN'. Then the map p is defined on all of A whA,. And
pJ(AOuA1) is 1-1 ani ordeg*presevving. For let y,,y,¢A VA, ;
¥4<¢¥o+ Then y, p= X¢L1$ X¢ 2 - yo¢(for certain nq,nzgrﬁﬁ. If
n,!<‘n2, then w(y,],u,)< w(yg,w), and hence y <y And 1f

n, = ny =N, then ‘

‘y,],u,-_- V4 Tn<¥g Ty = Vb

Moreover, one verifles at once that, for y@Adeq,
(4.3) YT, = Fopho

Assume now that #d(Adquu...uAn), n 2 1, is already de-
fined, in such a way that it is a 1-1 and order-preserving
map, and that (4.3) holds for all yeAUA, U.. WA . Let yeh ;
as card (y@'qkﬁm and as (yﬁgﬁb‘q’ is order-isomorphic to A¥,
there exists a 1-1 order-preserving map fy: yqqu%(yﬁaﬁb"qa

We put
-1
= T. ,
Flye y
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Then 4 1s defined, 1-1 and order-preserving on
AUAu...uh 4, and (4.3) holds for every yeA u...uh .

In this way we construct inductively a 1-1 order-pre-
serving map @ ‘I‘O(x)ef»NO such that me_ = @i,

Lemma 4. Let K=K(LO,m) contain a universal object A. Then K
contains a morphism Tyt P1~>P1 wlth the following property.
If ¢ : B=B 1is any morphism of K, and 1f xeB such that A (x)
contains no fixed points, while(ﬂA(x) is increasing, then
there exists a 1-1 order-preserving map ¥: A(x)w»qusuch
that vm= (¢]a(x))v.
Proof: ' :
Let U N q»N be the map deflned in lemma 3, and 1et
P1 be the set Nox A s linearly ordered in the followlng way°

if (x,a) and (y,b)eP1, then

(4.4) (x,a)¢(y,b)ep(w(x)cw(y)) or (w(x)=w(y) and a<b) or
(w(x)=w(y) and a=b and x¢y).

Define ™, P,‘mmf’,l by

(x,8) B = (x6,,2).

Then 7, is an increasing morphism of K.

Let ¢: B=+B be an arbitrary morphism of K, and let xeB
such that A(x) contains'no fixed point and x< x¢ . The set
Z.(x), ordered by €, (cf. §3 def. 4) 1s an object of K(IO,®);
hence there exists a 1-1 order-preserving map'k:i%;#A. In
the remainder of this proof we will Just write 3 and < for
Z.(x) and <

For every Sey we choosean n(S)e Nt and a y.eS such that

(%.5) X@n(s)é g < X n(8)+1,
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In case S=TO(x), we take n(S) = O and ys = X,
By lemma 3 there exists a 1-1 order-preserving map Mg
S=¢>No such that

Y Mg = %o8o %)
while

Mg = (@] S)pg.

We define v A(x)¢>P1 as follows: if yedl(x), and 8=TO(y),
then .
yV = (y’/u’s, S%).

We will show that v Satisfies the requirements set forth in

the lemma. , .
First we show that v%, = (¢la(x))v. Let yed(x), and let

S=TO(y). Then

yyYm = (Y}LSJSK)W/] = (Vf*s‘foﬁ S A)=

it

(yprg, SN)= yev,
as TO(ye) = S. ”

Now we show that ¥ 1s 1-1 and order-preserving. Let
Y V0s yq,ygeﬁ(x). Put 'I‘O(yi)z si(1=1,2). If 8,=8,=8, then
YaMg<Volgs 1t follows that elther w(yqpgk w(yopy) - implying
VeV - OP(ﬁ(yqﬂs) :‘”(yZMS)’ in which case also Y4¥<yo ¥
((4.4), third clause).

Therefore suppose S, # S,. Let m(yiﬂsi) = my (1=1,2).

In order to simplify the notation, we will write;&i instead

of)us1 and n, instead of n(si) (1=1,2).

If my< My then Y €YY . Suppose m=my=m; we must show

that S1< SE'
Let k 2 k(yigi,ysi), 1=1,2 (ef. (4.1)). Then k3 m,n,,n,.
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Moreover,
k-m k-m k-ni k—ni

V49 My =V = Vs 1% ‘“‘3’31“" My s

as py is 1-1, it follows that
k-m k—ni
yi(P = ysiq) .
By (4.5) and the fact that Y4<¥, and S, £ 82, we conclude

that
X(P 53’1@ .<y2q; *"X‘P

If y¢° ™ x¢®"", 1t follows from the derinition of < that
' 81@82, We will conclude the proof by showing that the

assumption y2¢ x$k+q leads to a contradiction.
If y2¢ - ¢k+ » then 8, = TO(x), hence n, = 0 and
Vg = X
S2

It follows that
k~-n k-n k+1
2
xcpkzystp =y2{P = X¢

and hence that A(x) contains a fixed point. This contradicts
our assumptions.

Lemma 5. If K=K(1LO,#) contains a universal object, then K
contains amorphism v: T-=T with the following property. If
¢ : B-»B is any morphism of K, and 1if x¢B, then there exlsts
a 1-1 order-preserving map & 3 &(x)=>T such that

= (¢(a(x))m .
Proof.
It follows from lemma U4 (reversing orderings) that there
exists a morphism Toot P2~®P2 with the property: if g B=B
in K, xeB, x> x¢, and 1f A(x) contains no fixed point,
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then there exists a 1-1 order-preserving map ¥ : A(x)«-@:P2
such that v, =(ela(x))r .

Let By: Ty=sTy (1=0,1,2) be a copy of Wy iP P,y
(where 'mb:Po—bPo is the morphism defined in lemma 2, and
Tyt P1=9=P1 is the morphism described in lemma %), such that
the sets TO,T1 and T2 are pairwise disjoint: we take as T
the set TSJTquTg, ordered suchythats.»

XO< X1 <X2

for arbltrary x,eT, (1=0,1,2), while on T, the ordering of
T coincides with the ordering of Ti. The map ¥ :T-=T is
defined by

Tlr, =T, (1=0,1,2).
We have now the means by which to prove the second half
of theorem 1.

Propogsition 2. If K=K(I1O,m) contains a universal object,
then K contains universal morphisms.

Proof,
" The proof is exactly parallel to the proof of prop. 9,

using lemma 5 instead of lemma 1.

Corollary. If K(DOﬁW) contalns a universal object, it contains
universal morphisms.

Remark 1. If # 1 is a finite cardinal, K(LO,m) evidently
contains no universal obJjects and hence no universal morphisms

or bimorphisms.

Remark 2. At the end of section 2 we remarked that theorem 41
of that section could be proved in a much simpler way, using
S-maps, if the cardinal number s has the property

. X,

Mm = .
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The same 1s true for theorem 1 of the present section. As
the proof of this theorem 1s so much more complicated, the
remark is even more relevant.

However, the class of all cardinals 72 such that m<=z
is cofinal in the class of all cardinals; and it contains
3% s the only cardinal number m for which we are really sure
that K(LO,n) contains universal objects. Hence the proofs

. of this sectlon are worthwhile,

(4
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