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Summary

Uncertainty quantification with dependent input data - including applica-
tions to offshore wind farms

Offshore wind energy is an alternative power source which is used among others
to increase the production of energy from renewable sources in the Netherlands.
Due to an increasing number of turbines and an increased amount of energy pro-
duced per turbine, the break-even point for profitable offshore wind farms without
subsidy is near.

A major issue for utilizing offshore wind farms are the uncertainties involved
in the construction and operation. These appear from different sources and in-
clude uncertainties in weather and climate conditions, uncertainties in the loads
on and damage of the constructions, and financial uncertainties. All of these are
complicated by the long timescales involved. It is therefore of the utmost impor-
tance to quantify the uncertainties properly.

To achieve this, different aspects of uncertainty quantification are studied and
combined into a framework in this thesis. The focus herein is on the case of
dependent input variables which are available in the form of data rather than
probability distributions. Also, a computational model to map input data to output
data is assumed to be available. However, due to numerical or physical complexity,
the number of available runs of this model is limited. For efficient mapping of
input uncertainty to output uncertainty, the main challenge is to select suitable
samples from the input data for which the model output is obtained. Additional
challenges are (i) quantifying the dependencies in the data and (ii) quantifying
the sensitivities of the model output with respect to the different input variables.
These activities are performed before and after the runs of the computational
model, respectively.

In this thesis, a method for sample selection is described which employs clus-
tering techniques. A good representation of the input data can be achieved at
relatively low computational cost, especially when the input data contains strong
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dependencies. Furthermore, an efficient approach for quantifying dependencies is
proposed which uses the concept of Rényi mutual information. A novel estimator
is presented in case only a ranking of the dependencies is required. Computational
efficiency is achieved by the application of minimum spanning trees. Sensitivity
analysis can also be performed by this method, although an emulator is required
to obtain predictions for more input data points. This because the number of in-
put/output combinations is too small for an accurate analysis. Furthermore, an
extension to distinguish between direct and indirect effects of input on the output
is suggested.

Finally, two applications of the framework in the domain of offshore wind
energy are studied. In general, the proposed framework works well and can be
applied in practice.



Samenvatting

Het kwantificeren van onzekerheden met afhankelijke input-gegevens
- inclusief toepassingen voor windparken op zee

Windenergie op zee is een van de alternatieve energiebronnen die in Nederland
worden gebruikt om de productie van hernieuwbare energie te verhogen. Het
omslagpunt waarbij windparken op zee kostendekkend worden zonder subsidie
komt steeds dichterbij, door het toenemend aantal turbines en een toenemende
hoeveelheid energie die per turbine geproduceerd wordt.

Een belangrijke kwestie voor het uitbaten van windparken op zee zijn de
onzekerheden die samenhangen met de constructie en exploitatie. Deze zijn
afkomstig uit verschillende bronnen en omvatten onzekerheden in weer- en kli-
maatcondities, onzekerheden in de krachten op en schade aan de constructies,
en financiële onzekerheden. Het kwantificeren van deze onzekerheden wordt be-
moeilijkt door de lange termijn waarop deze processen plaatsvinden en is daarom
van het hoogste belang.

Om dit te bereiken zijn in dit proefschrift verschillende aspecten van onze-
kerheidskwantificatie bestudeerd en gecombineerd in een raamwerk. Het hoofd-
thema hierin is het geval van afhankelijke input-variabelen die beschikbaar zijn
in de vorm van (meet)gegevens in plaats van kansverdelingen. Verder wordt aan-
genomen dat er een numeriek model beschikbaar is om input-gegevens te trans-
formeren naar output-gegevens. Echter, het aantal simulaties dat uitgevoerd kan
worden met dit model is beperkt door de numerieke of natuurkundige comple-
xiteit. De hoofduitdaging is dan het selecteren van specifieke input-waarden op
basis van de input-gegevens, die met behulp van het numerieke model worden
omgezet in output-waarden. Het doel hiervan is om input-onzekerheid efficiënt
te vertalen naar output-onzekerheid. Extra uitdagingen zijn (i) het kwantificeren
van afhankelijkheden in de input-gegevens en (ii) het kwantificeren van sensi-
tiviteit van de model-output ten aanzien van de verschillende input-variabelen.
Deze onderdelen van het raamwerk worden respectievelijk voor en na de simu-
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laties van het numerieke model uitgevoerd.
In dit proefschrift wordt een methode voor het selecteren van specifieke input-

waarden beschreven die gebruik maakt van clustertechnieken. Een goede repre-
sentatie van de input-gegevens kan bereikt worden met relatief kleine numerieke
inspanning, vooral wanneer de input-gegevens sterke afhankelijkheden bevatten.
Ook wordt er een efficiënte methode voorgesteld op basis van het concept van
wederzijdse informatie zoals gedefinieerd door Rényi. Een nieuwe schatter wordt
gepresenteerd voor het geval wanneer alleen een ordening van de afhankelijkhe-
den vereist is. Numerieke efficiëntie wordt bereikt door de toepassing van mini-
maal opspannende bomen. Sensitiviteitsanalyse kan ook worden uitgevoerd met
deze methode, alhoewel er een emulator nodig is voor het verkrijgen van voorspel-
lingen voor input-gegevens waarvoor geen output-gegevens bekend zijn. Dit komt
doordat het aantal combinaties van input-gegevens met output-gegevens te klein
is voor een nauwkeurige analyse. Verder wordt er een uitbreiding voorgesteld om
onderscheid te kunnen maken tussen directe en indirecte effecten van de input-
variabelen op de output-variabelen.

Tenslotte worden twee toepassingen van het raamwerk op het gebied van
windenergie op zee bestudeerd. In het algemeen werkt het raamwerk goed en
kan het worden toegepast in de praktijk.
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1 Introduction

Uncertainty quantification is a rapidly growing field of research which considers
the uncertainties arising in all aspects of computational science. Herein, natural
or artificial systems are studied by means of complex computational models. The
research in this thesis is inspired by the application of uncertainty quantification
to the field of offshore wind energy. We therefore introduce and illustrate the
topic of uncertainty quantification by offshore wind energy.

1.1 Offshore wind energy

Offshore wind energy is an alternative power source which is capable to signifi-
cantly help the Netherlands in the energy transition. The power output of off-
shore wind farms (OWFs) in the Netherlands has increased steadily [1] over the
last few years due to two developments. First, more and more OWFs are being
built and second, the turbines built are larger and produce more energy per tur-
bine. More experience is gathered by the construction and operation of these wind
farms which aids in the design of new farms. Because of these developments, the
break-even point for profitable wind farms without subsidy is near. The first ten-
ders which do not need subsidy have already been accepted [2,3] but these wind
farms have not been completed yet.

One of the largest issues in the construction and operation of OWFs is formed
by the uncertainties involved in it. These appear in every step in the process of
planning, building and maintaining an OWF. Note OWFs have a lifespan of at least
20 years, which leads to a large time horizon in which uncertainties can appear.
The uncertainties do not only appear in each step of the process, but also in each
aspect. One can think of uncertainties in weather and climate conditions next to
uncertainties in the loads on and damage of the constructions. Both influence the
energy production, just as energy losses due to downtime of turbines or the power
grid do. A third category of uncertainties are financial ones, e.g., in the cost of
building and maintenance, in the discount rate (to account for the effect of the
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2 CHAPTER 1. INTRODUCTION

value of money changing over time) and in the selling price of energy. Therefore, it
is of the utmost importance to quantify the uncertainties properly. Especially near
the break-even point, with improper quantification, this may imply that a wind
farm design may be incorrectly considered as (un)profitable, leading to misguided
decisions.

A computational model can be employed to quantify the uncertainties in the
energy production by computing the energy production when weather conditions
are given as input. This model is computationally too expensive to evaluate of-
ten and can therefore not be used to evaluate all possible weather conditions.
Moreover, a model cannot capture all processes occurring in reality due to the
computational cost. An extra complexity comes from the input variables being de-
pendent. One can think of northwestern storms being more frequently observed
in the Netherlands than southeastern storms, the relation between pressure and
temperature or snow only being observed in combination with low temperatures.

When the uncertainties are quantified, it can be determined which of them
can possibly be reduced. The research project EUROS (Excellence in Uncertainty
Reduction of Offshore wind Systems) has been set up with exactly this aim, namely
to develop tools to quantify and reduce uncertainties, and thereby to achieve a cost
reduction of wind energy. The research which is presented in this thesis is part of
this research project.

1.2 Uncertainty quantification

We introduce some mathematical notation to ease the problem description. The
complex computational model is denoted by u(·), while x denotes the (multivari-
ate) input. The output of the computational model is given by u(x). The main
setting of uncertainty quantification (UQ) is given in Figure 1.1.

input x computational
model u(·)

output
u(x)

post-
processing

quantities
of interest

Figure 1.1: Uncertainty quantifcation.

It concerns a system consisting of a computational model together with its
input and output. The output is post-processed to obtain specific quantities of
interest. The computational model may be seen as a black-box, i.e., its exact
functioning can be unknown to the analyst. The problem in UQ is usually the
complexity of the system under consideration. For instance, the input can be
high-dimensional or input data can have missing data. The process can have high
complexity as well, for example a high number of parameters or long computation
times, which restricts the number of evaluations. Note that the process is usually



1.2. UNCERTAINTY QUANTIFICATION 3

a computational model of several physical processes, which contains uncertainty
in itself as the model is typically not error-free. The combination of input and
process will give the output of the system, for which one needs to quantify the
uncertainties.

Due to the complexities, the number of evaluations of the computational model
that one can afford is often limited. Therefore, the values of the input variables at
which the computational model is evaluated, also called samples and denoted by
{z j}Lj=1 in case of L evaluations, need to be chosen carefully. This also has an ef-
fect on the subsequent parts of the uncertainty quantification, such as building an
emulator or performing a sensitivity analysis. An emulator (or surrogate model)
is a computationally cheap and thereby fast approximation of the computational
model u(x) [4]. In sensitivity analysis, the aim is to assess how sensitive the output
uncertainty is to uncertainties in different input parameters [5]. Both activities
rely on the selected input values and its model output {u(z j)}Lj=1. Therefore, the
quantities of interest also depend on the chosen samples.

When there is uncertainty in the input x, then this uncertainty will be propa-
gated by the model to the model output u(x). The input x is usually multivariate
and can be independent or dependent. Not only is dependency an important
characteristic of the system, it also needs to be reflected in the uncertainty quan-
tification. When dependencies in the input are correctly taken into account in
the selection of samples, their effect will be propagated by u(·) to {u(z j)}Lj=1 and
taken into account in the remainder of the uncertainty quantification. The prob-
ability distribution of the input is not always known. It is also possible that the
information we have about the input is in the form of data rather than probability
distributions. We illustrate two characteristics of the input in Figure 1.2, where
two-dimensional data is shown as input by dots; each dot represents a data point.
First, the marginal distributions of the two data sets differ, as one has uniform
marginals and the other one has normal marginals. Second, one of the data sets
has independent variables, while the other has dependent variables. When this
data would be propagated through the computational model, the cumulative dis-
tribution function (CDF) of the output u(x) would differ. For a more extensive
introduction and overview of the field of UQ, see e.g., [6–10].

The setting for UQ we consider is the following: the input is given by a large
data set (i.e., many data points), of which the underlying joint and marginal prob-
ability distributions are unknown. Because of the complexity of the computational
model, only a few evaluations of it can be performed. Furthermore, we especially
focus on the case where the input variables are dependent. Most UQ methods avai-
lable assume the input variables are independent and these methods can therefore
not effectively be used on dependent data. Our goal is to develop methods for un-
certainty quantification which are able to handle dependent input variables.
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1.3 Framework

The need for uncertainty quantification is not limited to offshore wind energy;
fluid flow problems [6,11] such as flow around an airfoil or lid-driven cavity flow
are often used as examples. Other problems which can be considered [10] are heat
transfer, mechanical problems such as the simply supported beam, or ecological
problems such as climate predictions [12]. General stochastic systems are studied
in [13].

Our goal is to formulate and develop a framework which is able to perform
UQ (including dependency analysis, uncertainty propagation and sensitivity ana-
lysis), irrespective of the underlying application. In this way, it is broadly appli-
cable. This framework is given in Figure 1.3, where red boxes denote activities
and black ovals denote input or output of these activities. It can be applied when
both input data and a simulator of the process are given. We shortly explain the
framework, after which we zoom in on the individual topics. The first activity is
the dependency analysis in order to determine which type of sample selection is
suitable. We will then focus on sample selection for dependent input data. These
samples are evaluated by the simulator, which is not the focus of this thesis. As
the number of evaluations of this simulator is limited because of computational
cost, predictions can be made for additional input data by an emulator, which is
a statistical model built to replace the simulator. Both the simulator and the emu-
lator output can be used to obtain estimates for the quantities of interest, such as
the power output of an OWF. These output values can also be used to perform a
sensitivity analysis. Until now, the flow of information is from input to output and
not vice-versa. During the evaluation of the framework, more and more informa-
tion becomes available and it would be attractive if this can be used to improve

computational
model u(·)

−1 0 1 2
u(x)

0.0

0.5

1.0

CD
F

Figure 1.2: Multivariate uncertainty propagation with dependencies.
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the UQ. Therefore, it is useful to add a feedback loop to the sample selection, such
that not all available simulations are performed immediately, but some remain to
be added if more information is available.

1.3.1 Dependency analysis

A complication for most applications nowadays is that in many existing UQ meth-
ods it is assumed that all input variables are independent. This is a rather strict
assumption which can affect the results to a large extent. In the case of OWFs,
high wind speeds correspond often to high wave heights. They both affect the
mechanical load on the wind turbines and can thereby influence fatigue or even
service life. A wind turbine which is designed to withstand an extreme wind gust
or extreme wave height occurring independently of each other may fail if they
occur at the same time.

For these reasons, the first step in the framework is to investigate the presence
of dependencies in data sets and this is studied in Chapter 2. Our first contribution
is a method to detect these dependencies fast. They may confirm general know-
ledge or lead to new insights. The method is based on the mathematical concept
of minimum spanning trees (MSTs) and has a strong theoretical foundation in the
information-theoretic concepts of entropy and divergence.

1.3.2 Sample selection

The presence of dependencies implies that most sample selection methods (for
example, stochastic collocation or Latin hypercube sampling) are not suitable as
they assume independent input variables. These methods often lead to tensor
grids or their sparse counterparts and are vulnerable to the curse of dimensional-
ity. If in each variable, two values are selected, and 10 variables are included, this
leads already to 210 = 1024 samples. Also, because of the dependencies, this may
lead to samples in regions of the domain with very low or zero density. Another
issue here is that several methods not only assume independence, but also know-
ledge of the (marginal) input distribution(s). This is not realistic in our case, in
which we consider e.g. wind speed and wave height, for which generally no ex-
plicit input distribution is known. One can think of the wind speed which is often
modeled as a Weibull distribution [14], although there is no physical explanation
for this.

Our second contribution is therefore a sample selection method which works
for dependent data and does not require knowledge of the input probability dis-
tribution. This work is detailed in Chapter 3. The main insight is to use clustering
methods established in exploratory data mining, in which working with data is
much more common. These methods give sample points at which the computa-
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Figure 1.3: The proposed framework.
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tional model is to be evaluated, together with weights of these points on which
a quadrature rule can be based. A quadrature rule is an approximation of the
integral of a function over a specified domain by computing a weighted sum of
function values at specified locations in the domain. Here, this integral usually
represents the expectation of the function u(x) with respect to a certain input
probability distribution.

1.3.3 Post-processing

Since it is hard to obtain reliable estimates for the quantities of interest from only
the output of the samples, one usually applies post-processing. In a very basic
setting, one constructs a quadrature rule based on the sample selection method.
This quadrature rule is equivalent to integration of an emulator that consists of a
piece-wise constant approximation of u(x). In a less basic setting, one constructs a
more advanced emulator which can predict the output for other input data points
(other than the data points used for constructing the emulator) as well. Note that
these are predictions based on a statistical model and they carry extra uncertainty
with them. We study a specific type of emulators, namely Gaussian processes, in
Chapter 4.

Chapter 5 treats the topic of sensitivity analysis. Often, sensitivity analysis
is performed by computing sensitivity indices. We start with sensitivity indices
derived previously in literature and we propose to compute them with emulated
output obtained from a Gaussian process as detailed in Chapter 4. We also suggest
to estimate them with minimum spanning trees, similar to the estimator used in
Chapter 2, in contrast to the original estimator which uses kernel density estima-
tion.

An open problem here is to discern between causation and correlation (depen-
dency). In the case of an OWF, the power output can have a high sensitivity with
respect to both wind speed and wave height. However, one is not inclined to say
the wave height is a cause of the power output, but they are dependent through
their relation with wind speed. In these cases, we want to be able to distinguish
between these two types of sensitivity. Therefore, a second type of sensitivity in-
dices has been developed as well, which supports the first type. The combination
of these improvements for sensitivity analysis is our third main contribution.

We have now reached the end of the information flow in Figure 1.3 and are
going to move back in the direction of information. The information delivered
in the sensitivity analysis can be used if extra samples for the same process are
later available. One can then add the remaining samples in such a way that they
are most beneficial given the current knowledge enclosed in the emulator and the
sensitivity analysis.

We propose a two-stage sampling method in Chapter 6. The first stage can
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be chosen at will, while the second stage is constructed in a special way. It is
based on clustering combined with some properties of the emulator described in
Chapter 4. An advantage of this method is the decrease of the prediction variance
after updating the Gaussian process, which makes the estimates obtained with the
emulator more precise.

1.3.4 Test cases

Chapters 2 to 6 give detailed information about the steps in the framework illus-
trated in Figure 1.3. Chapters 7 and 8 contain test cases to illustrate the use of
the framework or parts thereof.

The complete process will be studied in Chapter 7 for a test case regarding in-
put data from Meteomast IJmuiden [15]. This is a meteorological mast located in
the North Sea, approximately 75km west of the IJmuiden coast (the Netherlands).
Several atmospheric conditions such as wind speed and direction, air pressure and
temperature have been measured at several heights, together with sea conditions.
The data has been post-processed and is publicly available online. This data is
combined with a computational model of Horns Rev I. This offshore wind farm in
Denmark is well known in the wind energy community [16–19] for its wind tur-
bine wakes. Despite the complexity of the model, it can be evaluated fast, which
makes it suitable to compute the accuracy of the studied methods.

In Chapter 8, we will take a slightly different approach. Although the same
computational model is used, the data differs and is obtained from the Royal
Netherlands Meteorological Institute (KNMI). Here, the quantity of interest is the
levelized cost of energy and we investigate how this quantity depends on the
weather data used to perform the energy calculations.

Concluding remarks and suggestions for future research are given in Chapter
9.

1.4 Setting and implementation

The setting of this thesis is to be understandable for a more general audience than
mathematicians only. Therefore, we indicate sections which are theoretic or very
technical of nature and which are not required for a general understanding of the
treated topics by a star (⋆).

Most chapters in this thesis contain extensive numerical results. These are not
obtained by the use of computing clusters or supercomputer facilities, but by a
single laptop or desktop computer instead. Therefore, no computational hurdles
are raised against the implementation and use of the proposed methods. The
developed code together with an example is published online with the digital
object identifier 10.5281/zenodo.3235924.

http://dx.doi.org/10.5281/zenodo.3235924


2 Dependency analysis

The goal of this chapter is to develop a method to detect dependencies in data.
These may confirm general knowledge or lead to new insights. Furthermore, this
serves as a precursor for the sensitivity analysis studied in Chapter 5.

2.1 Introduction

The question to what extent random variables are dependent emerges in various
places. In uncertainty quantification (UQ), the uncertainties in simulation models
of complex systems are explored, for example by assessing what the probability
distribution of the simulation output is given the probability distribution(s) of vari-
ous uncertain model input variables [6,9,10]. Many methods in UQ are designed
for situations where the random input variables are mutually independent, hence
the (in)dependence of these inputs is of obvious importance.

A topic in UQ that is particularly relevant for this study is sensitivity analysis,
where it is investigated which random inputs induce the largest uncertainties in
the simulation output [5, 20, 21]. Sensitivity analysis is closely related to the
question how strongly dependent the output is on the individual input variables.
By quantifying these dependencies, one can order the inputs by the extent to
which the output is dependent on them (from strongly to weakly dependent),
providing relevant information for sensitivity analysis.

In this chapter we consider quantification of dependencies between random
variables in situations where (i) the distribution of the random variables is un-
known and only a given, finite sample from the joint distribution is available, and
where (ii) the dependencies can be nonlinear, in contrast to dependencies in mul-
tivariate Gaussian distributions. It is well-known that information theory forms a
suitable framework to deal with non-Gaussian distributions and nonlinear depen-

Mainly based on A. Eggels and D. Crommelin, “Quantifying Data Dependencies with Rényi
Mutual Information and Minimum Spanning Trees,” Entropy, vol. 21, no. 2, article no. 100, 2019.

9
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dencies [22]. However, information-theoretic quantities such as Shannon entropy
and Kullback-Leibler (KL) divergence are formulated in terms of probability dis-
tributions or probability density functions, precluding their exact computation if
the distribution is unknown.

As an alternative, one can estimate entropy (and related quantities) from sam-
ple data. Such estimation is nontrivial however. A typical approach is to use a
plug-in estimator for the probability density (e.g. by binning or by kernel den-
sity estimation) to compute (an estimate of) the entropy. This approach faces
problems relating to the difficulties of estimating densities, see e.g. [23] for a dis-
cussion. To bypass these problems, Hero et al. [23–25] proposed an appealing
and elegant method for estimating entropies from data by computing minimum
spanning trees (MSTs) of the data and using the length of the MST in an esti-
mator for Rényi entropy. This method does not require estimation of probability
densities. In this chapter, we employ the method from [23–25] for quantifying de-
pendencies, by using the length of the MST as a measure of dependence between
random variables.

In principle, MSTs can be computed exactly, with algorithms due to Kruskal
[26] and Prim [27]. However, these algorithms become expensive in case of large
data sets. Therefore we test several approximate methods to compute the MST
length with strongly reduced computational cost.

Our main contribution is to accelerate the method in [23] by computing an ap-
proximate rather than an exact MST. In the era of data science, it is expected that
large data sets will appear where a speedup of the computations is desirable. The
question herein is whether the approximation is accurate enough to replace the
costly but exact MST. Our second contribution is that we show that it is not neces-
sary to compute the Rényi divergence to quantify dependence for the purpose of
ranking dependency strength between different random variables. An estimator
derived from it is equally informative yet easier to compute.

Although the present chapter is concerned primarily with dependency analysis
rather than sensitivity analysis, the latter is an important motivation for the work
reported here. We will employ the tools developed here for sensitivity analysis
in Chapter 5, and note that the relevance of entropy estimation for sensitivity
analysis was discussed before in e.g. [28, 29]. These studies rely, however, on
density estimation to compute entropy. The MST approach to entropy estimation
from [23–25] has to our knowledge not been considered before in the context of
dependency analysis and sensitivity analysis.

This chapter is organized as follows: In Section 2.2 we summarize some theory
regarding entropy and we relate Rényi entropy to Rényi divergence. Furthermore,
we discuss the estimation of Rényi entropy with the MST. Next, in Section 2.3
the approximation methods for computing the MST are discussed. Section 2.4
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consists of validating the proposed estimator and determining the consistency and
robustness of the approximations to it. In Section 2.5 we apply the proposed
methods to several test cases. Section 2.6 concludes the present chapter.

2.2 Dependence and entropy ⋆

We summarize a few basic definitions and concepts in Sections 2.2.1 and 2.2.2.
Section 2.2.3 describes the estimator of Rényi entropy as developed in [23]. This
paves the way for defining our proposed estimator for dependency between ran-
dom variables in Section 2.2.4. This estimator is related to, but not equal to the
Rényi mutual information. Section 2.2.5 concerns a proof-of-concept.

2.2.1 Rényi entropy and divergence

Rényi entropy is a generalization of the Shannon entropy. The latter, also known
as differential entropy in the continuous case, is defined as (see e.g. [22])

H(X ) = −
∫
Ω

p(x) log(p(x))dx , (2.1)

where p(x) is the probability density function of the continuous random variable
X , and Ω is the domain of X . The generalization by Rényi reads

Hα(X ) =
1

1−α log

�∫
Ω

(p(x))α dx

�
, (2.2)

for α ∈ (0,∞), see [22]. In the limit α→ 1, the Rényi entropy (2.2), sometimes
referred to as α-entropy, converges to the differential entropy (2.1).

Related to the Rényi entropy (2.2) is the Rényi divergence [30] of a probability
density function f (x) with respect to another probability density function g(x):

Dα( f , g) =
1
α− 1

log

�∫
Ω

�
f (x)
g(x)

�α
g(x)dx

�
. (2.3)

This divergence is well-defined if g dominates f (i.e., f (x∗) = 0 for all x∗ where
g(x∗) = 0). It converges to the Kullback-Leibler (KL) divergence DKL( f , g) =∫

f (x) log( f (x)/g(x))dx forα→ 1. If f = g almost everywhere we have Dα( f , g)
= 0, otherwise Dα( f , g)> 0.
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2.2.2 Entropy as measure of dependence

It is well-known that the dependence between two random variables Y and Z can
be characterized by their mutual information, i.e. the difference between the sum
of the Shannon entropies of Y and Z individually and the Shannon entropy of
(Y, Z) jointly.

I(Y, Z) = H(Y ) +H(Z)−H(Y, Z) ,

where H(Y, Z) is the joint entropy of Y and Z (see [22]). Shannon entropy can
also be defined by the KL divergence of the joint density g yz(y, z) with respect to
g̃ yz(y, z), the product of the marginal densities g y(y) and gz(z) (where g y(y) =∫

g yz(y, z)dz and gz(z) =
∫

g yz(y, z)dy).
We can generalize this information-theoretic characterization of dependence

by using Rényi rather than KL divergence. Thus, we quantify dependence by
Dα(g, g̃) (see (2.3)), the Rényi divergence of g yz(y, z) with respect to g̃ yz(y, z).
This can also be used to define the Rényi mutual information [31,32] as

Iα(Y, Z) =
1
α− 1

log

��∫
Y

∫
Z

�
g yz(y, z)

g y(y)gz(z)

�α
g y(y)gz(z)dzdy

��
.

We note that in the limit α→ 1, Iα → I . It is easy to verify that by construction,
g y(y)gz(z) dominates g yz(y, z), hence the Rényi and KL divergences are well-
defined. As was shown in [33], the divergence Dα(g, g̃) is equivalent to the Rényi
entropy of a different density, resulting from a coordinate transformation. Let
(y ′, z′) = G(y, z) where G : R2 7→ R2 is the Rosenblatt transformation [34, 35]
induced by the product density g̃ (i.e., the transformation that uniformizes g).
The joint density induced by this transformation is h(y ′, z′), given by

h(y ′, z′) =
g yz(G−1(y ′, z′))
g̃ yz(G−1(y ′, z′)) , (2.4)

and as a result,

Dα(g, g̃) =
1
α− 1

log

�∫ �
g yz(y, z)

g̃ yz(y, z)

�α
g̃ yz(y, z)dydz

�
,

=
1
α− 1

log

�∫
hα(y ′, z′)dy ′dz′

�
,

= −Hα(h). (2.5)

Thus, Dα(g, g̃) equals −Hα(h), the Rényi entropy of the induced joint density h
given in (2.4), up to a minus sign. This makes sense because a stronger depen-
dence is coherent with a smaller (more negative) Hα(h) and a larger Dα(g, g̃). In
addition, we note that (2.4) is similar to the copula density (see also [31]).
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If the density g yz(y, z) (and hence also g̃ yz(y, z)) is unknown and only a sam-
ple of its probability distribution is available, we can (approximately) carry out
the coordinate transformation G induced by g̃ without having to estimate g or g̃
itself. Instead we apply the rank transform [36, 37], together with centering, to
the data. The marginals of the rank-transformed data are discrete representations
of the uniform distribution U[0, 1].

In summary, if we are given a sample of the random variables (Y, Z) with
joint probability density g yz(y, z), we can estimate the Rényi divergence Iα(g, g̃)
by first applying the rank-transform to the sample data, and then estimating the
Rényi entropy of the transformed data Hα(h).

Before turning to the estimation of the Rényi entropy, we conclude this sub-
section by pointing out the connection to another measure of divergence or dis-
similarity between probability densities, namely the Hellinger distance, and by
commenting on the choice of α. The Hellinger distance [38] can be computed
from D1/2 by easy transformations. The advantages of using D1/2 are that it is
a distance metric [23, 39] and that it is optimal in the context of classification
problems [39].

2.2.3 Estimator of the Rényi entropy

It is not straightforward how to estimate the entropy of a given data set. As al-
ready discussed in the introduction of this chapter, one approach is to estimate
the probability distribution or density underlying the data set, and compute the
entropy from this estimated density. Both parametric and nonparametric methods
(e.g. kernel-density estimation, binning) can be used to estimate the distribution,
however the results are quite sensitive to the details of the method used [40].
See also the work in [23] where the difficulties of entropy estimation by means
of plug-in density estimators are summarized. Noshad et al. [41] circumvented
the plug-in density and proposed a direct estimation method based on a graph-
theoretical interpretation. Very recently, Moon et al. [32] derived mean-squared
error convergence rates of kernel density-based plug-in estimators of mutual in-
formation and proposed ensemble estimators that achieve the parametric rate,
although there are several restrictions on the densities and the kernel used.

To circumvent the need for density estimation, we employ a different approach
to estimate entropy in this study, one in which the sample data is used directly.
This approach is due to Hero & Michel [23–25], who proposed a direct method to
estimate the Rényi entropy, based on constructing minimal graphs spanning the
data points. This approach can be used to estimate Hα(X ) with 0< α < 1, hence
it does not apply to estimation of the Shannon entropy. This motivates our focus
on the Rényi entropy here.

Let XN denote a sample of the multivariate random variable X with sample
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size N . The dimension of the domain of X is d. The estimator proposed in [23–25]
is

Ĥα(XN ) =
1

1−α
�

log

�
Lγ(XN )

Nα

�
− logβL,γ

�
=

1
1−α log

�
Lγ(XN )

βL,γ Nα

�
, (2.6)

where α= (d−γ)/d and βL,γ is a constant only depending on γ and the definition
of Lγ. The functional Lγ(XN ) is defined as

Lγ(XN ) = min
T (XN )

∑
e∈T (XN )

|e|γ, (2.7)

where T (XN ) is the set of spanning trees on XN and e denotes an edge. The
parameter γ can be freely chosen within the interval (0, d), with d ≥ 2. The
choice of γ determines α, and α ∈ (0, 1) because γ ∈ (0, d). The estimator (2.6)
is asymptotically unbiased and in fact strongly consistent for α ∈ (0, 1) [33]. If γ
is chosen to be 1 and |e| denotes the Euclidean distance between data points in
XN , then γ(XN ) describes the length of the MST on the data set. In this chapter
we focus on d = 2, but we note that (2.6) applies to situations with d > 2 as
well. With d = 2 and γ = 1 we have α = 1/2, a value for α whose theoretical
motivation was discussed earlier.

We give an illustration of the MST on data in the unit square, i.e. d = 2 (we
recall that data sampled from distributions on other domains will be mapped to
the unit (hyper)square by the rank transform). In case of independence the MST
will approximately cover the full domain. In case of dependence, the density is
manifestly nonuniform. As a result, the average edge length decreases and so
does the total length of the MST. This is illustrated in Figure 2.1. A shorter MST
length (with N constant) implies lower entropy, cf. (2.6), and therefore stronger
dependence. Note that there is no assumption on the shape or structure of the
dependence.

2.2.4 Quantifier of dependence

The value of the constant βL,γ in (2.6) is unknown, but it is defined as

βL,γ = lim
N→∞ Lγ(XN )/N

α, (2.8)

for XN a sample of size N from the bivariate uniform distribution. Therefore, it
does not depend on the distribution of X and can be regarded as a constant offset
or bias correction. When comparing the entropies of two random variables X (1)

and X (2) with dim(X (1)) = dim(X (2)) = d, the difference Ĥα(X
(1)
N )− Ĥα(X

(2)
N ) does

not depend on βL,γ provided the same type of spanning tree is used (i.e., same
functional L and γ).
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(b) Dependent data.

Figure 2.1: Illustration of the MST for two data sets on the unit square. One data set is
sampled from a bivariate independent distribution (left panel), the other from a strongly
nonlinear dependent distribution (right panel).

Therefore we propose to use the following quantity to measure (or quantify)
dependence:

H∗α(ZN ) = log

�
Lγ(ZN )

Nα

�
, (2.9)

where ZN is a data set consisting of the rank-transform of X , containing N data
points. We set α= 1/2, as discussed in the previous section. We focus here on the
case d = 2 so that γ= 1. The advantage of this estimator is that, in the case where
multiple dependencies are compared, the value of βL,γ is not necessary to obtain
an ordering of them, and, therefore, this value does not need to be estimated.

Besides obtaining an ordering in terms of the dependency strength, we can use
(2.9) to construct a reference level for distinguishing between independent and
dependent variables. This construction consists of computing H∗α(ZN ) on nr dif-
ferent data sets of rank-transformed bivariate uniformly distributed data. These
data sets are generated independently of each other, and, within each data set,
the two variables are independent as well (as they have a bivariate uniform distri-
bution). This is done by sampling 2N values from the one-dimensional uniform
distribution and reshaping them into an N × 2 data set. From this we obtain an
empirical distribution, based on nr samples, for H∗α(ZN ) for independent variables
(we recall that data from independent variables always leads to data uniformly dis-
tributed on a grid after the rank-transform). This leads to the following statistical
test for dependence. The null hypothesis is that the random variables are inde-
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pendent, which implies this null hypothesis is rejected if H∗α(ZN ) is significantly
smaller (more negative) than could be expected if the variables were independent.
Thus, the null hypothesis is rejected if

H∗α(ZN )≤ η,

in which η is the 0.01 or 0.05 quantile of the empirical distribution for H∗α(ZN ) for
independent variables. In the remainder of this text, we will write H∗α(Z) instead
of H∗α(ZN ) to simplify the notation. It will be clear from the context whether data
is involved or not.

2.2.5 Proof of concept

First, we compute the quantifier of dependence (2.9) on multiple data sets with
varying distributions to analyze its behavior. Then, its convergence and robustness
for increasing values of N are studied. For the distributions considered in this
section, it is possible to compute the Rényi entropy with high accuracy for the
scaled (i.e., rank-transformed) distribution such that a comparison can be made
between the behavior of (2.9) and (2.2).

We use data sets sampled from the following distributions: (i) a bivariate
uniform distribution, (ii) a standard normal distribution with varying correlation
coefficient ρ, (iii) a constant density on a region within the unit square with area
1− A, in which the data is focused in the lower left corner (corner distribution),
and (iv) a constant density on a region within the unit square with area 1 − A,
but in which the data is focused on a symmetry axis (line distribution). For the
latter two cases, the region includes values near the minimum and maximum of
both variables, such that the ranges of the region for varying A stay the same.
These distributions are also referred to as shape distributions. For each of the
four distributions, r = 103 data sets are generated with N = 103 data points in
every data set. ρ and A are varied in steps of 0.10 from 0.05 to 0.95.

In Figure 2.2, the empirical cumulative distribution function (CDF) of H∗α(Z) is
plotted for both the normal distribution (case (ii)) and the two shape distributions
(cases (iii) and (iv)), for different small values of ρ and A. More precisely, for
each data set sampled from one of these distributions, we first apply the rank-
transform and then evaluate (2.9) for the rank-transformed data. The empirical
CDF for the uniform distribution is included in black for comparison. If ρ = 0 or
A= 0, there is no dependence anymore and the empirical CDF obtained from the
normal distribution or shape distributions coincides with the empirical CDF from
the bivariate uniform distribution (modulo differences due to finite sample size,
N <∞).

In Figure 2.2, it can be seen that for the shape distributions, the quantifier
of dependence is more distinctive for small values of A than it is for the normal



2.2. DEPENDENCE AND ENTROPY ⋆ 17

-0.43 -0.41 -0.39
H *
α (Z)

0.0

0.5

1.0
CD

F

ρ=0.05
ρ=0.15
ρ=0.25
uniform

(a) Normal distribution.

-0.48 -0.44 -0.4
H *
α (Z)

0.0

0.5

1.0

CD
F

A=0.05
A=0.15
A=0.25
uniform

(b) Corner distribution.

-0.48 -0.44 -0.4
H *
α (Z)

0.0

0.5

1.0

CD
F

A=0.05
A=0.15
A=0.25
uniform

(c) Line distribution.

Figure 2.2: Empirical distributions of H∗α(Z) for data from the normal distribution and
the two shape distributions, for small ρ and A.

distribution with small ρ. Hence, weak dependencies in the shape distributions
can more easily be detected than in the normal distribution. The behavior of
Hα(X ) is given in Figure 2.3a. To demonstrate the behavior of H∗α(Z) for the
full range of values of ρ and A, we plot the mean together with the empirical
95% confidence intervals in Figure 2.3b. In the case of ρ = A = 0, the uniform
(independent) distribution is recovered, indicated by a different color.

From Figure 2.3a, it can be seen why the differences between the CDFs are
small in case of the normal distribution: for the normal distribution, the entropy
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Figure 2.3: Comparison of the Rényi entropy (left) and quantifier of dependence (right)
for the normal distribution and shape distributions, with varying parameters (ρ and A).
The Rényi entropy is computed exactly using (2.2) without transforming the data. For
visualization purposes, the values for the normal distribution have been translated by its
value for ρ = 0, which is 2 log(2

p
2π). The quantifier (2.9) is evaluated using data that

is sampled from the distribution and then rank-transformed. We show the mean and 95%
confidence intervals of H∗α(X ). Note that the numerical values of the entropy and H∗α(X )
are not supposed to coincide, cf. (2.6) and (2.9).

is nearly flat as a function of ρ, for small ρ values. Figure 2.3b shows the rank-
transform has a more severe effect on the corner than on the line distribution,
since the estimates for the corner distribution decrease more slowly. The distor-
tion of the shape of the graph for the corner distribution between Figure 2.3a and
2.3b is caused by the distortion of the distances between data points after the rank-
transform. Note that both shape distributions have the same Rényi entropy if the
rank-transform is not applied. The effect of the rank-transform in this case can be
seen in Figure 2.4. The closer A is to 1, the more the data falls in the two boxes
for the corner distribution, due to the combination of skewness and discontinuity.
This does not hold for the line distribution. In the limit of A→ 1 and N →∞,
the entropy of the rank-transformed corner distribution goes to − log(2), while it
diverges to −∞ for the rank-transformed line distribution. Hence, it is consistent
that H∗α(Z) does not diverge to −∞ for the corner distribution. We note that the
shape distributions are quite artificial and have discontinuous density, while data
sets in practice are usually samples from a distribution with a smooth density and
a less artificial shape.

We conclude this section by investigating the effect of varying the size of the
data set, N . We compute the empirical CDF of H∗α(Z) using N ∈ {10, 102, 103}.



2.2. DEPENDENCE AND ENTROPY ⋆ 19

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(a) Original data.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

(b) Rank-transformed data.
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(d) Rank-transformed data.

Figure 2.4: Example of the data and its rank-transform for the shape distribution with
A= 0.8. Top row: corner distribution, bottom row: line distribution.

For this computation we keep nr = 103. The resulting empirical CDFs are shown
in Figure 2.5. It can be seen the distribution becomes narrower with increasing N ,
as expected. Thus, larger N makes the comparison of estimates easier due to the
smaller confidence intervals involved. One can see from this figure how βL,γ is
defined as the limit for N →∞. Therefore, when one estimates βL,γ from a finite
data set, one overestimates its value. This can be seen by the value for H∗α(Z) at
which the CDF equals 0.5: this value moves to the left for increasing N .

We note that for higher values of N , the computations become expensive due
to the computation of the edge lengths before computing the MST. The order
of this operation is O(N2). Kruskal’s method for computing MSTs [26] runs in
O(N2 log(N)) time, but the steps are faster than the ones needed for computing
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Figure 2.5: Empirical CDF of H∗α(Z) for the bivariate uniform distribution. The CDF
becomes narrower for larger data sets (increasing N).

the edge lengths. Prim’s method for computing MSTs [27] can be faster (O(N2 +
N log(N))), but the implementation is more involved. The high cost of computing
the exact MST motivates us to investigate approximate algorithms in the next
section.

2.3 Approximation methods

For large data sets (i.e., large N), the computational cost of evaluating the esti-
mator (2.9) becomes prohibitively high, due to the computational complexity of
constructing the MST. In this section we discuss methods to reduce the computa-
tional cost by approximating the value of (2.9) evaluated on a large data set. We
consider three types of approximation: first, MSTs can be computed on multiple
subsets of the data. The second type aggregates data points into clusters, such
that only one MST calculation is performed on the cluster centers. The third type
clusters the data points, constructs MSTs on each cluster and combines them in a
smart way [42].

2.3.1 Sampling-based MST

In this method, the data set is split in K subsets and H∗α(Z) is computed according
to (2.9) on each of the subsets. Thus, K estimates of H∗α(Z) can be obtained.
The new estimate is computed from the mean of the MST lengths, while their
variance can serve as a measure for the quality of the new estimate. The number
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K is chosen by the user, although it represents a trade-off between accuracy and
computation time (since both decrease with increasing K).

The splitting can be done in various ways, of which random and stratified are
the most straightforward ones. In the random splitting, data points are allocated
randomly to one of the K subsets, which all have size N/K (rounding is neglected).
In the proportional splitting, k = N/K clusters are generated with the k-means
method [43,44] and these are considered the strata. The data points in each stra-
tum are then proportionally allocated to the K subsets. An example with stratified
splitting, N = 103 and K = 10 can be found in Figure 2.6.
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Figure 2.6: Example with stratified splitting.

2.3.2 Cluster-based MST

Another way of reducing the computational burden would be to cluster the data
in a large number of clusters and compute the MST on the cluster centers. In this
case, the clustering method can be chosen, as well as the number of clusters. To
be consistent with the previous method, we define here the number of clusters to
be k = N/K , such that the number of points in the MST is similar to the previous
method. Furthermore, it is possible to include the size (weight) of the clusters as
well. Two different clustering methods are investigated: k-means [44] and prin-
cipal component analysis-based (PCA-based) clustering (see also Sections 3.3.1
and 3.3.2). The concept of clustering is explained in more detail in Section 3.3.
The construction of the MST is performed both without and with weighting. The
weighting is harmonic, which implies that in the construction of the MST, the edge
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length between data points i and j, |ei j|, is replaced by

Wi j|ei j |, Wi j =
2k

1
wi
+ 1

w j

,

where k is the number of clusters and wi , w j are the weights of the clusters, com-
puted by the fraction of data points in that cluster. An example with these weights
(again with N = 103 and K = 10) is given in Figure 2.7, in which the line width
indicates Wi j . One can see this method behaves according to the principle of least
resistance: small clusters serve as a hub to connect the larger clusters.
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Figure 2.7: Example with k-means clustering and a weighted MST.

2.3.3 Multilevel MST

This method has been proposed by Zhong et al. [42] and is also called FMST
(fast MST). It is based on the idea that to find a neighbor of a data point, it is
not necessary to consider the complete data set of size N . In the FMST method,
the data set is partitioned in

p
N clusters via the k-means clustering method, and

MSTs are constructed on each of the clusters. More details on this clustering can
be found in Section 3.3.1. In a next step, an MST is constructed on the cluster
centers to determine which clusters get connected at their boundaries. Between
these clusters, the shortest connecting edges are computed. Because this is a
heuristic procedure, the complete process is repeated with the midpoints of the
edges which connect different MSTs being the initial cluster centers for the k-
means method. The resulting two MSTs are merged into a new graph and its
MST is computed as final outcome of the method. [42] reports good results with
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this method, which has a computational complexity of O(N1.5). Errors occur only
if points that should be connected end up in different clusters twice and are not
chosen as connecting edge, which does not occur often and has only a minor effect.
For high-dimensional data sets, erroneous edges are included more often, but the
effect thereof is smaller. Both are due to the curse of dimensionality.

2.3.4 Comparison

The accuracy, robustness and computational time of the methods explained before
are tested on r = 50 bivariate uniform data sets with N = 104 and r = 60 bivariate
strongly dependent data sets, also with N = 104. The strongly dependent data
sets are chosen as projections of the data set used in Section 2.5.1. Hence, the data
set exists of combinations of x , y , z and I(x , y, z). Since this leads to 6 projections
per data set, we choose r = 60 in this case. In these cases, it is computationally
expensive but still feasible to compute the full (exact) MST, and we do so to be
able to compare results from the three approximate methods with the method
based on the full MST. For the approximate methods, we choose the parameter
K to be 10. The results can be found in Figure 2.8. We mention here the effect
of the implementation of k-means, as the choice of initialization can affect the
results. We use the k-means++ initialization algorithm, repeat the clustering 10
times from different initializations and select the result with the best clustering
criterion. The error estimate is computed as the absolute difference between the
approximated and exact value of H∗α(Z). The FMST method has consistently small
errors as compared to other methods. In our opinion, it is important that the
approximation is accurate and robust, i.e., has little variation in its error over
multiple runs of data with the same distribution. Furthermore, it should perform
well for both dependent and independent data. Therefore, we propose to use the
FMST method to compute approximations to the MST in case where the data set
is large (say, N ≥ 104).

2.4 Validation of the proposed FMST estimator ⋆

In this section, we further investigate using the FMST method with the estimator
(2.9). First, the effect of the size of the data set N is investigated together with the
robustness of the FMST estimator for relatively small N . Then, the FMST estima-
tor for dependence is tested for behavior and consistency using data sets sampled
from the three distributions considered before (uniform, normal and shape distri-
butions). Furthermore, we investigate the behavior of the dependence measure
obtained with the MST method and the FMST method to the exact value in a
separate simulation study in Section 2.4.1.
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(a) Independent data.
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Figure 2.8: Error estimates for different approximation methods. The figure on the left is
for independent data, while the figure on the right is made with dependent data. From left
to right, the methods are: FMST, random sampling from subsets-based MST, stratified sam-
pling from subsets-based MST, k-means cluster-based MST (unweighted and weighted)
and PCA-based cluster-based MST (unweighted and weighted).

It is straightforward that approximations to the MST using the correct edge
distances overestimate the length of the MST. Therefore, we compare the empir-
ical distributions of H∗α(Z) based on the MST (Figure 2.5) to the ones based on
the FMST in Figure 2.9. The number of repetitions is r = 103 for N = 102, 103

and r = 102 for N = 104 and N = 105. It can be seen that the distributions are
different, but only shifted. Furthermore, the width of the distribution decreases
to almost zero for N = 104 and N = 105. This means the estimator is robust to
sampling effects. Note that there is still a difference between the distributions for
N = 104 and N = 105. This is due to the bias caused by approximating the MST,
which reduces for increasing N .

We repeated the experiment from Section 2.2.5, but now with the estimator
based on the FMST method to evaluate the effect of the FMST approximation on
different data distributions. The results are in Figure 2.10. Again, the behavior
of the estimator based on the FMST is the same as for the one based on the MST,
but only shifted upwards. This bias is very small for the line distribution. In these
tests, N = 103 in order to compare their results to the previous results.

Based on these results, we conclude that the FMST estimator is a good and
robust approximation of the MST estimator. It has a positive bias, but for the
purpose of comparing and ranking strength of dependencies as quantified by the
FMST estimator, this bias does not pose a problem.
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Figure 2.9: Empirical distribution for the uniform distribution for varying N . The solid
lines refer to the distributions based on the MST, while the dashed lines refer to the distri-
butions based on the FMST. Results using the MST method are limited to N ≤ 103 because
of high computational cost.
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(a) Mean and confidence intervals for the
FMST method.
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(b) Comparison with the MST method.

Figure 2.10: Behavior of the FMST estimator for two different types of data distribution.
On the left the mean and empirical 95%-confidence intervals, while on the right the means
of the MST (squares) and FMST (diamonds) estimates can be compared (see also Figure
2.3).
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2.4.1 Comparison with the exact value of the Rényi divergence

In this section, we present a simulation study to compare the true value of the de-
pendence measure with the measures obtained with MST and FMST estimators. A
direct method to estimate the Rényi mutual information based on a kernel density
estimator (KDE) is given by [32] and this method is used for comparison.

The distribution under consideration is

X =

�
X1
X2

�
, X ∼ N(µ,Σ), µ=

�
0
0

�
, Σ=

�
1 ρ

ρ 1

�
,

for which the Rényi mutual information is given by

Iα =
−1

2(1−α)
�
α log(1−ρ2)− log(1−α2ρ2)

�
.

We vary the value of ρ and study the behavior of the MST and FMST estimator
of the Rényi mutual information. A direct estimate is obtained via the estimator
of [32] with a Gaussian kernel and a bandwidth computed with Scott’s rule [45].
In this rule, we use d = 1 because the product kernel is the product of the two
one-dimensional kernels. Because of symmetry, only positive values for ρ are
considered.

Multiple sample sizes are included and the estimation is repeated nr times,
each time with newly generated data. We choose nr = 102 for all methods. We
give the average value in Figure 2.11 in solid markers, where it has to be noted
that the means for the MST and FMST methods often overlap. The open markers
represent the empirical 95% confidence interval. The constant βL,γ is computed
for the same nr . It can be seen that KDE overestimates the divergence for small
ρ in general. For large ρ, this depends on N . For small N , the methods underes-
timate, while they overestimate for large N . Also, KDE has lower spread than the
(F)MST method, but covers the analytic value less often. In Figure 2.12, the time
aspects of the different methods are considered. The MST method is left out for
N = 104 because of its high computational cost.

For larger values of N , the time complexity of the FMST method and KDE is
as expected, with complexity O(N1.5) and O(N2), respectively. The FMST method
becomes cheapest for N = 104 while its results are very similar. Therefore, it is
beneficial to use the FMST method in the case of large data sets.
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(c) N = 103.
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(d) N = 104.

Figure 2.11: Comparison of the estimated value to the exact value of the divergence.

2.5 Test cases

The proposed methods are applied to two test cases in this section. In the first
case, we use the Ishigami function [46] and evaluate it using randomly sampled
synthetic data as inputs. We consider data from two different input distributions,
one without dependencies (uniform) and one with strong dependencies. On all
combinations of variables (input and output), the dependence is quantified and,
for the uniform data set, compared to the values of the Sobol (total) indices. In
the second test case, we investigate weather data obtained from the Royal Nether-
lands Meteorological Institute (KNMI).
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Figure 2.12: Time aspects for the different methods.

2.5.1 Ishigami function

This test case will run through the complete thesis to illustrate the different con-
cepts. Its test function is from Ishigami & Homma [46] and its Sobol (total) in-
dices [47] can be computed analytically. The test function is given by

I(x , y, z|a, b) = (1+ bz4) sin(x) + a sin2(y). (2.10)

The parameters a and b are chosen to be 7 and 0.1, respectively, in accordance
with [48]. One data set is three-dimensional and uniformly distributed on
[−π,π]3, while the other one is generated as

N

0
0
0

 ,

 1 0.8 0.5
0.8 1 0.8
0.5 0.8 1

 , (2.11)

and range-normalized to [−π,π]3. The MSTs are approximated with both the
MST and the FMST method and (2.9) is used to compute the dependencies both
between input variables and between the input variables and the output variable.

The data sets have been generated nr = 10 times with N = 104 samples each
and the results are in Figure 2.13. First of all, it can be seen that the estimates are
robust, as for each set (or pair) the estimates are all in a narrow interval (indicated
by the minimum and maximum estimates).

Furthermore, it can be seen that for the uniform data set (Figure 2.13a), only
combinations of input and output are dependent, while combinations of input
variables are independent. In case of independence, the value is around −0.42.
One can compare this with Figure 2.9, where it can be seen that in case of two
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Figure 2.13: Estimates of H∗α(Z) for two data sets. Note the difference in the range of the
y-axis.

uniformly distributed independent variables, the estimate is slightly below −0.4
in case of N = 104. Indeed, the input variables are all independent in case of this
uniform data set.

The dependence of I on the various inputs is illustrated in Figure 2.14 where
scatter plots of the input-output pairs are shown. Note the difference between the
plots of (x , I) and (y, I), while their estimates for the uniform case are similar.

For the strongly dependent data set (Figure 2.13b), the analysis is less straight-
forward. Here, the combination (y, I) shows the strongest dependency, while the
estimate for (z, I) stays approximately the same. The relative ordering of input-
output dependencies is consistent with the intuition gleaned from the right panels
of Figure 2.14. Because of the structure of the data set, all input variables are
mutually dependent. The dependencies (x , y) and (y, z) have a similar value as
expected, while the combination (x , z) has a weaker dependency and is nearly
independent.

We continue by comparing the means of the estimates for the input-output
combinations for the uniform data set based on FMST with the values of its Sobol
indices and Sobol total indices in Table 2.1. For the Ishigami function, the sum of

Table 2.1: Comparison of the proposed estimator and Sobol indices for the Ishigami func-
tion with independent (uniformly distributed) input variables.

Si STi H∗α(Z)
x 0.314 0.558 −0.583
y 0.442 0.442 −0.571
z 0 0.244 −0.509



30 CHAPTER 2. DEPENDENCY ANALYSIS

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0
I(x

,y
,z
)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

I(x
,y

,z
)

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

I(x
,y

,z
)

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0
I(x

,y
,z
)

0.00 0.25 0.50 0.75 1.00
z

0.0

0.2

0.4

0.6

0.8

1.0

I(x
,y

,z
)

0.00 0.25 0.50 0.75 1.00
z

0.0

0.2

0.4

0.6

0.8

1.0

I(x
,y

,z
)

Figure 2.14: Scatterplots for the Ishigami function with on the left the uniform data set
and on the right the dependent data set. The dependent input data has an effect on the
output distribution.
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all Si and first-order interaction terms Si j equals 1, and only Sx , Sy and Sxz are
nonzero. Since Sy = ST y , y is not involved in interaction terms, while Sz does
not have an effect by itself. The term Sxz contributes to both ST x and STz . From
the numerical values for the Sobol indices, summarized in Table 2.1, we conclude
that y is most important by itself, while x is most important when interactions
with other variables are included.

The proposed estimator H∗α(Z) behaves different from Si . The estimator H∗α(Z)
does not have the sum property, nor does it compute estimates for interaction
effects. It is approximately −0.42 in case of independence (exact value depends
on N , higher N leads to a smaller value, see Figure 2.9), and drops below this
value if the variables are dependent. The values of H∗α(Z) in Table 2.1 indicate x
and y are nearly equally important. In the ordering, it is consistent with the total
indices.

In practice, it might be beneficial to compute all the Sobol indices when the
input variables are independent and not large in number. However, our prime
interest in this study is in general cases with dependent input variables given to
us in the form of data sets. In these cases, Sobol indices are difficult to calculate,
especially if one wants to take the dependencies into account. By contrast, H∗α(Z)
can be computed easily for dependent variables. For dependent variables, the
expressions for the Sobol indices become more comprehensive and the interpre-
tation becomes less straightforward, due to the possibility of negative values for
the indices.

2.5.2 KNMI data

In this test case, we investigate data obtained from the Royal Netherlands Meteo-
rological Institute (KNMI). This data concerns weather observations at a location
in the North Sea, to be more precise: the Lichteiland Goeree. Each hour, several
variables such as wind speed and direction are recorded. We use the data from
January 1st 1981 to December 31th 2010. The variables we used are in Table 2.2.
In this data, we find several complications which can occur in real-life situations.
We will name them shortly. First, the presence of discrete variables due to mea-
surement accuracy. This can be handled in the rank-transform, but requires some
attention from the analyst. In this section, we have placed the data points with the
same values at the same location on the axis, which is determined by computing
the average of the location of these data points as would be the case if they were
nonidentical. After the rank-transform, one can add a small noise to separate the
data points, as data points at the same location may lead to problems in the mini-
mum spanning tree algorithm, depending on the implementation used. The same
holds for actual discrete values (second complication). Another complication is
when indicator values are present. This occurs for example in MWD, where there
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Table 2.2: Variables included in the analysis.

Abbreviation Description
MWD Mean wind direction (in degrees) during the 10-minute period

preceding the time of observation
MWS60 Hourly mean wind speed (in 0.1 m/s)
MWS10 Mean wind speed (in 0.1 m/s) during the 10-minute period

preceding the time of observation
MWG Maximum wind gust (in 0.1 m/s) during the hourly division

T Temperature (in 0.1 degrees Celsius) at 1.50 m at the time of
observation

TDP Dew point temperature (in 0.1 degrees Celsius) at 1.50 m at
the time of observation

AP Air pressure (in 0.1 hPa) reduced to mean sea level, at the time
of observation

HV Horizontal visibility at the time of observation
RAH Relative atmospheric humidity (in percents) at 1.50 m at the

time of observation
SST Sea surface temperature (in 0.1 degrees Celsius) at the time of

observation

are separate values for no wind or variable wind direction. We decide to leave
those measurement points out of the analysis. Incomplete observations are also
removed from the data set. This left us with N = 142114 data points in 10 input
variables.

We quantify the dependency strengths as Dα(g, g̃) (2.3) by (2.5) and (2.6)
with the FMST method. To estimate the Rényi entropy by (2.6) for all combi-
nations of variables, we also need to obtain an estimate for βL,γ, which we get
from nr = 100 samples of uniform bivariate data with the same number of sam-
ples. The values are in Figure 2.15. All combinations of two variables show de-
pendencies, where temperatures (T, TDP, SST) and air pressure (AP) are least re-
lated. Strongest dependencies exist between the wind speeds (MWS60, MWS10,
MWG) and between them and the visibility (HV). The dependencies between the
wind speeds are expected, while the connection between them and the visibility
is caused by fog formation being associated with weak wind speeds [49].

2.6 Discussion

In this study, we have combined several methods to come to an efficient approach
for quantifying dependencies in data by means of Rényi mutual information. With
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Figure 2.15: Dependency analysis for weather data. The values for Dα(g, g̃) are shown
in the heatmap.

this approach, large multivariate data sets can be handled. The Rényi mutual
information is used for the quantification, in which the mutual information is
estimated via a minimum spanning tree (MST). The MST can be approximated in
order to speed up the computation. A major advantage of this combination is that
it does not require estimation (or a priori knowledge) of probability densities.

Furthermore, we have proposed a novel estimator for the case where the rank-
ing of the dependencies is required rather than their exact strength. In this case,
the computation of a constant bias term can be omitted.

We have tested our approach on the Ishigami function as well as on a real-
world test case involving weather data. In both cases, the results partially reflected
prior knowledge or heuristic understanding, but also showed unexpected results
which could be explained by the data. Moreover, in the Ishigami test case we
included an example with independent input variables, making it possible to com-
pare our approach with the analysis based on Sobol indices. The results from our
proposed method are consistent with those from the Sobol total indices. However,
the Sobol indices are not suitable at all for dependent data.

Altogether, the approach proposed here is a suitable and useful method to
quantify dependencies. It gives consistent results and remains computationally
feasible even for large data sets by using the FMST algorithm. This method will
be extended to a sensitivity analysis method by constructing sensitivity indices
from the Rényi divergence in Chapter 5. An interesting aspect of this extension
will be to separate in these indices direct effects from indirect effects.





3 Sample selection

In the previous chapter, we have shown how to measure dependencies in the
input data. We now continue to the next step, namely the sample selection. It is
often assumed that the input variables are independent with known probability
distribution function, which is not the case in our setting. Therefore, we propose
in this chapter new sample selection methods which do not require independence
or known input distributions.

3.1 Introduction

Uncertainty propagation is a core topic of uncertainty quantification (UQ). This
topic involves the propagation of uncertainties from the input variables to the
output variables. When the computational model is considered to be a black-box,
the key challenge is sample selection, i.e., how to select the input samples for
which the computational model is evaluated. Related questions are encountered
in many fields of science and engineering [11,50–53] and have given rise to mod-
ern UQ methods including stochastic collocation, polynomial chaos expansion and
stochastic Galerkin methods [6,54–57].

A still outstanding challenge is how to characterize model output distributions
efficiently in case of multivariate, dependent input distributions. Independence
between the inputs is assumed in the previously mentioned methods, e.g., for the
construction of the Lagrange polynomials in stochastic collocation, or for the con-
struction of the orthogonal polynomials in generalized polynomial chaos. When
independence between the input variables holds, the multivariate problem can
be factored easily into multiple one-dimensional problems. The one-dimensional
solutions can be combined to a solution for the multi-dimensional problem by

Mainly based on A. Eggels, D. Crommelin, and J. Witteveen, “Clustering-based collocation for
uncertainty propagation with multivariate dependent inputs,” International Journal for Uncertainty
Quantification, vol. 8, no. 1, pp. 43–59, 2018.
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tensor products. When the inputs are dependent, such factorization can become
extremely complicated if the inputs have non-Gaussian distributions, making it un-
feasible in practice for many cases. It generally involves nontrivial transformations
that require detailed knowledge of the joint distribution (e.g. Rosenblatt transfor-
mation [34]). Such information is often not available. In [58], factorization is
circumvented and instead the problem is tackled by using the Gram-Schmidt or-
thogonalization procedure to get an orthogonal basis of polynomials, in which
the orthogonality is with respect to the distribution of the inputs. However, this
procedure gives non-unique results that depend on the implementation.

In this chapter we propose a novel approach for efficient UQ with multivari-
ate, dependent inputs. This approach is related to stochastic collocation. It em-
ploys collocation nodes obtained from data clustering though, rather than from
constructing a standard (e.g. Gaussian) quadrature or cubature rule. By using
techniques from data clustering, we can construct sets of nodes that give a good
representation of the input data distribution, well capable of capturing correla-
tions and nonlinear structures in the input distributions. It is straightforward to
obtain weights associated with these nodes. All weights are guaranteed to be
positive.

The approach we propose is non-intrusive and able to handle non-Gaussian
dependent inputs. We demonstrate that it remains efficient for higher dimensions
of the input, notably in case of strong dependencies. These dependencies are not
limited to correlations (linear dependencies), but can also be nonlinear. Further-
more, the approach employs data clustering of an input data set. The underlying
input distribution can be unknown, and there is no fitting of the distribution in-
volved. Hence, no fitting error is introduced. This makes the approach particularly
suitable for situations where the exact input distribution is unknown and only a
sample of it is available.

We emphasize that the method we propose here does not employ orthogonal
polynomials and their roots, nor does it require the specification of an input dis-
tribution. This constitutes a main difference with stochastic collocation. Further-
more, we demonstrate that generating a random quadrature rule, by randomly
selecting points from the sample of inputs and using these as cluster centers, gives
unsatisfactory results. This is due to the fact that such a random selection is ill-
suited to sample or represent the tails of the input distribution.

The outline of this chapter is the following: in Section 3.2, we start by briefly
summarizing stochastic collocation and multivariate inputs. We discuss the chal-
lenges of dealing with dependent inputs, and we introduce the concept of cluster-
ing-based collocation. In Section 3.3, we describe three different clustering tech-
niques and give a convergence result for one dimension. In Section 3.4, we present
results of numerical experiments in which we test our clustering-based collocation
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method, using the clustering techniques described in Section 3.3. The conclusion
follows in Section 3.5.

3.2 Stochastic collocation and its extension ⋆

Consider a function u(x) : Ω 7→ R , Ω ⊆ Rd , that maps a vector of input variables
to a scalar output. Let us assume x is a realization of a random variable χ with
probability density function p(x). We would like to characterize the probability
distribution of u(x), in particular we would like to compute moments of u(x):

E[uq] =

∫
Ω

(u(x))qp(x)dx .

In what follows, we focus on the first moment:

µ := E[u] =
∫
Ω

u(x)p(x)dx . (3.1)

We note that higher moments can be treated in the same way, as these are ef-
fectively averages of different output functions, i.e. E[uq] = E[v] with v(x) :=
(u(x))q. In both cases, the expectation is with respect to the distribution of χ. In
stochastic collocation, the integral in (3.1) is approximated using a quadrature or
cubature rule. As is well-known, a high degree of exactness of the integration can
be achieved for polynomial integrands with Gaussian quadrature rules.

3.2.1 Multivariate inputs

For multivariate inputs (d > 1), stochastic collocation based on Gaussian quadra-
ture can be constructed using tensor products if the input variables are mutually
independent. In this case, we can write f (x) as a product of one-dimensional
probability density functions. The degree of exactness of the corresponding cu-
bature rule is 2m− 1 in each dimension if m collocation nodes are used in each
input dimension. This requires a number of nodes (md) that grows exponentially
in d. So, collocation with full tensor grids suffers from the curse of dimensional-
ity. To reduce the number of nodes, Smolyak sparse grids [59, 60] can be used.
The construction of Smolyak sparse grids will not be explained in detail here, but
an important aspect is that the resulting set of nodes is a union of subsets of full
tensor grids. When the grids are nested and the number of nodes in the nth level
for one dimension, m1

n, is O(2n), then the number of nodes in d dimensions scales
as O(2nnd−1) [60], in contrast to O(2nd) for the corresponding tensor rule.
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3.2.2 Gaussian cubature with dependent inputs

As already mentioned, tensor grids are useful for stochastic collocation in case
of independent inputs. If the input variables are dependent, grids constructed
as tensor products of one-dimensional Gaussian quadrature nodes no longer give
rise to a Gaussian cubature rule. In [58], generalization to dependent inputs is
approached by constructing sets of polynomials that are orthogonal with respect to
general multivariate input distributions, using Gram-Schmidt orthogonalization.
The roots of such a set of polynomials can serve as nodes for a Gaussian cubature
rule.

With the approach proposed in [58], the advantages of Gaussian quadrature
(in particular, its high degree of exactness) carry over to the multivariate, depen-
dent case. However, one encounters several difficulties with this approach. First of
all, for a given input distribution, the set of obtained nodes is not unique. Rather,
the resulting set depends on the precise ordering of the monomials that enter the
Gram-Schmidt procedure. For example, with two-dimensional inputs and cubic
monomials, 24 different sets of nodes can be constructed, as demonstrated in [58].
It is not obvious a priori which of these sets is optimal.

A further challenge is the computation of the weights for the cubature rule. In
one dimension, they are computed by constructing Lagrange interpolating func-
tions and evaluating their integrals. It is not straightforward how to do this in
multiple dimensions. The alternative for computing the weights is to solve the
moment equations. However, the resulting weights can be negative. Furthermore,
one cannot choose the number of nodes freely: in general, with input dimension
d and polynomials of degree p, one obtains pd nodes. Thus, the number of nodes
increases in large steps, for example with d = 8 the number of nodes jumps from
1 to 256 to 6561, respectively, if p increases from 1 to 2 to 3. It is unknown how
to construct useful (sparse) subsets of nodes from these.

3.2.3 Clustering-based collocation

To circumvent the difficulties of Gaussian cubature in case of dependent inputs,
as summarized in the previous section, we propose an alternative approach to
choose collocation nodes. By no longer requiring the collocation nodes to be the
nodes of an appropriate Gaussian cubature rule, we do not benefit anymore from
the maximal degree of exact integration associated with Gaussian quadrature or
cubature. However, we argue below that this benefit of Gaussian cubature offers
only limited advantage in practice.

If one has a sample of the inputs available but the underlying input distribution
is unknown, the Gaussian cubature rule will be affected by the sampling error
(via the Gram-Schmidt orthogonalization). Alternatively, if the input distribution
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is estimated from input sample data, the precision of the Gaussian cubature rule
is also limited by the finite sample size.

Additionally, the degree of exactness is strongly limited by the number of
nodes in higher dimensions. For example, suppose one can afford no more than
256 evaluations of the output function u(x) because of high computational cost,
i.e., one can afford a Gaussian cubature rule with 256 nodes. This gives very high
degree of integration exactness (degree 511) in one dimension (d = 1), but the
degree of exactness decreases to 31, 7 and 3, respectively, as the input dimension
d increases to 2, 4 and 8. For d > 8, the degree of exactness is only 1 in case of 256
nodes, so only linear functions can be integrated exactly. The number of nodes
for a full tensor grid in d dimensions with 2n nodes in level n for one dimension
is 2nd , while a corresponding Smolyak grid contains O(2nnd−1) points. However,
the approximation accuracy for the full grid is O(2−ns) and O(2−nsn(d−1)(s+1)) for
the sparse grid with O(2n) nodes in level n for one dimension [60], where s is the
smoothness of the function (being the number of derivatives it has). This is still
limiting for a high number of dimensions.

Furthermore, the accuracy of the propagation method does not need to be
higher than the accuracy of the input uncertainty. Since the input is given by
samples, the high accuracy of spectral methods is not fully utilized.

Instead of constructing a Gaussian cubature rule, we aim to determine a set of
nodes that are representative for the sample of input data or for the input distri-
bution, with the locations of the nodes adjusting to the shape of the distribution.
Clustering is a suitable method (or rather collection of methods) to achieve this
objective and will be explained in more detail in Section 3.3.

The basic idea, in the context of this study, is the following. Assume we have
a data set {x1, ...,xN} available, with xi ∈ Rd . We define a partitioning of Rd

existing of L subsets, denoted Ωl with l = 1, ..., L. A cluster is a subset of the
data falling into the same Ωl . A common way to define cluster centers zl is as the
average of the data in each cluster, i.e.

zl :=

∑N
i=1 xi 1(xi ∈ Ωl)∑N

i=1 1(xi ∈ Ωl)
, (3.2)

with 1(·) the indicator function. If we define weights wl as the fraction of all the
data falling in the j-th cluster, that is,

wl :=

∑N
i=1 1(xi ∈ Ωl)

N
, (3.3)

the weighted average z̄ :=
∑

l wl zl equals the data average x̄ := N−1
∑

i xi . Thus,
z̄= x̄ by construction.
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The key idea of what we propose here is to carry out collocation based on clus-
tering of the input data. More specifically, we propose to use the cluster centers zl
and weights wl as the nodes and weights of a quadrature rule. Thus, the (exact)
first moment of the output function u(x) over the input data is

µ=
1
N

N∑
i=1

u(xi), (3.4)

and the approximation using clustering-based collocation is

µ̂ :=
L∑

l=1

wl u(z j). (3.5)

We emphasize that the number of function evaluations in (3.4) and (3.5) is dif-
ferent. When L≪ N , large savings in computational time can be achieved due to
the smaller amount of evaluations of u(x).

The proposed approximation (3.5) to estimate the first moment of u(x) does
not explicitly consider a function approximation of u(x). However, (3.5) can be
seen as the Monte Carlo integral over a function approximation of u(x) which is
piece-wise constant on the clusters.

It is easy to show that the approximation is exact (µ̂ = µ) for all linear input
functions, due to the fact that z̄ = x̄, as mentioned above. In other words, the
degree of exactness is one: we can consider (3.5) as a quadrature rule for the in-
tegral of u(x) over the empirical measure induced by the data set {x1, ...,xN}. This
quadrature rule is exact if u(x) is linear. This may seem limited in comparison to
Gaussian quadrature, but as discussed earlier, the degree of exactness of Gaussian
quadrature reduces rapidly if the input dimension d grows and the number of
nodes remains constant. For nonlinear input functions, the approximation (3.5)
will in general not be exact. We will investigate its convergence in Sections 3.3.5
and 3.4.

3.3 Clustering methods

In this section, we describe three different methods to construct clusters, i.e. three
methods to construct a suitable collection of subsets Ω j . As already mentioned,
the methods are based on input given as a data set in d dimensions with N data
points {x1, . . . ,xN} with xi ∈ R1×d also denoted by a matrix X ∈ RN×d . If the
input is given as a distribution, we can create a data set by sampling from this
distribution. Furthermore, we scale this data set to [0, 1]d by linear scaling with
the range. This is done to comply with the domain of the test functions we will
use further on.
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We cluster the data points into L clusters {C1, . . . , CL}with centers {z1, . . . ,zL}
and use these as nodes. The centers are computed as the means of the data points
in the corresponding cluster, see (3.2). We investigate three different methods,
namely k-means clustering, principal component analysis based clustering and a
method with randomly selected data points as cluster centers. In the following,
we will use the words clustering and partitioning interchangeably.

3.3.1 k-means clustering

The k-means method is one of the oldest and most widely used methods for clus-
tering [44,61]. The idea behind it is to minimize the within-cluster sum-of-squares
(SOS):

min{z1,...,zL}
SOS(z1, . . . ,zL), SOS(z1, . . . ,zL) =

N∑
i=1

||xi − zargminl ||xi−zl ||22 ||22,

in which zl are the cluster centers and xi the data points. The minimization
problem is solved with an iterative procedure. The cluster centers zl are initialized
randomly, after which, in each step of the algorithm, all data points are assigned
to the nearest cluster center (in the Euclidean norm) and the cluster centers are
recomputed as the mean of their assigned data points. The algorithm finishes
when the cluster centers do not move anymore. There are many extensions and
improvements of the (initialization of the) algorithm, such as using the triangle
inequality to avoid unnecessary distance calculations [62], the use of global meth-
ods [63–65] and low-rank approximations [66]. We will use the k-means++ ini-
tialization method, as described in [67].

Because the algorithm contains a random initialization and the objective func-
tion is nonconvex, it can converge to a local minimum rather than to the global
optimum. Therefore, in our numerical tests in Section 3.4, the algorithm is per-
formed r times (r > 1) with different initializations and the best solution (with
minimal SOS) is chosen. We use a fixed number of iterations in the minimization.
In some cases, the iterations have not fully converged yet. This will be ignored
because, in practice, nearly all of the r executions converge so that the chosen
best solution is always a converged solution. Further onwards, we will refer to
this method as KME. We choose r = 10.

3.3.2 PCA-based clustering

With this method, based on [68,69] and principal component analysis (PCA), one
starts with a single large cluster containing all the data, and in each step, the
cluster with the largest average radius is split into two. This is implemented by
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splitting the cluster whose data points have the largest average squared Euclidean
distance to the cluster center. We split such that the cutting plane goes through
the old cluster center (center of mass) and is perpendicular to the largest principal
component of the covariance matrix of the data in the cluster, as suggested by [69].
This continues until the desired number of clusters L is attained. We note that
other stopping criteria can be used as well, but these are less useful for the purpose
of this study.

This method (referred to as PCA-based later on) is deterministic, unlike the
k-means method described in the previous section. Clustering by the diameter
criterion is already performed in [70], but there the cluster with the largest dia-
meter is split. Division methods based on farthest centroids are suggested in [71].
Other refinements of this method are also possible, e.g., the merging of clusters
at some steps in the algorithm, but we will not explore these here. These can be
investigated in future work.

A possible disadvantage of this method is that there is no guarantee that all
data points end up in the cluster with the nearest cluster center. This because the
splits are performed independently and data points from other clusters are not
reassigned if a closer cluster center appears. There are two ways to fix this. The
first, cheap option is to reassign all data points to the nearest cluster center at
the end of the method. The second, expensive option is to do this in each step of
the method. We will implement the first option (reassigned principal component
analysis, denoted PCR) as well as the original option of not reassigning.

3.3.3 Random clustering

For comparison purposes we include a third method, in which cluster centers are
selected randomly. This method consists of randomly selecting data points from
the data set, all with equal probability, and use these as cluster centers. The
clusters are formed by assigning each data point to its nearest cluster center. This
method will be referred to as MCC (Monte Carlo clustering).

3.3.4 Calculation of weights

As already mentioned, we use the cluster centers as nodes for collocation. To do
so, each node must be assigned a weight. In all three methods, the weights are
determined by the number of data points in the cluster associated with that node,
divided by the total number of data points, see (3.3). By construction, all weights
are positive and their sum equals one.
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3.3.5 Convergence ⋆

In the case of one dimension (d = 1), it can be proven that the PCA-based clus-
tering converges to the Monte Carlo integral for increasing values of L. The proof
relies on the fact that in each step, the largest cluster radius either decreases or
remains constant. If d = 1, the largest cluster radius equals

δ∗(L) = max
i∈{1,...,N} min

l∈{1,...,L}{|x i − zl |}.
As can be seen, it depends on L. We give the proof for one dimension.

We can define a finite interval D := [x−, x+] which contains all the data
{x1, ..., xN}. Furthermore, we assume that the output function u(x) is Lipschitz
continuous on this interval with Lipschitz constant L∗. Let ν be the empirical mea-
sure on D, i. e. ν(Ω ⊆ D) = 1

N

∑N
i=1 1(x i ∈ Ω) for each subset Ω of D. Suppose that

we have for each L ∈ N+, L ≤ N that x− < z1 < z2 < . . .< zL < x+ are the ordered
cluster centers. A set partitioning is defined by ∪L

l=1El with El :=
� zl−1+zl

2 , zl+zl+1
2

�
,

for l = 2, . . . , L−1, E1 =
�
x−, z1+z2

2

�
and EL =

� zL−1+zL
2 , x+

�
. Define ul(x) := u(zl),

∀x ∈ Cl and 0 elsewhere for l = 1, . . . , L. Now, denote ũ(x) =
∑L

l=1 ul(x). Be-
cause of the Lipschitz continuity, we have that

∀ x i ∈ D ∃ l = l(x i) ∈ {1, . . . , L} :

|u(x i)− ũ(x i)|= |u(x i)− u(zl)|< L∗δ∗(L).
In the PCA-based algorithm for d = 1, δ∗ is strictly non-increasing as L grows. It
reaches its lower bound δ∗(L) = 0 when L = N , because then each data point
is its own cluster center. We can now bound the difference between the PCA-
based integral IPCA(L) =

∑L
l=1 u(zl)wl and the Monte Carlo integral IMC(N) =∑N

i=1 u(x i)
1
N as follows

|IPCA − IMC|=
����� 1
N

N∑
i=1

u(x i)−
L∑

l=1

u(zl)wl

����� ,
=

����� 1
N

N∑
i=1

u(x i)− 1
N

N∑
i=1

L∑
l=1

u(zl)1(x i ∈ Ωl)

����� ,
=

1
N

����� N∑
i=1

�
u(x i)−

L∑
l=1

u(zl)1(x i ∈ Ωl)

������ ,
≤ 1

N

N∑
i=1

�����u(x i)−
L∑

l=1

u(zl)1(x i ∈ Ωl)

����� ,
<

1
N

N∑
i=1

L∗δ∗(L) = L∗δ∗(L).
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Since δ∗(l + 1) ≤ δ∗(l) for all l ∈ N when d = 1, δ∗(l) ≥ 0 and δ∗(l = N) = 0,
the bound becomes stricter for increasing l.

For higher dimensions, the derivation of the bounds is analogous, although δ∗
will not be monotonically decreasing, but it will decrease in general. This is also
the case for the other methods, even for d = 1, where the nodes are not nested
such as in the PCA-based case, such that it is not guaranteed that δ∗ decreases
monotonically. For the higher-dimensional case, we refer to Section 3.4.3 where
we give a numerical result on convergence.

3.4 Results

We test the quadrature based on the clustering methods described in Section 3.3
by integrating the Genz test functions on the domain [0, 1]d for three different
data sets. In two of these data sets, the variables are mutually dependent. The
relative error

ϵ =
|ICP − IMC|
|IMC| , (3.6)

defined by the absolute difference between the integral calculated by the cluster
points and weights (ICP) and the Monte Carlo integral of the data, divided by
the value of the Monte Carlo integral, is used as the measure of accuracy. We
perform the MCC method nr = 10 times for each setting to investigate the effect
of randomness. We show the mean, minimum and maximum error for MCC. For
comparison, we add results from using Monte Carlo sampling (MCS), which is
repeated 10 times as well.

The first test is to assess how these methods perform under an increasing
number of dimensions and what the effect of dependent variables is. Then, we
compare the numerical convergence of the PCA-based method with the MCC and
MCS methods for an increasing number of clusters. Finally, we compare the com-
putational cost of these methods.

Furthermore, in Section 3.4.4 we test the proposed methods on the Ishigami
function with two input data sets.

3.4.1 Genz test functions

Genz [72] has developed several functions to test the accuracy of a cubature rule.
The definitions, our choice of parameters and some illustrations are given in Ap-
pendix A. We test the methods by integrating the Genz test functions over three
different data sets consisting of N = 105 samples. We compare the results from
Monte Carlo integration with the results obtained by clustering-based quadrature
by the error measure (3.6).
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3.4.2 Data sets

We use three data sets with different types of nonlinear relationships to illustrate
the methods. All sets consist of N = 105 samples drawn from a certain distri-
bution. The dimension d is allowed to vary from 1 to 16. The first set is the
independent uniform distribution in d dimensions, the second set is a multivari-
ate Gaussian distribution in d dimensions, and the third set is an artificial data
set which contains strongly nonlinear relationships between the variables. All the
data is range-transformed after generation to fit the domain [0, 1]d of the Genz
test functions. Their parameters are given as follows.

The uniform distribution has density 1 over the unit hypercube. The multivari-
ate Gaussian distribution has means 0, variances 1 and correlation coefficientsσi j
between dimensions i and j given by

σi j =
1
2

for |i − j|= 1, σi j = 0 for |i − j|> 1.

The third and last distribution is given as
X1
X2
...

Xd

=


U(−2, 2)
X 2

1
...

X d
1

+σ


0
N(0, 1)

...
N(0, 1)

 ,

in which U(−2, 2) is the uniform distribution on [−2, 2], σ equals 0.5 and N(0, 1)
is the standard normal distribution. We refer to this distribution as the “polyno-
mial distribution”.

In Figure 3.1, we show 103 data points generated for d = 2 for the different
test sets. From the figure, it is clear that these data sets have different types of non-
linear relationships. The uniform distributed data is independent, the normally
distributed data is weakly dependent and the polynomial data contains strong
nonlinear relationships between the variables and is far from Gaussian.

In Figure 3.2, the partitionings (for L = 20 and 100) for the different test sets
are shown. One of the observations is that the MCC method yields most clusters
in dense regions, just as the KME method. In the latter, the spacing between the
nodes is more evenly distributed in space. However, the PCA-based method also
has nodes in less dense regions of the data set and is even more evenly distributed.
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(b) Normal data.
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(c) Polynomial data.

Figure 3.1: Visualization of the test sets for d = 2 and N = 103. The uniform distributed
data is independent, while the normal distributed data is weakly dependent and the poly-
nomial data is strongly, nonlinearly dependent.

MCC PCA KME

(a) Uniform data, L = 20.

MCC PCA KME

(b) Uniform data, L = 100.

MCC PCA KME

(c) Normal data, L = 20.

MCC PCA KME

(d) Normal data, L = 100.

MCC PCA KME

(e) Polynomial data, L = 20.

MCC PCA KME

(f) Polynomial data, L = 100.

Figure 3.2: Visualization of the partitionings for d = 2. The general observation is that
MCC and KME have most nodes in dense regions of the data, while PCA-based is more
spread out over the domain of the data.
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3.4.3 Tests

The tests of the methods will consist of integrating the test functions on each of
the data sets and comparing the integrals to the Monte Carlo integrals. The data
sets and cluster centers will be generated only once and reused for the different
test functions. The output of each of the methods is the value of the integral of the
test function when performed with the cluster points and weights. Not all results
will be shown, but we will show representative examples. The error measure we
use is the relative error defined by (3.6). The Monte Carlo methods are repeated
10 times due to their inherent randomness. The k-means method is random as
well due to the chosen initialization, but here the repetition is included in the
method itself.

Dimension effects

First, we compute the relative error as given by (3.6). We do this for various
values of d and data sets, for a fixed number of cluster points L = 50, to see
how the error relates to dimension. The results are in Figure 3.3 for the first
and second Genz test function. For test function 1, the PCA and KME method
are more accurate than the Monte Carlo methods. For test function 2, we see
that for large d and independent or slightly dependent data, Monte Carlo may be
the better choice because it does not suffer from the curse of dimensionality. A
possible disadvantage here is the bandwidth of the Monte Carlo results. For both
test functions, we see that reassigning data points to the nearest cluster center
(PCR) does in general not improve the result of PCA. For the test functions 3-5,
the results are similar (not shown). For the discontinuous test function 6, results
are less robust (not shown), due to the discontinuity of the test function.

Effect of number of clusters

In Figure 3.4, the effect of increasing L is studied for d = 4. These results support
the statements from Section 3.3.5, namely that the errors generally decrease with
increasing L. We show the results for the first and second test function. Several
observations from the previous section still hold: the bandwidth for Monte Carlo
methods is large and the reassigning of the data points does in general not improve
the result. When these methods are ignored, we see the PCA-based method gives
the best results for test function 1, while for test function 2, this depends on the
data set used. Note the contours of test function 1 are straight lines and this
function is relatively easy. The rate of convergence is on average not higher than
for MCS, which is O(N−1/2).
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(a) Uniform data, test function 1.
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(b) Uniform data, test function 2.
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(c) Normal data, test function 1.
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(d) Normal data, test function 2.
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(e) Polynomial data, test function 1.
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(f) Polynomial data, test function 2.

Figure 3.3: Relative error depending on dimension for different methods and data sets
with L = 50.
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(a) Uniform data, test function 1.
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(b) Uniform data, test function 2.
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(c) Normal data, test function 1.
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(d) Normal data, test function 2.
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(e) Polynomial data, test function 1.
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(f) Polynomial data, test function 2.

Figure 3.4: Relative error depending on L for different methods and data sets with d = 4.
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Computational cost

First, we note the time to compute MCS is negligible. The time to perform the
clustering is about linear in L and N for all methods, although the constants dif-
fer. For the considered methods, PCA is fastest, followed by PCR (about a factor
3 slower for L = 100). For MCC, we look at the cost of computing one set of
samples instead of ten, as was done to find the effect of randomness. Then, MCC
is about as fast as PCR, which is expected because the reassignment step is most
costly. Finally, KME (with r = 10) is about three to six times slower than MCC.
We emphasize this also depends on the implementation of the k-means method;
we use the implementation from Scikit-learn [73]. Furthermore, we emphasize
that the clustering needs to be carried out only once, as a pre-processing step to
determine the nodes (and associated weights) in parameter space at which the
expensive model u(x) must be evaluated. For several applications, a single evalu-
ation of u(x) can be orders of magnitude more expensive than the computational
cost of the pre-processing to determine the samples.

3.4.4 Ishigami function

We use again the test case described in Section 2.5.1, in which the input data is
either uniform on [−π,π]3 or normally distributed according to (2.11) and range-
normalized to [−π,π]3. The output function is given by (2.10). For this chapter,
we compute the integral based on L samples, with L ∈ {30, 50, 100, 200, 500}.
We use the clustering methods detailed before and add one often-used sampling
method, namely Latin hypercube sampling (LHS), which is only applicable for
the independent data. In this method, no weights are used. The error measure is
again the relative error as given by (3.6). The results are in Figure 3.5. Because
of the nr repetitions of the simulation with different input data sets, we show
confidence intervals as well. Here, the Monte Carlo methods have been performed
only once. One can see that here KME performs best and reassigning the data
points to the nearest cluster does not necessarily improve the result.

3.5 Conclusion

We have proposed a novel collocation method that employs clustering techniques,
thereby successfully dealing with the case of multivariate, dependent inputs. We
have assessed the performance of this clustering-based collocation method using
the Genz test functions as well as the Ishigami function as benchmarks. Three clus-
tering techniques (and one refinement) were considered in this context, namely
the Monte Carlo (MCC), k-means (KME) and principal component analysis based
(PCA-based and PCR) clustering techniques. Naive Monte Carlo sampling (MCS)
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(a) Independent data.
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Figure 3.5: Accuracy of the integral computed with different clustering methods.

is used for comparison. No exact knowledge of the input distribution is needed for
the clustering-based method proposed here; a sample of input data is sufficient.
We hypothesize that the more dependent the inputs are, the more the input data
are concentrated on a low-dimensional manifold. This makes it possible to obtain
a good representation of the input data with a relatively small number of cluster
centers.

In our settings, the variables have similar input ranges. When this is not the
case, one needs to nondimensionalize or scale them. We leave this subject open
for interpretation of the modeler.

We observed that the nodes obtained with MCC are mostly concentrated in
regions of high density of the input probability distribution, with poor representa-
tion of the tails. As a result, this method does not perform well for a low number
of dimensions. The PCA-based method is better at giving a good spread of the
collocation nodes, although its results vary for the different test functions. KME
has consistently good results, although it cannot beat Monte Carlo when the data
is (nearly) independent. Concerning computational cost, the PCA-based method
is fastest. Overall, the computational cost of the clustering methods is small, and
will be negligible compared to the computational cost of expensive model evalua-
tions (involving e.g., solvers for computational fluid dynamics).

From the results, we cannot in general advise PCA-based or KME over the
other. When a good spread of the collocation nodes over the domain is preferred,
PCA-based may be the better choice. On the other hand, when edge effects are
not important, KME may be the better choice. In this chapter we have focused on
clustering-based quadrature. Collocation is also frequently used as an approach
for obtaining approximations of output functions through interpolation or emula-
tion. This subject will be treated in Chapters 4 and 6.





4 Emulation

In the previous chapter we developed a method to select samples, at which the
black-box computational model is evaluated. We can use the output generated
from these samples for further analysis. However, due to high computational
cost, the number of available output samples can be small and this may lead to
inaccuracies and large uncertainties in quantities computed from this available
output. It is therefore beneficial to obtain more output samples by a surrogate
model. In this way, post-processing can be done on the complete input data set
after obtaining an emulated output value for each data point.

4.1 Introduction

The challenge which now appears is to use the available output to construct a sur-
rogate model. As the name suggests, a surrogate model (also called an emulator)
replaces the complex computational model by a simpler one which is cheaper to
evaluate.

The use of surrogate models is wide-spread in engineering and therefore, nu-
merous types exist. They have in common that they are generated from input-
output samples only and are in general unaware of the underlying process or
model that generated these samples. Among the oldest models are linear re-
gression models and polynomial response surfaces [74]. Later, radial basis func-
tions [75]were used to construct surrogate models. More recently, artificial neural
networks [76] came into play. Gaussian process models were first developed in
geostatistics [77], but became popular in other research fields as well due to their
flexibility and, therefore, wide applicability. In [4], it was proposed to use Gaus-
sian processes for emulation of expensive computational models. A numerical
assessment of emulation strategies can be found in [78].

In the following chapters, the concepts of Gaussian processes and Gaussian
process regression are extensively used. The first part of this chapter is therefore
based on literature and serves as a short introduction to Gaussian processes. The

53
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second part of this chapter contains new results on the derivation of bounds on the
prediction variance of a Gaussian process. Furthermore, we show these bounds
can be made more strict when k-means clustering is used to obtain the input
samples.

Section 4.2 introduces linear regression as preliminary for Section 4.3 which
explains Gaussian process regression and illustrates the difference between linear
and Gaussian process regression. More details of Gaussian processes can be found
in Section 4.4, while Section 4.5 gives useful bounds on the prediction variance.

4.2 Linear regression

Linear regression is one of the easiest ways to construct surrogate models. The
surrogate model is defined by a linear combination of a set of regressors, whose
parameters are estimated from the available output. Because a regression fit is
usually non-interpolating, an error term appears. This section is based on [79,
Sections 8.1-8.2]. We choose to include a short description of linear regression
because it can help to understand the parameter estimation of the Gaussian pro-
cess.

We start with the d-dimensional case, where we write

ui = β0 + β1 x i1 + . . .+ βd x id + ϵi ,

for each observation (xi , ui)with i ∈ {1, . . . , L} and xi = (x i1, . . . , x id). In this case,
the input data is denoted by xi , while the output of the computational model is
denoted by ui . β j for j ∈ {0, . . . , d} are parameters to be estimated and ϵi is the
error between ui and the predicted value β0 +β1 x i1 + . . .+βd x id . One can write
this surrogate model in matrix form as

u= Xβ + ϵ, X =

1 x11 · · · x1d
...

...
...

1 xL1 · · · xLd

 , β =

β0
...
βd

 , ϵ =

ϵ1...
ϵd

 , (4.1)

in which X is called the design matrix. The column vectors of X are called re-
gressors. Note that linear regression does not imply that all regressors are linear
functions; it refers to the linear combination of the (possibly nonlinear) regres-
sors. One may also include, for example, the vector x2

i1 in the design matrix X
with a corresponding parameter in β .

We will continue with linear regressors only. For this model, some assumptions
are used to simplify the estimation of the parameters β . One of them is that the
samples are assumed to be given at fixed positions, i.e., there is no uncertainty in
the values of xi . Another assumption is that we have L > d + 1.
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We consider the general case in which we assume the errors satisfy E[ϵ|X ] = 0
and Cov(ϵ|X ) = Σ, which means the errors do not need to be independent. When
Σ is a diagonal matrix, then the errors are independent. These assumptions are
enough to derive the generalized least-squares estimator of β , which is found by
minimizing

∥u− Xβ∥M .

Herein, M denotes the Mahalanobis distance with matrix M = Σ, which is defined
as

dM (x,x′) =
Æ
(x− x′)T M−1(x− x′). (4.2)

This leads to the estimator

β̂ = (X TΣ−1X )−1X TΣu. (4.3)

One can substitute Σ= σ2 I to find the ordinary least-squares estimator

β̂ = (X T X )−1X T u.

The estimator for the variance of the error, cσ2, is given by

cσ2 =
∥u− X β̂∥2M

L
=

1
L
(u− X β̂)TΣ−1(u− X β̂), (4.4)

which is biased. An unbiased estimator can be obtained by using L − d − 1 as
denominator. Estimates for u(x) (denoted m(x)) can be made by

m(x) = χ(x)β̂ , χ(x) =
�
1 x1 · · · xd

�
. (4.5)

When we now assume the errors are (multivariate) normally distributed, we
can derive the maximum likelihood estimators. The likelihood is given by

L (β ,σ2) =
1p

(2π)L det(Σ)
exp

�−1
2
(u− Xβ)TΣ−1(u− Xβ)

�
,

leading to the log-likelihood

l(β ,σ2) =
−L
2

log(2π)− 1
2

log(det(Σ))− 1
2
(u− Xβ)TΣ−1(u− Xβ).

The maximum likelihood estimators equal the ones from (4.3) and (4.4).
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4.3 Gaussian process regression

One may wonder why we included the maximum likelihood estimators in the
previous section, given they (i) need more assumptions and (ii) lead to the same
estimators as obtained by least-squares. One usually only obtains the parameter
estimates from the least-squares point-of-view. However, we are now going to
make the step from linear regression to Gaussian process regression, in which
maximum likelihood estimators are used to obtain the parameter estimates. In
this section, we will only discuss the general idea. Section 4.4 gives more details
on their construction.

We first recall (4.1):

u= Xβ + ϵ, X =

1 x11 · · · x1d
...

...
...

1 xL1 · · · xLd

 , β =

β0
...
βd

 , ϵ =

ϵ1...
ϵd

 .

In this expression, the design matrix X can be very extensive, while the errors
are very basic. The covariance matrix of these errors equals σ2 I . In Gaussian
process regression, one only includes a very basic design matrix X , but chooses
a very detailed covariance matrix Σ = σ2K , in which K is a correlation matrix.
The elements of K , denoted Ki j , depend on the distance r between observations
xi and x j . Due to the construction, the output for unseen values of x depends
on the observations via the correlation function. Unseen values of x are values
which are not used in the regression fit. The advantage of this construction is that
the prediction variance is nonconstant, i.e., small when close to observations, and
larger when further away from them. More details can be found in Section 4.4.

We also recall (4.5) and use it to write the complex computational model
output u(x) for an unseen x as

u(x) = m(x) + e(x) = χ(x)β̂ + e(x).

The idea behind the detailed covariance structure in Gaussian process regression
is that it can compensate for a very basic design matrix, and the argument is as
follows: the chosen regressor functions will in general not model the output u(x)
completely. Therefore, there exists a discrepancy (model error) between m(x) and
u(x), which one can call e(x). In the case of continuous u(x) and continuous re-
gressors, this means the discrepancy e(x) will be continuous as well. Some values
of x will be under-predicted, while others will be over-predicted. It is not hard to
see that values of x in a small neighborhood of an under-predicted x-value will
also be under-predicted due to the continuity, and analogous for over-prediction.
Then, it makes sense to correlate them based on the distances between them. Fur-
thermore, due to the interpolation property of Gaussian process regression, one
can better capture the behavior of the output.
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We illustrate these ideas in Figure 4.1 with a one-dimensional example. The
predictors 1 and x are included in the linear regression, while the Gaussian pro-
cess contains only the predictor 1 and has correlation function κ(r) = exp

� −r2

0.12

�
.

The observations obey the relationship u(x) = sin(4x + 1/2). It is clear that the
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(a) Linear regression.
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(b) Gaussian process regression.

Figure 4.1: Differences between the regression types. The data points are shown in red,
the predictor is shown in black and the predictor plus-minus oneσ is shown in gray-dotted
lines where appropriate.

Gaussian process captures the (nonlinear) behavior better than the linear regres-
sion, as one would expect. Another advantage of the Gaussian process regression
can be seen in the varying width of the confidence interval.

4.4 Gaussian processes

Gaussian processes are a generalization of the Gaussian distribution. According
to [80],

A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution.

This has as a consequence that the joint distribution of any finite number of ran-
dom variables in a Gaussian process does not depend on the other random vari-
ables included therein, which can be infinite in number. This leads to a computa-
tionally convenient framework. Also, this leads to consistency, as the distribution
of a subset is not changed by the presence of other items in the collection.

A Gaussian process g(x) is completely specified by its mean function (µ(x))
and covariance function (C(x,x′)), and is denoted by

g(x)∼ GP(µ(x), C(x,x′)).
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In practice, the domain of the Gaussian process will be Rd or an open subset of it,
with d the dimension of x. This means that for each x in the domain, the output
of the Gaussian process is a normal distribution with a certain mean and variance.
The mean and covariance functions µ(x) and C(x,x′) do not translate one-to-one
to the prediction mean and prediction variance, which are denoted m(x) andΣ(x).
We will explain later in this section how to obtain m(x) andΣ(x). In our setup, the
covariance function will depend only on the distance between two locations, and
not on the locations themselves (translation-invariant). Furthermore, note that
the covariance between two locations is independent of the output value at these
locations. The covariance function is modeled by a variance σ2 multiplied with a
kernel function κ(r) which serves as a correlation function, in which r = ∥x−x′∥.
Several examples of kernel functions are given in Section 4.4.1.

This distance r is often the Mahalanobis distance between x and x′ (4.2). If
M = I , then r is the Euclidean distance between x and x′. If M = diag(l)−2, then
r is the Euclidean distance between x and x′, normalized by the length scales l.
We choose to use

M = diag(l)−2, (4.6)

such that we use different length scales on different dimensions. These length
scales have to be determined as well, which is described in Section 4.4.2. Other
distances, such as the L1-norm, or a scaled version thereof, can be used as well.
This may be beneficial if one wants to have a distance which is additive with
respect to the different input variables.

Our purpose for using the Gaussian process is to perform regression, also
called kriging [77, 80]. Three flavours of kriging are simple kriging, ordinary
kriging and universal kriging. The first one assumes a zero mean (µ(x) = 0), the
second a constant (possibly unknown) mean (µ(x) = µ), while the third one al-
lows for a polynomial trend as mean (µ(x) = p(x)). A disadvantage of the first
is that prediction far away from measurements leads to prediction values of zero
(instead of the mean or something else). We will use the version with the constant
mean. One may ask if this is sufficient. The first part of the answer is that linear
terms are already captured when the correlation between samples goes to unity,
as shown by [81], hence, it is not necessary to explicitly include linear terms. The
second part of the answer is that in some cases, simple models perform better than
complex models [82]. This means that increasing the complexity of the model is
not a guarantee for obtaining better results. Furthermore, [83] shows that the
effect of design (choice of samples) is surprisingly large and can be larger than
the effect of both the choice of regression component and kernel.

The training set for the regression consists of L observations, denoted by D =
{(zl , ul) | l = 1, . . . , L} = {Z ,u}. zl denotes the input samples, while ul denotes
the computed/measured/observed outputs. We switch to using z instead of x to
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avoid confusion when writing the set of input samples by a capital letter. The
output vector u is a column vector containing the ul ’s, while Z is a matrix of size
L × d. The covariance between the observations can be written in a matrix as
C(Z , Z) = σ2K(Z , Z), in which Ci j = C(zi ,z j) and Ki j = κ(∥zi − z j∥). This leads
to the following multivariate normal distribution which is a part of the Gaussian
process:

g(Z)∼ N (1µ, C(Z , Z)) = N
�
1µ,σ2K(Z , Z)

�
,

in which the design matrix X = 1 of size L × 1 (all entries equal 1, due to the
ordinary kriging), whereas µ and σ2 are yet to be determined. Note that the
mean of g(Z) should equal u. This will be accounted for automatically in the
computation of the predictions due to the covariance structure. Furthermore, the
length scales in κ(r) are yet unknown and thereby also the values of K(Z , Z).
These are derived in Section 4.4.2.

First, we show how to obtain predictions when these parameters are estimated,
indicated by a hat on the variable. Due to the consistency of the Gaussian process
(adding observations does not change the distribution of the earlier ones), one
can extend this normal distribution with L∗ extra input data Z∗ as�

g(Z)
g(Z∗)

�
∼ N

��
1L×1
1L∗×1

�
µ̂,cσ2

�
K(Z , Z) K(Z , Z∗)
K(Z∗, Z) K(Z∗, Z∗)

��
.

From this enlarged distribution, one can now condition on the earlier observa-
tions to obtain the (normal) distribution for the new ones, which is a benefit from
the multivariate normal distribution. Working this out requires multiple pages of
straightforward linear algebra, for which we refer to [84, pp. 428–429]. We just
skip to the conclusion:

g(Z∗)∼ N (m(Z∗),Σ(Z∗)) ,
m(Z∗) = 1L∗×1µ̂+ K(Z∗, Z)K(Z , Z)−1(u− 1L∗×1µ̂),

Σ(Z∗) = cσ2
�
K(Z∗, Z∗)− K(Z∗, Z)K(Z , Z)−1K(Z , Z∗)

�
. (4.7)

Hence, given the data {Z ,u}, we can now make a prediction for a new data point
z∗ as a normal distribution with mean m(z∗) and variance Σ(z∗). Note that one
can replace Z∗ by a zl ∈ Z to see that the mean of g(zl) coincides with ul and that
the variance at that location is zero. Finally, we mention it is numerically easy
to obtain these distributions for prediction once µ̂, cσ2 and l̂ are determined. We
continue with several aspects of the implementation of this procedure.
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4.4.1 Kernels

The choice of the kernel is important for the behavior of the Gaussian process. The
Gaussian process inherits properties of the kernel, like smoothness and length
scales. These properties need to be taken into account in choosing a suitable
kernel, most importantly the differences between finite and infinite kernels, be-
tween smooth and nonsmooth kernels, and between isotropic and anisotropic ker-
nels. Kernel functions κ(r) are positive definite functions and have the property
κ(0) = 1. The first requirement guarantees that K will be a covariance matrix
(i.e., positive definite for distinct xi , semi-positive definite otherwise), the second
is for scaling purposes.

Note that although a kernel may be differentiable at r = 0, if this derivative
does not equal 0, the resulting Gaussian process will not be differentiable.

Most often, the squared exponential (Gaussian) kernel,

κG(r) = exp

�−r2

2

�
,

is used. This kernel is smooth and easy to compute. However, it has infinite
support and leads to small values in the covariance matrix, which thereby becomes
ill-conditioned.

Therefore, we look for kernels with finite (compact) support, which we require
to be stationary (translation-invariant). The difficulty is to find kernels with finite
support which are also positive definite. Wendland [85] gives multiple kernel func-
tions κD,q(r) which are polynomials and positive definite up to some maximum
input dimension D and have domain [0, 1] (nonzero on [0, 1)). q is a smoothness
parameter, in such a way that the first polynomial (with q = 0) has a cusp for
r = 0, while the others have derivative zero for r = 0. As q goes to infinity, with
proper scaling and linear transformations, the Wendland kernel converges to the
Gaussian kernel.

Another often used type of kernels is the family of Matérn kernels [86] defined
by

κM ,ν(r) =
21−ν
Γ (ν)

�p
2νd

�ν
Kv

�p
2νr

�
,

where Γ is the gamma function and Kν the modified Bessel function of the second
kind [87]. When ν = p + 1/2, p ∈ N, this equation reduces to a product of an
exponential and a polynomial of order p. A Gaussian process with this kernel is
⌊ν⌋ times differentiable.

Figure 4.2 shows their differences, in which we choose D = 1, q = 1 and
ν = 3/2. The domain of the Wendland kernel has been scaled to [0, R], in which
R is optimized to minimize the L1-norm between κD,q(r) and κG(r).
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Figure 4.2: The behavior of different kernels. The difference between Gauss and Wend-
land is negligible in most of the domain, while the Matérn kernel shows a different decay.

4.4.2 Parameter optimization

We continue with the parameter optimization needed to determine µ̂, cσ2 and l.
The set of output observations u has a multivariate normal distribution with mean
1µ̂ and covariance matrix C with entries Ci j = σ2K(zi ,z j). Hence, its likelihood
is given by [88]

L (µ,σ2, l|Z ,u) =
1p

(2π)Ldet(C)
exp

�
−1

2
(u− 1µ)T C−1(u− 1µ)

�
.

To emphasize the dependency on the parameters l, we use the notation Kl instead
of K and rewrite the previous expression as

L (µ,σ2, l|Z ,u) =
1p

(2πσ2)Ldet(Kl)
exp

�
− 1

2σ2
(u− 1µ)T K−1

l (u− 1µ)
�

.

Taking the logarithm leads to

l(µ,σ2, l|Z ,u) = − L
2

log(2π)− L
2

log(σ2)− 1
2

log(detKl)

− 1
2σ2

�
(u− 1µ)T K−1

l (u− 1µ)
�

. (4.8)

In this case, finding the maximum for the parameters leads to a coupled system.
Therefore, we are going to solve it in steps. First, we take the derivative of (4.8)
with respect to µ, equate this to zero and solve for µ. This gives us (see also [88])

µ̂=
1T K−1

l u

1T K−1
l 1

. (4.9)
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It can be checked via the second derivative that this is indeed a maximum. In the
same way, optimizing for σ2 leads to

cσ2 =
1
L

�
(u− 1µ̂)T K−1

l (u− 1µ̂)
�

, (4.10)

in which we use the estimator for µ̂. This expression for σ2 can be substituted in
the log-likelihood to get

l(l|Z ,u) = − L
2

log(2π)− L
2

log
�

1
L

�
(u− 1µ̂)T K−1

l (u− 1µ̂)
��

− 1
2

log(detKl)− L
2

.

The constant terms and equal factors can be ignored in the optimization of l, lead-
ing to the expression

− L log
�

1
L

�
(u− 1µ̂)T K−1

l (u− 1µ̂)
��− log(detKl), (4.11)

which needs to be maximized for l. This can in general not be done analytically
and numerical optimization is used. Also, the log-likelihood often has multiple
local minima, an example hereof can be found in [80, pp. 115–116]. To avoid
local minima with extremely short or long length scales, bounds on the length
scales are imposed. Following [89], the bounding box is chosen as [0.01, 10]d .

Now, we can go from estimators to estimates. The numerically optimized
value for l is inserted into (4.9), to obtain the estimate for µ̂. Finally, this estimate
is substituted into (4.10).

4.4.3 Numerical stability

In the previous discussion, the numerical implementation has largely been ig-
nored. We will detail here the adaptation used to improve the numerical stability
of computing the inverse of K(Z , Z) and the implementation of computing the
expression (4.11).

First, we have added a nugget parameter η to the correlation matrix. This
implies that instead of the matrix K(Z , Z), we will use K(Z , Z) +η2 I , where η =
10−4. This stabilizes the computation of the inverse. One can question how this
term should be interpreted. When one looks at the covariance matrix derived from
it, only the diagonal terms representing the variance have changed. When one
computes (4.7) with K(Z , Z)−1 replaced by (K(Z , Z) +η2 I)−1 for a Z∗ consisting
of one zl ∈ Z , one finds that the prediction variance has increased from 0 to η2cσ2.
Therefore, one can interpret this nugget term as a small measurement error.
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Second, straightforward computation of log (detKl) leads to problems with
near to zero numbers if some samples are near to each other. Therefore, one
writes

log (det(Kl)) = log
�
det(U T U)

�
= log

�
det(U)2

�
= 2 log (det(U))

= 2 log

� L∏
l=1

Ul l

�
= 2

L∑
l=1

log(Ul l),

and computes this last quantity instead, in which U is the upper-triangular Chol-
esky factor [90].

4.5 Bounds

We present in this section a new result on the existence and derivation of bounds
on the prediction variance. First, it is verified that the prediction variance de-
creases if more samples are added to the design (as already known). Then, we
give a lemma whose assumptions are only met for certain kernels. These assump-
tions are necessary to derive the bound and therefore limit the number of kernels
which are suitable for this theory. These preparations are all given in Section
4.5.1. We derive the full theorem on a bound for the Gaussian process predic-
tion variance in Section 4.5.2. As an extra, we show an adaptation for when the
sum-of-squares cannot be split out to different dimensions. Then, we derive the
result for isotropic and one-dimensional Gaussian processes as a corollary. As a
bonus, we explain why k-means clustering is considered to be optimal for these
cases in Section 4.5.3. We finish with the computation of the constant C , which
is necessary in the bound, for several kernels in Section 4.5.4.

4.5.1 Notation and preparation

We denote the data set by X , which is a N×d matrix consisting of N d-dimensional
data points x. Z is an L × d matrix consisting of L samples z constructed on the
data X . Let κ(r) denote the chosen (positive definite) kernel and r the Euclidean
distance between x and x′. Let κ∗ denote the L × 1 vector κ(Z ,x∗) with x∗ a
prediction location and K the L × L matrix κ(Z , Z). Let V (x∗) be the prediction
variance at location x∗ of a Gaussian process constructed with kernel κ(r) on the
training samples Z . Then this prediction variance is given by [91, App. A]

V (x∗) = cσ2
�
1− κ∗T K−1κ∗

�
,

where cσ2 is the estimate of the process variance. In what follows, we will initially
neglect this factor and look at the normalized variance Vn(x∗) given by

Vn(x
∗) = 1−κ∗T K−1κ∗. (4.12)
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We assume the kernel parameters are fixed and x∗ /∈ Z for the remainder of this
text. We will first give and prove two lemmas which ease the proof of the main
result.

Lemma 1. The normalized prediction variance Vn(x∗) decreases when an extra sam-
ple ζ is added to the set of training samples Z, except when this sample coincides
with another sample in Z, thus:fVn(x

∗)< Vn(x
∗) given ζ /∈ Z ,

where fVn(x∗) denotes the normalized prediction variance after adding ζ.

Proof. Let L be fixed and denote the extra training sample by ζ. Then, the result-
ing variance estimate can be written as

fVn(x
∗) = 1− �κ∗T κ(x∗,ζ)T

�� K κ(Z ,ζ)
κ(ζ, Z) κ(ζ,ζ)

�−1 �
κ∗

κ(x∗,ζ)

�
.

Note that κ(ζ,ζ) = 1 and κ(ζ, Z) = κ(Z ,ζ)T . We will write v for κ(Z ,ζ) for
notational purposes when deemed necessary. It can be proven that the inverse of
the extended matrix is given by (see [92]):�

K v
vT 1

�−1

=
1

1− vT K−1v

�
(1− vT K−1v)K−1 + K−1vvT K−1 −K−1v

−vT K−1 1

�
,

when 1− vT K−1v ̸= 0. The corresponding normalized variance is then given by

fVn(x
∗) = 1− κ∗T K−1κ∗ − (κ∗T K−1v −κ(x∗,ζ))2

1− vT K−1v
. (4.13)

We see that this is equal to the normalized variance Vn(x∗) with an extra term.
Note that the numerator is a quadratic form, thereby always zero or positive. The
denominator can only be zero if vT K−1v = 1.

We will show i) that the normalized variance Vn(x∗) (as defined in (4.12)) is
only zero for x∗ ∈ Z (positive otherwise), and from this reasoning, we can show
ii) that the denominator in (4.13) will be positive (hence, the expression for the
inverse is valid). Finally, we need to show iii) that the numerator in (4.13) is only
zero for ζ ∈ Z .

1. Assume Vn(x∗) is zero for x∗ and we want to add point x∗ to the GP as
training point, so we look at the extended kernel matrix�

K κ∗
κ∗T 1

�
. (4.14)
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and replace 1 by the expression κ∗T K−1κ∗ (since Vn(x∗) = 0); yielding the
kernel matrix �

K κ∗
κ∗T κ∗T K−1κ∗

�
.

Then the determinant equals 0. Since K−1 exists, the first L columns are
independent. Hence, the last column can be written as a linear combination
of the previous ones. However, if x∗ /∈ Z , then the matrix in (4.14) should
be positive definite due to the kernel being positive definite! Hence, the
only option is when x∗ ∈ Z , where the linear combination can be written as
one of the unit vectors in Rk. This was excluded, so Vn(x∗)> 0.

2. With the same reasoning as before, the denominator in (4.13) can only be
zero if ζ ∈ Z , which is excluded since it would not be an extra training
sample.

3. It remains to be shown that (κ∗T K−1v−κ(x∗,ζ))2 = (κ(x∗, Z)K−1κ(Z ,ζ)−
κ(x∗,ζ))2 > 0 if ζ /∈ Z . Assume (κ(x∗, Z)K−1κ(Z ,ζ)− κ(x∗,ζ))2 = 0.

Consider the extended kernel matrix as before with ζ instead of x∗:�
K v
vT 1

�
.

It has reduced rank only when ζ ∈ Z . We write the matrix�
K v

κ(x∗, Z) κ(x∗,ζ)

�
,

which has a different bottom row than the matrix from before. It turns
out that its determinant is again zero (by assumption), while the first L
columns are independent. Hence, the last column can be written as a linear
combination of the first L ones. Especially, this holds for the first L rows
of the last column. Due to the positive definiteness, we can conclude that
ζ ∈ Z , so for ζ /∈ Z , we have (κ(x∗, Z)K−1κ(Z ,ζ)− κ(x∗,ζ))2 > 0.

Combining these results, we first see that the last term of (4.13) (including
the minus sign) is always negative for ζ /∈ Z . From this, we getfVn(x

∗)< Vn(x
∗),

for x∗ /∈ Z and ζ /∈ Z .

Basically, this result tells us that adding samples will reduce the prediction
variance (under the condition that the Gaussian process parameters are not re-
fit). Therefore, adding samples does not deteriorate the predictions made with
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the Gaussian process. The next lemma helps us to determine which kernels are
suitable to bound the prediction variance by the sum-of-squares of the design.

Lemma 2. Assume κ(r) is a kernel function with κ(r = 0) = 1 and κ(r) is two
times differentiable on [0, 1). If

κ′(0) = 0,

and
∃C1 ∈ R> 0 : |κ′′(r)| ≤ C1 for all r ∈ (0, 1),

then,
1− κ(r)2 ≤ C · r2 for all r ≥ 0,

with C =max{1, C1}.
Proof. Since |κ(r)| < 1 for r ̸= 0 [93], we have automatically 1 − κ(r)2 ≤ r2

for r ≥ 1. For r = 0, this holds as well since κ(0) = 1. So, we assume for now
r ∈ (0, 1). We use the Taylor expansion with remainder

κ(r) = κ(0) + κ′(0)r + (1/2)κ′′(s)r2,

for some s ∈ (0, r). Then,

1−κ(r)2 = 1− (κ(0) + κ′(0)r + (1/2)κ′′(s)r2)2,

= 1− (κ(0)2 + 2κ(0)κ′(0)r + (κ(0)κ′′(s) + κ′(0)2)r2 +κ′(0)κ′′(s)r3

+ (1/4)κ′′(s)2r4),

= −2κ′(0)r − (κ′′(s) + κ′(0)2)r2 − κ′(0)κ′′(s)r3 − (1/4)κ′′(s)2r4.

We now use the assumptions and find

1−κ(r)2 = −κ′′(s)r2 − (1/4)κ′′(s)2r4 ≤ −κ′′(s)r2 ≤ C1 · r2.

Combining the results for r = 0, r ∈ (0, 1) and r ≥ 1 finishes the proof.

This lemma is important as it indicates the requirement that kernels have to
meet in order for our result to hold. For a given kernel, it is easy to evaluate
whether the assumptions of Lemma 2 hold. The computation of C will be detailed
in Section 4.5.4.

Finally, we give some definitions which will be used in the theorem and the
proof. Herein, zi denotes the design point corresponding to data point xi . The
sum-of-squares for the input variable j is given by

SOS j =
N∑

i=1

(x i j − zi j)
2,
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and the sum-of-squares in the input space between the design and the data set is
given by

SOS =
d∑

j=1

SOS j .

4.5.2 Main theorem

Theorem 3. Let X be the data set and Z the design. Let Vn(x) be the normalized
prediction variance for a Gaussian process with optimized length scales l constructed
on the design Z with chosen kernel κ(r) for which Lemma 2 holds with normalized
Euclidean distance r (Mahalanobis distance with M diagonal and Mii = 1/l2

i ). De-
note by SOS the sum-of-squares as defined before. Then, there exists a C > 0 such
that

N∑
i=1

Vn(xi)≤ C
d∑

j=1

SOS j

l2
j

. (4.15)

Proof. Define a piece-wise normalized Gaussian process by local Gaussian pro-
cesses V n(xi) on each of the Voronoi cells defined by Z and the normalized Eu-
clidean distance r. Each local Gaussian process is built on the training sample in
that Voronoi cell with kernel κ(r), distance r and process variance 1. Therefore,
for each xi only the nearest z j is taken into account in the piece-wise Gaussian
process. We denote by Z̃ the N × d matrix consisting of N row vectors z̃i , such
that z̃i is the nearest z j for xi . Then, we get

N∑
i=1

Vn(xi)≤
N∑

i=1

Vn(xi) =
N∑

i=1

�
1−κ(∥xi − z̃i∥2)κ(∥z̃i − z̃i∥2)−1κ(∥xi − z̃i∥2)

�
,

=
N∑

i=1

�
1−κ(∥xi − z̃i∥2)2

�
=

N∑
i=1

�
1− κ(ri)

2
�

,

≤
N∑

i=1

C r2
i = C

N∑
i=1

d∑
j=1

(x i j −fzi j)2

l2
j

= C
d∑

j=1

SOS j

l2
j

.

The first inequality used Lemma 1, the second one Lemma 2 and we recalled the
definition of r.

We have now shown the normalized prediction variance can be bounded by
the sum-of-squares in each dimension. We can generalize this to a bound based
on the total sum-of-squares, which will be less tight though. The resulting bound,
which equals a factor times the sum-of-squares, is given in Corollary 4.
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Corollary 4. Let the requirements for Theorem 3 be fulfilled. Then, there exists a
C > 0 such that

N∑
i=1

Vn(xi)≤ C
min j l2

j

SOS. (4.16)

Proof. The proof follows the one of Theorem 3, with the extra step

N∑
i=1

Vn(xi)≤ C ·
d∑

j=1

SOS j

l2
j

≤ C
min j l2

j

SOS.

This holds because all l j ̸= 0.

The obtained results concern d-dimensional anisotropic Gaussian processes,
which means d length scales are involved. We give the results for d-dimensional
isotropic and one-dimensional Gaussian processes in the following corollary.

Corollary 5. Let the requirements for Theorem 3 be fulfilled with either l = l1, i.e.,
l j = l for each dimension j or l= l, i.e., d = 1. Then

N∑
i=1

Vn(xi)≤ C
l2

SOS. (4.17)

Proof. The proof follows directly from Theorem 3 or Corollary 4.

These results are independent of the choice of design, i.e., they hold for Monte
Carlo sampling as well as for advanced design methods. Therefore, we show in
Section 4.5.3 how these results can be used. We end this subsection with some
remarks.

We note that we use the normalized prediction variance instead of the “regu-
lar” prediction variance. It is necessary to have an estimate cσ2 in order to trans-
late this result to the “regular” prediction variance. This estimate is available if
the bound is used after evaluating all samples. In this case, the advantage of the
bound is not having to compute the prediction variance for each data point indi-
vidually. If the estimate is obtained from an initial design or earlier results, then
the advantage of the bound is also to be able to bound the prediction variance
before evaluation of the new samples. This is only useful, however, if cσ2 is not
expected to change considerably if the new samples are added.

In practice, the output is nondimensionalized to avoid numerical issues in the
scaling of the Gaussian process, which results in values of cσ2 between 0 and 100.
This corresponds to the standard deviation of a prediction being between 0 and
10, which is one order of magnitude in the worst case. Also, a range of values for
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cσ2 may be estimated from earlier experiments, of which the worst case can again
be used.

A question which can rise here is whether it is beneficial to refit the Gaussian
process after obtaining the new samples. On one hand, this might lead to better
estimates of cσ2 and l, and thereby better predictions. On the other hand, the old
bound is not guaranteed if the estimates change.

4.5.3 Optimality of k-means

Inequalities (4.15), (4.16) and (4.17) show that the bound will decrease if the
sum-of-squares (SOS) between the design and the data set is decreased. This
is exactly the minimization criterion in the k-means clustering. The similarity
is caused by the distance function in the Gaussian process being the Euclidean
distance (multiplied with a constant factor) instead of the normalized Euclidean
distance.

Therefore, using k-means to construct the sampling design is optimal to obtain
a low SOS in the case of an isotropic or one-dimensional Gaussian process. A
low SOS is beneficial as it represents a low prediction variance, which means the
Gaussian process gives small confidence intervals when predicting the output for
unseen input data values. The optimality of the k-means clustering is beneficial
as it is an easily applicable method to compute the sample points in practice.

The case of a d-dimensional anisotropic Gaussian process is more complicated
because of the multiple length scales involved. These are not known when the
sampling design is constructed, and therefore, the normalized Euclidean distance
cannot be used as distance function in the k-means clustering to optimize the
result and thereby minimize the sum-of-squares. However, using k-means will
still lead to a small overall SOS and therefore it is still a good heuristic approach
to use a k-means sampling design.

4.5.4 The constant C

We now give more details on the computation of the constant C . We compute
here the values of C for the Gauss kernel and the Matérn kernel with ν= 3/2, as
the bound does not hold for ν= 1/2 due to the cusp for r = 0. For Gauss, we get����d2κG(r)

dr2

����= ���� d2

dr2

�
exp

�−r2

2

������= ����(r2 − 1)exp

�−r2

2

�����≤ |r2 − 1| ≤ 1,

hence C = 1.
For the Matérn kernel with ν= 3/2, we can simplify the kernel expression to

κM ,ν=3/2(r) = (1+
p

3r)exp(−p3r).
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Then, we find the bound�����d2κM ,ν=3/2(r)

dr2

�����=
���� d2

dr2

�
(1+
p

3r)exp(−p3r)
�����= ��3(rp3− 1)exp

�−p3r
���

≤ ��3(rp3− 1)
��≤ 3,

in which we used r ∈ (0, 1), hence C = 3.
For the Wendland kernel, we tabulate some of the coefficients in Table 4.1 for

the non-optimized definition, i.e., κW (r = 1) = 0. They are computed in a similar
way as for the Matérn kernels. However, since they are polynomials on [0, 1], they
are their own Taylor series on [0, 1]. Note that the values for C here are higher.
This has to do with the Wendland kernels being zero at r = 1, so they decay faster.
Note that in this case also the estimated length scales will be larger and therefore
diminish the effect of a larger C . In the implementation, we choose to include
the optimized version of the scaling factor R in the kernel definition, such that the
resulting length scales are comparable between the different kernels. This has no
effect on the application of Theorem 3, because R can also be regarded as included
in the distance function.

Table 4.1: Values of C for the Wendland kernels Wd,q. q = 0 is left out because no bounds
exist.

q = 1 q = 2
d = 1 12 14
d = 3 20 18 2/3
d = 5 30 24



5 Sensitivity analysis

The goal of this chapter is to develop a sensitivity analysis method, continuing the
line of research started in Chapter 2. We develop two types of sensitivity indices
and estimate them via different methods.

5.1 Introduction

Sensitivity analysis is an essential part of uncertainty quantification and a very ac-
tive research field [94–96]. Several types of sensitivity indices have been formu-
lated, such as variance-based (including Sobol’s indices [97]), density-based [98],
derivative-based [99] or divergence-based. Broadly speaking, divergence-based
sensitivity indices quantify the difference between the joint probability distribu-
tion (or density) of model input and output on the one hand, and the product
of their marginal distributions on the other hand. A variety of divergence-based
indices can be brought together in a common framework built on the notion of
f -divergence [100], as was shown by Da Veiga [101]. The f -divergence is a gen-
eralization of several well-known divergences such as the Kullback-Leibler diver-
gence [30] and the Hellinger distance [38].

In most cases, these sensitivity indices cannot be computed analytically be-
cause the distribution of the model output given the input is not known exactly.
As an alternative, one can resort to Monte Carlo sampling (MCS) combined with
kernel density estimation (KDE): the input distribution is sampled using MCS, the
model is evaluated on all sampled input points, and from resulting input-output
points the joint and marginal probability densities of input and output are esti-
mated. However, when the number of available output points is low, for example
because of high computational cost of the model, the estimated densities will gen-
erally be inaccurate, resulting in large errors in the estimated sensitivity indices.

Mainly based on A. Eggels, and D. Crommelin, “Efficient estimation of divergence-based sens-
itivity indices with Gaussian process surrogates,” in preparation, 2019.

71
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In this study we propose to increase the number of output samples by using
a Gaussian process (GP) surrogate. The GP is constructed on the input-output
points that are obtained with the expensive model. The main idea is that the ad-
ditional output samples improve the estimation of sensitivity indices even though
they introduce a bias due to the difference between the true model and its GP
approximation.

Our approach is based on both the development of divergence-based indices
and the use of Gaussian processes in sensitivity analysis. Therefore, we briefly
summarize some of the advancements in these areas. Auder & Iooss [28] pre-
sented two sensitivity analysis methods based on Shannon and Kullback-Leiber
entropy, respectively, building on work in [102] and [29]. Da Veiga [101] in-
troduced sensitivity indices based on the f -divergence. In [103], besides more
theoretical results, three approximate methods are discussed: one using MCS,
one with MCS combined with kernel density estimation (KDE-MC), and one in
which MCS, KDE and polynomial dimensional decomposition (PDD-KDE-MC) are
combined (see also [104]). Recently, KDE also appears in estimators of mutual
information measures [32], where f -divergences are computed between the joint
distribution of two random variables and the product of their marginal distribu-
tions. Another application of KDE can be found in [105] where a general consis-
tency result for given-data estimation of several sensitivity measures is derived.
In [41], f -divergence measures are computed by a k-nearest neighbor graph.

The use of GPs is discussed in Marrel et al. [106], together with the analytical
expressions for Sobol indices that arise from them. To compute the indices, two
approaches are considered: one in which the predictor of the GP is used and one
in which the full GP is used. The latter approach is found to be superior in con-
vergence and robustness. Furthermore, the modeling error of the GP is integrated
through confidence intervals; it is reported that the bias due to the use of the GP
is negligible [106]. In a related study, Svenson et al. [107] estimate Sobol indices
with GPs, using specific compactly supported kernel functions. Furthermore, com-
bining GPs with derivative-based indices has been investigated by [99] and [108].
In [109], predictions from a GP are used to rank the input variables based on their
predictive relevance. Two methods for this are presented therein: one based on
Kullback-Leibler divergence and one based on the variance of the posterior mean.

Despite the developments sketched above, approaches that combine GP surro-
gate modeling and divergence-based sensitivity analysis have not been explored
much yet (an exception is [110]). The methodology proposed in this chapter
combines these two elements. We discuss two variants of this method, one in
which only the GP mean is used, and one which also accounts for the GP predic-
tion variance. Both use the KDE method for estimation. For a specific choice of
divergence (Hellinger distance), another estimation method based on minimum
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spanning trees (see Chapter 2) is proposed as well. This because the sensitivity in-
dices which will be derived in Section 5.2.1 can also be computed by the minimum
spanning tree (MST) approach, as detailed in Section 5.2.3.

We note that for the approaches proposed here it is not needed to assume that
the inputs are mutually independent, nor does dependency of inputs make it more
complicated. We present a test case with independent inputs as well as a case with
dependent inputs. For the former, we compare with results obtained with PDD-
KDE-MC [103, 104]. PDD-KDE-MC follows a similar philosophy of using surro-
gates to enlarge the set of points used for density estimation, although the type of
surrogate differs. However, the PDD is connected to the analysis-of-variance rep-
resentation of a multivariate function, which becomes cumbersome in the case of
a dependent input distribution.

Section 5.2 describes the sensitivity indices central to this paper, the compli-
cations of estimating them and our proposed methods. In Section 5.3, these es-
timators are applied to three test cases. A second type of sensitivity indices is
developed in Section 5.4. Section 5.5 concludes.

5.2 Divergence-based sensitivity indices and their esti-
mation ⋆

5.2.1 Sensitivity indices from the f -divergence

We consider the situation where a model takes a matrix consisting of one input
vector xi of length d per data point (X = (x1, ... , xN )T ) and returns an output
matrix Y . The input matrix X is random, and as a result the output Y is random
as well. Depending on the number of outputs, Y is either a vector or a matrix.
Da Veiga [101] proposed to perform global sensitivity analysis with dependence
measures, especially f -divergences (see also [103]). In this way, the impact of
the kth input variable X k on the output Y is given by

SX k = E
�
d(Y, Y |X k)

�
, (5.1)

where d(·, ·) denotes a dissimilarity measure. The unnormalized first-order Sobol
indices can also be written in this framework, namely with

d(Y, Y |X k) =
�
E(Y )−E(Y |X k)

�2
.

We will use the Csiszár f -divergence [100], which is given by

d f (Y, Y |X k) =

∫
R

f

�
pY (y)

pY |X k(y)

�
pY |X k(y)dy, (5.2)
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with f (·) a convex function with f (1) = 0, and p·(·) denoting a probability density
function. Hence, pY represents the probability density function of the output Y ,
pY |X k the one for Y given X k and pX k ,Y denotes the joint probability density func-
tion of X k and Y . Some well-known choices for f are f (t) = − log(t) (Kullback-
Leibler divergence) and f (t) = (

p
t − 1)2 (Hellinger distance). Combining (5.1)

and (5.2) with basic probability theory gives us

S f
X k =

∫∫
R2

f

�
pX k(x)pY (y)
pX k ,Y (x , y)

�
pX k ,Y (x , y)dydx . (5.3)

These sensitivity indices are equal to zero for X k and Y independent and positive
otherwise. Furthermore, they are invariant with respect to smooth and uniquely
invertible transformations of X k and Y [111], in contrast to Sobol indices which
are only invariant with respect to linear transformations. Moreover, it is easy to
generalize (5.3) to multi-dimensional X k,l .

5.2.2 Difficulties for estimation

The main problem for computing S f
X k is that the probability densities in (5.3) are

not known. In order to estimate S f
X k it is necessary to estimate pY (·) and pX k ,Y (·, ·),

and, depending on the type of input, pX k(·) as well. In [101] it is indicated that if

L samples (X L , YL) are available, only the ratio r(x , y) =
pY (y)pX k (x)
pX k ,Y (x ,y) needs to be

estimated.
The estimates of the densities can be obtained with kernel-density estimation

(see also [101,103]). To do so, one chooses a suitable kernel and a suitable value
for the kernel bandwidth h, for which guidelines are available [45].

Clearly, the estimate of the density pY will not be perfect, leading to an er-
ror in the estimation of S f

X k . This is strongly related to the number of samples
(X L , YL) available for density estimation. If high computational cost of the model
limits this number, the estimation of S f

X k can be improved by using a surrogate of
the model to generate more samples. An existing method for this is polynomial
dimensional decomposition (PDD) [112]. It is based on the assumption of mutu-
ally independent input variables, which can be unrealistic in cases obtained from
practice. Furthermore, the surrogate modeled by PDD is a polynomial, thereby
limiting the output function space. Another point of interest is the large number
of parameters which needs to be fit for PDD.

As an alternative, we propose to use Gaussian processes [80] as a surrogate
model to obtain the larger sample (X+, Y+) = (X L ∪ X L+ , YL ∪ YL+), in which YL+

indicates the surrogate model output for the extra input samples X L+ . For each
data point in X L+ , this YL+ is a normal distribution in itself, and for each point in X L
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it is a degenerated normal distribution (i.e., it has zero variance). An additional
advantage may be the availability of confidence intervals for S f

X k at almost no
extra computational cost. We note that these confidence intervals do not include
the bias from approximating the output by a Gaussian process.

5.2.3 Estimation using Gaussian processes

We assume the input samples X L := {xl}Ll=1 are already available, otherwise one
can use Monte Carlo sampling (or Latin hypercube sampling in the case of in-
dependent uniform data) to select samples from the data X . Although it may
be tempting to use k-means clustering or other sample selection methods, it is
not guaranteed that they represent the distribution just as naive sampling would.
Then, the corresponding output YL := {yl}Ll=1 can be obtained as YL = G(X L)with
G the process to generate output, which is either a function or a computational
model. Then, one needs to fit a Gaussian process eG{X L ,YL}(x) = N(µ(x),Σ(x)) to
(X L , YL), thereby choosing an appropriate kernel. This Gaussian process is now
used to obtain output YL+ = eG{X L ,YL}(X L+) for other input samples X L+ . This leads
to the augmented data set X+ = X L ∪ X L+ of size N = L + L+ with (partial) sur-
rogate output Y+ = YL ∪ YL+ . Note that YL+ does not consist of single values, but
rather of multivariate normal distributions.

Kernel density estimation

We now explain how to compute the KDE on (X+, Y+) and how it is used to ap-
proximate (5.3). Because S f

X k is computed per input variable X k, it is here enough
to consider one-dimensional kernel densities.

For each input variable X k and output variable Y , the estimators for the kernel
density are given by [103]:

ÓfX k(x) =
1

JhX k

J∑
j=1

KX k

� x − x j

hX k

�
,

cfY (y) =
1

JhY

J∑
j=1

KY

� y − y j

hY

�
,

ÕfX k ,Y (x , y) =
1

JhX k hY

J∑
j=1

KX k

� x − x j

hX k

�
KY

� y − y j

hY

�
,

with (x j , y j) the jth sample of the input data (X k, Y ) and J the size of the data.
Note the input data X = (X 1, . . . , X d) has to represent the distribution of X . An
extension to a higher-dimensional X k is easy to obtain. For our purpose, we either
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have J = L and (X , Y ) = (X L , YL), or we have J = N and (X , Y ) = (X+, Y+). We
choose the Gaussian kernel and hX k = hY = h according to Scott’s rule [45], which
is optimized with respect to the normal distribution. Then, the estimator for S f

X k

as given by [103] is obtained:

H
(J)
X k , f :=

1
J

J∑
j=1

f

 ÓfX k(x j)cfY (y j)ÕfX k ,Y (x j , y j)

!
. (5.4)

We note this choice of h may not be optimal. We have adapted the bandwidth h
previously to the ranges of X and Y , but the results of this are worse than with
a single bandwidth. Also, kernel density estimation may not be the best choice
when the domain of a variable X k or Y is bounded and this variable has nonzero
density at the boundaries.

Until so far, we ignored the fact YL+ is a multivariate normal random variable
instead of a single value when J = N . Therefore, there are two options to obtain
values for YL+ . The first option is to use the prediction mean µ(x) and get the
resulting output samples

YL+ = µ (X L+) , (5.5)

to be used in (5.4). The other is to sample from this normal distribution ns times.
In that case, one gets the ns output sets

Y (s)L+ ∼ N (µ (X L+) ,Σ (X L+)) , (5.6)

in which ∼ denotes “sampled from the distribution”, and thereby ns estimates of

H
(N)
X k , f . Note that this also implies the kernel density estimates have to be computed

ns times.

Minimum spanning trees

We can relate the proposed sensitivity indices to the Rényi divergence D1/2 as
introduced in Chapter 2 in case the used divergence is the Hellinger distance. As
briefly mentioned in Section 2.2.2, the Hellinger distance can be computed from
D1/2 by straightforward transformations. We show the relation between D1/2 and
SH

X k here, starting with (2.3), in which α = 1/2 is substituted and the dummy
variables are numbered:

D1/2(g1, g2) = −2 log

�∫
Ω

√√ g1(x)
g2(x)

g2(x)dx

�
= −2 log

�∫
Ω

Æ
g1(x)g2(x)dx

�
.

In our case, g1 is given by pX k ,Y and g2 is given by pX k pY , hence

D1/2(pX k ,Y , pX k pY ) = −2 log

�∫
ΩX k

∫
ΩY

q
pX k ,Y (x , y)pX k(x)pY (y)dydx

�
. (5.7)
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On the other hand, SH
X k , with H denoting the sensitivity index derived from the

Hellinger distance, is given through (5.3) by

SH
X k =

∫∫
R2

 √√√ pX k(x)pY (y)
pX k ,Y (x , y)

− 1

!2

pX k ,Y (x , y)dydx ,

which can be simplified to

SH
X k = 2− 2

∫∫
R2

q
pX k(x)pY (y)pX k ,Y (x , y)dydx . (5.8)

We now see the agreement between (5.7) and (5.8). In case the domain of X k and
Y is extended to R by zero density outside of the domain, it is possible to write

D1/2(pX k ,Y , pX k pY ) = −2 log(I), SH
X k = 2− 2I ,

with

I =

∫∫
R2

q
pX k(x)pY (y)pX k ,Y (x , y)dydx ,

hence

SH
X k = 2− 2exp

�−D1/2(pX k ,Y , pX k pY )

2

�
.

We can compute SH
X k via D1/2(pX k ,Y , pX k pY ) = −H1/2(h) (Equation 2.5). Therefore,

we need to estimate Lγ(X k, Y ) (2.7) and β (2.8), where β is obtained from 103

replicates for N = 103. Because I can be estimated as

Lγ(X k, Y )

β
p

N
,

we estimate the sensitivity indices by

dSH
X k = 2− 2

Lγ

β
p

N
. (5.9)

5.3 Results

We test the estimators in several ways. The first test case is with regard to random
input/output data and is described in Section 5.3.1. In this case, the estimates
should be near zero. The second test case compares the results of the estimators
in a setting where the exact value of SH

X 1 is known (Section 5.3.2). The third test
case is based on the Ishigami function and is performed for both independent and
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Figure 5.1: Sensitivity indices for random output.

dependent input data, of which the results can be found in Section 5.3.3. The
results are summarized in Section 5.3.4.

We use f (t) = (
p

t−1)2 (Hellinger distance) to include the estimator based on

minimum spanning trees. We compare several estimation methods of dSH
X k . First,

we estimate dSH
X k by kernel density estimation on the L samples only, which is re-

ferred to as “sample" in the figures. The other estimation methods make use of
the emulator. We also use kernel density estimation with the emulated output
samples given by (5.5), which is referred to as “GP-mean", and kernel density es-
timation with the emulated output samples given by (5.6), which is referred to as
“GP-pred" and for which we choose ns = 10. Emulated output as given by (5.5)
is also used for the minimum spanning tree method (5.9), which is denoted by
“MST". The PDD-KDE-MC method [103], denoted “PDD", is included for compari-
son, where univariate decomposition (S = 1) is used with polynomial order m= 4
for both random data and the Ishigami function.

All experiments have been performed nr = 10 times with ns = 10 samples
in the case of the estimator “GP-pred". The error bars in the upcoming figures
indicate the minimum and maximum obtained value, which are used as an ap-
proximation of the 95% confidence interval.

5.3.1 Random data

First, we check the behavior for random output, i.e., independent of the input,
in which case the sensitivity indices should be zero. Both the input and output
data are one-dimensional, uniformly distributed on [0, 1] and have size N = 103,
while L is varied from L = 10 to L = 200. The experiment is repeated nr = 10
times. The results are in Figure 5.1. On the right, we show the sensitivity index as
computed on the complete, i.e., L = N , data (blue circle) with the kernel density
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estimate. As expected, their mean is around zero and the spread of the results

is very small (nearly invisible). The estimates for dSH
X k based on only L samples

(blue circles) are also around zero with very small spread. Note that due to the
numerical implementation, the sensitivity indices can become negative.

For the estimates based on the Gaussian process (orange squares), the situa-
tion is a little different because the Gaussian process fits a function through the
data while there is no functional relation between input and output. Hence, the
sensitivity index will most likely not be equal to zero. When fitting the Gaussian
process, two cases appear, which have the same effect. The length scale and the
process variance are either both small or both large. As a result, the predictions
based on the Gaussian process (both the mean and the samples) will be inaccurate.
This can be seen in the figure by their mean being away from zero and the large
spread of their estimates. We included the results from (5.5) and (5.6) despite
the bad fit, mainly to show the bias it leads to.

The results for PDD-KDE-MC (red pentagons) also show a large spread and
a deviation from zero, hence we adapted the y-axis for clarification, because the
largest plot value was a little above 0.2. We hypothesize that the larger spread is
caused by the PDD-KDE-MC method fitting a function through the data. This is
also the case for Gaussian process methods, although the Gaussian process meth-
ods interpolate the data, which the PDD-KDE-MC method does not.

The (F)MST-based sensitivity index is computed on the full data with output
predicted by the emulator as in (5.5). However, due to the nature of this method,

high values ofdSH
X k are measured because the predicted output values are the values

of the prediction mean function, which is a continuous function. Hence, these

predictions are located on a curve. Therefore, the values of dSH
X k are too large

to be visible in this plot for the chosen values of L, except for L = 103, where
no emulated output is used. For reference, we also computed the FMST-based
sensitivity index on the full data without emulator, which gave a reasonable result
(purple triangle). We did not include a sample-based FMST estimator, because
such an estimator would require multiple estimations of β .

We summarize these results as follows: when an emulator (either Gaussian
process or PDD) is used to augment the data for sensitivity analysis, positive values

of dSH
X k are found because the emulator is designed to fit a functional relation be-

tween input and output. The “sample" method does not suffer from this problem.
However, this is a very specific test case in which sample-based estimators are
preferred over ones which use an augmented data set.
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5.3.2 Analytic test case

We consider a small test case in which we can compute the sensitivity index ana-
lytically. The idea behind this is to compare the KDE and the MST method in case
no emulator is used. We have�

X
Y

�
∼ N

��
0
0

�
,

�
1 ρ

ρ 1

��
.

Note the similarity of this test case with respect to the one in Section 2.4.1. We
took N = 104 and repeated the experiment nr = 10 times. The results are in
Figure 5.2. Except for ρ = 0.98, the MST method outperforms the KDE method.
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Figure 5.2: Computed values for the sensitivity indices.

Furthermore, the MST method is i) not dependent on parameter choices such as
kernel and kernel bandwidth and ii) faster to compute. One also needs to take
into account that the rule of thumb to choose the kernel bandwidth we used here
is based on the assumption that the data comes from a normal distribution and,
therefore, this kernel bandwidth is optimal in this test case. When the underlying
distribution is not normal, this heuristic may not be optimal.

5.3.3 Ishigami function

We continue with the Ishigami test case as started in Section 2.5.1 and continued
in Section 3.4.4, of which the test function is from Ishigami & Homma [46].

In the numerical experiments, we first compute input samples of sizes L =
{30, 50, 100, 200} and combine these with KDE to compute (5.4). For the inde-
pendent data, the samples are obtained with LHS, while for the dependent data,
Monte Carlo samples (MCS) are used. Because the samples need to be used in a
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kernel density estimation, it is not desirable to use more advanced methods for
sample selection such as selecting the centers from a k-means clustering. This
because the samples for KDE are assumed to come from the corresponding dis-
tribution. The samples generated by more advanced sample selection methods
are not per se samples from that distribution. Next, we fit a Gaussian process
with Gaussian kernel to these samples, where the length scales are estimated by
maximum likelihood estimation.

Now, we can proceed with KDE on (X+, Y+), in which we include both the
choices YL+ = µ(X L+) (5.5) and Y (s)L+ ∼ N (µ(X L+),Σ(X L+)) (5.6). In the first

case, we obtain one estimate for H
(L+L+)
X k , f for each repetition of the experiment and

thereby one value of
���H(L+L+)

X k , f −H
(N)
X k , f

���≈ |bSX k − SX k |, which is used as measure of

convergence. Note we use both L + L+ and N in the notation. Although they
are equal in value, we distinguish between estimates obtained from output and
predictions (L + L+) and estimates obtained with full output (N). In the second
case, we take the number of samples ns = 10. For each sample Y (s)L+ as a prediction

of the output, we compute (5.4). This leads to ns estimates of H
(L+L+)
X k , f and the

convergence measure
���H(L+L+)

X k , f −H
(N)
X k , f

���. Note this value of ns is relatively low,

but each sample requires a new set of kernel density or minimum spanning tree
estimates.

The other option is to proceed with the minimum spanning tree method, in
which we only use the mean of the Gaussian process as YL+ = µ(X L+) (5.5). On
the augmented set (X+, Y+), we compute the minimum spanning tree length Lγ,
which is used in (5.9) for each repetition of the experiment.

Accuracy of the estimated sensitivity indices

The average value and the minimum and maximum obtained value of the sensitiv-
ity indices are shown in Figure 5.3. We see that although these sensitivity indices
should be equal, there is a discrepancy between the two methods, especially for
the second input dimension. From this result, it is not clear immediately which
of them is more accurate. Based on Section 5.3.2, we select the MST result to be
the more accurate one.

Goodness-of-fit of the Gaussian process

We first show the results for the independent data, followed by the results for the
dependent data. We start with determining the goodness-of-fit of the Gaussian
process by performing k-fold cross-validation with k = 10 and compute the pre-
dictivity coefficient Q2 (which is similar to the coefficient of determination R2 in
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Figure 5.3: Computed values for the sensitivity indices per variable.

regression):

Q2 = 1− SOSres

SOStot
= 1−

1
L

∑
l(Ŷl − Yl)2

1
L

∑
l(Yl − Ȳ )2

, (5.10)

where SOSres and SOStot denote the residual and total sum-of-squares, respec-
tively. Ŷl are the cross-validation predictions for Yl and Ȳ = 1

L

∑
l Yl . In Figure

5.4, we show SOSres
SOStot

and we see its values are near zero for higher values of L for
the independent data. For L = 30, this fraction can become larger than 1. In this
case, the fit is worse than a constant function. Note that this also means that the
Gaussian process has not been fit well. For the dependent data, the results are
already very accurate for L = 30.
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(a) Independent data.

30 50 100 200
L

10−4

10−3

10−2

10−1

100

1−
Q
2

(b) Dependent data.

Figure 5.4: Cross-validation results showing the quality of the Gaussian process.
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Convergence of the estimates

The convergence of the estimates as L increases is studied. For reference, the KDE
method on the full data set is used for all estimators except for the one based on
the MST method. There, the MST method on the full data set is used for reference.
This is done because the estimates for the full set differ in value, as seen earlier
in Figure 5.3. We start with the case of independent input data. Figure 5.5 shows
the convergence of the estimates, where “sample” indicates the KDE is based on
only L samples (i.e., without using the Gaussian process surrogate), “GP-mean”
is based on (5.5) and “GP-pred” is based on (5.6). Therefore, “GP-mean” uses
only the mean of the Gaussian process, while “GP-pred” uses predictions from the
distribution. “PDD” denotes the PDD-KDE-MC method, while “MST” denotes the
minimum spanning tree method. From left to right, variables 1 to 3 are shown.
This will also be the case for all similar figures in this section.
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Figure 5.5: Convergence of the estimates for the sensitivity index, independent data.

We see the differences are small for low values of L, while for higher values
of L, the estimates based on Gaussian processes are remarkably better. The con-
vergence using the MST method is a little slower than with the other Gaussian
process methods. Also, the mean of the sampled estimates matches the estimated
mean function within sampling error, as expected. Figure 5.6 shows the average
and the minimum and maximum value (determined from the nr repetitions) of
the estimated standard deviation of Ŝ for the sampled estimates (i.e., the standard
deviation of Ŝ based on the ns samples of Ŝ). The standard deviation decreases
very fast for an increasing number of samples L. The standard deviation of the

estimates for H
(L+L+)
X k , f is not enough for the 95% confidence interval for H

(L+L+)
X k , f to

include the reference value. This is due to the bias caused by the use of the sur-
rogate model rather than the exact output function. Although S f

X k is nonnegative,
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Figure 5.6: Behavior of the standard deviation of the estimates based on predicted output
samples for the sensitivity index, independent data.

its estimates H
(L+L+)
X k , f can become negative due to the numerical implementation.

The results for dependent data are shown in Figures 5.7 and 5.8. Note that
LHS is not an appropriate sampling method in this case because the data is de-
pendent, therefore, Monte Carlo sampling is used instead. For the same reason,
PDD-KDE-MC is not suitable here. The results are similar to previous experiments.
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Figure 5.7: Convergence of the estimates for the sensitivity index, dependent data.
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Figure 5.8: Behavior of the standard deviation of the error in the estimates based on
predicted output samples for the sensitivity index, dependent input data.
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5.3.4 Recommendation

The proposed methods perform significantly better than the PDD-KDE-MC method
in the case of a low number of available input-output samples. Although the
PDD-KDE-MC method can be performed much faster than the Gaussian process-
based methods, its results are less accurate. Since the computational model will
have a relatively high cost, the smaller computational cost of PDD-KDE-MC with
respect to Gaussian process-based methods is not a real advantage in practice.
Furthermore, the MST-based method is in general more accurate and faster than
the KDE-based method. Hence, although the convergence for MST may be a little
slower than for KDE, the bias of MST is smaller than the bias of KDE. In this light,
we propose to use the MST method to compute the divergence-based sensitivity
indices.

5.4 Direct sensitivity indices

We note that the sensitivity indices as described by [101] are total sensitivity in-
dices, which include both direct and indirect effects. Direct effects measure the
effect of one input variable only, while indirect effects contain the effect of the
other variables due to possible dependencies in the input variables. The indirect
effect is the difference between the total and the direct effect. To illustrate this,
consider an example where X = (X 1, X 2) follows a bivariate normal distribution
with means 0, variances 1 and covariance ρ > 0 (so that X 1 and X 2 are depen-
dent), while u(x1, x2) = 2x1. Then the direct effect of X 2 is zero, while its total
effect is positive (because u(X 1, X 2) and X 2 are dependent through X 1). Hence,
the indirect effect of X 2 is positive as well. Our goal is now to find a measure for
the direct effects, i.e., without the effects of the mutual input dependencies.

Although useful, total sensitivity indices do not tell the complete story. While
an input variable may be completely irrelevant for the value of the output, it may
have a positive sensitivity index due to a dependency with a relevant input. The
relevant input variable would then be called a confounder. An example of this
is wave height for a computational model of offshore wind energy: although the
waves have nothing to do with the power output, they are linked to each other
via the wind speed with which they have a dependency. To get rid of this effect,
we need to construct indices which measure the effect of only one input variable,
without effects due to dependencies in the input. It is in this case necessary to
remove the dependencies from the input.

For variance-based sensitivity indices, a distinction is made between first-order,
higher-order and total sensitivity indices [47]. In first-order indices, one only
measures the effect of varying one variable alone, where in higher-order indices
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multiple variables are varied at the same time. Because the number of second-
order sensitivity indices grows as d(d−1)/2 with d the number of input variables,
and the total number of sensitivity indices is 2d − 1, usually not all of them are
computed. Instead, one computes the first-order and total sensitivity indices.

In a similar fashion to first-order indices, we define direct sensitivity indices,
which measure the effect of varying one variable only. The direct indices then
measure the direct effects, while the total indices measure the combination of
direct and indirect effects, which also includes effects due to dependencies in the
input.

5.4.1 Theory

The starting point of these new indices is the same divergence-based index as
before, namely (5.8). We repeat (5.8) here for convenience,

SH
X k = 2− 2

∫∫
R2

q
pX k(x)pY (y)pX k ,Y (x , y)dydx .

Now, note that
Y = u(X 1, . . . , X d) = u(X ),

with u(·) being the model used to obtain the output Y , hence, both pY (y) and
pX k ,Y (x , y) depend in theory on all input variables X k. Hence, if we remove the
dependencies between the input variables, then these probability distributions
change as well. This removal is done by applying a permutation operatorΠ, which
is defined on a data set X in such a way that

Π(X ) = (Π(X 1), . . . ,Π(X d)),

with
C DF(Π(X k)) = C DF(X k), Π(X i)⊥ Π(X j) for all i, j, i ̸= j.

Hence, this operator keeps the marginal distributions the same, but it removes all
dependencies (⊥ here denotes statistical independence). The implementation of
this operator is detailed at the end of this section.

Now, we create a permuted version of our data set X , being Π(X ). For this
data set, we can define the direct sensitivity index by

SH
D,X k = 2− 2

∫∫
R2

q
pΠ(X k)(x)pY (y)pΠ(X k),Y (x , y)dydx .

The output Y = u(X ) can be replaced byeY = ũ(Π(X )),
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in which ũ(·) denotes the Gaussian process eG{X L ,YL}(·) constructed earlier. This
leads to the estimator

S
H
D,X k = 2− 2

∫∫
R2

q
pΠ(X k)(x)peY (y)pΠ(X k),Ỹ (x , y)dydx .

The problem now is how to defineΠ(X ). A naive implementation could be one
in which for each variable, a random permutation of the values is performed. This
is fast, but does not guarantee independence of the input variables after transfor-
mation. Also, the indexing of the permutations leads to a Latin hypercube design
(LHD): each value from 1 to N (for N data points in the data set) is used only
once. However, this does not guarantee all dependencies are removed. In Latin
hypercube sampling (LHS), a comparable problem exists as equally probable sub-
spaces can end up with a different number of sampling points. This is solved by
orthogonal sampling [113] or by using a maximin criterion [114].

Inspired by this, we would like to generate an LHD of size N in d dimensions
with the maximin criterion which puts the samples at the middle of each interval.
This LHD is easily transformed to an indexing, which can be applied to the original
data X to obtain Π(X ). However, obtaining such an LHD is computationally very
expensive because it contains an optimization step and is therefore not feasible
for the problem sizes we are looking at.

An alternative to Latin hypercube sampling is quasi-Monte Carlo sampling,
which generates data points from low-discrepancy sequences such as Halton’s
[115, Chapter 3] and Sobol’s [116]. In this way, we achieve the goal that the
proportion of data points in a sequence falling into a subspace is nearly propor-
tional to the probability measure of this subspace (the difference between them
is the discrepancy). Hence, we achieve an approximately uniform distribution of
data points over the unit hypercube, which means the dimensions are indepen-
dent of each other. Furthermore, all values generated for a variable are unique,
which means they can easily be transformed to the discrete hypercube {1, . . . , N}d .
The transformed values can be used as an indexing for X to obtain Π(X ). Because
the data points generated by the sequence are uniform over the unit hypercube,
they lead to an independent data set when their transformed values are used as
indexing. We use the Sobol sequences as described by [116].

5.4.2 Ishigami

We apply this method to the Ishigami test case described in Sections 2.5.1, 3.4.4
and 5.3.3, in which both dependent and independent data is used. The results
are shown in Figure 5.9. Figure 5.9a shows that for increasing L, the spread of
the estimates decreases in general. Also, we see a difference between the direct
indices for the independent and dependent data. This is expected and it is due to
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Figure 5.9: Direct indices for the Ishigami test case.

the effect of the marginal distributions, which are uniform in the former case and
normal in the latter.

We can compare these values to the total indices which were shown in Figure
5.3, as we do in Figure 5.9b. The orange markers in Figure 5.9b match the ones in
Figure 5.3. First, we see the total indices are larger than the direct indices, except
for the independent data in variable 2. However, the difference is small and can
be caused by the sampling, as the data sets are not completely the same due to
the transformation by the low-discrepancy sequence. Also, for the other variables
in the independent set, we expect the values to be approximately equal, which is
indeed the case, as some of the markers overlap. For the dependent set, we see the
indices are larger for the total indices than for the direct indices, which is caused
by the dependencies. Note it is possible to have direct indices larger than total
indices, as dependencies can also attenuate the effects of different input variables.

In short, the results of the direct indices are as expected and consistent with
how such indices should behave. Another application can be found in Section
7.3.7.

5.5 Conclusion

We proposed to use Gaussian processes in order to improve the estimates of diver-
gence-based sensitivity indices. This is advantageous in cases where the number
of available input-output samples is small, for example if the computational cost
of each model evaluation needed to compute the output is high. Two estimators
based on kernel density estimation were investigated, in which one uses the pre-
diction mean of the Gaussian process and the other uses the complete multivariate
normal distribution given by the Gaussian process from which multiple samples
were obtained. The first of these is also computed by the minimum spanning
tree method from Chapter 2. In terms of accuracy, the minimum spanning tree-
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based method performs better than the kernel density estimate-based method and
much better than the reference method based on polynomial dimensional decom-
position.

However, we have shown that the bias due to the use of the Gaussian process
instead of the exact output function, can be larger than the width of the estimated
confidence intervals and can thereby provide false confidence in the results. There-
fore, we do not advise to use the sample-based method. Instead, we advise to use
the prediction mean of a well-fit Gaussian process to improve the estimates of
divergence-based sensitivity indices computed by minimum spanning trees.

Furthermore, we developed a new type of sensitivity indices to distinguish
between direct and indirect effects. In this way, some issues regarding causality
can be solved and more insight in the results can be obtained.





6 Adaptive sampling

This chapter introduces a way to add extra samples to an existing sampling design
for surrogate modeling irrespective of the way these initial samples are obtained.
The addition of samples makes use of information hidden in the available input-
output samples by using Gaussian process length scales.

6.1 Introduction

Chapter 3 describes sample selection methods for dependent input variables. In
practice, an initial sampling design may not deliver sufficiently accurate results,
instead requiring more evaluation data of the computational model. Additional
sample points must be obtained at wisely chosen locations in the input space to
benefit most.

The original design is often referred to as a one-stage (sampling) design, be-
cause it is chosen at once. This in contrast to an online (sampling) design, which
starts with an initial design and adds sample points one-by-one or in small batches.
When the new samples are based on information from the earlier ones, one can
call these methods adaptive sampling methods.

The idea of using adaptive sampling methods is not new. Such methods are
useful because information on the output can be incorporated to refine the ex-
perimental design. Several efforts are directed to adaptive sampling for design
optimization [117–119]. Some methods used in these efforts make use of (dy-
namic) radial basis functions [120,121] and trust-region methods [122]. Recent
applications can be found in [123] for computational fluid dynamics and in [124]
for production optimization in oil reservoirs. However, most efforts are directed
towards design optimization rather than accurate prediction over the complete in-
put domain. This means that samples are added at locations that help in finding
an optimal design rather than decreasing prediction uncertainty over the com-
plete domain. We mention the review by Queipo et al. [125] on surrogate-based
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optimization, and the more recent one by Liu et al. [126], for global emulation
for complex simulation-based engineering design.

In contrast to other methods, we use an adaptation of k-means clustering as
the main tool to construct additional samples. We introduce two methods: one
based solely on the locations of the earlier input samples and one based on both
the locations and the output values of the earlier input samples. The difference is
in the norm used in the k-means clustering. The first method uses the Euclidean
distance, while the second one uses the Mahalanobis distance based on the length
scales of a Gaussian process, fit on the available input-output samples. Note this
distance agrees to the distance used earlier (4.2) in our description of Gaussian
processes.

One may ask why we base this method on an adaptation of the k-means cluster-
ing. The motivation is threefold: first, k-means clustering proved itself as a useful
sample selection method (Chapter 3). Second, because choosing k-means clus-
tering as sample selection method is a good heuristic to decrease the prediction
variance of a Gaussian process because of the link between k-means clustering and
prediction variance, as detailed in Section 4.5.3. The third reason is the determi-
nation of the additional samples at once, thereby giving the option to parallelize
the evaluation of the computational model.

Section 6.2 explains the methods and the UQ framework they fit in, while
Section 6.3 shows some test results. Section 6.4 concludes.

6.2 Methods

We first give the two-stage designs in Section 6.2.1, after which we explain the
adaptive k-means clustering in Section 6.2.2.

6.2.1 Two-stage design

The two-stage design consists of the following steps:

1. Obtain an initial design of size L0, Z = {z1, . . . ,zL0
}.

2. Evaluate the output for the initial design, Y = {u(z1), . . . , u(zL0
)}.

3. Fit a Gaussian process to the output (optimize l and compute cσ2).

4. Construct the remainder of the design Z∗ = {zL0+1, . . . ,zL} with the original
design Z fixed.

5. Evaluate the output Y ∗ for Z∗.

6. Construct the final Gaussian process (if desired).
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Figure 6.1: Illustration of the sampling process. We start with the initial samples (red
dots) constructed on the gray data and transform them using the length scales l. Then,
we construct the remaining samples and transform them back.

For the non-adaptive design, i.e., in which no information on the output values
of the initial sample is used, Step 3 is left out. Note Steps 1 and 2 are already
done when the adaptive part starts. Furthermore, we assume the data is properly
scaled. Step 4 is given in Section 6.2.2.

The steps are illustrated on the basis of Figure 6.1. In this example, we first
perform k-means clustering with L0 = 8 clusters on the input data to give us
the first L0 samples (Figure 6.1a, Step 1). The complex model is evaluated on
these samples (Step 2). Then, we fit a Gaussian process through the samples
and their output (Step 3). The length scales obtained in this step are used in the
Mahalanobis distance as chosen in (4.6). To show the effect of the length scales,
we have scaled the domain with these length scales, such that regular Euclidean
distance on this domain equals the Mahalanobis distance on the original domain
(Figure 6.1b). The Gaussian process fitting is followed by using the adapted k-
means clustering for J = 20 (Figure 6.1c, Step 4). The obtained samples in the
original space are shown in Figure 6.1d. In this example, we leave out the second
output evaluation (Step 5) and the construction of the final Gaussian process (Step
6). We emphasize that applying k-means with the used Mahalanobis distance is
identical to applying k-means with Euclidean distance after a suitable scaling. The
“complex model” used in constructing this figure is the output function f (x1, x2) =
sin(4x1 + 0.5) + x2.

In Figure 6.2, we show the result of adding samples when the length scales
are not used. In this case, the samples are more spread throughout the sample
and there is no visible anisotropy.
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Figure 6.2: Adding samples without scaling.

6.2.2 Adaptive k-means

The cluster centers of k-means clustering are proposed as a sampling design in
Chapter 3, because this design method is able to handle dependent input variables,
regardless of the type of dependence. It is also chosen for the second stage of
the two-stage design because it minimizes the sum-of-squares, and, as shown in
Section 4.5, this tightens the bound on the prediction variance. One disadvantage
of k-means is the property that it can end up in local minima, but this is usually
mitigated by restarting the algorithm several times with different initializations.
For using it in the second stage, some adaptations are necessary, because the initial
design poses a problem for the k-means in the second stage (Step 4).

In each step of the k-means algorithm, all data points are assigned to the
nearest cluster (center), after which the cluster centers are recomputed. Hence, it
is very likely for the cluster centers at the end of the algorithm to differ from the
ones in the beginning. If the initial samples are included as initial cluster centers,
then it is most likely that these are not cluster centers anymore at the end of the
algorithm. This would be a waste of resources as the corresponding samples have
already been evaluated with the computational model u(·).

We therefore adapt the k-means algorithm such that these initial samples are
not allowed to change. We start the algorithm by the k-means++ initialization
where we already included the initial samples. In each step of the algorithm, all
data points are still assigned to the nearest cluster (center), but only the newly
added cluster centers are allowed to be recomputed. Thus, the minimization of
the sum-of-squares in the k-means algorithm is carried out over the coordinates
of the new cluster centers only. It can be proven that the algorithm still converges,
albeit maybe to a(nother) local minimum.
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Figure 6.3: Behavior of the power output with respect to wind direction and wind speed.

6.3 Results

We first show an example where this method does not work due to a problem
inherent to sampling. This is meant as a warning to the user to take care that
the number of samples in the initial design is high enough to construct a reliable
Gaussian process on. Then, we show the method on the Ishigami example used
before.

6.3.1 Meteomast IJmuiden

The data for this test case is a subset of size N = 104 with d = 2 obtained from the
data used in Chapter 7. In short, it contains data on wind direction and wind speed
measured at a certain height (h = 58 m). The output is given by a simulation
which computes the power output of a wind farm under these circumstances, as
detailed in Section 7.2.3. In Figure 6.3a the behavior of the power output with
given wind direction for a complete wind farm is shown, while Figure 6.3b shows
the behavior of the power output given wind speed for a single wind turbine. One
can see that the length scale with respect to the size of the domain will be shorter
for the wind direction than for the wind speed. Also, the wind speed shows a
discontinuity at the cut-in wind speed, while the output function is smooth in the
wind direction. The problem here is, that with a small value of L the short length
scale for wind direction will not be picked up in the length scale optimization. In
that case, the behavior of the output with respect to wind direction is considered
noise rather than a meaningful signal.

Figure 6.4 shows this effect. The data has been normalized to zero mean and
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unit variance, after which the log-likelihood of the length scales is determined.
The optimum is given as a black dot. For low values of L, the small length scale for
the wind direction has not yet been recognized, while this is the case for higher
values of L. Therefore, the adaptive sampling does not work well for small L
because the estimated length scales are not stable yet due to a lack of information.
In practice, to assess this, one has to estimate the length scales on subsets of
the samples to find out whether the length scales are already stable. If this is
not the case, the number of samples is insufficient for accurate Gaussian process
estimation.
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Figure 6.4: Illustration of the change in the log-likelihood, the black dot represents the
maximum.

6.3.2 Ishigami

We continue with the example from Section 5.4.2. Because the previous example
showed that length scales may change substantially for varying L, we show the
estimates for l for all nr = 10 repetitions in Figures 6.5 and 6.6. Here, we did
not use the adaptivity yet, we only varied L. These simulations will be used as a
reference for the results obtained with adaptive sampling. The spread in the esti-
mates is large for small values of L and decreases for increasing L. This motivates
us to continue and we compute the prediction coefficient Q2 according to (5.10)
based on all reference data. The results are shown in Figure 6.7, where we plot
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Figure 6.5: Estimates for the different li for independent data. From left to right, the
variables 1-3 are shown.
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Figure 6.6: Estimates for the different li for dependent data. From left to right, the
variables 1-3 are shown.
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Figure 6.7: Validation results showing the quality of the Gaussian process for the one-
stage design.

1−Q2 instead, which should be near-zero for accurate estimates. In this case, we
did not use cross-validation, but computed the real values Yl for all data points
and included all data points in this coefficient. In a real-life situation, this is not
possible and one should resort to cross-validation.

Values below 0.01 indicate very good correspondence, so L = 240 is here
sufficient for the independent data and L = 120 for the dependent data.

We now continue to the results for both one-stage and adaptive sampling,
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in which L0 ∈ {30, 60, 120, 240} and choose L = 2L0. The independent data
has its initial stage computed by LHS, while the dependent data uses KME. Note
the Gaussian process may not be sufficiently accurate according to Q2, but we
investigate here its quality by the L1-norm between the real and the emulated
output. For the second Gaussian process, the original length scales are reused.
The results are in Figure 6.8. We do not see a clear difference between one-stage
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Figure 6.8: Convergence of both one-stage and adaptive sampling.

and adaptive sampling in terms of convergence. Although this means there is no
direct benefit from the two-stage method, this also shows that in case the initial
design is augmented with extra samples, the resulting design is not worse than a
one-stage design. The number of available samples can therefore be used frugally,
i.e., not use all samples immediately, but save some in case they turn out to be
necessary. This approach may be used in situations where computational power
needs to be divided over several projects. Furthermore, when the length scales
are less similar to each other, the two-stage method may have greater benefits.

Finally, we show the sum of the prediction variances (being a sum-of-squares)
for the same simulation experiments in Figure 6.9. Here, we see improvements
for MCS, especially when L is large. This can be seen by the fixed lines being
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Figure 6.9: Sum of the prediction variance for both one-stage and adaptive sampling.
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below the dashed lines. This indicates that although the prediction quality of
the Gaussian process is relatively unaffected by the choice of sampling method,
the prediction variance can decrease by a substantial quantity in this adaptive
sampling. Note this was one of the reasons to use k-means clustering for the
second stage.

6.4 Conclusion

We have introduced a way to add extra samples to an existing sampling design.
This method is based on an adaptation of the k-means clustering method which
incorporates the length scales of an emulator constructed as a Gaussian process on
the existing design. The idea is twofold: on one hand, these length scales contain
information on the output, which is incorporated in this way, while on the other
hand, the choice to adapt the k-means clustering results in a well-spread design
(i.e., a low sum-of-squares between data points and samples) which decreases the
prediction variance of the Gaussian process.

In practice, there are a few drawbacks to this method. In the results, we
show that these length scales can change for an increasing number of samples
and even change behavior completely if the original number of samples is very
small. Furthermore, it may be that the spread of the design points is not crucial
to obtain a well-predicting Gaussian process when enough samples are available,
although a better spread will lead to a lower prediction variance.

The results also show that this method does not perform better than corre-
sponding one-stage design methods, although the prediction variance decreases
by a substantial amount in case the original design came from Monte Carlo sam-
pling. In this situation, the method can be beneficial in terms of uncertainty re-
duction.





7 Case study I

In this chapter, we consider a case study which encompasses the topics studied in
Chapters 2, 3 and 5. This case study considers the power output and efficiency of
a hypothetical wind farm with the layout of the offshore wind farm Horns Rev I
located at Meteomast IJmuiden.

7.1 Introduction

Uncertainty in wind and wave conditions during the turbine life is one of the
reasons for the high cost of offshore wind farms. Although these uncertainties
cannot be eliminated, it is crucial to know their effects on both the loads of the
turbines and the power output. Since the power output is roughly proportional
to the third power of the wind speed, small differences in wind speed statistics
can lead to substantial differences in the mean and variance of the power output,
potentially making the difference between a profitable or unprofitable wind farm.
Numerical simulation of a wind farm under different wind and sea conditions can
be a valuable tool for decision making. However, because of the complexity of
the system which consists of weather conditions and turbines, it is not feasible to
perform simulations for all possible or observed input conditions.

It is therefore important to select in a careful way the input conditions for
which the wind farm simulation model is going to be evaluated (we refer to these
selected input conditions as samples hereafter). Possible dependencies in the in-
put conditions need to be taken into account for this selection. Predictions of the
output for input conditions not included in the samples can be made with the use
of an emulator. These predictions are used in performing the sensitivity analysis.

The aim of this chapter is to combine the results from previous chapters into
the framework as given in Figure 1.3, in which the analysis of the input data

Partially based on A. Eggels and D. Crommelin, “Uncertainty Quantification with dependent
inputs: wind and waves,” in Proceedings of ECCM 6 and ECFD 7, 2018.
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and the model output is combined. We illustrate this framework on a wind farm
simulation based on the layout of Horns Rev I, with wind and wave data obtained
at the Meteomast IJmuiden serving as input. The simulation model that we use is
not very advanced, however, our goal is to demonstrate the proposed framework
rather than to obtain highly realistic results; the limitations of the model are less
important for the present study.

Section 7.2 describes the weather data, the wind farm and the simulation to
obtain the power output and efficiency of the wind farm under the given weather
conditions. Section 7.3 shows the results, while 7.3.1 describes the methods in
the framework. The conclusion follows in Section 7.4.

7.2 Setup

We briefly describe the data in Section 7.2.1, the wind farm that we simulate in
Section 7.2.2 and the simulator (computational model) itself in Section 7.2.3.

7.2.1 Meteomast IJmuiden

Meteomast IJmuiden (MMIJ) is a meteorological mast in the North Sea, located
approximately 75 km west of the coast of IJmuiden (the Netherlands) [15]. We
use data from a measurement campaign that has run from November 2nd, 2011 up
to and including March 11th, 2016. Atmospheric conditions (e.g., wind speed and
direction, air pressure, air temperature) have been measured at several heights in
and above the mast. The data has been post-processed and is publicly available
online, see [15]. The list of measurement variables used in our analysis can be
found in Appendix B.

7.2.2 Horns Rev I

Horns Rev I is an offshore wind farm in the Danish North Sea consisting of 80
Vestas V80 2MW turbines [127] in an oblique quadrilateral layout with a spacing
of 560 m [128], as shown in Figure 7.1. The rotor diameter is 80 m and the hub
height is 70 m. It is very well known in the wind energy community [16–19],
especially for its wind turbine wakes affecting nearby turbines. We will use its
layout for our computational model, described in the next section.

7.2.3 Wind farm simulation

We use the observation data from MMIJ as input for a computational model of
Horns Rev I. The output of this model consists of power output and efficiency of
the wind farm, given the wind speed and wind direction at various heights as
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Figure 7.1: Layout of the wind farm used.

input. The computer model is described in [129]. It makes use of a wake model
from Bastankhah and Porté-Agel [130]. This model is derived from mass and
momentum conservation in case viscous and pressure terms are neglected. The
wake expands linearly and the velocity deficit is assumed to be Gaussian. The
normalized velocity deficit is then given as

∆U
U0
(x , y, z) =

�
1−

√√
1− CT

8w(x)2

�
exp

� −1
2w(x)2

��
z − zh

d0

�2

+
�

y
d0

�2
��

,

in which x , y and z represent the streamwise, spanwise, and vertical distance to
the rotor, respectively. CT is the thrust coefficient of the turbine, zh hub height
and d0 the diameter of the wind turbine. Furthermore, w(x) is given by

w(x) =
κ∗x
d0
+ ϵ,

in which κ∗ is the wake growth rate and ϵ a constant. This constant can be de-
termined by investigating the case where x ↓ 0. Near the rotor, a uniform shape
of the wake is preferred over a Gaussian one. Therefore, to determine ϵ, the
Frandsen wake model [131] is used, which is derived from the same governing
equations. From here, it is found ϵ =

p
β/4, in which

β =
1
2

�
1+

p
1− CTp

1− CT

�
.

This constant can be interpreted as the ratio between the wake cross-sectional
area at x = 0 and the rotor diameter. From simulations, [130] showed ϵ = 0.2

p
β
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gives a better estimation. The growth rate κ∗ is estimated by [132] as

κ∗ = 0.3837I + 0.003678,

in which I is the local turbulence intensity given by [133]

I =
q

I2
0 + I2

+.

Here we chose I0 = 0.075 and I+ is the turbulence added by the wake, determined
from the turbulence model developed by Crespo & Hernandez [134], given by

I+ = 0.73a0.8125 I0.0325
0

�
x
d0

�−0.32

, a =
1
2

�
1−p1− CT

�
.

The thrust coefficient is determined from the curve given by [127], which is valid
for the Vestas V80 turbine.

The effects of multiple wakes are combined as in [132] by

Ui = U0 −
∑

k

(Uk − Uki),

in which 0 < k < i, Ui and Uk denote the wind speed at turbines i and k, while
Uki is the wake velocity of turbine k at turbine i.

Furthermore, since the incoming wind speed can vary over the rotor-swept
area due to wake effects, an equivalent incoming wind speed is necessary. This is
especially important when the wind speed is between cut-in and rated wind speed.
Because thrust is proportional to the square of the velocity and power output is
proportional to the cube of the velocity, the equivalent incoming wind speed is
computed as in [135] by

Ueq,T =

√√√∑
j U2

j dA j

A
,

Ueq,P =
3

√√√∑
j U3

j dA j

A
.

Herein, U j denotes the wind speed at segment j, A j the area of segment j and A
denotes the total area swept by the rotor blades. We chose the segments in the
polar coordinate system.

We point out that the computational model is not very advanced and has sev-
eral limitations. However, it is useful in the present context as our objective is to
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test the coupling of several methods for uncertainty quantification and sensitivity
analysis, rather than to obtain output for operational purposes. We mention two
limitations here. First, the incoming wind speed in the model from [129] is con-
stant over the height of the turbine. We made an adaptation such that the wind
speed is interpolated linearly between measurements at different heights. Second,
the turbulence intensity is fixed at 0.075, mainly to be in the regime for which the
turbulence model [134] was proposed.

7.3 Results

Our objective in this test case is to demonstrate how the previously developed
methods can be combined. These methods are all aimed at situations where the
input distribution is unknown and where a data set of the (multivariate, depen-
dent) inputs is available instead. The data set is assumed to be large (i.e., a large
number of data points). Furthermore, the computational model is assumed to be
expensive so that only a small number of model evaluations (or simulations) can
be performed. Focal point is the presence of dependencies in the data.

7.3.1 Combination of methods

The methods are combined in the following manner, see also Figure 1.3. First,
the input data is analyzed for dependencies, as described in Chapter 2. Here, we
already know dependencies exist in this data set, but we want to find them and de-
termine their strength. Due to the dependencies, input samples must be selected
as explained in Chapter 3, for which we included the methods MCC, PCA and KME.
These samples serve as the input conditions for the computational model. Once
the input samples have been selected, the wind farm simulations as described in
Section 7.2.3 can be performed. The resulting simulation output serves as the
basis for an emulator. The goal of this emulator is to construct an approximation
of the output for the input conditions that were not part of the samples (thus,
the computational model was not evaluated for these inputs). The output of this
emulator is used to perform sensitivity analysis.

We first describe the data set of input conditions in more detail in Section 7.3.2.
Then the dependency analysis is performed in Section 7.3.3 before continuing
with the evaluations of the computational model. We present the results from the
sample selection (Section 7.3.4) and the model evaluations in Section 7.3.5. In
Section 7.3.6, we discuss the construction of the Gaussian process emulator. The
output from the emulator is further used in Section 7.3.7 for sensitivity analysis.
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7.3.2 Data set

We construct three data sets from the given MMIJ data as given in Appendix B.
The first data set contains only mast measurements (146686 instances in total)
and includes also quantities (e.g., air temperature) that are not used as input for
the computational model. The second data set is a subset of the first, restricted
to only the input variables required for the computational model. The third data
set includes wave variables, but is smaller due to the reduced recording frequency
(19353 instances).

7.3.3 Dependency analysis

We quantify the dependency strength between observation variables from data set
3 as Dα(g, g̃) (2.3) by (2.5) and (2.6). The estimate for β is computed as 0.6536
from 102 replicates. The results are shown in a heatmap in Figure 7.2, where we
have grouped the variables. Furthermore, we have applied a discreteness correc-
tion for the wave period variables in the rank-transform which accounts for the
fact that they have discrete values due to measurement accuracy. In this correc-
tion, instead of placing the data points with the same discrete value at the same
location, they are spread out in order to make the marginals more uniform.

As expected, strong dependencies exist between similar variables at different
heights, such as wind speed, direction, air density, pressure and temperature. For
wind speed and wind direction, these are the lighter triangles in the top-left corner
of the figure. The two included turbulence intensities (TIs) are strongly dependent
as well. Furthermore, strong dependencies can be seen to exist between air den-
sity, air pressure and temperature (lower-right near center). Two other groups
of strongly dependent variables are the wave period and height variables (lower-
right corner). Dependencies between them exist too. The last identifiable group
of dependencies is between wind speeds and wave heights. Some dependencies
are seen to exist between the air variables and the wave height, although we have
no clear physical explanation for these.

7.3.4 Sample selection

Because of the dependencies in the input data, we select samples using the meth-
ods described in Chapter 3. For each of the three data sets, we construct three
sets of samples with a varying number (denoted L) of samples: 10d, 20d and 40d,
in which d is the dimension (number of variables) included in the data set. The
wind farm simulation ran for all the constructed samples.

We illustrate one point of interest, namely the presence of periodic variables
(e.g., wind directions). We give a small example with wind direction and wind
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Figure 7.2: Computed values for the quantifier of dependence for data set 3. Lighter
squares indicate higher dependence. Because of symmetry, only the upper triangle is
shown. The labels are shorthand notations for the variables given in Appendix B.

speed at 58 m height in Figure 7.3. Data points at 1◦ and 359◦ are far apart if the
periodicity is ignored. However, when multiple variables are periodic, difficulties
arise in the computation of distances if the periodicities are taken into account
(since the topology is no longer equivalent to Rd). Therefore, we ignore this
aspect of directional variables.

7.3.5 Simulation of the wind farm

The two simulation outputs of interest are the power output and efficiency (the
latter being defined as power output relative to maximum power output in case
of no wakes). For each sample, the computational model returns one value for
the power output and one for the efficiency. For each set of samples, the weighted
mean is computed for both output variables. The weights are computed as the
fraction of data points associated to each sample.

The results for the power output are presented in Figure 7.4. For reference
purposes, we have also computed the power output for all data points. In real-
life situations, this is not possible. Note the computed reference value is different
for data set 1 than for data set 3. This is due to the different measurement peri-
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(a) PCA-based clustering ignoring the nature of
the data.
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(b) PCA-based clustering with the
periodicity taken into account.
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(c) Comparison of the clusters from (a) and (b).
Colors are copied from the corresponding figure.

Figure 7.3: The effect of periodic variables. In (a), the periodicity of the wind direction
is ignored, while it is taken into account in (b) by converting the polar coordinates in (a)
to a Cartesian grid. They are combined in (c).

ods, because data set 3 only includes data for which all input variables have been
recorded. From these results, no method is preferred over another. Figure 7.5
shows the results for the efficiency. Again, no method is preferred over another.
This may seem in contrast with the earlier results, where the MCC method per-
formed worse than PCA and KME. It may be explained by the nature of the data,
which contains a bulk of regular wind conditions and only a small portion of ex-
treme wind conditions. Although this small portion may be underrepresented in
the MCC sampling, due to its small weight, it has no large effect on the output.
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Figure 7.4: Results for the power output based on weighted samples. From left to right,
data set 1 to 3 are presented.
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Figure 7.5: Results for the efficiency based on weighted samples. From left to right, data
set 1 to 3 are presented. The legend can be found in Figure 7.4.

7.3.6 Emulation of the wind farm simulation

Our implementation of Gaussian processes uses the Matérn kernel with ν = 3/2.
We use ordinary kriging, in which the length scales are optimized within bounds
from the log-likelihood (as described in Section 4.4.2) with several restarts to
avoid local maxima.

The emulator is constructed for the results obtained in the previous paragraph.
Altogether, there are 27 different sets of samples, and hence, 27 different emula-
tors for each output. With each emulator, we compute predictions (means and
variances) of the power output and efficiency for all data points in the data set
associated with the emulator.

Because of the Gaussian properties of each emulator, it is straightforward to
compute the distribution of the overall mean output M = 1

N

∑N
i=1 m(xi), in which

N is the number of data points, xi the ith data point and m(·) the emulator mean.
The results are shown in Figures 7.6 and 7.7. Error bars are given for the

estimated mean and empirical 95% confidence interval, which are barely visible.
They do not need to overlap because they are means and standard deviations for
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Figure 7.6: Results for the power output based on emulation. From left to right, data set
1 to 3 are presented. The legend can be found in Figure 7.4.
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Figure 7.7: Results for the efficiency based on emulation. From left to right, data set 1 to
3 are presented. The legend can be found in Figure 7.4.

different emulators (although the emulators model the same system). The results
for the power output are consistent with the results in Figures 7.4 and of compa-
rable accuracy. The results for the efficiency are less accurate than the results in
Figure 7.5. Also, most Gaussian processes underestimate the output. We note
that because of their Gaussian nature, the emulators may occasionally predict a
negative value of the output. This is the case for 4.5% of the data points when
the power output is studied and for 4.2% of the data points when the efficiency
is studied. We recomputed the average output in which the negative values were
replaced by zero. This did not noticeably change the results.

Finally, we examine the quality of the Gaussian process for data set 2 with
the k-means selected samples by k-fold cross-validation with k = 10 in Figures
7.8 and 7.9. We selected data set 2 because it does not include redundant input
variables, which makes both the sample selection and the optimization problem
for the emulator easier. Note the emulator often predicts a positive efficiency
when the real efficiency is zero, which means it over-predicts in these cases, al-
though this is not visible in the overall results. The value of 1−Q2 (5.10) for the
power output (with L ∈ {90, 180, 360}) is given by {0.014, 0.020, 0.008}, while it
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Figure 7.8: Cross-validation results for the power output (in MW). From left to right,
L ∈ {90, 180, 360} is presented.
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Figure 7.9: Cross-validation results for the efficiency. From left to right, L ∈
{90, 180, 360} is presented.

is {0.255, 0.374, 0.207} for the efficiency. On the basis of these results, the Gaus-
sian processes for the efficiency are not accurate enough to perform sensitivity
analysis on, while the ones for the power output are. Although a value of 0.01
should result in a “good” Gaussian process, this may be far from achievable in
practice, and values near 0.01 can be accepted as well.

We go a little more into detail by studying the corresponding length scales
of the Gaussian processes in Figure 7.10. The first four variables are the wind
directions and the final five are the wind speeds; they are separated for clarity.
We first look at the length scales for the power output in Figure 7.10a. One can
see for the wind direction, only one of the wind directions is given a nontrivial
length scale for each of the choices of L. For the wind speeds, two or three out of
five have a nontrivial length scale, in which one of the wind speeds near hub height
is always selected as nontrivial. Considering the length scales for the efficiency in
Figure 7.10b, one or two wind directions have nontrivial length scales, and one
or three wind speeds have nontrivial length scales.

This behavior may be due to the strong dependencies between them, and one
can see this in the following way: both the wind directions and wind speeds are
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Figure 7.10: Estimated length scales for data set 2 with KME samples.

strongly dependent within their group of variables. Having one nontrivial length
scale per group may be enough to capture the behavior of the complete group.

7.3.7 Sensitivity analysis

We continue with performing a sensitivity analysis on the cases for which the
quality of the emulator was examined and turned out to be reasonably sufficient.
This means we will perform a sensitivity analysis for the power output on data
set 2, in which the Gaussian process is based on samples selected by k-means.
For these settings, we found earlier 1 − Q2 < 0.02. In this case, we expect all
variables to be influential. We have three emulators, based on a different number
of samples L.

The results for the total sensitivity indices are given in Figure 7.11. The most
influential input variables are the wind speeds at 85 and 92 m height, followed by
the other wind speeds. Note the largest part of the rotor area is around hub height
(70 m) and the wind speeds at different heights are strongly dependent. It is
atypical that the sensitivity indices for wind direction are near zero, however, one
can argue they are more important in the case of the efficiency, because the wind
direction determines the strength of wake effects. The results from the different
emulators are consistent in their assessment of the sensitivity indices.

We would like to compute the sensitivity indices for data set 3 as well, espe-
cially to compare the total and direct sensitivity indices. However, we have no
validated Gaussian process for data set 3. Since data set 3 contains all the vari-
ables of data set 2, we can use the emulator of data set 2 (obtained with L = 360).
To do this, we first scaled the length scales from the scaled domain of data set 2
to the scaled domain of data set 3, after which we predicted the power output by
an emulator based on the length scales of data set 2. In these predictions, only
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Figure 7.11: Results of the sensitivity analysis. Lighter colors indicate stronger sensitivi-
ties (see also Figure 7.2).

the first 9 variables are used. Then, we compute the total sensitivity indices and
the direct sensitivity indices, in which we have applied the discreteness correction
for the wave period variables. The results of the sensitivity analysis are in Figure
7.12. Here we see only the wind speed at 58 and 85 meters height has a clear
direct effect, while the wind speed at 92 meters height has a very small direct
effect. These are also the only wind speeds in the range of the rotor diameter.
From these results, it is clear that the dependencies between the wind variables
are important and lead to high values of the total sensitivity index. The sensitivity
of the wave heights is shown to be indirect, which is due to their dependency with
wind speed. This shows the direct sensitivity indices work as expected.

Figure 7.12: Sensitivity indices for the MMIJ test case.
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7.4 Conclusion

We have shown how to apply the proposed framework in a real-life application
which consists of the combination of a data set containing weather data and a com-
putational model of power output for the Horns Rev wind farm. The framework
correctly identifies dependencies in the data. We constructed several emulators
and performed sensitivity analysis using them. The sensitivity analysis results are
consistent over the different emulators considered.

It is of the utmost importance to validate the Gaussian process emulators be-
fore using them for predictions, because the predictions may be inaccurate if the
Gaussian process did not perform well in validation tests. Another point of inter-
est is the nature of the input variables, which can be periodic or discrete (intrinsic
or due to measurement accuracy).



8 Case study II

The previous chapter was devoted to a case study which entailed the computation
of the power output of a hypothetical offshore wind farm (OWF) and highlighted
some of the problems one may encounter in practice. In this chapter, we will
show a less straightforward application of the framework and illustrate the com-
putational gains that can be achieved by it.

8.1 Introduction

The objective of the case study is to study in more detail the energy yield of a
hypothetical offshore wind farm: again with the layout of Horns Rev I, but now
located at Lichteiland Goeree (measurement station 320 of the Royal Netherlands
Meteorological Institute) in the North Sea over the years 1981-2018. This energy
yield is estimated not only for the complete data, but also for smaller time inter-
vals. In this way, the energy yield per year or month can be obtained, and trends
can be detected. This study is motivated by measurement campaigns held to cal-
culate the expected revenues of future OWFs. These campaigns are limited in
time, especially with respect to the lifespan of the OWFs. The inter-annual [136]
and inter-seasonal [137] variability of the wind energy are then not taken into
account properly. Hence, a measurement campaign with a duration of one year
or even less may be insufficient and lead to either losses or unexpected higher
profit.

A secondary objective is to show the computational gains achieved by using
the framework instead of direct simulation of the available input data. We show
the complete uncertainty quantification can be accelerated by two or three orders
of magnitude, which makes it possible to obtain the power output, or a prediction
thereof, for each available input data point. An extra benefit of the framework are
the confidence intervals offered by the method at no extra cost.

The data we use contains i) wind speed at a height of 10m, or measured at
a different height and converted to the equivalent wind speed at 10m, ii) mean
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wind direction, (iii) time stamps and (iv) other weather data. Unfortunately, no
vertical wind profiles are available, however the use of wind profiles has been
discussed already in Chapter 7. The other weather data is only used in the first
step of the analysis.

Section 8.2 describes the data analysis and necessary adaptations made to the
raw data. Then, Section 8.3 shows the dependency analysis. The results of the
study are shown in Section 8.4, where we show the expected energy yield over the
years, computed with different methods. Section 8.5 describes possible financial
implications, while Section 8.6 concludes.

8.2 Data analysis

We start by analyzing the data, which is done in two parts. First, we analyze
the data necessary for the simulations, which is three-dimensional: two input
variables which are used for the simulations itself and one time variable which is
used as a label to create subsets of the data set. Then, we repeat the process for
the data used in the dependency analysis, which is higher-dimensional.

8.2.1 For the simulations

We start by importing all available data and leave out the observations which do
not have a time stamp, wind direction or wind speed. Also, we remove the ob-
servations for which the wind direction varied during the measurement period
(which is one hour). These observations are less than half a percent of the data.
Then, we transform the time stamp to a year, because day and month are irrele-
vant for our current purpose. Furthermore, we transform the wind speed to m/s
(from 0.1 m/s). We list the unique values of wind speed and direction to look for
outliers and we find one, which we remove because its value is outside the range
of admitted values. This leaves us with 274191 observations.

We continue with checking the fraction of time for which data is available
(availability) by looking at the number of complete, included observations per
year in Figure 8.1. In this figure, we have also drawn the line of 99% availability
of data (no correction for leap years in the figure). To avoid seasonal effects,
we now remove the years below this threshold, being 1981-1993 and 2001-2003.
This leaves N = 183768 included observations.

We show the remaining distributions for wind direction and wind speed in
Figure 8.2. First, we note in Figure 8.2a both 0 and 360 are included. Here, 360
indicates north, while 0 indicates calm conditions and therefore no measurable
wind direction. Second, we note the bars in Figure 8.2b are not uniformly dis-
tributed. This is caused on the one hand by recent observations being measured
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Figure 8.1: Number of observations per year.
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Figure 8.2: Barplots of the (discrete) observations of wind direction and wind speed.

in integer multiples of 1 m/s rather than fractions thereof, and on the other hand
by a conversion of older data.

We combine wind direction and wind speed measurements in a wind rose
plot. The wind rose of all included data is given in Figure 8.3. This should be
interpreted as a periodic version of a stacked bar diagram, which is normalized to
represent a probability distribution function. The color indicates the wind speed.
The number of sectors is 36, such that each value of the wind direction has its own
bar. The measurements with calm conditions are not included. One can clearly
see the prevailing wind direction in the Netherlands is southwest.
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Figure 8.3: Wind rose.

8.2.2 For the dependency analysis

For the dependency analysis, we used the data consisting of the variables given
in Table 2.2, for which we included the time stamp in order to select the data
obtained in the years 1981-2018. Then, we removed incomplete observations,
the calm and variable wind measurements, and the outlier measurement found
earlier. No other outliers were found. In this way, we have 209915 observations.

We check the availability of the data in Figure 8.4, in which we also plotted
the 99% availability line, although this is almost never reached. Because we only
use this data to demonstrate the dependencies, we accept this distribution of data
over the years.

8.3 Dependency analysis

The results of the dependency analysis are shown in Figure 8.5a, for which we
computed Dα(g, g̃) (2.5). These are very similar to the ones in Figure 2.15. The
labels are explained in Table 2.2. We have also implemented a discreteness cor-
rection, of which the results are in Figure 8.5b. This correction is similar to the
one used in Chapter 7 for the wave periods, although we applied it here to all
variables. One can see the values of the dependency index have decreased by a
large extent. Dependencies between the wind speed variables still exist, just as be-
tween the temperature variables, between wind speeds and visibility and between
visibility and relative atmospheric humidity. The idea behind the discreteness cor-
rection is to make the marginal distributions more uniform, such that they are
not reflected in the dependency index. However, by doing this, some parts of
the dependency may be destroyed. This can be understood as follows: by the
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Figure 8.4: Number of complete, valid observations of the data set per year.

(a) Original. (b) With discreteness correction.

Figure 8.5: Dependency analysis, without (left) and with (right) discreteness correction.

discretization, several data points get the same value for two variables. In the
original rank-transform, they are placed at exactly the same location after which
a small noise is applied to separate them numerically. If any dependency between
them existed, this is not seen by the aggregation due to the measurement accu-
racy. Hence, applying the discreteness correction might actually underestimate
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the dependencies. However, without discreteness correction, the dependencies
are overestimated because the marginal distributions can be far from uniform
when the discretization is coarse. At the moment, the only remedy would be to
have more precise measurements.

8.4 Results

We now return to the original goal of the case study, which is to study the energy
yield of a hypothetical OWF. The idea is to study the variation in energy yield over
the years and to show the computational gains achieved by using the framework.

We assume we are allowed to use no more than L = 103 evaluations of the
computational model because of computational cost constraints. Of these, we re-
serve LV = 100 for the validation and use the remaining LM = 900 for their output
and as basis for the emulator. The LM samples are selected by KME and have been
evaluated. We will also use lower values of LM to see if using less samples is suf-
ficient as well. From the obtained samples, we compute the quantities of interest
by the piece-wise constant approximation on the clusters. This is done per year,
in which the weights are computed from the relevant input data. The results can
be found in Figure 8.6. For reference purposes, we have also computed the power
output for each data point individually. In practice, this will not be possible.
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Figure 8.6: Computed output for the years in which enough data is present, based on
weighted samples.

Figure 8.6 shows there exists quite some variation over the different years,
although no trend is visible. We investigate this result further in Section 8.5. Fur-
thermore, we see using LM = 100 samples overestimates the power output and
the efficiency, while LM = 300 seems sufficient. This means only 300+ 100 eval-
uations of the computational model are sufficient to replace the 183768 original
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evaluations, which is a reduction between 2 and 3 orders of magnitude. The com-
putational time to obtain these samples using KME is negligible with respect to
the time needed by the computational model.

We continue by constructing a Gaussian process on the LM samples. To vali-
date the Gaussian process, the LV samples have been selected by stratified sam-
pling in time of the data. Several other choices for selecting the validation data
are possible as well, but in this way we expect to get a good coverage of the input
data.

The validation results are given by 1−Q2 = {8.0 · 10−3, 1.3 · 10−3, 1.5 · 10−6}
for the power output (with LM = {100, 300, 900}) and 1−Q2 = {5.4 · 10−2, 2.5 ·
10−2, 5.4·10−5} for the efficiency, which means the plot of the emulated versus the
real output values is very close to a straight line in almost all cases. Sometimes,
the power output or efficiency is estimated below zero, but this has only a very
minor effect. Due to these validation results, we are confident enough to use
the prediction data for the complete input data already with LM = 100 when it
concerns the power data, and with LM = 900 also for the efficiency. In a moment,
we will see this is not ideal due to the bias for LM = 100.

We show the results of the power output based on the predictions together
with a 95% confidence interval in Figure 8.7. The difference between Figures
8.6 and 8.7 is the prediction method: the first predicts for all data points in the
cluster the output value of the cluster center, while the second uses a Gaussian
process to predict the output values. The confidence intervals are computed from
the prediction variance at each prediction location. They are not visible at all due
to their small width. We see again the results for L = 100 over-predict, while the
other results are very accurate in the estimation mean, especially for the power
output. This over-prediction is consistent with the computed output based on
weighted samples which also over-predicts for L = 100. It does not contradict the
result of the validation which measures precision rather than accuracy. However,
it shows emulators are not perfect and their quality depends on the samples they
are based on. Note the computed output based on weighted samples also over-
predicts for L = 100. The small width of the confidence intervals is caused by
the large amount of samples, as the standard deviation of the mean decreases
with increasing N . From the figure, we conclude L = 300 samples are enough to
properly capture the features of the energy yield. Also, we do not see any trend
in the energy yield and the variations per year can be large.

The cost of constructing the emulator and obtaining its predictions is small
with respect to the computational time of the model. The cost of obtaining the
predictions is only the cost of solving a linear system, which is negligible with
respect to the cost of the parameter optimization of the Gaussian process. When
more input variables are included, the construction time will increase.
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Figure 8.7: Computed output for the years in which enough data is present, based on
Gaussian processes.

One can summarize this time gain as follows: instead of performing N simu-
lations with total time cost N · Tsim, one only performs LM + LV simulations at
cost (LM + LV ) · Tsim, plus the time to obtain the predictions Tpred = Tpred(LM , N),
which depends in practice on the dimension of the problem as well. In practice,
where N ≫ LM , LM not larger than 103 and Tsim ≫ Tpred , this leads to a large
computational speedup.

8.5 Indication of financial consequences

In this section, we illustrate the profitability of such a wind farm under strongly
simplifying assumptions regarding, e.g., costs and operations. We use the data
from [138] regarding the Horns Rev I wind farm. We fix all costs and look only at
the effect of the gross annual energy production. Because of the small confidence
intervals, we focus on the mean value. For each year, we compute whether this
wind farm would have been profitable for the given parameter values and input
data. Note the only differences between our case and [138] are the data used,
which is here obtained from the Lichteiland Goeree, about 500 km away from the
original wind farm, and the computational model to obtain the power output.

The results are in Figure 8.8. In [138], the selling price of the energy is 0.11
euro per kWh, which means the levelized cost-of-energy should stay below this
value to be profitable. One can see the profitability of this OWF is limited, and de-
pending on the chosen period for data collection, it would be considered profitable
or not. This is not a desired situation. This issue can be solved by making use of a
wind atlas [139] or reanalysis data such as ERA5 [140], because it contains wind
data for longer periods of time.
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Figure 8.8: Profitability.

8.6 Conclusion

We have shown the proposed framework can also be applied to perform UQ in a
different setting: here, we performed UQ on parts of the input data. In this case,
the goal was to investigate the behavior of the energy yield over the years, which
was shown to be highly variable.

Furthermore, we have illustrated the computational gain which can be achie-
ved by using the framework rather than full simulation of the available data. In
this way, expensive computational models can be used in uncertainty quantifica-
tion, which is expected to lead to improved and novel results.





9 Conclusion

The goal of this chapter is to summarize the obtained results and to look forward
to possible extensions and improvements.

9.1 Conclusion

We studied different aspects of uncertainty quantification (UQ) with the focus on
the case of dependent input variables available in the form of data. The need for
uncertainty quantification is usually caused by the complexity of the system under
consideration, which involves input, a process and the output. The process is often
an expensive computational model of several physical processes, such that not all
desired simulations can be performed due to the complexity of the model and the
resulting computational cost. The challenge is to select suitable samples from the
input data which are used to perform the simulations. This is the step at the heart
of the UQ process. At the beginning of the process, the dependencies present in
the data can be studied to give more insight in the system. After performing the
chosen simulations, one can continue the UQ process by predicting the process
output for other input data and performing a sensitivity analysis. This leads to a
complete framework of which the separate steps are detailed below.

In Chapter 2, we developed an efficient approach for quantifying dependencies
in data by means of Rényi mutual information. This approach is mainly applica-
ble to large multivariate data sets. We also proposed a novel estimator in case
the ranking of the dependencies is required instead of their exact strength. The
method gives consistent results and is computationally feasible due to the use of
minimum spanning trees.

The main topic of Chapter 3 was to construct a sample selection method which
works well for dependent input variables. We achieved this goal by employing
clustering techniques, especially k-means clustering and using the cluster centers
as samples. A good representation of the input data can be achieved with relatively
few samples, especially when the input data is strongly dependent.
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Chapter 4 considered emulation and especially Gaussian processes which is an
often-used concept in emulation. Furthermore, we derived a theoretical result on
upper bounds for the prediction variance of Gaussian processes. This chapter also
served as a preliminary for the following chapters, in which Gaussian processes
are frequently used as emulator.

The goal of Chapter 5 was to improve the estimates of divergence-based sens-
itivity indices by including combinations of input data and output predicted by an
emulator. This is advantageous in the case where the number of available samples
is small. The method can be used with the same estimation mechanism as Chapter
2 or with kernel density estimation. Furthermore, we developed an extra type of
sensitivity indices to distinguish between direct and indirect sensitivity effects.

Chapters 2, 3 and 5 contain the main parts of the UQ framework. Chapter 6
contains a possible extension, namely a way to add extra samples to an existing
sampling design. In the test cases in Chapter 6, the method does not outperform
sampling designs in which all the samples are generated in one step. However, it
also does not perform worse, and can be beneficial if not all simulation efforts can
be used immediately.

Finally, Chapters 7 and 8 considered two applications of the framework in the
domain of offshore wind energy. The first application was a straightforward UQ
of a computational model of the power output of an offshore wind farm, in which
the input data was a data set containing weather data. The second application had
a more specific goal, namely determining whether a possible setup of an offshore
wind farm would be profitable. The focus was on the year-to-year variability of
the energy yield.

In general, the proposed framework works well and can be applied in prac-
tice. However, there are a few points of interest and improvements are certainly
possible. Some of them will be explained in more detail in the next section.

9.2 Suggestions for further research

We will first give suggestions per step of the UQ framework, after which we indi-
cate general suggestions.

9.2.1 Dependency analysis

In some of the test cases, groups of dependent variables appeared. It would be
useful to be able to characterize and visualize them as such, and even compute
dependency indices between groups. This would require a generalization of the
rank-transform which not only removes the marginal distribution, but also takes
care of the dependencies within a group. This is a higher-dimensional version of
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the problem encountered before, namely, how to remove the effect of the marginal
distributions from the dependency index.

Another issue still open for further research is the presence of periodic vari-
ables. One or two of them per data set may be handled by adapting the distance
function, but this becomes cumbersome in the case of many periodic variables. A
comparable issue is the presence of discrete variables (truly discrete or by mea-
surement accuracy), which is currently handled by either placing them at the same
location in the rank-transform (with a small noise term to avoid problems with
the minimum spanning tree) or by randomly assigning them adjoining locations.
Both are technically incorrect and suffer from (different) problems.

9.2.2 Sample selection

As indicated before, the current method for sample selection as described in Chap-
ter 3 is only first-order accurate, as only constants and linear functions are inte-
grated correctly. Extensions to higher-order accurate can be developed in several
ways. We illustrate one possible method in which the sample locations stay the
same, but the weights are adapted. It is possible to construct a linear system con-
taining the constant term, linear terms and quadratic terms (mixed or from one
variable), in which the weights are the variables to be solved for. Because the
number of data points is much larger than the number of samples, this system is
under-determined and leaves space for the possibility of optimization in the so-
lution space. In this solution space, one solves an optimization problem which
minimizes the norm between the original clustering weights and the weights ob-
tained from the linear system [141].

A second option to obtain higher-order accurate methods is to construct hybrid
methods which combine the proposed sample selection methods with regular UQ
sample selection methods. In this way, one could handle the dependencies and
get the higher-order accuracy from the regular methods.

9.2.3 Emulation

We use log-likelihood optimization to obtain the length scales for the Gaussian
process. Another option would be to obtain the length scales via Bayesian infer-
ence. [4] already used this to obtain the distribution and density functions of the
output given the input. This adaptation could be advantageous when the number
of samples L or the input dimension d is large.
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9.2.4 Sensitivity analysis

The issues appearing in sensitivity analysis are from a different kind than the ones
in the dependency analysis, although their methods are very similar. We have al-
ready developed direct and total sensitivity indices, but when one thinks of Sobol’s
indices, also higher-order sensitivity indices (for mixed terms) appear, which are
combined into the total sensitivity indices. An interesting research topic would be
to derive higher-order sensitivity indices and a suitable estimation method along
the lines of the approach in Chapters 2 and 5.

9.2.5 General

In this section, we discuss two options: adaptive sampling and dimension reduc-
tion.

The idea behind both options is to make better use of the information availa-
ble from the UQ process. We have shown a possible option for adaptive sampling
in Chapter 6, but this leaves room for further development and improvement. In
this method, the available information comes from the samples and their corre-
sponding model output.

The dimension reduction can be performed at several steps in the process.
When it is known that some variables are not influential or even not used in ob-
taining the output, one can remove them from the probability space and replace
them with a fixed value. In general, one can also apply a dimension reduction
after the dependency analysis. When a group of variables is strongly dependent,
one can select the variable with strongest dependencies to the others, or try to fit
a lower-dimensional manifold from which samples are selected.

As a final remark, one is free to change the settings of different methods in
order to get better results for a specific problem. These settings include, but are
not limited to the clustering method, Gaussian process kernel, distance function
of the Gaussian process and the type of divergence of the sensitivity index. One
can even go further and replace complete parts of the framework when better
methods are developed in the future.



A Genz test functions

In Table A.1, the definitions of the Genz functions are given. The parameters a
can be used to make the function harder or easier to integrate, while u contains
scale parameters. The functions are defined in d dimensions, in which d ∈ N, on
the domain [0, 1]d . In all tests, we will choose ai = 1 for i = 1, . . . , d. We will
choose ui = 1/2 for i = 1, . . . , d for all functions except for f1, where we choose
u1 = 0.

Table A.1: Definition of the Genz test functions.

Nr Characteristic Function

1 Oscillatory f1(x) = cos
�
2πu1 +

∑d
j=1 a j x j

�
2 Gaussian peak f2(x) = exp

�−∑d
j=1 a2

j (x j − u j)2
�

3 C0 f3(x) = exp
�−∑d

j=1 a j|x j − u j|
�

4 Product peak f4(x) =
∏d

j=1

�
a−2

j + (x j − u j)2
�−1

5 Corner peak f5(x) =
�
1+

∑d
j=1 a j x j

�−d+1

6 Discontinuous f6(x) =


0 x1 > u1 or x2 > u2

exp
�∑d

j=1 a j x j

�
else

In Figure A.1, the values for the Genz functions on the domain [0, 1]2 are visual-
ized. Test functions 2 and 4 look similar, but are different.
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0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.4
800.480

0.480
0.4

80

0.5
600.560

0.560
0.5

60
0.640

0.7
20

0.800

0.880

(c) Test function 3.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.700
0.7

500.750

0.750
0.7

50 0.800

0.800
0.850

0.900

0.950

(d) Test function 4.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.400

0.500

0.6000.700
0.8000.900

(e) Test function 5.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0.400
0.800
1.200

1.200

1.600

1.600

2.000

2.
40

0

(f) Test function 6.

Figure A.1: Genz test functions.



B Meteomast IJmuiden variables

The variables of included in the analysis are given in Table B.1. The names contain
(if applicable) the height at which the variables are recorded (Hx for x m), the
quantity measured (Wd for wind direction, Ws for wind speed, etc.), and in some
cases additional information (e.g. signal quality). See [15] for more details.

Table B.1: Explanation of the included variables.

Variable name Measurement Unit
MMIJ_Hx_Wd_Q1_avg Wind direction at x m m/s
MMIJ_ZPHS_H115_Wd Wind direction at 115 m deg
MMIJ_Hx_Ws_Q1_avg Wind speed at x m m/s

MMIJ_ZPHS_H115_WsHor_avg Horizontal wind speed at 115 m m/s
MMIJ_ZPHS_Hx_TI Turbulence intensity at x m -

MMIJ_Hx_AirDensity_Q1_avg Air density at x m -
MMIJ_Hx_Pair_Q1_avg Air pressure at x m hPa
MMIJ_Hx_Tair_Q1_avg Air temperature at x m deg C
MMIJ_BW_PeriodMean Mean wave period s
MMIJ_BW_PeriodPeak Peak wave period s

MMIJ_BW_WavePeriodSig Significant wave period s
MMIJ_BW_WaveHeightAvg Average wave height m
MMIJ_BW_WaveHeightMax Maximum wave height m
MMIJ_BW_WaveHeightSig Significant wave height m

Their inclusion in the three data sets are given in Table B.2.

131



132 APPENDIX B. METEOMAST IJMUIDEN VARIABLES

Ta
bl

e
B

.2
:

Va
ri

ab
le

s
of

th
e

M
M

IJ
in

cl
ud

ed
in

th
e

an
al

ys
is

,s
ee

al
so
[1

5]
.

Va
ri

ab
le

s
in

se
ts

1,
2,

3
Va

ri
ab

le
s

in
se

ts
1,

3
Va

ri
ab

le
s

in
se

t
3

M
M
I
J
_
H
2
7
_
W
d
_
Q
1
_
a
v
g

M
M
I
J
_
Z
P
H
S
_
H
9
0
_
T
I

M
M
I
J
_
B
W
_
P
e
r
i
o
d
M
e
a
n

M
M
I
J
_
H
5
8
_
W
d
_
Q
1
_
a
v
g

M
M
I
J
_
Z
P
H
S
_
H
1
1
5
_
T
I

M
M
I
J
_
B
W
_
P
e
r
i
o
d
P
e
a
k

M
M
I
J
_
H
8
7
_
W
d
_
Q
1
_
a
v
g

M
M
I
J
_
H
2
1
_
A
i
r
D
e
n
s
i
t
y
_
Q
1
_
a
v
g

M
M
I
J
_
B
W
_
W
a
v
e
P
e
r
i
o
d
S
i
g

M
M
I
J
_
Z
P
H
S
_
H
1
1
5
_
W
d

M
M
I
J
_
H
2
1
_
P
a
i
r
_
Q
1
_
a
v
g

M
M
I
J
_
B
W
_
W
a
v
e
H
e
i
g
h
t
A
v
g

M
M
I
J
_
H
2
7
_
W
s
_
Q
1
_
a
v
g

M
M
I
J
_
H
2
1
_
T
a
i
r
_
Q
1
_
a
v
g

M
M
I
J
_
B
W
_
W
a
v
e
H
e
i
g
h
t
M
a
x

M
M
I
J
_
H
5
8
_
W
s
_
Q
1
_
a
v
g

M
M
I
J
_
H
9
0
_
A
i
r
D
e
n
s
i
t
y
_
Q
1
_
a
v
g

M
M
I
J
_
B
W
_
W
a
v
e
H
e
i
g
h
t
S
i
g

M
M
I
J
_
H
8
5
_
W
s
_
Q
1
_
a
v
g

M
M
I
J
_
H
9
0
_
P
a
i
r
_
Q
1
_
a
v
g

M
M
I
J
_
H
9
2
_
W
s
_
Q
1
_
a
v
g

M
M
I
J
_
H
9
0
_
T
a
i
r
_
Q
1
_
a
v
g

M
M
I
J
_
Z
P
H
S
_
H
1
1
5
_
W
s
H
o
r
_
a
v
g



List of abbreviations

CDF . . . . . . . . . . . . . cumulative distribution function

FMST . . . . . . . . . . . fast minimum spanning tree

GP . . . . . . . . . . . . . . Gaussian process

KDE . . . . . . . . . . . . . kernel density estimator/estimate/estimation

KL . . . . . . . . . . . . . . . Kullback-Leibler

KME . . . . . . . . . . . . k-means

LHD . . . . . . . . . . . . . Latin hypercube design

LHS . . . . . . . . . . . . . Latin hypercube sampling

MCC . . . . . . . . . . . . Monte Carlo clustering

MC,MCS . . . . . . . . Monte Carlo sampling

MMIJ . . . . . . . . . . . Meteomast IJmuiden

MST . . . . . . . . . . . . . minimum spanning tree

OWF . . . . . . . . . . . . offshore wind farm

PCA . . . . . . . . . . . . . principal component analysis

PCR . . . . . . . . . . . . . reassigned principal component analysis

PDD . . . . . . . . . . . . . polynomial dimensional decomposition

SOS . . . . . . . . . . . . . sum-of-squares

UQ . . . . . . . . . . . . . . uncertainty quantification
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