
BASIC TRANSFORMATIONS IN LINEAR ALGEBRA

FOR

VECTOR COMPUTING

BASIC TRANSFORMATIONS IN LINEAR ALGEBRA

FOR VECTOR COMPUTING

ACADEMISCH PROEFSCHRIFf

ter verkrtjging van de graad van doctor aan de
Universiteit van Amsterdam,

op gezag van de Rector Magniftcus
prof. dr. S. K. Thoden van Velzen,

in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),

op vrijdag 19 mei 1989 te 15.00 uur

door

Walter Hoffmann

geboren te Haarlem

1989

Pro motor: prof. dr. Th. J. Dekker

Faculteit: Wiskunde en Informatica

Printed at the Centrum voor Wiskunde en Informatica, Amsterdam.

Cover: part of arithmetic circuit board CDC CYBER 205, courtesy SARA.

Photograph: Gerhard Jaeger.

Graphic design: R. T. Baanders.

Aan de nagedachtenis van mijn vader

Morgen

Und morgen wird die Sonne wieder scheinen

Und auf dem Wege, den ich gehen werde,

Wird uns, die Glucklichen, sie wieder einen

inmitten dies er sonnenatmenden Erde ...

Und zu dem Strand, dem weiten, wogenblauen,

Werden wir still und Langsam niedersteigen,

Stumm werden wir uns in die Augen schauen.

Und auf uns sinkt des Gluckes stummes Schweigen ...

John Henry Mackay

Table of Contents

Preface viii

Acknowledgement ix

Introduction 1

Chapter I; Solving linear systems on a vector computer 15

Chapter II; Rehabilitation of the Gauss-Jordan algorithm 33
(coauthor: T.J. Dekker)

Chapter III; An estimate for the spectral norm of the inverse of a
matrix with the Gauss-Jordan Algorithm 43

Chapter IV; A fast variant of the Gauss-Jordan Algorithm with
partial pivoting 53

Chapter V; Iterative Algorithms for Gram-Schmidt Orthogonalization 61

Chapter VI; Definition and use of Householder reflections 77

Chapter VII; NUMVEC FORTRAN Library manual
Chapter: Simultaneous Linear Equations (NM-R8614) 89

(coauthor: W.M. Lioen)

Chapter VIII; NUMVEC FORTRAN Library manual
Chapter: Simultaneous Linear Equations (NM-R8712) 127

Chapter IX; NUMVEC FORTRAN Library manual
Chapter: Simultaneous Linear Equations (NM-R8903) 137

(coauthor: K. Potma)

Samenvatting 158

viii

PREFACE

The research reported in this thesis, was started in the fall of 1984. In that

year a Cyber 205 vector computer was installed at the Academic Computing

Centre, SARA, in Amsterdam. By this, the access to super computers became

more easy for scientists in the Netherlands, so that 'vector computing' could

be experienced in practice on a larger scale.

Some early experiments on the Cyber 205 made clear that existing software

for linear algebra problems was not optimal and could be improved.

In that same period, the 'Centrum voor Wiskunde en Informatica', CWl, decid­

ed to build a numerical analysis subroutine library, NUMVEC, for use on super

computers. Subroutines in NUMVEC are based on algorithms that are available

in the open scientific literature or on algorithms that are especially developed

for that purpose.

The research group guided by professor Th. J. Dekker has experience in the

development of numerical software. This is illustrated by major contributions

to CWI's Algol 60 library NUMAL and by contributions to the NAG libraries.

The NUMVEC initiative of CWl stimulated the extension of the research effort

to portable numerical software for supercomputers . With the Cyber 205 super

computer in the vicinity, it is only natural that routines for use on this

machine were developed initially.

The combined knowledge of numerical linear algebra and numerical software

formed the basis for this thesis.

Amsterdam, February 1989

ix

ACKNOWLEDGEMENTS

My interest in numerical analysis was aroused by the pioneer of Computer
Science in the Netherlands. the late prof. A. van Wijngaarden. His courses at
the University of Amsterdam are still vividly remembered.

My teacher and adviser in numerical linear algebra was my current promotor,
prof. Th. J. Dekker. I wish to thank him for the things he taught to me; also
otherwise I have learned to know him as a man of great integrity.

I have had the privilege of being a guest of prof. G. H. Golub at the Computer
Science division of Stanford University during a full Academic year. I wish to
express my thanks for all I learned of him in that period. The opportunity of
spending almost a year with my family in California was also made possible by a
grant of the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

From more recent times, I wish to thank prof. P. J. van der Houwen who has
acted as a stimulating force on specific essential moments; I also wish to
thank prof. H. A. van der Vorst for his contributions to this research and dr.
P. van Emde Boas for always showing interest in my work.

I wish to thank IBM Nederland for supporting a very much appreciated
working visit to ECSEC, the IBM research Centre at 'Roma, la Citta eterna' in
October 1985. There. I developed a number of ideas which are included in
this thesis. At ECSEC, which is headed by the stimulating science manager
dr P. Sguazzero, I met three french scientists, prof. Y. Robert. prof. M. Cosnard
and dr. D. Trystram. I gladly acknowledge their support by introducing me to
the IBM computer system and I thank them for sharing some great moments.

I like to express my great appreciation to Peter de Rijk for his skill in
exploring new available computing systems and more specifically for his
support in the development of our Cyber 205 programs. Furthermore I like to
thank Walter Lioen for his help in coding some of our earlier routines and Te
Yung Fu for his work to facilitate data communication and data processing.
I am grateful to D. Zwarst for fitting me in his tight printing schedule and to
him and his colleagues of the Centrum for Wiskunde en Informatica for a fine
result.

Finally, I like to thank Marianne and Niels for sustaining the harmonic
surroundings which enabled me to continue this work.

Ja, ma.eh nur einen Plan

Sei nur ein grosses Licht!

Und ma.eh dann noch 'nen zweiten Plan

Gehn tun sie beide nicht.

Bertolt Brecht,

Dreigroschenroman.

And it never failed that during the

dry years the people forgot about the

rich years, and during the wet years

they lost all memory of the dry years.

It was always that way.

John Steinbeck,

East of Eden.

INTRODUCTION

This thesis contains nine chapters which can be divided into two parts of six
and three chapters, respectively. The first six chapters are papers which
either have been published, have been accepted for publication, or have been
submitted for publication in scientific journals. They deal with problems in the
area of numerical linear algebra.
The last three chapters are a part of the user documentation for the NUMVEC
FOITTRAN library (14] and have been published as CWI reports. The part of the
documentation presented here, describes the use of routines which are based
on algorithms presented in the first six chapters of this thesis.

The six papers in the first part have in common that algorithms for solving
numerical linear algebra problems are presented which are especially
designed to enable a translation into efficient routines for vector computers.
This has been realized by analyzing the underlying mathematical structure in
order to formulate these algorithms in terms of matrices and vectors. instead
of scalars. Special care has been taken that no demands for numerical stability
were violated. We think that these algorithms are also suitable to serve for an
efficient implementation on parallel machines with shared memory.
We did not pursue the alternative way of algorithm design where an existing
sequential algorithm is transformed, more or less automatically, into an
algorithm with an optimal loop structure.

To furnish the reader with a proper context for appreciating the papers in
this thesis, we present some background material from the area of numerical
linear algebra and computer science; more details can be found in several text
books (8,9, 12, l 5]. This background material is covered in two sections; the
first emphasizes basic matrix transformations and the second emphasizes
vector computing for linear algebra.

2

1.1 Applicable elementary matrices in numerical linear algebra

The basic transformations as mentioned in the title of this thesis are, general­

ly speaking. those transformations which are described by elementary

matrices. A matrix is called elementary if it is the sum of the identity and a

rank-one matrix.
So, for any two vectors f = (<\>1 <\>n)T and s = (cr1 crn)T and a scalarµ, the

matrix E = (I + µfs'I) is elementary.

This type of matrices is used in many methods for solving matrix problems.

For instance, all direct methods for solving square linear systems can be

described in terms of elementary matrices; a QR factorization of a matrix

(being itself an important tool for solving matrix problems) can be described

in terms of elementary matrices; similarity transformations (used in the

context of eigenvalue problems) can be constructed using elementary matri­

ces.

Among basic transformations are also transformations that can be described by

low-rank matrices , such as projections onto subspaces of low dimension, and

planar rotations.

We consider several types of elementary matrices.

Tvpe-1 matrices

Matrices that for unit vector ek and vector f with <\>k = 0 are defined by:

E =(I - f~T).

. This type of matrices is used in Gaussian elimination and in the

· . Gauss-Jordan method; they have the following nice property:
. E -1 =(I+ fekT).

The process of Gaussian elimination, as is taught to every science student in

an early linear algebra course, is based on the fact that the solution of a linear

system doesn't change if a multiple of an equation is subtracted from another

equation. This is equivalent with subtracting corresponding rows in the

coefficient matrix and can be expressed by a premultiplication of the coeffi­

cient matrix with an elementary matrix of the type considered here.

Elementary matrices in Gaussian Elimination

In Gaussian elimination, only multiples of rows are subtracted from rows that

are located lower in the matrix (their row-number is higher) . Consequently,

the elementary matrices (I - fekT) are such that <1>1 = 0 for i = 1, k.

W
Using this type of matrices, Gaussian elimination can be described

by constructing (I - f1e1TJ. (I - f2e2TJ (I - fn-1en-1TJ. in such a way

that the matrix product
U = (I - fn-1 en-I T)(I - fn-2en-2 T) ... (I - f1 e1 TJ A

has upper triangular form. This relation is usually written as:

A = (I - f1e1TJ -l . . . (I - fn-2en-2TJ-l(I - fn-1en- 1TJ-l U.

Because of the special structure of the elementary matrices under considera­

tion, we observe that this identity can be rewritten as:

A = (I+ f1e1T + f2e2T + .. . + fn-2en-2T + fn-1en-1 TJ U,

3

and again from the structure of the vectors fi<: • we see that the first factor at
the right hand side equals a lower triangular matrix L (say) so that the identity

A= LU
holds.

Now we see that the problem of solving a linear system Ax = b, can be divided
into the following steps:

a. Calculate a factorization A = LU of the coefficient matrix A.
b. Solve L y = b for vector y; this is called forward substitution.
c. Solve U x = y for vector x; this is called backward substitution.

It is well-known that almost always the given linear equations need to be
reordered by interchanging selected equations . Such a reordering is for
instance necessary if the first unknown in the first equation has a coefficient
that is equal to zero. If the computations are carried out in finite precision
arithmetic, then reordering of the equations is necessary for numerical
stability; the error in the calculated solution depends on the ordering of the
equations.

Our first paper summarizes variants of constructing an LU-factorization,
including various ways of properly reordering the equations and/ or unknowns.
A strategy for finding a suitable reordering is called a pivoting strategy. If only
rows or columns are interchanged, then we speak of partial pivoting; in
complete pivoting column and row interchanges are involved.

The calculated solution by means of LU decomposition followed by forward
and backward substitution, can be seen as the exact solution of a (slightly)
perturbed problem. A bound on the perturbation depends on the matrix and
the pivoting strategy. This is expressed in the following theorem, due to
Wilkinson [16]:

Theorem:
Suppose that the linear system A x = b has been solved with floating-point
arithmetic in finite precision, using LU decomposition with partial- or
complete pivoting. The calculated solution is the exact solution of a problem

(A + E) ~ = b . with II E 11
00

S 8 n3 g(A) II A 11
00

E + 0(£2) ,

where E denotes the machine precision (= min (fl(l + p) > l}) and g(A) the p

growth factor which indicates the maximal value during any stage of the
process, defined by g(A) = max I a1/kl I I max I a1J I.

(l,j.k) (l,j)
A proof can be found in [8,15]. D

If partial pivoting is used then g(A) is bounded by 2n-l .
If complete pivoting is used then g(A) is bounded by a function ffi , defined by
ffi(n) = nl/2(2 .3112 .. . nl/(n-1)) 1/2.

Compared with 2n- l, ffi is a slowly growing function. This can for instance be
seen from the numerical values ffi(50)"' 570, ffi(lOO) "'3570 and 2 100 "' 1030 .
The following question arises:
In what way does the size of II E 11

00
influence (~ - x), i.e. the error in x?

This question is answered in the following theorem:

4

Theorem:
Suppose that errors in A and b are given by tiA and tib, respectively, and

assume that Mis such that the product r, defined by r =II M II.II A-1 II, satisfies

r < 1. In that case. the perturbed matrix (A + M) is not singular and for any

8 > 0, being a simultaneous upperbound in the relative errors such that:

II M II :<::; 8 II A II and II tib II :<::; 8 II b II,

the solutions x and y of Ax = b and (A + M) y = b + tib, respectively. satisfy:

~< 28 llAll.llA-
1

11
llxll - 1 - r

A proof can again be found in [8,15) .

Elementary matrices in Gauss-Jordan

D

The elimination process as globally described above, can also be carried out in

parts of the columns that are above the diagonal. In that case. the result of the

elimination will be a diagonal matrix D, instead of an upper triangular matrix

U. The algorithm that arises is the so called Gauss-Jordan factorization.

For this algorithm, the elimination steps can again be expressed by

premultiplication with elementary matrices of the form (I - gkekT), where the

k-th element of gk equals 0. In ·this situation none of the other elements of~

need to be zero. The effect of the Gauss-Jordan algorithm is equivalent with

applying all relevant elementary matrix transformations. This is denoted by:

D = (I - &ienT)(l - &i-1en-1T) ... (I - g1e1TJ A.

From this we find the factorization:
A = (I+ g1e1TJ ... (I+ &i-1en-1T)(I + &ienT) D.

The Gauss-Jordan algorithm needs more floating-point operations than

Gaussian elimination; n3 /2 + O(n2) multiplications for Gauss-Jordan against

n3 /3 + O(n2) for Gaussian elimination. Moreover, if the Gauss-Jordan

algorithm is combined with the pivoting strategy that is generally used in

Gaussian elimination (i.e. the use of row interchanges). then it may be possible

that a solution is calculated with a large residual vector (b - ~) . This has been

shown by Peters and Wilkinson [13). Our second paper goes into details of this

subject and we show that the use of column interchanges in the Gauss-Jordan

algorithm gives a much more satisfactory result.

The operation count shows that, on sequential computers, the Gauss-Jordan

algorithm is slower than Gaussian elimination. On vector and parallel comput­

ers, however, the use of Gauss-Jordan may be advantageous, because of its

simpler structure and the possibility of more efficient data access.

An extended version of the Gauss-Jordan algorithm can be used to calculate

the explicit form of the inverse matrix. This algorithm uses the same number

of operations as an inversion method based on Gaussian elimination, viz. n3 +

O(n2) multiplications and the same number of additions. It can easily be

arranged such that the inverse overwrites the original matrix. The algorithm

and results of experiments on a Cyber 205 vector computer are described in

our contribution to the 'ICIAM 87' Conference in Paris [2).

5

An important application for matrix inversion by the Gauss-Jordan method is
given by Gallivan, Jalby and Meier [7]. They communicate its use as an
essential part of calculating a block LU factorization on a parallel machine with
a hierarchical memory.

The inverse matrix, or to be precise. its norm only, is needed to compute an
upper bound for the error in the calculated solution. Many algorithms do exist
that calculate an estimate for this norm of the inverse during Gaussian
elimination in O(n2) operations. In our third paper we present an algorithm
which also calculates this norm in O(n2) operations, but is tailored to go with
Gauss-Jordan.

Tvpe-II matrices
Matrices that for unit vector ek and vector f with $k = 0 are defined by:

::·::-... , ... :.·.· .. ·.·. This ty~; ~~ -e;;!:'~~tary matrix arises in a remarkable variant of
the Gauss-Jordan algorithm [1,10] which has been known for some
time. This method has attracted little attention, because it did not

allow for the 'standard' pivoting strategy by row interchanges (which can't be
proven to be safe anyway!). The interesting point is, that its operation count is
equal to that of Gaussian elimination. n3 /3 + O(n2) multiplications. The latter
algorithm and the Gauss-Jordan factorization have been known for a long time;
the variant we are aiming at is only 10 years old.
We describe this algorithm in our fourth paper and show that it allows partial
pivoting by column interchanges.

Type-III matrices

Matrices that for v '* .Q, and scalar 'Y are defined by:
p = (I - YvvT).

Certain projection matrices and reflection matrices belong to this class.

A. For 'Y = l/vTv, the matrix defines an orthogonal projection on the hyper­
plane orthogonal to v. This type of matrices is used for Gram-Schmidt
orthogonalization, where an orthogonal basis is to replace a non-orthogonal
one. For instance, if a set of independent vectors is given, then a typical step
in the construction of such an orthogonal basis is described by the
premultiplication of the remaining vectors by a projection matrix of the type
considered here.
An algorithm for this task is in fact straight-forward. However, the
inexperienced user should be aware of a numerical instability in the classical
Gram-Schmidt algorithm. It seems as if an efficient implementation of the
Gram-Schmidt algorithm for a vector- or parallel machine should be based
on precisely this unstable formulation. Our fifth paper is dealing with this
subject.

6

B. For 'Y = 2/vTv, the matrix defines a reflection in the hyperplane orthogonal

to v. Reflections can be described with the use of projection matrices.
u Let u be given with llull2 = 1, then (I - uuT)

describes the projection on the hyper-
x plane orthogonal to u.

Consider an arbitrary vector x * Q; let z be
the orthogonal projection of x onto u and
define w = x - z. Now an orthogonal
decomposition of x is given by:
x = z + w = (uu TJ x + (I - uu TJ x .
This decomposition can be used to con­
struct the mirror image y of x by adding

components w and -z to form y = w - z. Thus we have: y = (I - 2uu T)x.

Reflection matrices are used for mapping a given vector onto a multiple of a

suitable unit vector. This can be applied to factorize a given matrix in the

product of a unitary matrix and an upper triangular matrix as an alternative

to the construction by means of Gram-Schmidt orthogonalization. The way

these reflections are constructed and how they should be applied, is

described in the sixth paper. In that paper we also describe how these same

reflection matrices can be used for a similarity transformation that is used in

the context of calculating eigenvalues.

1.2 Essentials of vector computin~ for numerical linear al~ebra

From the time that electronic computers became commercially available for

scientific calculations (shortly before 1950). there has been an increase in

speed and memory capacity for successive most powerful machines by a factor

of ten, roughly, every five years [9]. Until the early seventies. this growth has

been achieved by improved technology of the arithmetical processor and of

memory devices, without essential changes in the architecture of the comput­

er itself.

One could speak of a break-through in the design of electronic computers,

when the first large-scale parallel computers came on the market in the mid

seventies. With the introduction of this new type of machines. the increase of

computing power was served tremendously.

For a 'conventional' design, the speed of a single floating-point calculation had

already increased until almost io-7 sec., and the physical limitations for a

further increase seemed within reach.

There exist several ways to exploit parallelism for scientific calculations.

According to the classification of parallel machines [6] as standardly used, a

vector computer as considered in our research, belongs to the SIMD type,

which is an abbreviation of "Single Instruction, Multiple Data".

In this type of computers, a number of processing units is combined to a so

called vector processor. This vector processor is capable of operating on one

or two arrays of numbers. called the vector operands, in order to execute

arithmetical operations with high speed.

7

We may think of calculating a vector which is the sum of two input vectors, or
calculate the scalar which is the innerproduct of two vectors. or any type of
arithmetical operations on arrays of numbers (vectors).
These so called vector operations can only be executed efficiently, if the
operands are delivered to the processor in a constant 'stream', which means
that prior to the operation to be executed, the numbers that do constitute the
operands must physically be lined up, for this purpose, at a dedicated position
(a vector register or a part of the central memory) .

The actual execution of the vector operation can best be illustrated by the
example of calculating the sum of two vectors.
So, assume that for i = 1, .. ., n the numbers Pi and Yi are given in suitable
locations in the computer and that for each index the sum at = Pt + Yt must
be calculated.

The central idea is that the activity of adding two numbers is split up into a
number of partial computations; the same holds for computing the difference,
the product and so on.

A row of 'primitive' processors (typically in the order of ten) is lined up and
each one is capable of performing a unique piece of the total arithmetical
operation. The first processor receives two numbers Pt. Y1. and performs its
piece of the addition (corresponding with something in the order of 10 % of
the total work).

After a fixed time step (a so-called clock cycle). the partial result and the
operands Pt and Yt are passed on to the next processor. The first processor
then receives the numbers Pt+l and Yt+l and repeats its part of the action on
this new numbers.

Each clock cycle, an updated result is transfered to the next processor, so
that after a number of clock cycles equal to the number of processors, the sum
a1 is delivered at the end of the vector processor. It is clear why this type of
processing is compared with working at a conveyor-belt.

For the addition of two single numbers in isolation, this way of operating is
very inefficient, but for the addition of Uong) arrays of numbers it will result in
an improved performance compared with adding in a conventional way.

The efficiency of a piece of code on a vector computer is normally measured
in millions of floating-point operations per second, called Mega-flops or
Mflops for short. Each vector computer reaches its peak performance, if it can
produce results on the vector processor in a constant stream. The number of
Mflops in that case is the inverse of the clock cycle time. For present top of
the market computers, the peak performance approaches 1000 Mflops, which
is equal to 1 Giga-flop.

It is hardly surprising that most programs on a vector computer are running
with a speed that is (far) below the peak performance.
The efficiency of a program on a vector computer is measured with two
parameters, R., and n1;2 [9]. The parameter R., stands for the Mflop rate in
which the results would be produced if the occurring vectors would have

8

infinite length; n1;2 stands for the length of a vector that admits the program

to work with a speed that equals half the asymptotic speed R., .

Especially programs in the area of linear algebra, admit efficient vector code.
The occurring quantities are matrices and vectors so that arrays of numbers
can be defined in a natural way. For a program to work on these vectors, it is
advantageous that the vector elements are stored in contiguous memory loca­
tions. This is especially true for the Cyber 205 vector computer. where the
operands for the vector processor are taken directly from memory. In most
other vector computers, the operands are loaded firstly into vector registers
from which they are supplied to the processors. For those computers, we
should prevent the so called memory bank conflicts in the transport from
main memory to vector register.

If matrices are used, then it is ne,cessary to be aware of the way its elements
are stored in memory. For FORTRAN programs this is realized per column of
the matrix and for a PASCAL program per row of the matrix. From the fact
that for vector computing the standard programming language appears to be
FORTRAN. we concentrate on the FORTRAN mode. That means that we focus
on storing matrices column-wise.

It should be appreciated that already the design of an algorithm highly
influences the resulting efficiency of the code.
We like to illustrate this for the Cyber 205 vector computer with the example
of calculating the product of two matrices.

Assume that matrices B and C are given; their elements ~IJ and 'Y1J are stored
column-wise in the FORTRAN program that we are going to design after the
proposed algorithm for calculating A = B x C.
Matrix A is defined by n2 scalars alJ . For each a1J we have:

<Xij

n

= I ~1k'Ykj .
k=l

For a further presentation of alternative ways for calculating this matrix
product, we introduce the following notation:

Notation: with b.J we denote the j-th column of matrix B;
with bi. we denote the i-th row of matrix B.

Moreover, we assume . that a subroutine "innerproduct (x, y)"
does exist, which calculates the innerproduct of two vectors x
andy.

We like to visualize the alternative methods by pictures that were introduced
by Dongarra, Gustavson and Karp [5]. A square will denote a matrix, an
arrowed line a row or a column and an asterisk an element of the matrix.

The first alternative we present. is the 'column wise' calculation of the

elements <Xij , using the above definition:

9

1. Column-wise (jik):

for j 1 to n

for i = 1 to n

Uij = innerproduct(bi_ , C.j)

The second alternative is the 'row-wise' calculation of elements a 1J. aga in
using the above definition:

2. Row-wise {Uk) :

for i 1 to n

for j = 1 t o n

Uij innerproduct(bi_, C.j)

We may consider A as a row of n columns, each being a linear combination of

all columns of B. This interpretation gives the next alternative:

3. ljki):

for j = 1 to n
n

a_ j = .L, b _ k 'Yk j
k=l

Using the same interpretation of the matrix product, we can firstly compute

all contributions of a column of B to all columns of A. This gives the following

alternative:

4 . (kji):

A 0 {the zero ma t rix)

for k 1 to n

for j 1 to n

a. j : = a. j + b. k 'Yk j

Finally we may consider A as a system of n rows. That will give us two row

oriented versions which are analogue to column versions three and four

respectively.

10

5. (ikj):

6. (kij):

fo r i = 1 to n
n

ai. = L Pikc k .
k=l

A 0 {the zero ma trix}

f o r k 1 t o n

f o r i 1 to n

ai. ai. + P i kCk.

The programs that can be constructed after these six alternatives, behave

quite differently on the Cyber 205. The differences are even more pronounced

because of the special design of the Cyber 205. For certain consecutive vector

operations, so called linked triads, the result of an expression can be directly

used as an operand for the next expression, without an intermediate storage

in memory. The use of linked triads results in pieces of code that run twice

as fast as one would expect otherwise. The following construction is an

example of a linked triad:

x := y + P x z, where x , y and z are vectors and P is scalar.

With respect to the alternative programs for matrix multiplication, we may

expect that versions 3 and 4 give an efficient code, because they use linked

triads.
Constructions 5 and 6 are expected to be inefficient, because the rows of the

matrix that are needed as input vectors need to be lined up as proper vector

operands.
Constructions 1 and 2 are expected to be moderately efficient, because the

calculation of an innerproduct is less efficient than the calculation of a linked

triad.

All matrix elements are supposed to be floating-point numbers. Their actual

values do not influence the computing time (as opposed to human like

computations) . We experimented with the above six versions of matrix

multiplication by having a program fill two matrices B and C successively for

orders of n = 25, 50, 100, 200 with pseudo random numbers and calculate

the matrix product.

In the next table we show the computing time in seconds for calculating the

matrix product A = B x C on the Cyber 205.

11

method n = 25 50 100 200

1. innerprod. col. wise (jik) 0.0033 0.0171 0 . 0956 0.5947

2. innerprod. row wise (ijk) 0.0033 0. 0171 0.0956 0.5947

3. linear comb. cols. (jki) 0.0020 0 . 0091 0.0464 0.2659

4. contrib. each col . (kji) 0 . 0020 0 . 0091 0 . 0464 0 . 2659

5. linear comb. rows (ikj) 0.0043 0 . 0248 0.1549 1. 0871

6 . contrib . each row (kij) 0 . 0043 0 . 0248 0 . 1548 1.0878

Table 1 . Processing time in seconds for A= Bx C .

For each of the methods discussed, we will also calculate the actual perfor­
mance of the computer. For the calculation of each element a1J we need a total
of n multiplications and n additions, independent of the method chosen. So,
in total, we obtain 2n3 floating-point operations. The number of Mflops for
any of the considered methods is thus calculated according to the formula:

#Mflops = 2n3 I 'time in micro seconds' .

The same experiment is reported in this form by the following table:

method n = 25 50 100 200

1. innerprod. col . wise (jik) 9.4 14.6 20.9 26 . 9

2. innerprod. row wise (ijk) 9.4 14.6 20 . 9 26 .9

3. linear comb. cols . (jki) 15.7 27.4 43.1 60.2
4. contrib. each col. (kji) 15. 7 27 .4 43 .1 60.2
5. linear comb. rows (ik j) 7 .3 10.1 12.9 14.7
6. contrib. each row (ki 1) 7.3 10.1 12.9 14.7

Table 2 . Performance in Mflops for A= B x C .

In the fall of 1988 the Cyber 205 of SARA was extended with a second vector
processor; at the time these experiments were performed (summer 1988).
the machine had a single vector processor. Its peak performance was
50 Mflops which could be raised to 100 Mflops if linked triads were used.

We would like to emphasize that the programs we used, were written in
FORTRAN 77. For that language, most 'harmless' do-loops are automatically
translated into vector code. In cases that the compiler can not perform this
automatic translation, the piece of program is executed in the standard
sequential way, using scalar code.

For constructions that do not admit this automatic translation and for useful
constructions that are not defined in FORTRAN 77, an extension of this
language has been defined for the Cyber 205. This 'local dialect' is called
FORTRAN 200. With the use of this extension, some of the results as
presented above can be improved. For instance, a 200 x 200 matrix
multiplication using method 2, could be performed at a speed of 56 Mflops
and the result of method 5 could be improved to a speed of 22 Mflops.

12

Methods 3 and 4 could not be improved. The FORrRAN 77 compiler produces

the same vector operations in this case as the FORrRAN 200 compiler.

Concluding Remarks
We would like to end this introduction with some remarks concerning the

implementation of linear algebra routines.

For a particular program to run at highest possible speed on a specific

machine. it may be possible that certain pieces of code cannot be expressed in

FORrRAN 77, as has been shown above for the Cyber 205. The use of what we

have called 'local dialect'. prevents exchanging (high quality) software for

solving well defined. standard problems. If this software were completely

programmed in FORTRAN 77. then it would be portable, (i.e. easily

transportable to other machines) but it might be (very) slow.

The construction of good. portable codes has been facilitated by the

introduction of well defined sets of 'Basic Linear Algebra Subprograms', BLAS

[4,11).

For many scientific programs, most of the computing time is spent in matrix

and vector calculations . These calculations can be expressed by calls to

suitable routines in BLAS. From the fact that BLAS has received international

recognition. we could say that these calls more or less belong to the standard

environment. which also includes FORrRAN 77. For a specific machine, the

BLAS routines are implemented with use of as much local dialect as necessary.

In this way, both portability and efficiency of programs are served.

In the original BLAS level-I version (11). dating from 1979, routines are

included for all kinds of operations on one or two vector operands. A matrix

times vector calculation, for instance, can be coded by n successive calls to an

applicable subroutine. The speed of modern computers has become so high,

that the time needed for these n routine calls is no longer negligible

compared with the total time for the floating-point calculations.

This has been one of the reasons for a BLAS level-2 proposal (5). where

matrix-vector operations are addressed.

It shows that for so called MIMD machines, having parallel processors and

with a hierarchical memory, an even higher operation level is advantageous.

For this reason, BLAS level-3 has been proposed (4).

The subroutines we have implemented for the NUMVEC library are structured

in such a way that calls to either BLAS-2 or BLAS-1 routines can be clearly

identified. The explicit use of FORrRAN 200, however, yielded much more

efficient subroutines for the Cyber 205 almost always.

Therefore, we have indicated, with comment statements in our program

texts, which calls to BLAS-2 or BLAS-1 routines should replace the relevant

FORrRAN 200 statements.

13

References

1. M. Cosnard, Y. Robert. D. Trystram, Resolution parallelle de systemes li­

neaires denses par diagonalisation: Bulletin E .D.F , serie C , 2(1986)67-88.
2 . T.J. Dekker and W. Hoffmann. Numerical Improvement of the Gauss­

Jordan algorithm: Proceedings ICIAM 87, Paris-La Villette, June 29-july 3
1987; Contributions from the Netherlands: ed.: A.H.P . van der Burgh,
R.M .M. Mattheij .

3 . J .J . Dongarra, J. du Croz, I. Duff and S. Hammarling, A set of level 3 Basic
Linear Algebra Subprograms: Technical Memorandum No. 88
(Revision 1): Argonne National Laboratory 1988

4 . J.J . Dongarra. J. du Croz, S . Hammarling and R.J. Hanson, An extended

set of FOIITRAN Basic Linear Algebra Subprograms: ACM Trans. Math.
Softw. 14, (1988). pp . 1-17.

5 . J .J . Dongarra, F.G . Gustavson and A. Karp , Implementing Linear Algebra
Algorithms for Dense Matrices on a Vector Pipeline Machine: SIAM
Review 26, (1984). pp.91 - 112.

6. M.J. Flynn, Some computer organisations and their effectiveness: IEEE
Trans. Comput.. C-21, (1972), pp. 119-136.

7 . K. Gallivan, W. Jalby and U. Meier, The use of BLAS3 in linear algabra on a
parallel processor with a hierarchical memory: SIAM J.Sci. Stat. Comput.
8, (1987). 1079- 1084

8 . G . H. Golub and C.F. van Loan, Matrix Computations: North Oxford
Academic, Oxford 1983.

9 . R.W. Hockney and C.R. Jesshope, Parallel Computers.Adam Hilger Ltd,
Bristol, 1981.

10. P. Huard, La methode du Simplexe sans inverse explicite; bulletin E .D.F.
Serie c n .2. (1979).

11. C.L. Lawson, RJ. Hanson, R.J. Kincaid and F .T. Krogh, Basic Linear Algebra
Subprograms for Fortran Usage, ACM Trans. Math. Softw. 5, 308-323
(1979)

12. B .N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall ,

Englewood Cliffs N.J. 1980.
13. G. Peters and J.H. Wilkinson, On the Stability of Gauss-Jordan Elimination

with Pivoting; Communications of the ACM 18, (1975), pp. 20-24 .
14. H.J.J. te Riele (ed.), NUMVEC, a library of numerical software for Vector

and parallel computers in FORTRAN: Centre for Mathematics and
Computer Science, Amsterdam.

15. G.W. Stewart, Introduction to matrix computations: Academic Press 1973.
16. J .H. Wilkinson, Error Analysis of Direct Methods of Matrix Inversion: J .

Assoc. Comp. Mach. 8, (1961). pp. 281 -330.

14

The annals of scientific discovery are full of errors

that opened new worlds: Bell was working on an

apparatus to aid the deaf when he invented the

telephone; Edison was tinkering with the tele­

phone when he invented the phonograph. If a man

can keep alert and imaginative, an error is a

possibility, a chance at something new; to him,

wandering and wondering are part of the same

process. and he is most mistaken, most in error,

whenever he quits exploring.

William Least Heat Moon.

Blue Highways.

Solving linear systems

on a vector computer

CHAfYfER I

reprint of:

Journal of Computational and Applied

Mathematics 18(1987) 353-367

Journal of Computa tional and Applied Mathematics 18 (1987) 353- 367

North-H olland

17

353

Solving linear systems on a vector computer

W. HOFFMANN
Math ematical /11.1111ute. Unirersity of Amsterdam. Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

Received 7 April 1986

Abstract: This paper gives a classification for the triangular factoriza tion of square matrices. These factori zations are

used for solving linear systems. Efficient algorithms for vector computers are presented on basis of criteria for optimal

algorithms. Moveover. the Gauss- Jordan elimination algorithm in a version which ad mits efficient implementation on

a vector computer is described. Comparative experiments in FORTRAN 77 with FORTRAN 200 extensions for the

Cyber 205 are reported.

Kerwords: Gaussian elimination. LU-decomposi tion, Gauss - Jordan algorithm. linear eq uations, vector computing.

1. Introduction

The use of vector processors for solving large linear systems necessitates reassessment and

redesign of numerical algorithms. In view of this we describe several variants of the Gaussian

elimination algorithm and results of performance measurements on a Cyber 205.

In (4] Dongarra, Gustavson and Karp investigated the performance of Gaussian elimination

by reorganizing the algorithm. Their reorganization does only affect the loop structure; we show

that also choices with respect to the pivoting strategy, the normalization of the diagonal elements

in the resulting factorization and the ordering of the calculation contribute to the stability and

the efficiency of the resulting algorithm. This efficiency, expressed in Mflops, measures the

number of floating-point operations divided by CPU-time and does not take into account the

I/ 0-time or the number of large pages used .
Throughout the paper we fix our notation to standard conventions: lower case greek letters for

scalars (all real here), lower case roman letters for vectors and indices, upper case roman letters

for matrices. For the ith rowvector of matrix A we use the notation a ,. and for the jth column

of the same matrix we use a -r By a .
1

we denote the vector that is defined by the last /1 - j

elements of a .
1

; the use of a, . is analogous. An element of matrix A is a,
1

and the order of a

matrix is always denoted by 11. A discussion with respect to the various algorithms appears in

Section 2 and a description of our preferred algorithm in section 2.3. This algorithm performs an

LOU decomposition of matrix A with partial pivoting by column interchanges and normaliza­

tion of the diagonals according to A. ,,= v,; = 15,- 1
•

In section 2.4 we recall an idea of Businger, concerning the growth factor of a matrix (1] and

demonstrate how this can be efficiently combined with the choices in our algorithm.

In Section 3 we give a description of the well known Gauss- Jordan elimination algorithm

which appeared to do extremely well for matrices that are not very large. In our version we

0377-0427 /87 / $3.50 © 1987, Elsevier Science Publishers B.V. (North-Holl and)

18

354 ~V. Hoffmann / Linear .~rstem .w lc111g

implemented a partial pivoting strategy without actually interchanging any rows or columns in

the matrix.
In Section 4 we give a comparison with respect to CPU-times required on a Cyber 205

between our routines and some well-known routines from program libraries.

In an appendix we give a detailed description of our preferred algorithms and some examples

of others .

2. Triangular factorization

For the description of algorithms that are variants of the well-known Gaussian elimination

algorithm for solving linear sys tems of equations, we distinguish three essential choices (degrees

of freedom) that determine the formulation of such an a lgorithm.
These choices are with respect to:
(a) normalization of the diagonals,
(b) ordering of the calculation, and
(c) pivoting strategy.

In the sequel we deal with these three matters in detail. (Only (b) has been covered partially in

[4] .)

2.1. Degrees of freedom

Normalization of the diagonals
The action of Gaussia n elimination on a given matrix A is equivalent with factoring that

matrix in a lower-triangular matrix L (= (A,)) and an upper-triangular matrix U (= (11,)) such

that (apart from pivoting) A= LU with A,,= 1, i = 1, n. The elements in the resulting

decomposition can be modified for the normalization v,, = 1, i = 1, n, while still A = LU
holds. This is a consequence of the fact that the diagonal elements of L and U are not uniquely

defined by a factorization of A in triangular factors , a so-called LU-decomposition. In the sequel

we consider the more general factorization

A= LDU, (1)

where L and U are lower- and upper-triangular respectively and D = diag(81, •• • , 8,,). Such a

factorization is completely defined by the values that are given to the diagonals of L , U and D;
for all choices with 8, = I (i .e. D = I) an LU-decomposition like considered before is defined .

Usefull and well known choices are:
(i) A,,= 8, = 1: this choice holds for the standard Gaussian elimination algorithm and for

the Doolittle factorization (see for instance [6] or [13]) ;
(ii) v,, = 8, = 1: this choice is made in the Crout factorization [6,13];

(iii) A,, = v,; = 1: this defines the standard LDU factorization [6] ;
(iv) A,, = v,, = 8,- 1

: this choice belongs to the 'folklore' of the numerical analysts.

For the case of positive definite matrices:
(v) A,, = v,,, 8, = 1: this choice is made in the Cholesky factorization.

These choices all have the advantage that for an implementation one needs only a single memory

location to store the triple (A;; . v;;, 8,) . Choice (iv) appears to be advantageous on a vector

computer as will be explained in the sequel. In [4] only choice (i) has been considered.

19

W. Hvffnw1111 / Linear srstem svlmzg 355

Ordering of rhe calcularion

Starting from (1). with a chosen normalization for the diagonals. the elements of L. D and U

can be calculated by equating left- and right-hand side of that equation. This can be done in

several ways. In order to investigate various possibilities. we distinguish between three interpreta­

tions of matrix multiplication. The first one is the scalar interpretation (denoted by S--) in which

we interpret (1) as
min(t .J)

a,J = L A,J>kuk J. i. j E {I , 11}

which corresponds with schemes ijk and jik for matrix multiplication as introduced by

Dongarra et al. in [4].
If we use this formula for the calculation of the elements of L, D and U, we still can choose to

calculate the elements of both L and U either columnwise or rowwise which gives four possible

combinations. Consequently we distinguish four calculation schemes denoted by Sec (== jik), Ser,

Srr (== ijk) and Src respectively. The denotation Ser, for example, stands for Scalar interpreta­

tion, L columnwise, U rowwise. The other denotations have analogous meaning.

The next interpretation of the matrix product in (1) is the columninterpretation (denoted by

C--) which follows from the point of view that columns of matrix A are linear combinations of

the columns of matrix L, as is expressed in the formula
j

a J = L I /'ikuk J, j E {l,. . ., n }.
k-1

If we use this formula for the calculation of L, D and U, we observe that matrix L is calculated

by columns, but we still can choose between the elements of U being calculated either

column wise or rowwise. The two resulting calculating schemes are denoted by Ccr (== kji) and

Ccc (== jki).
The analogous viewpoint on rows of the matrix for the rowinterpretation (denoted by R--) of

the matrixproduct in (1) yields the formula:

a, .= L A. ,Jikuk., iE {l,. ... n}.
k-1

In the schemes based on this formula we observe that U is calculated by rows, but here we can

choose between the elements of L being calculated either columnwise or rowwise. The resulting

schemes are denoted by Rcr (== kij) and Rrr (== ikj) .

In the pictures in Fig. 1 the eight calculation schemes are visualized . Calculated elements of L

and U are indicated by dots or lines in the lower and upper triangular part respectively of each

square.

Pivoting straregy
To obtain numerical stability in the factorization of a general matrix, a pivoting strategy must

be applied. In most algorithms a choice is made for interchanging rows during the process of

factorization such that in each column of the resulting matrix L an element of maximal size (i.e.,

absolute value) is found on the diagonal. This implies that the decomposition is made of the

original matrix with permuted rows; in formula :

PA = LDU,
where P is a permutation matrix.

20

356 W'. Hoffma1111 / Lmear system soll'ing

D .. o······· D

Ser Sec Srr Src

EE .. ~~

Ccr Ccc Rcr Rrr

Fig. l.

Interchanging rows during the elimination process can only be done in a meaningful way, if in

each step we can dispose of the entire next column of L. This is only the case in the -er and -cc

type schemes so that only these schemes are suitable for row interchanging.
The stability of Gaussian elimination can likewise be obtained by performing column

interchanges. The final result will be a decomposition of a matrix with permuted columns; so we

have:
AQ = LDU,

for a permutation matrix Q. The criterium in this pivoting strategy is such that in each row of the

resulting matrix U an element of maximal size is found on the diagonal. This strategy can only

be applied if matrix U is calculated rowwise, which only holds for the -er and -rr type schemes.

Observe that the -re type scheme doesn' t admit any kind of interchanging. The -re type scheme,

which only exists in the Src form, is often used in the Cholesky decomposition for the

symmetrical positive definite case where indeed no pivoting is necessary, see e.g. [13]. In the

sequel, we ·will no longer consider the Src scheme.

2.2. Jnventarization

To summarize our inventarization of triangular factorization algorithms, we present an

overview of the schemes that can be combined with row or column interchanges respectively.

Moreover, we indicate where well-known factorization algorithms fit in our display.

From the ten schemes in Tables 1 and 2 in combination with the four suggestions for

normalization of the diagonals, we can construct forty different algorithms for the triangular

factorization of a matrix, each showing different performance in different environments. The

choice between algorithms of the S-- type, C-- type and R-- type depends on the machine

architecture in combination with the programming language used .
On a machine where vectors can be handled as entire quantities the C-- and R-- type

algorithms are to be preferred; C-- type algorithms if the matrix is stored by columns (as in

FORTRAN) and R-- type if the matrix is stored by rows (as in PASCAL and ADA).

The choice of the pivoting strategy depends likewise on both the machine architecture and the

programming language used so that storage by columns (rows) is to be combined with column

(row) interchanges.

w:_ J-/offmann I Linear \:rstt'm solnng

Table I
Schemes that can be implemented "ith row intercha nges

Scheme

Ser

Sec
Ccr
Ccc
Rcr

Table 2

Normaliza ti o n

/.. ,. = 8, = I
v,. = 8, = I
/..,. = 8, = I
A,, = Ii,= I
/..,. =8, = I
A,. =8, =I

Publi shed a'

Doolitt le. e.g. 16. 13)
Crout. e.g.16.13]
SDOT ,·ersion (jik) 141
SAX PY version (kji) 14]
GAXPY ver>ion (jk1 l 14)
standard Gaussian elimina ti on ; version (k ij) 14)

Schemes that can be implemented wi th column interchanges

Scheme Normalization Published as

Ser
Srr /..,. =8, = I version (ijk) 14) '

Ccr A,, = v
11

= s,- 1 routine CC RPCF (thi s report)

Rcr
Rrr /.. ,.=I!, = I version (ikj) [4) '

21

357

" The versions (ijk) and (ikj) were not publi shed with column interchanges; they can not be implemented with row

interchanges as is suggested in 14).

At this point the conclusion can be drawn that on a vector machine the code for a FORTRAN

program which is optimal with respect to CP-time is likely to be based on the Ccr scheme with

column interchanges and the code for a PASCAL or an ADA program on the Rcr scheme with

row interchanges.
The normalization of the diagonals should be selected such that the resulting algorithm has

optimal performance. For all four normalization variants in a C-- type or R-- type algorithm the

number of multiplications and divisions equals t{n 3
- n). The number of array accesses,

however, is minimal for the normalization A;,= v,, = 8,- 1 as is illustrated for the Ccr scheme in

the next section.

2.3. Description of triangular factorization algorithms

Two algorithms of S-- type and two of C-- type will be described in detail in the appendix.

Here we give a description of our preferred algorithm CCRPC, which stands for Ccr-type with

partial pivoting by column interchanges (in the sequel we discuss another type of pivoting, so

that the letter P supplies information) :

Fork= 1, ... , n

(1)
(• select pivot •)

{

Determine p E { k , k + 1, ... , n } : la kp I = max I ak j I
k!!i;,.J~n

a ·k <-+a ·p (•interchange columns•)

22

358

(2)

(3)

(4)

(5)

a ., <- I. , = a ., / (o, v")

For j = k + 1 /1

W. Hoffmann / Linear .ff .Hem .wll'ing

a , 1 <- v,1 = a,/(>. kko,)

a .
1

<-a .
1
- 1.,o,v, ,

(• choose normalization •)

(• update column of L •)

(• next elm . in row of U •)

(• update jth column of A •)

(• (k + 1)st provisional column of L has been calculated in a k + 1 •)

0 CCRPC

With the choice >. kk = vkk = 0; 1
, statements (2), (3) and (4) become trivial. In that case the

amount of work still remains ~ (n 3
- n) multiplications and divisions, but the number of

array-accesses is minimized. With this choice the description of the algorithm reduces to:

Fork=l , ... ,n

Perform pivoting as in statement (1) above

For j = k + 1, ... , n

a .1 <--a .1 - a .k (ak 1/ akk) (• update jth column of A •)

0 CCRPC

whjch can easily be recognized as successively updating the original matrix with a specific

rank-one matrix as follows:

Fork = l , ... , n

Perform pivoting as in statement (1) above

A <-A -a;k'a .ka k··

2.4. M onitoring the growth factor

0 CCRPC

With respect to the pivoting strategy, it is generally accepted that partial pivoting is used in

almost all practical situations. With the introduction of vector computers it became possible to

solve very large full systems of equations (n > "" 1000).

For these systems insufficient experience exists to declare partial pivoting still reliable. The

application of complete pivoting, wruch yields a stable algorithm, has the disadvantage of

expensive code. In 1971 Businger [1] published an idea for calculating, with little extra cost, an

upperbound for the growth factor during Gaussian elimination with partial pivoting.

Tills idea can be applied if an update of the matrix is calculated in each step, as is the case in

schemes Ccr and Rcr. Scheme Ser similarly admits efficient morutoring of the growth factor, but

because of the fact that in successive steps the remaining part of the coefficient matrix has not

23

~i ·. Hoffmunn / Lmear .\)'stem soll'ing 359

been updated. a switch to complete pivoting is not feasible there. If this upperbound for the

growth factor becomes too large. the pivoting strategy can be switched to complete pivoting from

then on. This so-called mixed pivoting strategy provides the user with a reasonable upperbound

for the growth factor so that an estimate of the error matrix [6.13] can be calcu lated. As a

consequence. it reveals the situations where complete pivoting is likely to be necessary.

An Algol 60 procedure implementing the mixed pivoting strategy. written by Bus and Dekker

in 1973. has been included in the NUMAL library [7].

3. Gauss-Jordan factorization

While experimenting with several implementations of the schemes as mentioned in Section 2

on a Cyber 205 vector computer, it appeared that for solving linear systems with not too big a

coefficient-matrix (n < == 50) our implementation of the Gauss- Jordan algorithm used the least

CP-time. For that reason we discuss it here.

3.1 . Description of the algorithm

In the well-known Gauss- Jordan elimination algorithm, the coefficientmatrix of a given linear

system is reduced to diagonal form in n steps by successively subtracting a suitable multiple of

the ith row from all other rows. such that in the ith column the elements outside the diagonal

become zero. If in these steps the right-hand side is considered as the (n + l)st column of the

matrix and treated accordingly. the resulting linear system has the same solution as the original

one.
For stability reasons, also in this algorithm, a pivoting strategy must be applied. We will treat

this subject later.
The effect of the ith step in the algorithm can be described in matrix calculus by computi ng

A' from A" - 1
> by leftmultiplication with an elementary matrix of the form (I+ g,e;) for some

vector g,. For the first step, with A 0 =A, we have in this way :

XO a
XI a .. a

a

a
XO · O \ x x 0 x x
~---~

xDx Dax x
where g1 has to be chosen such that the first column of A' is a multiple of the first unit vector.

The effect of the multiplication on the first column of A 0 is given in the following formula :

(I+ g,eT)a 1 = 8,e, ,

for some value of scalar 81. This yields:

a 11 g1 = 81e 1 - a .1 •

If 81 is given the value a 11 , the subtraction causes no cancellation. In that case we have :

g1 = e 1 - (l/a11)a 1 •

24

360 W. Hoffmann / Linear 5.1'5/em JOil'ing

All remaining columns of the matrix are updated according to the following formula:

a k <- {I+ g1ei) a , .

which yields
a .k <- a .k + a1kg1.

3.2. Partial pivoting

For numerical stability. row- or columninterchanges should be implemented in such a way

that in each step the element of maximal modulus in the current column or row of the remaining

(n - i + l)st order submatrix is placed in the diagonal position. As an alternative to interchang­

ing rows p and i (p:;;,. i) in the ith elimination step, the leftmultiplication can be carried out

with an elementary matrix of the form (I+ g,e J). In case the maximal element in modulus in the

first column was found in row p (the pivotal row), the first step can be modified into

D·D
ox x

xx x

x . . x ox x

(l+g1epT) AO Al .

With the notation 'IT(i) (or 'IT i for short) for the pivotal row in step 1, the effect of all

elimination-steps is described by

(I+ gne;n) · · · (! + g1e;1)(A I b) = (l>1e,,1, ... , l>ne,,n I b").

Introducing D for diagonal(1> 1, •• • , I>") and P for the permutation matrix (e,,1, •.. , e,,n), the right

hand side of this equation can be described by (PD I b") . The resulting equivalent permuted

diagonal system reads:

S,~ , = 13;,, i = 1, n

from which the solution is easily calculated. The complete algorithm is found in the appendix.

The technique for monitoring the growth factor as mentioned in section 2.4. is also applicable for

this algorithm and a switch-over to complete pivoting is feasible too. (Note added in proof:

Recent research shows that partial pivoting by column interchanges is numerically to be

preferred.)

4. Numerical experiments

Experiments were carried out on the Cyber 205 computer (one vector pipe) of the Academic

computer centre SARA in Amsterdam. The vector arithmetic in this computer is accessible

through FORTRAN 200, which is a Control Data extension of FORTRAN 77.

We compared implementations of several algorithms from the overview in section 2.2. The

timing showed that for our language/ machine combination an algorithm based on a Ccr scheme

with column interchanges gives optimal performance as was already suggested in section 2.2. The

25

W. H offmann / Linear s_\'Stem svlring 361

Table 3
CP time in seconds for various n

n = 25 n = 50 n = 100 II = 200 II = 400

(a) LIN PACK (SGEFA + SGESL) 0.0028 0.0107 0.0441 0. 1965 0.9974

(only SGESL) (0 0003) (00007) (00015) (0.0034) (0.0083)

(b) NAG (F03AFF + F04AJF) 0.0030 0.0 109 0.0445 0.2010 1.0042

(only F04AJF) (0.0003) (0.0005) (0.0011) (0.0027) (0.0069)

(c) QQLIB (QQGELJ 0.0017 0.0065 0.0280 0.1367 0.7519

(d)GAUJOR 0.00 12 0.005 1 0.0249 0.1369 0.8649

(e) CCRPCF (decomp. and soL) 0.0014 0.005 1 0.0232 0.1154 0.6705

(only solution) (0.0003) (0.0005) (0.0011) (0.0027) (0.0069)

(f) CCRMCF (decomp_ and sol.) 0.0016 0.0057 0.0243 0.1181 0.6779

(part ia l pivoting throughout)
(g) CCRMCF (decomp. and soL) 0.0031 0.0122 0.0550 0.2171 1-3704

(complete pivoting throughout)

algorithm we used is described in section 2.3. and in the appendix; our implementations are

included in the NUMVEC library [10].
Subroutines from Extended Blas [3] can be combined with our algorithm so that an optimized

and transportable code can be constructed. We compared our routines with routines from

UNPACK [5], NAG [11], QQUB [12], which are all (manufacturer) optimized for the Cyber

205. The results are reported in section 4.1. We also compared our implementation of the

Gauss- Jordan elimination algorithm [10] . As is well known, Gauss- Jordan requires for the

solution of a system of linear equations 1.5 times as many operations as standard Gaussian

elimination. Nevertheless, Gauss- Jordan used less CP-time for matrices up to order "" 50 and

performed rather well (with a high Mflop rate) for all matrices. This is due to the fact that

throughout the Gauss- Jordan routine all 'active columns' remain vectors of full length as

opposed to the Ccr scheme where the active columns become shorter in successive steps, so that

the overhead for the vector calculations takes relatively more time. Moreover, the partial pivoting

strategy in Gauss- Jordan is implemented such that no column or row interchanges are actually

performed. The results of our experiments are reported hereafter.

4.1 . Timing and efficiency

In this section we report the result of a number of experiments. We solved a linear system of

order n having one right-hand side for five different values of n .

The experiments are described shortly; tables giving CP time (Table 3) and Mflop rate (Table

4) are presented separately. The experiments concern the following routines :
(a) UNPACK routines SGEFA and SGESL for the decomposition and solution respectively.

(b) NAG routines F03AFF for the decomposition and F04AJF for the solution.
(c) QQUB routine QQGEL for both the decomposition and the solution.
(d) NUMVEC routine GAUJOR, our implementation of the Gauss- Jordan elimination

algorithm with partial pivoting by 'virtual row interchanges' as described in section 3.2.

Decomposition and solution are combined.
(e) NUMVEC routine CCRPCF, our implementation of algorithm CCRPC with normaliza­

tion "A.kk = vkk = 8;; t; decomposition and solution are combined.

26

Tahk 4
M flop:-. for \ ariou~ n

(a) LIN PACK (SGEFA. SGESLI

!h) NAG! F03AFF. F04AJF)

(cl QQLIB (QQGEL)
(e) CCRPCF (sol. included)

(f) CCRMCF (,ol. included)

(partial pivoting th roughou t)

(d) Gauss-Jordan (2 x (11 -'/2 + 11 ' 1}

U ·. J-lt~flnw1111 , L111ear ~.ntem wln1H!,

,, = 25 II = 50 II = 100

4.2 8.J 15.6

3.9 8.1 15.4

6.9 13.6 24.5

R.J 173 29.6

7.3 15.5 28 .3

14.0 25.5 41 .0

II = 20() II = 4rn)

27.5 4J . I

26 .9 42.H
39.6 57.2
46.9 64.1
45 .8 63 .4

59.0 74.4

{f) NU MY EC routine CCRMCF. Routine CCRMCF is an extension of CCRPCF; it adds an

implementation of the mixed pivoting strategy as explained in section 2.4. This strategy

depends on a steering parameter, a sort of 'confidence measure'. As long as the estimated

value of the growth factor is smaller than the confidence measure, the subroutine sticks to

partial pivoting and the effect of CCRMCF is the same as that of CCRPCF. In this

experiment we gave the confidence measure a very ' liberal' value such that partial pivoting

was used throughout and the overhead for calculating the upperbound for the growth

factor could be measured .
(g) In this experiment CCRMCF was used with an extremely ' conservative' value for the

confidence measure so that complete pivoting was performed from the very first step.

4.2. Discussion

The experiments were tested under equal conditions: with the sa me optimization parameters

for the compiler. the same size of the arrays. the same number of ' large pages'. The timings

proved to be reproducible with some nuctuations in the last decimal given.

The need for Extended Blas [3] in stead of the original Blas, as used until now in UNPACK,

is illustrated by the fact that LINPACK's SGESL takes more time than NAG's F04AJF or our

routine for the solution.
It shows that for values of 11 up to 11 = 50, our Gauss- Jordan implementation gives the fastest

routine: for larger values of 11 CCRPCF is the fastest.
Experiments (e) and (f) show that monitoring the growth factor while performing partial

pivoting is not expensive: the use of complete pivoting takes roughly twice as much time as is

shown in experiment (g). It should be emphasized however, that an eventual application of

complete pivoting occurs only when a result produced by partial pivoting is probably totally

unreliable.
In Table 4 we show the efficiency of the code expressed in 106 noating-point operations per

second: Mnops. For the routines listed in experiments (a), (b), (c), (e), (f) we used the formula

2 x (11 3/ 3 + 11 2
) for the number of floating point operations required, based on decomposition

and solution for one right-hand side. This formula is also used in Dongarra [2]. For the routine

in experiment d we used the formula 2 x (11 3 / 2 + 11 2
) for the number of floating point operations

required. For experiment (g) no Mnop number is given, because a considerable amount of time

was spent in max.imum search and row and column interchanging_

27

H · Hoffmann / L111ear s.utem !Jolt ·ing

The Cyber 205 machine used for our experiments. being a one-pipe machine. has an optimal

performance of 50 Mflops. For the use of linked triads (constructions of the form x <-- ay + :)
the optimal performance on this machine is 100 Mflops with 11 1 2 = 80 (n 11 2 is the vectorlength

for which 50 Mflops is reached [9])
The value of 50 Mflops in experiment (e) was reached for 11"' 230 and in experiment (d) for

n"' 140.

5. Conclusion

On basis of a theoretical analysis of Gaussian elimination (inspired by the work of Dongarra,

Gustavson and Karp [4]) we propose an algorithm which is to our believe optimal for the Cyber

205. Our FORTRAN 200 implementation yielded the fastest subroutine for the solution of a

linear system on basis of triangular decomposition that we know. The subroutine can still be

speeded up somewhat (as has been confirmed by recent experiments of ours) by techniques such

as loopunrolling and the use of scalar code for short vectors. Subroutine CCRMCF, with the

upperbound for the growth factor , is still one of the fastest subroutines while adding the facility

of delivering a realistic bound on the error matrix.
The analysis we carried out can be helpfull in selecting the optimal algorithm for other

supercomputers. depending on machinearchitecture and programming language used.

Acknowledgements

The author wants to thank professors T.J. Dekker and H.A. van der Yorst for their valuable

contributions to the ideas presented in this paper. He thanks P.P.M. de Rijk for his help m

carrying out the experiments and W.M. Lioen for coding the final implementation.

Appendix

Jn this appendix we present the description of several algorithms from the overview in section

2.2 and also the Gauss-Jordan algorithm. The algorithms from section 2.2 are described in terms

of elements of the matrix. We have chosen to describe the following algorithms:

(i) SCRPC which is scheme Ser with partial pivoting by column interchanges;

(ii) SCCPR which is scheme Sec with partial pivoting by row interchanges;

(iii) CCCPR which is scheme Ccc with partial pivoting by row interchanges;

(iv) CCRPC which was already described (usi ng entire columns) in section 2.3;

(v) GAUSSJ which is the Gauss- Jordan algorithm with 'virtual pivoting' as described m

section 4.2.

SCRPC

With a choice of 8, * 1, the code for an optimal routine does not follow directly from a

straightforward description of the algorithm. For that reason we leave out the diagonal matrix D

here.

28

It · l-luf/mann ' L111cur 'Y·Ht'f11 ,o/nng

For k = l. 11

(I)

(2)

(3)

(4)

(5)

For .i = k 11

k - I

a1.. 1 +---i'41 = a1.. ,- L "- 1...1i t '1i ,

Ii - I

I Determine p E { k. k + I. 11) : ~ l'," I = max I l',, i
J.. : I~- II

{Au\
au +-- \ Vu f = au

For J = k + I 11

a.,
1

+-- v,
1

= v, ,/AH

For i = k + I 11

(* provisional row of U *)

(* select pivot *)

(* interchange columns*)

(* choose normalization *)

(* update row of U •)

(* update column of L *)

0 SCRPC

The number of multiplications and divisions in SCRPC equals (11
1

- 11)/3. regardless the

choice for the normalization in statement (3). With the choice "J\H = I. statement (4) need not he

executed. which saves some array-accesses. In that case this algorithm is numerically equivalent

with the Crout factorization algorithm (with normalization vu= 1 and row interchanging. (6.13])
applied on AT Algorithm Ser with partial pivoting by rowinterchanges (SCRPRJ is strictly

analogous. in the sense tha t firstly the provisional column of L is calculated which is updated

after the selection of the pivotal row and that the next row of U is calculated after that. The

choice of vu = I in SCRPR gives an analogous saving in array-accesses and defines Crout's

factorization on the original matrix.

SCCPR

For1 = l , ... , 11

(1)

(2)

(3)

For i = 1.. .. , j- l

a,1 +-- v,1 = (a.,1 - ~~
1

1 A,k vk1);A,,
Fori=j, ... , 11

1- I

a.,
1

<- A,
1

= a,
1

- L A,kvk
1

k~I

J Determine p E { J , J + 1, ... , n) :

\a1 +->aP

(* column of U *)

(• provisional column of L •)

(• select pivot •)

(• interchange rows •)

(4)

(5)

a u +--
I t.. 11 I
I VJ/ J

= a"

For i = j + I /1

29

u· lloflmann L111ear .\.ntem 'ioln ng

(• choose normalization •)

(• update column of L •)

() SCCPR

The number of multiplications and division s in this algorithm is again (11
1

- 11)/3. regardless

the choice made in (4). With the choice v11 = I . statement (5) becomes superfluous. which saves

some work : the resulting decomposition in that case is mathematicall y equivalent with the resu lt

o f Crout's algorithm. With choice A 11 = 1. the algorithm defines version (jik) in [4) and gives as

result of the factorization a decomposition of A which is equivalent with Doolittle's factoriza­

tion.

CCC PR

For j = l n

(l)

(2)

Fork = I j - I

o:k ; <- vk , = o:, ,j(A. k/5,)

For i = k + I n

o: ,1 <- o: ,1 - A., k (8, u, 1)

(• next elm. in column o f U •)

(• update j th column o f A•)

(• jth provisional column of L has been calculated in a
1

•)

(3)

(4)

(5)

j Determme p E (J. J + l , n } :

la1 <->aP

For i = j + 1 , n

I o:PJ I = max I o: ,1 I
)~ t ~ n

(• select pi vo t •)

(• interchange rows •)

(• choose no rmalization •)

(• update column of L •)

() CCCPR

As in the algorithms presented before. the number of multiplica tions and divisions is

(n 3
- n) / 3, regardless most choices for the normaliza tions made in (4). With the normaliza tion

choice v11 =A.11 = 81-
1
• it is clear that fewer array-accesses are required because of the fact that

statements (1) and (5) become trivial.

30

366 H-·. Hoffmann I Linear system .w ln ng

CCRPC

Here we describe the essential part of the algorithm on clement level (in section 2.3 it is
described using entire columns throughout) .

Fork= 1.. .. , n

(!)

(2)

(3)

(4)

(5)

{

Determine p E { k . k + I, ... , n } : I a kp I = max I a,
1
I

k ~; ~ n

a .,.. a .P

For i = k +I , .. . , n

a,k +->.,. =a,./(Skvkk)

For j = k + 1. .. . , n

a k1 +- Vk1 = a k1/ (l\ kk fik)

For i = k + 1. .. . , n

(• interchange columns •)

(• select pivot •)

(• choose normalization •)

(• update column of L •)

(• next elm . in row of U •)

(• update jth column of A •)

(• (k + I)st provisional column of L has been calculated in a . k. 1 •)

() CCRPC

With the choice >. kk = va = IS ;: 1
, statements (2) , (3) and (4) become trivial. The amount of work still

remains (n 3
- n)/ 3, but the number of array-accesses is minimized.

With this choice CCRPC reduces to :

Fork=l, ... ,n

{

Determine p E { k , k + 1, n} : I a kp I = max I a . 1 I
k :r;,.; ~ n

a · k ...-. a · p

For j = k + 1, . . . , n

For i = k + 1, ... , n

a ,i <-- a,1 - a ,. (ak1I akk)

(• interchange columns •)

(• select pivot •)

0 CCRPC

Next we present GAUSSJ which implements the Gauss- Jordan algorithm with partial pivoting
by row ' interchanges', without actually interchanging rows.

31

GAUSSJ

Fo r i = 1. 11 . a,,,. 1 = {J,
Fo r i = I. ... 11

Ind , = { I. 2.. ... 11 } \ { 111. ... -;;(i - I)}

Determine p E Ind ,: I a P, I= max, , " 1,,J ,, In,. I

77i = p

g, = eP - (1 / 8,)a ,

Fork = i + I n + 1

For i = !. n. ~ . = a,,,_n +i/ 8,

0 GAUSSJ

For the implementation of this algorithm. we use an array diag (say) to store bo th the inverses of

the elements 8, and the information fo r the se t Ind ,. At start all elements of thi s array are set to

zero ; in the ith step the element diag(11i) is set equal to 8,- 1
; in tha t case the truth-va lue of

(p E Ind ,) is equivalent to (diag(p) = 0).

References

[l J P.A. Businger. Mon itoring the numerical stab ility o f Gaussian elimination. Numer. Math. 16 (1971) 360-361.

[21 J.J . Dongarra. Performance o f va rious computers u;ing standard linear equat ion' software. Argonne. IL 1983.

[31 J.J . Donga rra. J. Du Croz. S. Hammarling and R.J . Hanson. A proposal for an ex tended set o f FO RTRAN Basic

Linear Al geb ra Subprograms. Technica l Memorandum 41. Argonne Nat. Lab .. 1984.

[4J J.J. Donga rra. F.G. Gustavson and A. Karp. Implemen ting linea r algebra algori thms for den se matrices on a

vector pipeline mac hine. S IAM Ree. 26 (1984) 91 - 112.

[5J J.J . Donga rra. C.B. Moler. J.R. Bunch and G .W. Stewart. U NPACK User's Guide (SIAM. Philadelphia 1979).

[61 G. H. Golub and C.F. Van Loan. Matrix Computations (North Oxford Academic. Oxford , 1983).

[7) P.W. Hemker. Ed .. Numal. Numerical procedures in Algol 60. MC Syllabus 47.1. Ma th . Centrum. Amsterdam.

1981.
[8J R.W. Hockney. The n 1/ 2 method of algorithm analysis. Computer Sci . Dept.. Reading University. Read ing. U. K ..

1983.
[9) R.W. Hockney and C. R. Jesshope. Parallel Computers-Architecture. Programming and Algorithms (Adam

Hilger. Bristol/ Boston. 1981) 423.

[!OJ W. Hoffmann and W.M. Li oen. Chapter simultaneous linear equatio ns. Report NM-R8614. in : NUMVEC

FORTRAN library manual. Centre for Mathematics and Computer Science. Amsterdam. 1986.

[l IJ NAG Library Manual. Numerical algorithms group. Oxford 1982.

[121 QQLIB, A library of utility routines and math. algorithms on the Cyber 200. Cyber 200 support. Rosevi lle. MN ..

1983.
[13) G.W. S_tewart. Introduction ro Matrix Computations (Academic Press. New York / London. 1973).

32

Those who device numerical methods must be aware that any successful

development will, at best, only placate the demon Progress for a short time.

One is reminded of the many-headed hydra that menaced the ancient Greeks;

no sooner was one head lopped off than several more grew in its place.

J.R. Rice et all.

Numerical Computation, its Nature and Research Directions;

Special Issue of ACM SIGNUM Newsletter, February 1979.

Rehabilitation of the

Gauss-Jordan algorithm

CHAPTER II

jointly written with T.J. Dekker

accepted for publication in:

Numerische Mathematik, 1989

34

REHABILITATION OF THE GAUSS-JORDAN

ALGORITHM

by

T. J . Dekker and W. Hoffmann

Summary. In this paper a Gauss-Jordan algorithm with column interchanges is
presented and analysed. We show that, in contrast with Gaussian elimination.
the Gauss-Jordan algorithm has essentially differing properties when using
column interchanges instead of row interchanges for improving the numerical
stability. For solutions obtained by Gauss-Jordan with column interchanges. a
more satisfactory bound for the residual norm can be given. The analysis gives

theoretical evidence that the algorithm yields numerical solutions as good as
those obtained by Gaussian elimination and that, in most practical situations.
the residuals are equally small. This is confirmed by numerical experiments.

Moreover, timing experiments on a Cyber 205 vector computer show that the
algorithm presented has good vectorization properties.

Subject classification: AMS(MOS) : 65F05, 65G05, 15A06; CR: Gl.3 .

35

l .INTRODUCTION

With the advent of vector and parallel computers, the Gauss-Jordan algorithm

has received renewed interest because of its supposedly good properties with

respect to vectorization and parallelization.

The stability of the Gauss-Jordan algorithm with partial pivoting has been
analysed by Peters and Wilkinson [6] who came to the following conclusion: " in

general the absolute error in the solution is strictly comparable with that

corresponding to Gaussian elimination with partial pivoting plus back

substitution; however, when the matrix is ill conditioned, the residual

corresponding to the Gauss-Jordan solution will often be much greater than

that corresponding to the Gaussian elimination solution." These results hold
true for the standard column pivoting strategy, where at each stage a pivot is
selected in a certain column and correspondingly rows are interchanged to

bring the pivot in diagonal position.

In this paper we show that Gauss-Jordan with row pivoting, and

correspondingly interchanging of columns, is much more satisfactory. In most

practical situations, the residual corresponding to the solution obtained by
Gauss-Jordan with row pivoting is not larger than that co::--responding to the

Gaussian elimination solution.

The Gauss-Jordan algorithm with any pivoting strategy is equivalent to
Gaussian elimination - with the same pivoting strategy - followed by a further
reduction of the resulting upper triangular system to a diagonal system. With

column pivoting this further reduction may yield arbitrarily large elements
and , hence, a large residual, as is shown by Peters and Wilkinson. With row

pivoting, however, the elements of the resulting upper triangular matrix are
bounded by the diagonal elements in the corresponding rows.

For an error analysis it is convenient to consider Gauss-Jordan's algorithm
with row scaling, i.e. at each stage the equation corresponding to the pivotal
row is divided by the pivot. Then the resulting matrix U is unit upper

triangular and its elements are bounded by 1. It follows that the growth of the

elements in the further reduction to diagonal form is not much larger than

the norm of the inverse of U. Consequently, the residual of the calculated
solution is not much larger than that corresponding to the Gaussian

elimination solution, except in those rare cases where U is ill conditioned.

In section 2 we consider the Gauss-Jordan algorithm in more detail and

present an error analysis. In section 3 we give some numerical results,
showing that the error and mostly also the residual are satisfactory, and some
results of experiments on a Cyber 205 vector computer, showing that Gauss­
Jordan is not slower than Gaussian elimination for systems of order up to 25,

although it requires about 1.5 times more work.

36

2. ERROR ANALYSIS OF GAUSS-JORDAN WITH Row PIVOTING

Let A be a given matrtx of order n and b a given right-hand side vector. The
application of the Gauss-Jordan elimination on the given system is equivalent
with performing n successive transformations, starting from the original
matrix AO)= A and right-hand side bO) = b. The total effect is the transforma­
tion of A(l) with permuted columns into the identity matrix. This is described
in the following algorithm.

For k = 1 (1) n do
Determine p such that k~p~n and I A (k) I = max I A (kklJ. I kp kjn
Pk I - (ek-ep) (ek-ep) T

{permutation matrix
Ok ·= A(k)

kp
Dk I + (Ok

gk ok ek -
Gk ·= gkekT
A(k+l) := (I + Gk)Dk-l A(k) Pk

b(k+l) := (I + Gk)Dk-l b(k)

for interchanging columns p and k}

{= diag(l, ... ,1,okt1, ... ,1) l

enddo
Figure 1. Gauss-Jordan algorithm with column interchanges

The application of this algorithm results in A(n+l) = I and b(n+l) = Pn-1 ... P1-l x.

Summarizing, with the use of P = P1 ... Pn, the effect of all elimination-steps is
given by:

(I+ Gn)Dn-1 ... (I+ Gi)D1-1 (AP I b) = (I I P-lx).
For our theoretical analysis we introduce the following notation.

Define mk to be equal to the lower part of~ (below the k-th element) and vk
equal to the upper part of~ such that matrtx [m1 .m2 mnl is strictly lower
triangular and matrtx [v1,v2, vnl strictly upper triangular.

Furthermore
Mk := mk~T and vk := vk~T .

Then we have
gk = ffik + vk . Gk = Mk + vk .

and
(I + Gk) = (I + Vk)(I + Mk) .

We observe that
(I + MilDi-1(1 + Vj) = (I+ Vj)(I + MilDi-1. for j < i,

so that
(I + GnJDn-1 · .. (I + GilD1-1 =

(I + Vn) ... (I +Vi) (I + Mn)Dn-1 ... (I + Ml)D1-1.
If L and V are defined by

L .- [(I + Mn)Dn-1 ... (I + Mi)D1-IJ-l =
D1(I - Mi) ··· Dn(I - Mn) = (D1···Dn - M1 - ... - Mn),

V := 0 + Vn) ... 0 + V1) = I + V1 + ... + Vn,
then the Gauss-Jordan elimination is symbolically given by:

V L-1 (AP I b) = (I I P-lx) .

37

Let the upper triangular matrix U and vector y, which are intermediate results
during the calculation, be defined by

U := L-1 A P ; y := L-ib,
then the error analysis of (standard) Gaussian elimination shows that these
calculated L, U and y satisfy:

and
LU= AP + E1. with llE1ll S <1>1(n) g llAll µ,
(L + E2) y = b, with 11Eill S <1>2(n) III.JIµ,

(2.1)

(2.2)

where <j> 1 (n) and <1>2(n) are low-degree polynomials in n, g is the growth factor

and µ is a small, arithmetic-dependent, constant times the machineprecision.
(See e.g. [3,7]).

For the rest of our rounding error analysis we have to examine the remaining
part of the algorithm. This is the part where V ls calculated such that

V (U I y) = (I I P-lx) .
The pivoting strategy and row-scaling in the first part of the algorithm have
ensured that I Uij I s 1 for J > i and Uii = 1 .
Defining U(I) = U and yO) = y. the calculation is carried out according to the
following rules. Note that these rules are part of the algorithm described in
figure 1.

For k 1 (1) n do

Vk ek - U (k) ek

Vk ·= vkekT

U(k+l) := (I + Vk)

y(k+l): = (I+ Vk)

enddo
Figure 2. Inversion and solution of triangular system

The result of this calculation is u<n+l) = I and y(n+l) = P-lx.
For the calculated quantities we observe that for each k an error matrix F(k)
exists such that

U(k+l) = U(k) + vk U(k) + F(k), with F'~) = 0 for J s k and i ~ k .
lJ

A simple rounding error analysis yields:
max 1~)1 s 3 max IU~)I µ.

lJ i<k lJ
Since (I + Vil F(k) = F(k) for i ~ k , we obtain

I = U(n +I) = (I + VnJ ... (I +VJ) U + F(l) + F(2) + ... + F(n).
For V this implies

VU + E3 = I, with E3 = F(l) + F(2) + ... + F(n) .

For an estimate of E3 we need a bound for max I u~l I . i<k lJ

From
U(k) = (I+ V1 + ... + Vk-1)U,

we find
k-1

1r.:f' 1ui>1 s 1r<'r' I uij I{ 1 + L mi1x I (Vh)ijl} s
h=l

(2.3.a)

(1 + (k-1) . max I Vij I} s (1 + (k-1) llVll}.

Using llF(k)ll s n Il}f'C I FW I), we find for llE3ll

38

n n

llE31l $ L llF(k)ll $ 3 n L (1 + (k - 1) llVll} µ
k=l k=l

which gives
llE3ll $ <\J3(n) llVll µ (2.3.b)

for a low-degree polynomial <\>3 in n.
With respect to the error in the calculated solution z = p-lx, we notice that
this calculation is numerically equivalent with multiplying y from the left by V,
hence

(V + E4) y = z, with llE41l $ <\J4(n) llVll µ ,

for a low-degree polynomial <\>4 in n.
The combination of formulae (2.3 and 2.4) yields:

Y = U (I - E3+ E4U)-1 z,
which in combination with (2.1 and 2.2) gives

b (A + E1 + E2U)(I - E3 + E4U)-lz .
If we put

(2.4)

(2.5)

w (I - E3 + E4U)-1z , (2.6.a)
then this results in

b = (A+ E1 + E2U)w. (2.6.b)
If we furthermore use Es for (E3 - E4 U) then the distance between z and w
satisfies

llz - wll I llzll $ llEsll I (1 - II Esll) provided that llEsll < 1 .
For llEsll we find the following bound

llEsll $ llE31l + llE41l llUll $

(<\J3(n) + <\J4(n) llUll) llVll µ $ <\>s(n) llVll µ

for a low-degree polynomial <\ls .
Using 2.3.a for a bound on llVll this can be written as

llEsll $ <\>s(n) 11u-111 µ / (1 - <1>3(n) 11u-111 µ},
provided that the denominator is positive.

(2. 7)

(2.8)

(2.9)

Summarizing, the calculated solution z = P-lx is close to a vector w, which is
the exact solution of a nearby problem as specified in formulae 2.6.a and 2.6.b.

For the residual r := b - Az we have according to these formulae
r = (A + E1 + E2 U) w - A(I - Es) w •

which can be bounded by
llrll $ (llE11l + llE2Ull + llAll llEsll) llzll I (1 - llEsll). (2.10)

In this bound the contribution llAll llEsll I (1 - llEsll) creates the essential
difference with the formula for the residual bound for Gaussian elimination.
As long as llEsll << 1, this term has order of magnitude llAll llU-111 µ. As a
consequence of our pivoting strategy, U will mostly be well-conditioned, even
in cases where A itself is ill-conditioned, so that the contribution of this term
is harmless. However, a well known example of an ill-conditioned unit
trtangular matrix is given in the next section in experiments sertes d.

39

3. NUMERICAL EXPERIMENTS

Experiments on accuracy and timing were carried out on the Cyber 205
computer (one vector pipe) of the Academic computer centre SARA in
Amsterdam: the arithmetic precision of this machine is about lQ-14.
For a large number of linear systems we compared tlie solution obtained via
Gauss-Jordan with row pivoting with the solution from Gaussian elimination.
These experiments are described hereafter and listed in Table 1.
For timing results we compared the CP time for our Gauss-Jordan algorithm
with the CP time for UNPACK-routines SGESL and SGEFA [2) and with the CP
time for the NUMVEC implementation of LD-1 U factorization with row
pivoting (which is equivalent with Gaussian elimination) followed by forward
and backward substitution (4,5]. An overview of these results is given in Table
2.

Our implementation of the Gauss-Jordan algorithm is a slight modification of
the algorithm described above. In each step the factor Dk-I is omitted so that
the resulting matrix is given by A(n+I) = D = diag(o1 , On) . In this form the
algorithm is more efficient on the Cyber 205 vector computer, because no
extra updating of the pivotal row in each step is required. The error analysis
remains essentially the same.

Experiments on accuracy and residuals .

a) In test series al - a4 we use linear systems with prescribed condition. The
matrices are constructed from a given diagonal matrix (the singular values
chosen) which is pre- and post- multiplied by random orthogonal matrices.
These left and right orthogonal factors are the product of {Il random
Householder reflections. The singular values are chosen in various ways: the
largest always +l, the smallest lQ-6 or smaller and the remaining ones either
distributed equally, or clustered on one end of the spectrum, or on the other
end.

In series al we use very ill-conditioned matrices of order 25; the right-hand
side vector b is constructed by taking the product of the coefficient-matrix A
and a random vector x.

In series a2 we use matrices of order 50 of the same type and with the same
type of right-hand side vector .

In series a3 we use a different type of right-hand side vector. Firstly the
linear system is solved with a random right-hand side vector. With the
solution xo of this system, the vector bo = Axo is calculated. This vector bo
serves as right-hand side vector in the test system. For ill-conditioned
matrices the right-hand side vector constructed in this way is in general
"rich" in the least singular vector of the matrix, so that the solution is very
sensitive for perturbations.

In series a4 the left singular vector corresponding to the least singular value is
taken as right-hand side vector.

40

All these series yield solutions with accuracy as expected in view of the
condition number of the matrix, and small residuals both for Gaussian
elimination and Gauss-Jordan factorization with no significant difference.

b) In series b 1 - b2 we use upper triangular matrices. The diagonal elements
have the value +l except A33 and ~4 which have the value l0-7. The elements
in the strictly upper triangular part have random values between -1 and + 1.
This type of matrices is used by Peters and Wilkinson (6) to show that Gauss­
Jordan with column pivoting can produce larger residual vectors than
Gaussian elimination. The choices for the right-hand sides in bl and b2 are
made in the same way as in series al and a3 respectively. The results of Gauss­
Jordan factorization with row pivoting and Gaussian elimination are fully
comparable and as accurate as can be expected in view of the condition of the
matrices.

We also tested Gauss-Jordan with column pivoting on these matrices. The
accuracy of the solution is comparable with the accuracy in the other
solutions, but the residual is much larger (of the same size as the error in the
solution), which confirms the analysis in (6).

c) In series cl - c2 we use a matrix W for which maximal growth in its
elements is obtained during Gaussian elimination with partial pivoting. For our
situation where row pivoting is performed, this matrix is given by

Wij = -1 for j > i ; Wjj = Wnj = 1 for all j and Wij = 0 elsewhere.

w
[

1 -1 . .. -1] 0 1 -1
. . . .
.
0 . . . 0 1 -1
1 .. . 1 1

For n = 50, as used in series cl, the conditionnumber of W roughly equals
1700 and the element growth is 249 . As right-hand side vector we have
chosen the product Wx for a random vector x.

In series c2 we use the same experiment but now for the order n = 30.
The results of Gaussian elimination are for some cases slightly better than
with the Gauss-Jordan factorization.

Note that for this matrix, a result obtained with column pivoting is correct to
almost full working accuracy; this is true for both Gaussian elimination and
Gauss-Jordan factorization. An implementation of a variant of Gaussian
elimination where this dangerous element-growth is detected and can be
cured is given by Hoffmann and Lioen [5). The technique used is presented in
a paper by Businger (1) and can also be applied to the Gauss-Jordan algorithm.

41

d) In series d 1 - d2 we use a unit upper triangular matrix D having all

elements in the strictly upper triangular part equal to -1.

~ [6-:_ ... -l]
. 1 -1

0 0 1

The least singular value of~ is less than 2-n...[3. As right-hand side vector. we

take matrix times random vector. For this type of matrices, which have an

increasing bad condition for growing values of the order n, the Gauss-Jordan

factorization for large values of n produces a solution with a much larger

residual vector than the solution produced by Gaussian elimination.

In all our experiments we calculated the number of correct digits in the

solution and in the residual.
For a system with right-hand side b, exact solution xo and calculated solution x

these numbers are given by -101og(llx - xoll / llxoll) and -101og(llb- Axil / llxoll)

respectively. In fact the latter quotient between brackets should also be

divided by llAll for a homogeneous result. However. for all matrices in series a

we have llAll2 = 1 and for all other matrices the norms are of order n, so the

omission of this factor is hannless.

#correct diaits (rel. to x)

solution residual

series order fsvst. A x b cond. nr Gauss G.-J. Gauss G. -J.

al 25 200 Ul:VT random Ax 1015 < 2 same > 12 same

a2 50 1800 Ul:VT random Ax 106-1015 < 8 same > 12 same

a3 50 200 Ul:VT A-lb random 1010 3 - 7 same > 12 same

a4 50 200 UI:vT v 50 CJ5ou 50 1010 3 - 7 same > 12 same

bl 25 200 upper random Ax > 107 < 2 same > 12 same

b2 25 200 upper A-lb random > 107 < 2 same > 12 same

cl 50 200 w random Ax 1700 0 - 4 0 - 1 0 - 4 0 - 1

c2 30 200 w random Ax <1700 5 - 10 5 - 7 5 - 9 5 - 6

dl 50 200 '1 random Ax > 1014 0 - 4 0 - 1 > 12 0 - 1

d2 30 200 '1 random Ax = 1010 5 - 10 5 - 7 > 12 6 - 7

Table 1. Overview of experiments on accuracy

Experiments on timing.

Our implementation off the Gauss Jordan algorithm with row pivoting (column

interchanges) GJPCF was compared with routines from UNPACK and with the

NUMVEC implementation of Gaussian elimination, CCRPCF [4,5). The timing

results are as in the following table.

42

n = 25 50 100 200

LI NP ACK (SGEFA + SGESL) 0 . 00 28 0 . 0 107 0 . 0 4 41 0 .1 965

CCRPCF 0 . 00 14 0 . 005 1 0 . 0232 0 . 11 5 4

GJPC F 0.00 14 0 . 0054 0 . 0256 0. 13 94

Table 2. Overview of timing experiments

These results show that the Gauss-Jordan algorithm is rather efficient on a

vector computer and that the processing time is competitive with Gaussian

elimination for order up to 25.
As is well known, the number of floating-point operations equals, apart from

lower order terms, n3 for Gauss-Jordan and (2/3)n3 for Gaussian elimination.

The time needed for these algorithms, however, is not only determined by

this order n3 term, but also by a significant contribution of order n2, needed

for pivot search and interchanges and, on a vector machine, also for the start­

up of the vector iterations. This contribution of order n2 is (nearly) equal for

CCRPCF and GJPCF, as also appears from this table.

ACKNOWLEDGEMENfS.

We want to thank professors G.H. Golub , A. Ruhe and G.W. Stewart for

mentioning the second author the key reference [6) at the conference at Loen,

Norway.

REFERENCES

1. Businger, P.A.: Monitoring the numerical stability of Gaussian elimination.

Numer. Math. 16, 360-361 (1971)
2 . Dongarra, J.J.,Moler, C.B. , Bunch, J .R. and Stewart, G.W.:LINPACK User's

guide: Philadelphia: SlAM 1979
3. Golub, G.H. and Van Loan, C.F.: Matrix Computations: Oxford: North Oxford

Academic 1983
4. Hoffmann, W.: Solving Linear Systems on a Vector Computer: to appear in

Journal of Computational and Applied Mathematics

5. Hoffmann, W. and Lioen, W.M.: Chapter Simultaneous Linear Equations.

Report NM-R8614. In: NUMVEC FORTRAN Library Manual. Amsterdam:

Centre for Mathematics and Computer Science, 1986
6. Peters, G. and Wilkinson, J.H.: On the Stability of Gauss-Jordan Elimination

with Pivoting. Comm. of the ACM 18, 20-24 (1975)

7. Stewart, G.W.: Introduction to matrix computations . New York and London:

Academic Press 1973

An Estimate for the Spectral

Norm of the Inverse of a Matrix

with the Gauss-Jordan Algorithm

CHAPTER III

reworked version of:

report 87-06, Dept. of Mathematics,

Univ. of Amsterdam (1987)

44

AN ESTIMATE FOR THE SPECTRAL NORM OF

THE INVERSE OF A MATRIX WITH THE

GAUSS-JORDAN ALGORITHM

by

W. Hoffmann

Abstract. In this paper an algorithm is presented for calculating an estimate
for the spectral norm of the inverse of a matrix. This algorithm is to be used
in combination with solving a linear system by means of the Gauss-Jordan
algorithm. The norm of the inverse is needed for the condition number of that
matrix. The algorithm exploits the effect that Gauss-Jordan elimination is
equivalent with writing the matrix as a product of n elementary matrices.
These elementary matrices are sequentially used to maximize (locally) the
norm of a solution vector that matches right-hand side vector under
construction. In n steps this produces a satisfactory estimate. Our algorithm
uses 5n2 + O(n) extra floating-point multiplications for the calculation of the
required estimate and is tested for a multitude of matrices on the Cyber 205
vector computer of the Academic Computer Centre, SARA, in Amsterdam.

Keywords and phrases:
Gauss-Jordan algorithm, condition estimation, vector algorithms.

AMS sublect classification:
65F05. 65G05. 15A06.

45

1. INTRODUCTION

In this paper we present an algorithm for estimating the spectral norm of the

inverse matrix of a linear system. A norm of the inverse matrix is used to

calculate the condition number with respect to inversion or solving linear

systems. Many articles on condition number estimation and related problems

have already been published [1,2.3.8.9.14.17,18]. In these publications an LU

factorization or QR decomposition of the coefficient matrix A is considered

and all algorithms use forward and/or backward substitution for the solution of

triangular systems. Our estimator is designed for the Gauss-Jordan algorithm

which can be viewed as an algorithm for writing a matrix as the product of n

elementary matrices [11].

In spite of the fact that solving a linear system by Gauss-Jordan uses

approximately 1.5 times as many operations compared to Gaussian

elimination, the interest in the Gauss-Jordan algorithm has not diminished in

recent years [16,19,23] . On the contrary, the introduction of parallel and

vector computers induced a revival of the Gauss-Jordan algorithm; its

application has some advantages in the parallel case.

The Gauss-Jordan algorithm in its standard form was shown to be unsafe [16].

but it can be made practically as stable as Gaussian elimination with partial

pivoting by using suitable column interchanges instead of row interchanges as

has been shown in [4].

In section 2 we briefly overview the stabilized version of the Gauss-Jordan

algorithm and extend it with our rules for estimating 11A-lll2. Our estimator uses

the factorization of A into the product of elementary matrices (I + gJcek T) for

the construction of two vectors, t and f. for which At = f and lltll2 I llfll2 is 'large'.

We recall that the spectral norm (or lz-norm) of matrix A-I is defined by the

supremum of 11A-lfll2 / llfll2. taken over all non-zero vectors f.

In section 3 we present the results of computer experiments. For a large

number of matrices we compared our estimate for llA-1112 with the correct value.

For a specific selection of test matrices we present our results in a form that

makes them comparable with results of estimating the norm of the inverse

matrix that have been presented in the literature. In this respect we especially

mention the work of Higham [9], who reviewed a number of estimators for llA-

111p for various values of p, (including p = 2), but none of which were especially

suited to work with the Gauss-Jordan factorization.

In section 4 we present our conclusions.

2. A SUPPLEMENT TO THE GAUSS-JORDAN ALGORITHM

We consider the Gauss-Jordan algorithm described in[6] using stabilizing

column interchanges instead of the traditionally used row interchanges.

Let A be a given matrix of order n. The Gauss-Jordan algorithm consists of n

consecutive transformation steps reducing the matrix to a diagonal matrix. The

basic form of the algorithm we use is repeated here:

46

For k = 1 (1) n do

Determine p such that k:5p:5n a nd I A (k) I = max I A (kklJ. I
kp k:S j:Sn

Pk · = I - (ek-ep) (ek-ep) T

{permutation matrix f or interchanging columns p and k}

Ok A (k)
kp

Dk I+ (Ok - 1) e k ekT {= diag(l, .. .,l,Obl, .. .,1)

gk Ok ek - A (kl ep

A(k+l) := (I + gkekT)Dk-l A(k) Pk

b(k+l) : = (I + gkekT)Dk-l b(k)

enddo

For the description of our algorithm to estimate llA-1112. we recall that Gauss­
Jordan can be used for the explicit calculation of A-1. For that rurpose it

should be extended with the calculation of the iterated product of matrices
(I+ ~ekl)Dk- 1 as described in the following rules:

B(O) =I, and
B(k) = (I+ ~~l)Dk-lB(k-1) ,k = 1, 2, n . (2.1.)

If P denotes the product of all permutation matrices applied, i.e. P = P1 ·· · Pn.

then one can verify for the matrix B(n):

A-'= PB(nl. (2.2.)

We would like to remark that in a practical implementation to calculate A-1,
one likely uses the fact that A-1 can overwrite A and can be calculated in the

memory location that has been occupied by A itself. An implementation using

this observation combined with the stabilized Gauss-Jordan algorithm is
presented in (5).

We here consider, however, the calculation of llA-1112 in a situation where A-1
itself is not needed. We require that computing the estimate of the norm

should be feasible in O(n2) operations so that it can be seen as only a slight
overhead in the total cost for the factorization of A itself.
The 12-norm of A-1, which is equal to the 12-norm of B(n), is defined as the

maximal value of
llA-'fll2 taken over all vectors f with llfll2 = 1. Our algorithm constructs a row of

estimates for llBCklll2. k = 1, 2, n.
For this purpose we construct vectors f1. f1fn. with llfkll2 = 1, k = 1, 2, n,
such that llB(k)fkll2 approximates llB(klll2. An optimal vector fk is searched for in

the 2-dimensional subspace span{fk-1 . eJc}.

This choice is motivated as follows. We would like to deal correctly with the
case that ~ekTwipes out all other information in the calculation of B(k) and
with the case that ~ekT is negligible compared to B(k-1). In the first case the

optimal value for fk equals ek and in the other case we observe that fk-1 is still

optimal.
Our algorithm starts with f1 = e1; consequently, fk E span{e1 ~). k = 1, ... n.

The constluction of f2 fn and t1. t1 t0 , with tk = BCk) fk is as follows.
Obviously,

t1 = 01-1 (e1 + gi) . (2.3.)

Suppose that for k > 1 the unit length vector fk-1 is given and that

lltk-1112 = llBlk-l)fk-1112 approximates llB(k-1)112.
In step k, the following optimization problem is to be solved.

Determine A. and):I. with f..2 + µ2 = 1 such that the vector tk defined by

47

tk = B(k) fk = BCk) (A.fk-1 + µ ek). (2.4.)

has maximal Ii-norm . We stress that matrix B(k) appearing in this expression

is not needed explicitly, which follows from the observations:
i) B(k-l) ek = ek

and
ii) B(k-l)fk-1 = tk-1 (by definition) . (2.5.)

From (2.3.) we deduce
tk =(I+ ~ekT)Dk-l B(k-l)(A.fk-1 + µek) = (I+ ~ekT)Dk-l (A.tk-1 + µ ~).

The 12-norm of vector tk yields a homogeneous quadratic equation in A. and µ,

the coefficients of which are denoted by a, P and y.

lltkll22 = aµ2 + 2pµt.. + yf..2. (2 .6.)

With the introduction of quantities fk-1 . 't , ~and o. defined by

fk-1 = Dk-ltk-1 , 't = ~T fk-1. ~ = ~T fk-1 and o =Ok.

the values of a, P and y are given by:

a = 0-2 (1 + 11gk112i.
p = 0-1 (t (1 + 11gk112i + ~l.

'Y = llfk-1112 + 't 211~112 + 2t ~-

(2 .7.)

(2 .8.)

(2.9.)

The optimal A. and µ, under the constraint 1..2 + µ2 = 1. can be calculated by

means of standard techniques.
a) For p = 0 we have lltkll22 = a + (y - a) f..2 which yields

a 1) for (y - a) ~ 0 : A. = 1: µ = O:

a2) for (y - a) < 0 : A. = 0; µ = 1 .

b) For p *- 0 the maximal value for lltkll2 is attained for:

-- + __ 2+1 a-y --v(a-~
2p - 2p .

where the plus-sign applies if P > 0 and the minus-sign if P < 0.

The values for A. and µ follow from the relations

t.. = 1 I --.J 1 + (µ/t..l 2 and µ = (µ/t..l x t...
The vector tk can be constructed via

(2.10.)

tk = t.. rk-1 + 0-1µ ~ + (A.t + 0-1µ l ~. (2.1 i.J

Note that the vector fk is not needed explicitly, so that finally the calculation of

tn can be realized in 4n2 + O(n) multiplications and 3n2 + O(n) additions.

The resulting vector tn can be interpreted as a single inverse-iteration step

applied to the vector fn: the fact that fn itself is constructed during this

process is merely a technical detail. Denoting the singular value

decomposition of A by AV = U:L it follows that fn approximates Un and tn

approximates crn-1 Vn. From the theory of inverse iteration applied to the

calculation of singular vectors[l3). we find that a second iteration step yields a

better approximation to the required singular vector. In the general case

where the matrix is not symmetric, this second step should be applied with

matrix AT. In our situation this means that (AT)-1 11t 11 approximates crn-1 Un.

48

Especially when crn is small. this can give a considerable improvement in the
estimation of llA-1112 = crn-1 .
The Gauss-Jordan algorithm calculates scalars Dk and vectors~. k=l n, for
which we have

(AP)-1 =(I+ &ienTJDn-1 ... (I+ gle1T)D1-1. (cf. 2.1. and 2.2.). (2.12 .)
The quantities Dk and~ also define the following factorization of (AT)-1 :

(AT)-l = D1-1(1 + e1g1T) ... Dn- 10 + engnTJ pT; (2.13.)

(T) 1 tn 2 so that the calculation of A - ~ can be performed in n + 0 (n)

multiplications and additions.

3. NUMERICAL EXPERIMENTS

The technique as explained in section 2 was built into routine GJPCF (10). our
linear system solver based on the Gauss-Jordan algorithm with column
interchanges as explained in (4). In GJPCF we have implemented the stable
algorithm without explicit row-scaling in each step. For the application of the
algorithm to estimate the norm of the inverse as described in section 2, this
explicit row-scaling cannot be avoided, however. This gives an overhead of

~2 + O(n) multiplications in the optimal Gauss-Jordan routine. The effect on

the execution time is shown in table 1.
The algorithm as described in section 2 (without the extra inverse iteration
step) has been implemented in our routine GJE_NRM_INVl. In this routine,
the vector tn is calculated for an estimate of crn-1 with an extra amount of work
of 4n2 + O(n) multiplications and 3n2 + O(n) additions. The Gauss-Jordan
algorithm with explicit row scaling for solving a linear system with one right-

1 1
hand side vector requires a total amount of work of 2 n3 + 2 n2 + O(n)

multiplications and the same number of additions.
For a large number of matrices we estimated the Ii-norm of the inverse matrix
and compared it with the correct value. In all our experiments with various
matrices having orders varying between 10 and 100, we never observed an
estimate that was wrong by a factor of more than 10.
The experiments were carried out on the Cyber 205 vectorcomputer of SARA,
the Academic Computer Centre in Amsterdam.
In the following table the CPU-time for our implementation of the stabilized
Gauss-Jordan algorithm is compared with the total time if only the concept of
explicit row scaling is included and with the total time if also the extension
for the calculation of lltnll2 is included.

n = 25 so 100 200

GJPCF 0.00 14 0.0054 0.0256 0.1394

GJPCF, with expl. rowscaling 0. 0014 0.0056 0.0260 0.1404

GJE_NRM_INVl; (estimates also llA-1112) 0.0019 0.0067 0.0285 0.1479

Table 1. Solution of a linear system having one right-hand side for
various orders.

For two classes of matrices we report the behaviour of our algorithm more
extensively. These are classes of matrices that have been used by Higham in

49

his overview on various algorithms for estimating a norm of A-1 [9). We present
our results in the same form that Higham used, in order to enable easy
comparison.

The matrices we use in our overview are constructed with prescribed singular
values. A given diagonal-matrix, containing the singular values, is pre- and
postmultiplied with pseudo-random (products oO orthogonal Householder
matrices. This way of constructing pseudo-random test matrices is described
in [17).

For various values of the order n, varying from 10 to 100 and for various values

of the condition number K2, varying from 10 to 109, we used groups of one

hundred pseudo-random matrices. For each matrix we calculate the quotient
(< 1) of the estimated norm of the inverse and the true value of that norm. For
each group of one hundred matrices we calculate the arithmetic mean of these
quotients and we report the minimal value. The results of these tests are given
in the following tables.

Firstly we use a group of matrices having their singular values distributed
exponentially.
The singular values Oi are defined by Oi = o.i-1, i = 1, ... , n for an appropriate

constant o. such that ic2 = o.-<n-1) .

Test results with Oi = o.i-1 . i = l, n; GJE NRM INVl. - -
Kz n = 10 25 50 100

10 .50/.77 .62/.81 .67/.86 .84/.90

103 .27/.69 .45/.73 .61/.80 .7 8/.87

106 .19/.62 .35/.68 .58/.78 .73/.83

109 .19/.64 .29/.69 .58/.77 .71/.83

Minimum and mean over 'estimate' / 11A-lll2 for groups of 100 matrices.
Table 2.

Secondly we use a group of matrices with a sharp break in the distribution of
their singular values. They are defined by Oi = 1, i = 1, ... n-1 and On= (K2)-1 .

The test matrices are again constructed via pre- and post multiplication with
pseudo-random orthogonal matrices.

Test results with Oi = 1, i = l, ... ,n - l; On= ic2-1: GJE NRM_INVl. -
K2 n = 10 25 50 100

10 .56/.81 .43/.73 .59/.77 .69/.83

103 .50/.82 .36/. 71 .53/.7 6 .71/. 83

106 .47/.80 . 46 / .71 . 51/.77 .68/.81

109 .53/.80 . 41/ .72 .57/.77 .70/.82

Minimum and mean over 'estimate' I 11A-lll2 for groups of 100 matrices.
Table 3.

We also experimented with a different choice for the starting vector f1. The
iteration as defined in section 2 was started with f1 = e1; the matching vector
t 1 is given by (2.3.). This vector is not in the direction of the appropriate left

50

singular vector of B(l) so that l!B Olii2 is underestimated already. It is easy to
verify that this left singular vector is a linear combination of e1 and g1.

The iteration may be started with the correct right and left singular vectors of
B0l, f1 and t1 respectively, so that the estimate for !!BOl i1 2 matches its correct
value. The implementation of this idea showed a change in the calculated
estimate of at most two units in the second digit. while requiring the explicit
calculation of fk in the k -th step, which requires an extra n 2 multiplications
and additions.

In GJE_NRM_INV2 we implemented the extended version of our algorithm
where the extra inverse iteration step is finally applied. It uses 5n2 + O(n)
extra multiplications and 4n2 + O(n) additions.

This routine never produced estimates that were wrong by a factor of more
than 3. The estimates are much sharper than the estimates of
GJE_NRM_INVl as can also be judged from the following tables.

Test results with cri = ai-1 , i = 1, ... ,n; GJE NRM INV2. - -
K2 n = 10 25 50 100

10 . 60/.92 .75/.92 . 85/.94 .92/ . 96

103 .49/.96 .66/.93 . 75/.95 .91/.97

106 .3 4 /.97 .84/.97 .74/.97 .80/.97

109 . 98/1.0 .85/.98 . 91/.98 .89/ . 98

Minimum and mean over 'estimate' I llA-1112 for groups of 100 matrices.
Table 4 .

Test results with cri = 1, i = l, .. .,n - l; crn = K2· l; GJE_NRM_INV2.

K2 n = 10 25 50 100

10 .99/1.0 . 98/1. 0 1. 0/1. 0 . 99/1. 0

103 1.0/1.0 1. 0/1. 0 1.0/1.0 1. 0/1. 0

106 1. 0/1. 0 1. 0/1. 0 1. 0/1. 0 1.0/1. 0

109 1.0/1.0 1. 0/1. 0 1. 0/1. 0 1. 0/1. 0

Minimum and mean over 'estimate' I llA-ill2for groups of 100 matrices.
Table 5 .

4. CONCLUSION

The algorithms we present to calculate an estimate for the spectral norm of
the inverse matrix produce reliable estimates. In extensive tests on matrices of
order up to 100, our favourite estimator, implemented as GJE_NRM_INV2 ,
was never wrong by more than a factor of 3 and almost always correct within a
factor of 2. The somewhat faster routine GJE_NRM_INVl was never wrong by
a factor of more than 10, which, in the context of estimating the condition­
number of a matrix, is mostly good enough.
Comparing our results with the test results by Higham shows that the
behaviour of our estimator is good; it is comparable with the 12-norm estimator
SIGMAN (9,18) and the well known L., -norm estimator which is implemented
in LINPACK (6). Our estimator, however, fits the Gauss-Jordan algorithm while
the others fit Gaussian elimination or the QR decomposition.

51

REFERENCES

[l] A.K. CLINE, A.R. CONN, C.F. VAN LOAN; Generalizing the LINPACK
condition estimator; pp. 73-83 in: J .P. HENNART, ed .. Numerical
Analysis, Mexico 1981, Lecture Notes in Mathematics 909, Springer­

Verlag, Berlin.
[2] A.K. CLINE. C.B. MOLER, G.W. STEWART and J.H. WILKINSON; An

estimate for the condition number of a matrix; SIAM J. Numer. Anal.
16(1979) pp.368-375.

[3] A.K. CLINE, R.K. REW; A set of counter-examples to three condition
number estimators, SIAM J. Sci. Stat. Comput. 4(1983) pp. 602-611.

[4] T.J. DEKKER and W. HOFFMANN; Rehabilitation of the Gauss-Jordan

algorithm; Report 86-28, Department of Mathematics, University of

Amsterdam 1986.
[5] T.J. DEKKER and W. HOFFMANN; Numerical improvement of the Gauss­

Jordan algorithm; in: Proceedings ICIAM 87. Paris-La Villette. june 29-
july 3 1987; Contributions from the Netherlands; ed.: A.H.P. van der

Burgh. R.M.M. Mattheij; Mathematisch Centrum, Amsterdam 1987
(6) J.J. DONGARRA. J.R. BUNCH, C.B. MOLER and G.W. SfEWART; LINPACK

User's Guide; SIAM, Philadelphia 1979.
[7] G.H. GOLUB and C.F. VAN LOAN; Matrix Computations; North Oxford

Academic, Oxford 1983.
[8) W.W. HAGER; Condition estimators; SIAM J. Sci. Stat. Comput.

5(1984) .. pp. 311-316.
[9] N.J. HIGHAM; A survey of condition number estimation for triangular

matrices; SIAM Rev. 29 (1987) pp. 575-596 .
(10] W. HOFFMANN; Chapter simultaneous equations, Report NM-R8712 in:

NUMVEC FORTRAN library manual update #1; Centre for Mathematics
and Computer Science, Amsterdam 1987.

[11 J A.S. HOUSEHOLDER; The theory of matrices in numerical analysis;
Blaisdell Publ. Cy.; New York, Toronto, London 1964.

(12] T . KIMURA; Gauss-Jordan elimination by VLSI mesh-connected
processors; in: Jesshope and Hockney (eds.) Infotech State of the Art
Report: Supercomputers, Vol. 2, pp271-290, (1979) Infotech,

Maidenhead. England
(13) C. LANCZOS; Linear differential operators; Van Nostrand Comp. Ltd.;

London etc. 1961.
[14) D.P. O'LEARY; Estimating matrix condition numbers, SIAM J. Sci.

Statist. Comput. 1(1980)pp.205-209.
[15) D. PARKINSON; Experience in exploiting large scale parallelism; in:

Kowalik (ed.) Proceedings of the NATO workshop on high speed
computations; West Germany NATO ASI Series, Vol. F-7, (1984)

Springer Verlag, Berlin.
[16] G. PETERS and J.H. WILKINSON; On the stability of Gauss-Jordan

elimination with pivoting; Comm. ACM 18(1975). pp. 20-24.
[17] G.W. SfEWART; The efficient generation of random orthogonal matrices

with an application to condition estimators, SIAM J. Numer. Anal.
17(1980) pp.403-409.

[18] C.F. VAN LOAN: On estimating the condition of eigenvalues and
eigenvectors, Linear Algebra Appl. 88/89(1987) pp. 715-732.

[19] D. ZOIS; Parfes, a parallel finite element system; Supercomputer
l 7(1987)pp. 34-43.

52

Nessun dorma!

Nessun dorma! Nessun dorma!

Tu pure, o Principessa,

nella tuafredda stanza

guardi le stelle che tremano

d ' amore e di speranza!

Ma il mio mistero e chiuso in me,

il name mio nessun sapra.!

No, no sulla tua bocca lo diro,

quando la luce splendera!

Ed il mio bacio sciogliera

il silenzio che tifa mia!

G. Adami I R. Simoni

G. Puccini

Turandot

A fast variant of the Gauss-Jordan

Algorithm with partial pivoting

CHAfYfER IV

report on recent research dating from

december 1988 and january 1989

54

A FAST VARIANT OF THE GAUSS-JORDAN

ALGORITHM WITH PARTIAL PIVOTING

by

W. Hoffmann

Summary. In this paper we deal with a variant of the Gauss-Jordan algorithm,
introduced by Huard. This algorithm uses the same amount of floating-point
operations as Gaussian elimination. We show that it can be made of practical
interest by including the relatively unknown strategy of partial pivoting by
column interchanges. This pivoting strategy, when combined with standard
Gauss-Jordan, yields a fully satisfactory algorithm. The algorithm discussed in
this paper was compared with Gaussian elimination on an Alliant FX/ 4 parallel
vector. Using BLAS level 2 routines, it turns out to be very efficient.

Subject classification: AMS: 65F05, 15A06.

55
l .I NTRODUCTION

We consider an algorithm, originally presented by Huard [8]. that has been

described by Cosnard, Robert and Trystram [l] in a paper on performance

analysis of parallel algorithms; a pivoting strategy was not included.

In s ection 2 we describe the algorithm and give the operation count. The

transportability of the algorithm is served by indicating parts that can be

implem ented by applicable calls to BLAS routines [4] . These calls will take

care of all operations apart from those regarding pivoting and row scaling.

From inspecting the original algorithm, it is evident that the usual strategy of

pa rtial pivoting by row interchanges is impossible. In section 3 we give an

analysis which shows that an intermediate result in the upper triangular part

of the matrix is equal to the pivotal row in the upper triangle as produced

with Gaussian elimination. This observation shows that an alternative pivoting

strategy by column interchanges can be applied. This pivoting strategy was

introduced in (7) and in combination with the Gauss-Jordan algorithm it

turned out to be fully satisfactory.

An implementation using BLAS level 2 routines for an Alliant FX/4 machine

was compared with Gaussian elimination using BLAS level 2. The results were

encouraging and are reported in section 4.

2. DESCRJPTION OF THE ALGORJTHM

The Huard algorithm ls presented using the scheme in Fig. 1. We suppose that

the right-hand side vector of the linear system is added to the matrix as an

extra column.
The coefficient matrix is transformed to the identity matrix and similarly the

right-hand side vector is transformed to the solution vedor. This is per­

formed in n stages as follows:

1

x x

0 x

1 0 x
0 1 x
x x l x

x x x

Fig. 1

x:x

x:x
x : x
x;x

Assume that at the beginning of

stage k, the leading (k-l) x (k-1)

submatrix equals the identity matrix
as indicated.
In step k, the first k-1 elements in
row k (in the box) are eliminated,
using rows 1 through k-1.
The total number of multiplications

and additions equals (n-(k- l)}x(k- 1)

for updating the k-th row of the
matrix and (k-1) for the right-hand
side vector (RHS).
Next, the k-th row is divided by its

diagonal element to enter the value "one" on the diagonal. This takes one

division and (n-k) multiplications for the matrix and one multiplication for the

RHS. Finally, the elements in the k-th column above the diagonal are

eliminated with the k-th diagonal element, as is done in the Gauss-Jordan

algorithm. This takes (n-k)x(k-1) multiplications and additions for updating

the submatrix in the upper right-hand comer and (k-1) for the RHS.

56

At the end of step k, the leading (kxk) submatrix equals the identity and the
n xn transformed matrix combined with the updated right-hand side vector
still defines an equivalent linear system, having the same solution.
Hence, after n steps, the solution is found in the last column.

Operation count

The total number of floating-point operations for the matrix equals:
n

multiplications: L, {(n-k)(2k-l) + k-1)
k=l

n
additions: r (2n-2k+l)(k-l)

k=l
divisions: n.

1 1
3 n3 - 3 n;

1 1 1
3 n3 - 2 n2 + 6 n ;

For the right-hand side vector we need a total of n2 multiplications and n2 - n
additions.

Algorithmic denotation

In a formal description of the algorithm we use the following notation: row k
of the matrix is denoted by ak. and matrix element (i.j) by atJ·

1 For k = 1 to n do
2 For i = 1 to k-1 do
3 ak. : = ak. - aki x ai.
4 enddo
5 perform pivoting as described in section 3
6 ak. := (l/akk}xak.
7 For i = 1 to k-1 do
8 ai. ·= ai. - aik x ak.
9 enddo

10 enddo

Fig.2

This algorithm can also be expressed by premultiplications with elementary
matrices. Lines 2 through 4 correspond with a row update. This can
be seen as a premultiplication of the matrix under consideration by
(I - ekgk T); the k-1 non-zero elements of gk T are copied from the
elements in row k as indicated by "the box" in Figure 1.
Line 6 describes a row scaling which can be expressed by premultiplication
with a suitable diagonal matrix ~k- Lines 7 through 9 correspond with a rank­

[SJ . .
one update of the upper right-hand corner submatrix. This can be
described by a premultiplication of the matrix under consideration
by (I - ukekTJ; the elements of Uk are copied from the elements in
the k-th column above the diagonal.

57

The changes as a result of the premultiplications with the above elementary

matrices .can be indicated as changes on submatrices as a whole. This leads us

to a description of the algorithm at matrix level. The notation that we use,

s h ould be clear from the context. We only denote the non trivial changes in

the matrix; the data needed for the elimination process is saved, as usual, in

th e corresponding locations of the m a trix elements .

For k = 1 to n do

A[k,k:n+ll

A[k,k+l : n+l]

A[k,k:n+l] - A[k , l:k-1] X A[l:k-1,k : n+l]

{rowvector x matrix}

: = A[k, k+l : n+lJ x (l/ a kk) {rowscaling}

per f orm pivoting as described in section 3

A[l:k-1,k+l:n+ll

enddo

3 . PIVOTING SfRATEGY

·= A[l:k-1 ,k+l:n+l] - A[l:k-1,k] X A[k,k+l:n+l)

{rank- one update }

Fig . 3

Without a suitable pivoting strategy, the above algorithm is hardly interesting

for practical purposes.

For an explanation of our proposed strategy, we focus on the situation that

a rises when the first "half' of the p-th elimination step has been executed. We

suppose that the algorithm in either Fig.2 or Fig.3 is in progress with k having

the value p such that the update of the p-th row has been completed and the

statement that describes the row scaling has not been executed yet.

The situation that now exists can be described by suitable premultiplications

with elementary matrices as follows:

A(p') = (I - epgp1)(I - Up-1ep-11)6p- iCI - ep- lgp-11) .. .

.. . (I - u2e21)62(I - e2g21)61 A(Ol; (3.1)

the use of p' as a superscript stems from the fact that the p -th stage has not

been completed yet.

Let (~ ~) denote a partition of A(OJ where the leading submatrix B has order

(p-1) and the other submatrices have sizes that match the partition. Assume

that the product of the elementary matrices has been accumulated in a single

matrix, then relation (3.1) for the partitioned matrices is given by:

(3.2)

58

Here Ip-1 denotes the (p-1) 5 t order identity matrix that has been formed in
the indicated position in matrix A(p'l and In-p+l denotes the (n-p+l)5 t order
identity matrix that is in the indicated position in the accumulated product.
From the fact that the premultiplication with (I - epgp 1) has been performed,
we know that the first row of G is zero; the rest of matrix G still equals the
corresponding part of D. We also know that Y, apart from its first row, which
equals - gpT. is a zero matrix of a size that matches the partition.
By comparing equivalent rows at both sides of (3.2), we have:

Q.T = e1T G = e1T (YB + D) = - gpT B + e1T D,

from which we see that gp is determined by:

If we substitute this result in the equation for the first row of H we find:

e1TH = e1T (E- D B-1 C).

(3.3)

(3.4)

The expression between brackets is the Schur complement [2]. which would
have been created in the lower right-hand submatrix if Gaussian elimination
were performed on A(OJ (6, Problem 4.2-3). The first row of that submatrix
would remain unchanged in Gaussian elimination and would have been a row
of the resulting upper triangular matrix U.

Consequently, the first row of H can be searched for an element that is
maximal in size, so that by interchanging suitable columns in A(p'l this element
can be put in the leading diagonal position of H. This pivoting strategy is
presented in (7) and its combination with standard Gauss-Jordan has shown to
give such an improvement in that algorithm that it has become practically as
stable as Gaussian elimination (3).

With the application of column interchanges, the algorithm under
consideration will perform the same calculations in the upper triangular part
of the matrix as the standard Gauss Jordan algorithm with column
interchanges.

We conclude this section with describing the statements that perform the
applicable partial pivoting; they must be included in the algorithm in Figures 2
and 3 at the indicated positions:

I
Determine q such that k :5 q :5 n and I Ukq I =

if q > k then interchange columns q and k

max I Ukj I
k:Sj:Sn

Note that the calculated solution vector must undergo the same interchanges
in reverse order.

59

4 . N UMERJCAL EXPERJMENTS

We implemented the algorithm with the pivoting strategy as described above

on the Alliant FX/4 computer of the CWI at Amsterdam.
This machine has four parallel vector processors. Its precision with FORTRAN

77 is =l0-7 for single length computations and =l0-15 for double length

computations.

The results of HGJPC (Huard-Gauss-Jordan-Partial pivoting by Columns) with

respect to accuracy and processing time were compared with our Gaussian

elimination variant CCRPCS [7]. both in single and double precision. We also

made a comparison of the double precision result with the results from

LINPACK routines DGEFA and DGESL [5] . We should mention that the single

precision routines SGEFA and SGESL take much more processing time on the

Alliant; obviously these routines have not been optimized for this machine.

For all matrices tested, the accuracy of CCRPCS and HGJPC were similarly

good and in their double length version also similar to the LINPACK results.

An overview of our timing results is presented in the next tables

n = 25 50 1 00 200 40 0

HGJPC-F77 0.008 0 . 025 0 . 111 0. 7 37 5 . 4 62

HGJPC-F77+BLAS2 0 . 0 1 5 0.032 0.098 0.505 3 . 64 1

CCRPCS-F77 0.005 0 . 018 0 . 09 4 0 . 676 6.704

CCRPCS-F77 +BLAS2 0.007 0 . 019 0 . 0 78 0.523 5 . 539

Table 1 . Process i ng time i n seconds - Si ng l e p r eci s i o n

n = 25 so 100 200 400

HGJPC-F 77 0 . 008 0 . 025 0. 1 29 0 . 820 7. 71 9

HGJPC-F77 +BLAS2 0.0 1 3 0 . 030 0 .1 20 0 . 620 6 . 771

CCRPCS-F77 0 . 006 0.018 0 .0 96 0 . 9 77 9.8 30

CCRPCS-F77+BLAS2 0 . 007 0.02 1 0. 09 0 0 . 725 9.164

DGEFA-LINPACK 0 . 006 0 . 02 1 0. 1 26 0 .41 5 2 .65 5

Table 2. P r ocess i ng time in seconds - Doub l e preci s ion

Discussion

The FORTRAN 77 code of HGJPC follows closely the algorithmic structure as

given in Fig. 2 section 2. As a consequence, the elements of the matrix are

accessed by rows. This is far from optimal, as the elements are stored

columnwise.
By comparing the results of HGJPC and CCRPCS, we observe that a further

research on this algorithm may yield efficient codes for various architectures.

In this respect we think of operating on the transposed of the matrix, so that

column operations are replacing row operations.
Another improvement will come from designing a block-variant of the

algorithm in such a way that less transport to cache memory is necessary.

60

If BLAS level 2 routines are included , following the structure from Fig. 3 of
section 2, then it can be observed that for the larger matrices routine HGJPC
is (much) more efficient than CCRPCS.

The UNPACK double length routine has been optimized to yield a good
performance on the Alliant. For this purpose, routine DGEFA is designed to
exploit a block structure of the matrix, which results in less transport
between cache and main memory. The timings of DGEFA are correspondingly
good.

ACKNOWLEDGEMENrS

The author wants to thank the Centre for Mathematics and Computer Science,
CWI, Amsterdam, for giving him access to their Alliant FX/4 computer; he also
wants to thank Miss Kitty Potma for performing the experiments.

LITERATURE

1. M. Cosnard, Y. Robert, D. Trystram, Resolution parallelle de syslemes
lineaires <lenses par diagonalisatlon; Bulletin E.D.F, serie C. 2(1986)67-88

2. R.W. Cottle, Manifestations of the Schur Complement; Linear Algebra Appl.
8(197 4)189-211

3. T .J . Dekker and W. Hoffmann, Rehabilitation of the Gauss-Jordan
algorithm; to appear in Numer. Mathematlk 1989.

4. J.J. Dongarra, J. du Croz, S . Hammarllng and R.J. Hanson, An extended set
of FORfRAN Basic Linear Algebra Subprograms; ACM Trans. Math. Softw.
14, 1-17 (1988)

5. J.J. Dongarra, C.B. Moler, J .R. Bunch and G.W. Stewart, UNPACK User's
guide; Philadelphia: SIAM 1979

6. G.H. Golub and C.F. Van Loan, Matrix Computations; North Oxford
Academic, Oxford 1983.

7. W. Hoffmann, Solving linear systems on a vector computer; Journal of
Computational and Applied Mathematics 18(1987)353-367

8 . P. Huard, La methode du Simplexe sans inverse explicite; bulletin E.D.F.
Serie C n.2. (1979)

Iterative Algorithms for

Gram-Schmidt Orthogonalization

CHAPTER V

accepted for publication in:

Computing, 1989

62

ITERATIVE ALGORITHMS FOR

GRAM-SCHMIDT ORTHOGONALIZATION

by

W. Hoffmann, Amsterdam

Abstract - Zusammenfassung

The algorithms that are treated in this paper are based on the classical and
the modified Gram-Schmidt algorithms. It is shown that Gram-Schmidt
orthogonalization for constructing a QR factorization should be carried out

iteratively to obtain a matrix Q that is orthogonal in almost full working
precision. In the formulation of the algorithms, the parts that express

manipulations with matrices or vectors are clearly identified to enable an
optimal implementation of the algorithms on parallel and/or vector machines.

An extensive error analysis is presented. It shows, for instance, that the

iterative classical algorithm is not inferior to the iterative modified algorithm
when full precision of Q is required. Experiments are reported to support the

outcomes of the analysis.

Keywords: Gram-Schmidt orthogonalization, QR factorization, vector

algorithms.
AMS subject classification: 65F25, 65G05, 15A23.

In diesem Artikel werden verschiedene Varianten der klassischen und der
modifizierten Gram-Schmidt Methode prasentiert. Wir zeigen, dass man fiir

die Konstruktion der QR-Zerlegung die Gram-Schmidt Orthogonalisation
iterativ anwenden muss, falls man die Matrix Q ungefahr bis auf
Maschinengenauigkeit orthogonal haben will. Die Algorithmen sind so
formuliert, dass man alle Operationen mit Matrizen oder Vektoren deutlich

identifizieren kann und eine Implementierung auf einem Parallel- oder
Vektorcomputer keine Schwierigkeiten bietet . Eine ausfiihrliche

Fehleranalyse wird gegeben. Daraus folgt zum Beispiel, dass der iterative

klassische Algorithmus nicht schlechter ist als der iterative modifizierte
Algorithmus, wenn die Matrix Q so genau wie moglich orthogonal sein muss.
Verschiedene Experimente auf einem Vektorcomputer werden beschrieben,

welche die Resultate der Fehleranalyse bestatlgen.

63

1. INTRODUCTION

We consider variants of Gram-Schmidt orthogonalization and their suitability

for use on super computers. Algorithms for super computers must exploit the

parallel and/or vector facilities of the machine to admit for an optimal

performance. The numerical stability of the algorithm, however. may require

that a formulation which seems to be particularly favourable for use on super

computers should be avoided. Some well known variants of the Gram-Schmidt

algorithm are good examples of this type of conflict.

The goal of Gram-Schmidt orthogonalization is to construct a QR factorization.

This factorization is defined as follows.

Consider an m x n matrix A = [a1 ,anl with aj e Rm and m ~ n. Let kU) =
dim(span(a1 ,aJll for J = l, ... ,n and let p = k(n) {= rank(A)).

An orthogonal basis [q1 ,qp) for span(a1 anl is to be constructed such that

aj e span(q1, .•. ,qk(i)l. i = 1. ... , n. In terms of matrix calculation this is equivalent

with: construct an orthogonal m x p matrix Q such that A = QR for a p x n

upper trapezoidal matrix R. If p = n, then the problem is called a full-rank

problem.
If matrix Q is not used, or is only needed to calculate the product Qv for

several vectors v, then the Householder algorithm is to be preferred. If the

individual column vectors of matrix Q are wanted (the so called "orthogonal

basis" problem). then, in case of a full-rank matrix A, the Gram-Schmidt

algorithm is advantageous.
This paper deals with Gram-Schmidt orthogonalization for the case that the

matrix has (numerically) full rank, i.e. p = n.
For the case p < n, the Gram-Schmidt algorithm has been extended with the

application of column pivoting; see Businger and Golub [2). This addition gives

quite satisfactory results in most practical cases, but may not detect the right

degree of rank deficiency. An adaption of the Gram-Schmidt algorithm which

is presented by Chan [3). yields correct results in the general situation with

p ~ n and calculates the correct rank of the matrix.

It has become well known that various so called "block QR" algorithms admit

efficient performance on super computers. Some of these algorithms,

however, appear to be variants of the classical Gram-Schmidt algorithm and it

has been acknowledged that the classical algorithm may produce a matrix Q

that is far from orthogonal.
The method known as "the modified Gram-Schmidt algorithm" is numerically

to be preferred over the classical algorithm; the orthogonality of Q is of the

order of machine precision times condition number of the matrix. This may

be insufficient for matrices that are ill conditioned. To overcome this

shortcoming, the modified algorithm can be applied iteratively, so that almost

full machine precision is reached.
We show that the classical algorithm in an iterative fashion can attain that

same accuracy in an equal number of iterations. Consequently, constructions

that were banned for the sake of accuracy can be accepted in an iterative

algorithm.
In section 2 we give definitions of the classical and the modified Gram­

Schmidt algorithm through an algorithmic formulation. In section 3 we

64

pres ent the iterative versions of thes e algorithms . Iterative versions of the

Gram-Schmidt algorithm are also presented by Daniel, Gragg, Kaufman and

Stewart [4] and by Ruhe[7]. In section 4 we present the results of numerical

experiments which are discussed in section 5: In section 6 we draw our

conclusions.

2. ONE-STEP GRAM-SCHMIDT ALGORITHMS.

For ease of formulation we use the normalizing operator N defined by:

N (x) = x I llxll , for vectors x * .Q .

For a full-rank rectangular m x n matrix A, m ;:::: n , the orthogonal m x n

matrix Q whose columns form an orthogonal basis for the subspace

span(a1 , • •• • anl can be defined with the use of projections as follows:

1.

2.

Q : = [.Q. , ... , Q]

For j = l , _ , n do
1. Q := Q + N ((I - QQT) aj) ejT

{the m x n zero-mat rix)

If the elements of the triangular matrix R (=QTA) are wanted too , then the

description turns into the Classical Gram-Schmidt algorithm, CGS.
Algorithm CGS is given by :

1. Q · = [Q, ... , Q] {the m x n zero-matrix)

2. For j = 1 , ... , n do
1. rj · = QT aj
2 . t aj Q rj {t = (I - QQT) a j)

3 . rjj · = II t 11 2
4 . qj ·= t I rjj { qj = N (t))

The numerical behaviour of this algorithm is very poor in a sense that in many

cases the constructed matrix Q is far from orthogonal. This well known result

has been shown by Bjorck [l].
An improved algorithm is the Modified Gram-Schmidt algorithm .
This algorithm exists in two versions: MGSC and MGSR, constructing the
matrix R column by column or row by row, respectively. The difference shows

only in the way the data is accessed.
Algorithm MGSC has the same structure as algorithm CGS: the difference is

that individual elements of vector QTaj. which is calculated in line 2.1 of CGS,

must be calculated sequentially by taking innerproducts with successive

columns qi of Q so that the appropriate multiple of qi can be subtracted from aj

as soon as its coefficient is available. This repeated modification of column aj is

the crux of the algorithm.

65

Algortthm MGSC is given by:

For j = 1 , ... , n do

1. t ·= aj

2. For i = 1 , ... , j-1 do

1. rij qiT t

2. t ·= t qi rij

3. rjj ·= II t 11 2

4 . qj t I rjj (qj = N (t) }

The update-rule as given in lines 2 .1 and 2 .2. of MGSC can as well be applied

for each qi on all columns ak with k ~ i . In that case the i-th row of R is

computed as a whole: its elements can be calculated in parallel. This gives rise

to algorithm MGSR.
For the description we use the following notation. With ri. we denote the i-th

row of R and with D· we denote the part of ri. that is strictly to the right of the

diagonal: (rii+J ,rifl) .

Algorithm MGSR is described by:

For

1.

2.
3 .

i = 1 , ... , n

rii

qi

l:.i •

do
II ai 11 2
ai I rii
qiT [ai+l , ... , an)

4. [ai+1 , ... , a nl := [ai+1 , ... , anl - qi l:.i • {rank- one mat r ix update}

Although the results of both MGS algorithms are an improvement over the

results obtained by CGS in the sense that the orthogonality of matrix Q is

much better, in many cases the orthogonality is still not good enough. This is

reflected in the bounds for llQTQ - I 112 which is of the order of the product of

the machineprecision E and the condition number of the original matrix, as

has been shown by Bjorck [l].

3. ITERATIVE GRAM-SCHMIDT ALGORITHMS

Iterative Gram-Schmidt algorithms with improved orthogonality have been

presented and analysed by Daniel et al. [4] and Ruhe [7].

We here describe the iterative versions of both the classical and the modified

Gram-Schmidt algorithms; the modified algorithm only in the MGSC form. A

corresponding iterative version of the modified algorithm in its MGSR form is

not possible.

66

Algorithm CGSI reads :

Q . = [.Q. , .. ., .Q.)

For j = 1 , ... , n do
1 .

2 .

3 . Repeat
1. p

2 . s
3 . v

4 . t

t

QT

Q

p

p

s
- v

• = rj + s

{the m x n zero-matrix}

4 .

5 .

5 . rj
Unti l < t p e rpe ndi c ular span(q1, _ , q j-1) >

II t 11 2

6.

Algorithm MGSCI reads :

Q

For j
1 .

2 .

3.

[.Q, .. ., .Q. J

= 1 , ... , n d o
rj ·= .Q

t ·= aj

Repeat
1. p : = t
2. For i = 1 , ... , j -1 do

1. Si qi T t
2 . t : = t qi Si

3 . r j ·= r j + (s1, ... , Sj - 1, 0 ,. . ., O)T

{ qj = N (t l l

{the m x n zero-matrix}

4. Until< t perpendi c ula r t o span(q1,.- , qj - 1) >
5 . r j j ·= II t 11 2
6. qj t I r j j

It has been demonstrated by Ruhe [7] that the resulting rj in the j-th step
corresponds with the solution of the equation QTQrj = QTaj with Q = [qJ, ... ,qj-il·
The CGSI va riant corresponds with Gauss-Jacobi iteration for solving that
equa tion and the MGSCI variant with Gauss-Seidel iteration. The resulting
accuracy depends on the number of iteration-steps performed.
We would like to emphasize that in Ruhe's analysis the (almost) orthogonality
of matrix Q is not used; the goal in the j-th step is to find rj such that (aj - Qrj)
is orthogonal to span(q1 Qj-1).
The new column Qj is obtained from qj := N (aj - Qrj). An implementation of
the stopping criterion "t perpendicular to span(q1 ,qj-rl" was not suggested
by Ruhe.
For a useful stopping criterion we are inspired by Parlett [6). who analyses
Gram-Schmidt orthogonalization for two vectors. He presents an "iterative"
orthogonalization algorithm which he attributes to W. Kahan; iterative has
been put between quotes because a single reorthogonalization step is sufficient
in practice. It provides us with an efficient stopping criterion for algorithm
CGSI and it shows to be adequate for MGSCI too.

67

In the j-th major step of CGSI, vectors s = fl(QTp) and v = fl(Qs) are calculated

(lines 3 .2 and 3.3). A backward error analysis, using one of the customary

matrix norms, shows:

S = (Q + 81Q)Tp with ll81Qll $ $J(m,j) llQllE and

v = (Q + 82Q)s with ll82Qll $ $2(m,j) llQll £

where $1 and $2 stand for low degree polynomials in m and j and £ stands for

the effective machine precision (effective means that effects of arithmetic are

taken into account).

If v were calculated without error (i.e. 82Q = 0), it would be contained in the

column space of Q, regardless the accuracy of s. If s were also calculated

without error and Q were exactly orthogonal, then v would be equal to p 's

projection onto Q's column space.

The vector t = fl(p - v) (line 3.4) is calculated as an approximation to p's

component orthogonal to span(q1, CJj-il . For t we have:

t = p + 8p - (v + dv) with 118pll $ m llpll £ and 118v11 $ m llvll £.

span(q1 • C/j-1)

In the following theorem we show that t is close to a vector orthogonal to

span(q1 ·CJ.i-il·

Theorem 1.

Let vectors p and q1, ... ,qj-1 be given in Rm with p e: span(q1, CJj.J).

Suppose Q = [q1 CJj-1l and a e (0,1) are such that llQTQ - I 112$ a..

Let scalar µ (> 0), vectors 8p and 8v and matrices 81 Q and 82Q be such that
1 I

ll81Qll2 $ µllQll2. ll8iQll2$ µllQll2, ll8pll2 $ T µllpll2 and ll8vll2 $ T µltv1l2 .

Let s = (Q + 81Q)Tp. v = (Q + 82Qls , t = p + 8p - (v + 8v) and let u denote the

orthogonal projection of p onto the space perpendicular to span(q1, CJj-il.

Then the difference between t and u (i.e. the error in t). is bounded as

follows:

{ 1 +a. 1 }
llu - t 112 $ a. l-a. + 2 µ{((2 + µ)2 + l}(l+a.) + l} llp 112.

For instance, for a and m $ 0.1, this implies II u - t 112 $ (1.3 a. + 3.5 µ) llpll2.

Proof of Theorem 1.

For the proof of this theorem we need the following results:

Lemma 1. If llQTQ - 1112 $ a. then llQll22 $ 1 + a..

Proof: This result is a direct consequence of the triangle inequality.

68

a
Lemma 2. If llQTQ - Ill2 ~a < 1 then II I - (QTQJ-% ~

(1 - a)

Proof: From the identity
I - (QTQ)-1 = {((QTQJ-1 - I)+ I} (QTQ - I) ,

it follows
III - (QTQJ-1 11 2 ~ III - (QTQ)-1 112 11 QTQ - I 112 + II QTQ - I 112.
From this, the result follows immediately .

For u we have, using the appropriate projection operator
u = (I - Q (QTQ)-lQT) p ,

so that for the difference u - t we have
u - t = (Q + 82Q)(Q + 81Q)T p - Q (QTQ)-lQT p + (8v - 8p) .

This yields
u - t = {g {I - (QTQ)-l}QT + Q81QT + 82QQT + 82Q81QT} p + (8v - Op).

A straightforward calculation yields

{ a I llvtl2 }
11 u - t 112 ~ { (l _ a) + 2µ + µ2)(1 + a) + T µ(I + llpll2) llpll2.

From the definition of v we find:
llvtl2 2
llpll2 ~ (l + µ) (1 + a).

from which the rest of the proof follows immediately.
D

(3.1)

Consider for certain j ~man orthonormal m x 0-1) matrix Q = [q1 Qj-d and an
m -vector p not in the column space of Q. Suppose that for this vector p a
single step in algorithm CGSI is carried out to construct an orthonormal basis
for span(q1 Qj- 1.p). then the conditions of the theorem are fulfilled with a
small value for a and (possibly) a very small value for m, depending on the
sizes of m and j and the effective machine precision. Although the calculated
vector t is close to a vector that is perpendicular to the column space of Q. it
is not true that consequently t itself is almost orthogonal to that column space.
For example, the orthogonality may be (very) bad if t is of the order of the
error and is therefore small compared to p.
In the Parlett-Kahan algorithm a reorthogonalization of t against v is
prescribed in cases that lltll2 is smaller than llpll2 divided by a selected accuracy
factor K. This factor must be chosen ·larger than a constant ~ > 1. CThey use
the value ~ = (0.83 - e:)-1 .)
In our situation we conclude that if t ls suspected of being not orthogonal to
v, it can certainly be suspected of being not orthogonal to columns of Q.
So the decision that a reorthogonalization ls required can be made on the
same grounds.
The reverse, being the acceptance oft if it is large enough is not evident, but
will follow from theorem 2.
The situation that t = Q does not occur if the given matrix A has (numerically)
full rank.
If t is large enough relative to p, then the orthogonality of t with respect to
the column space of Q can be estimated as expressed in the following
theorem.

69

Theorem 2.
Let the conditions of theorem 1 be fulfilled and let moreover k be such that

ll tll2 2: llpll2/ K .
The orthogonality between t and the column space of Q satisfies:

JIQTt 112 I { 3 [I] } litii2"" s (1 + T a) 2 µ + (1 + µ) a + µ(l + a) + T µ(l + µ)(l + a) K .

llQTt 112
For instance: for a and µ < 0.1 this implies litii2"" s (1.2 a + 3.6 µ) K •

Proof of Theorem 2
Next to lemma 1 from theorem 1 we need the following lemma:

Lemma
1

If JIQTQ - 1112 S a then JIQll2 S 1 + 2 a.

Proof:
This result follows directly from the inequality "1+X S 1 + x/2 for x ::=: 0 .

Substitution of the expressions for t and v yields:
QT t QT (p - v + lip - liv)

(Q + li1Q)T p - QTv + QT(()p - liv) - li1QT p.

This implies
QT t (I - QTQ)s - QT<i2Qs + QT(()p - liv) - li1QT p,

which yields
1 llv1l2

II QT t 112 S (a + µ llQll22) II s 112 + 2 µ JIQll2 (1 + llpll
2

) llpll2+ µ llQll2 llpll2 .

With the use of formula 3.1, the observation llpll2 s lltll2K and

the inequality II s 112 S (1 + µ) llQll2 llpll2, the result follows directly.

D

According to this theorem we use the following stopping criterion:

In line 4 of CGSI the condition on orthogonality can be implemented as:

lltll2 > llpll2 I K (for some positive K 2: ~) .

The reliability on the orthogonality of Q diminishes with larger values of K .

Conclusions from extensive experimenting on the choice of K are reported in

the next section; a provisional statement is that algorithm CGSI gives good

results with the choice K = 2 .
From Ruhe's observation that the calculation of rj is equivalent with Gauss­

Jacobi iteration (c.q. Gauss-Seidel iteration) on the linear system QTQrj = QTaj

and from the fact that the iteration matrix QTQ is close to a diagonal matrix,

we may conclude that in general the calculated solution is very accurate. In

practice we can assume that the calculated rj gives a small residue which says

that for a constant y that is not too big the following bound holds :

llQTaj - QTQrjlii s y.E II aj 112 .
Let us focus on algorithm CGSI. For vector t we have theoretically:

t = aj - Qrj.
so that for the quantity iiQTt 112 we find

JIQTt 112 S y.E II aj 112 .

70

If a single iteration step is sufficient for the current value of j, we have p = aj so
llQTt 112

that for the quotient ~ we have

llQTtll2 ~
~ $ y.£ 1(llpll2 = Y,£ 1(. (3.2)

If an extra iteration step is needed, we are in the situation that aj "' Qrj i.e. II t II

<< II aj II (in all our experiments we never observed the need for more than one

extra iteration step). The extra iteration can be interpreted as a calculation of
t and of the residual vector QTt in extended precision. Also in this situation we
will find a good relative accuracy. In either situation. the bound in theorem 2 .

which depends on 11gTg - 1112. may be therefore (much) too pessimistic.

Suppose that Q denotes the matrix that follows from adding the calculated
column qi (i.e. N (t)) to columns (q1 ,qj-il· In successive steps of the

algorithm, matrix Q replaces Q.

So we are concerned with a bound for II QTQ - I 112 in relation to the bound for

llQTQ - I 112. This is settled in the following theorems.
In theorems 3 and 4 we treat the case that the added column has a spectral
norm that is exactly equal to one; in theorem 5 we cover the effect of

rounding errors.

Theorem 3.
Let Q = [q1 , ... ,qj-il and cxe (O, l) be such that llQTQ - I 112 s a .

Let qi with llqjll2 = 1 be such that II QT qi 112 $OJ. Define Q = [Q:qj) then

II gTg - I 11 2 $ t (a + >/ a2 + 4ro2) .

Proof of Theorem 3.
If 't is an eigenvalue with maximal modulus of the O x j) symmetric matrix

([Q:<lj]T[Q:qj) - I) then llQTQ - I 112 = I 't I .

Suppose that (x:o)T defines a partitioning of an eigenvector corresponding

with 't and define V = QTQ - I and w = QT <l.i then the following equations hold:

Vx+OW='tX and wTx='tO. (3.3)

If o = 0 then V x = 't x from which we find I 't I $ a which ends the proof for

this case.
For o * 0 we may assume x * Q. ; the case x = Q. can only occur for 't = 0 which

satisfies the inequality to be proven in a trM.al way.
Eliminating 8 from equations (3.3) yields

Vx + 't -lwwTx = 'tX.

This leads to a quadratic equation in 't by taking innerproducts with x and

multiplication with 't.

Through the observation that the Rayleigh quotient

find from this quadratic:

I 't I s t (a + >/ a2 + 4ro2) .

which ends the proof.

xTVx
-T- is bounded by a we
xx

D

Using a fixed upperbound for llQTqjll, independently of j, the departure from
orthogonality of matrix Q can be expressed as in the following theorem:

Theorem 4.
Let Qj= [q1 C)j) .• for j = l , ... ,n. Ifllqkll2 = 1, fork= l, j and ro is such that

II gk_1Tqk 112 S ro fork= 2, j then llQ?Qi - I 112 S ro{2j.

Proof of theorem 4 :
For the proof we use the following lemma
Lemma:

71

The elements of the row (a1. a1 ak). defined by the recurrence relation

a1=l; ak+l = t (ak+..Jak2 +4) ,k=l,2, ...

satisfy ak < .../2k.
Proof:
The proof is by mathematical induction.
For k = 1 the result holds.
Assume that ak = f.../2k for some value off< 1. Using the definition of ak+l we
find

f2k + 1 + ..J f4k2 + 2f2k
2k + 2

f2k + 1
< k + 1

From this we conclude ~ < 1 which ends the proof of this lemma.

We like to comment that the given bound is rather sharp for relatively small
values of k already, as can be concluded from simple calculations which yield

aso
for example .,,/

100
"' 0.99 .

The final proof of theorem 4 follows directly from the application of theorem
3 and the above lemma.

D

In practice, the norms of the columns of Q are not exactly equal to one. The
consequences of this are considered in the next theorem.

Theorem 5.
Assume that QJ = [q1 , C)j) is calculated in floating-point arithmetic.

Let Ok = llqkll2. for k = 1,. .. ,j and DJ = diag(o1 Oj) .
Let ro > 0 be such that II Qk-1Tqk 112 s ro Ok fork= 2, ... ,j
and let cr e (O, l) be such that I ok2- 1 I s cr for k = 1, ... , j .

Then llQ/Qj - Ill2 s cr + ro (1 + cr) "2f.

Proof of theorem 5:
Observe that theorem 4 is applicable for matrix QJDf 1.

IfWj is defined by Wj = Df1Q/QjDf1 we find accordingly

llWj - !112 s ro"2f.
For the spectrum of WJ, A.(Wj). we have consequently

A.(Wj) e [1 - ro"2f. 1 + ro-v'2}1 .

Combining this with A.(Dj) e [~.~]yields
(1 - ro-v'2j](l - cr) s llDjWjDjll2 s (1 + ro-v'2j](l + cr),

so that for the spectrum of (Qj TQj - I) we have

72

A.(Q?Qi - I) e [-cr - co (1 - cr) ...f2I, cr + co (1 + cr) ...f2I J

from which the desired result directly follows.

4. NUMERICAL EXPERIMENTS

0

All experiments were carried out on the CYBER 205 computer of SARA, the
Academic Computer Centre in Amsterdam. For this machine the value of e is
about 5 10-14. We carried out experiments with algorithms CGSI and MGSCI
on a large number of matrices having various numbers of rows and columns
and different sorts of distributions for their singular values. The smallest
matrices consisted of 50 rows and 25 columns; the largest matrices of 210
rows and 200 columns.
The matrices are constructed by multiplying a given diagonal matrix (singular
values) from both sides by random orthogonal matrices. The maximal singular
value is always equal to 1 and the smallest varies between 0.1 and 10-12 so
that the condition number of the matrices is between 10 and 1012.
We have observed that the distribution of the singular values within the

interval [crmin· · ···crmaxl is of little importance for the resulting orthogonality of Q.

The number of iterations performed depends on parameter x:; for all matrices

used, x: has been given the values 2, 10, 102. 103 , 1010, in successive

experiments. The effect of taking a smaller value for x: is that fh some cases a

second iteration is necessary to calculate the next column of Q; a third
iteration never occurred.

In table 1 we show a representative selection of our test results; it shows the
typical behaviour of algorithms CGSI and MGSCI for various values of

parameter x:.
The average number of iterations per column is denoted by v; the departure

from orthogonality is measured in the 11-norm, and given by II QTQ - I 11 1 .

All matrices used in the selection described in table 1 have m = 210 and
n= 100; the singular values are distributed equally over the interval
[(conditionnumber) -I, l].

We also carried out a number of experiments with matrices that are close to a
matrix of rank one.
A representative result is described in table 2; the matrix that is used has
m = 50 and n = 25 ,the largest singular value is equal to 1 and the remaining
24 singular values are distributed equally in (1.010-ll , 1.010-10).

73

cond. nr. k v (= avg. nr. iter. per col) error in (QTQ - I)

CGSI MG SCI CGSI MG SCI

10 2 1.1 1 . 1 2. 610 -13 1.310 -13

10 1 1 3.010 -13 _ 1.610 -13

lo +4 2 1. 78 1. 78 1 . 810-13 8.910-14

10 1. 57 1. 57 3.310 -12 3.110 -13

lo +2 1. 26 1. 26 3.110 -10 3.4 10 -12

lo +3 1. 02 1. 02 7. 8 10 - 9 1. 310- ll

lo +4 1 1 9.810 - 9 1.710-ll

lo +7 2 1. 86 1. 86 2 .110-13 7.7 10-14

10 1. 76 1. 76 1.110-12 2.710-13

lo+2 1. 58 1. 58 5.910-10 4. 610 -12

10 +3 1. 42 1. 42 6.510- 8 1.310 -10

10+4 1.27 1.27 5. 310- 6 7.010-10

lo +5 1.13 1.13 1.810 - 4 3. 0 10- 9

10+6 1.01 1.01 6. 510- 3 1. 010- 8

10+7 1 1 6.510- 3 1. 0 10- 8

10+10 2 1.89 1.89 2.1 10 -13 7 .810 -1 4

10 1.81 1.81 7. 610-12 2 .110 -13

lo +2 1. 71 1. 71 3. 610-10 4. 910 -12

la+3 1. 6 1. 6 8.4 10- 8 3.810-ll

10+4 1. 51 1. 51 3 .110- 6 4. 010 -10

lo +5 1.29 1. 39 1. 010+0 1.210- 8

io +6 1. 06 1. 28 " 8. 510 - 8

10+7 1 1.20 " 2.1 10 - 7

io +8 1 1.09 " 2. 810- 6

10+9 1 1. 01 " 1. 810 - 5

lo+ lO 1 1 " 1.810 - 5

table 1.

cond. nr. k v (= avg. nr. iter. per col) error in (QTQ - I)

CGSI MGSCI CGSI MGSCI

10+11 10+8 1. 96 1. 96 6. l 10-14 3.010-14

10+9 1 1. 48 1. 010+0 1. 710- 5

10+10 1 1.08 " 2. 210- 4

10+11 1 1 " 2. 310- 4

table 2.

5. DISCUSSION

We observed that for all matrices in all experiments the decomposition is
accurate, which means that we always find matrices Q and R such that the

norm of the residue, II A - QR 112. is of the order of magnitude of the
machineprecision relatively to II A 112 , even in cases where Q is far from

orthogonal.

For all matrices. with both the modified and the classical iterative Gram­

Schmidt algorithm, the choice JC = 2 results in a matrix Q that is orthogonal to

almost full precision: the condition of the matrix and the distribution of the

74

singular values is only reflected in the number of columns that needs a second
iteration to yield this good orthogonality.
For matrices that are not well conditioned , the orthogonality becomes worse
with larger values of k for both CGSI and MGSCI.
If JC is given so large a value that no column of Q needs a second iteration, the

results of the one-step classical and the one-step modified Gram-Schmidt
respectively are produced. In this one-step situation we observe for the
modified Gram-Schmidt algorithm that the orthogonality of Q (i.e. II QTQ - I 11 2)

is roughly equal to E times the conditionnumber of the matrix, which confirms

the bounds for the modified algorithm as given by Bjorck (cf. remark at the
end of section 2). With the classical algorithm in that situation the results are

bad; for every matrix with a conditionnumber larger than 1/--JE the result was

II QTQ - I 112 = 1.
Using the modified Gram-Schmidt algorithm we observe that for all values of JC

the orthogonality is roughly bounded by JC E.

This is according to theorem 5 applied with ffi = JC E (discarding the factor '1Il).
In view of formula 3 .2, we conjecture that the iterated modified Gram­

Schmidt algorithm produces columns qj that satisfy II QJ-!Tqj 112 =<JC E, also for

large values of JC. This inspires us to the following conjecture:

CONJECTURE: If the iterated modified Gram-Schmidt algorithm is used with a

value of JC ~ 2, then the resulting matrix Q satisfies: II QTQ - I 112 =< JC E '1Il .

For all matrices we tested, no matter its condition , this relation was fulfilled;
we did not observe a relation of a similar sort for the classical Gram-Schmidt

algorithm. This conjecture has the following application. For larger values of JC,

the number of columns that need a second iteration may diminish. So, if the

wanted accuracy is denoted by 11 (11 should not be chosen smaller than = 2 x £),

the factor JC may be chosen according to JC = maximum(~ , 2) .
Evn

Both CGSI and MGSCI can be used to solve the orthogonal basis problem. The

operation count for these algorithms is vmn2 flops.
The solution of the orthogonal basis problem with Householders method

requires 2 x (mn2 - n3 I 3) flops (see for instance Golub & Van Loan [5) p.152) ,

so that for v < 2 - (2n) I (3m) the iterative Gram-Schmidt algorithms require

less operations.

6. CONCLUSIONS
Regarding the use of algorithms CGSI and MGSCI we come to the following
conclusions.
For any small value of parameter JC (JC = 2, for example, will do) the

orthogonality of the resulting matrix Q is of the order E for both the modified
and the classical iterative Gram-Schmidt algorithm.
Consequently, from a numerical point of view, there is no reason to prefer the
iterative modified algorithm over the iterative classical algorithm when full
precision is wanted.
Hence, a choice between these two algorithms can be made on considerations
regarding efficient execution of the resulting code. For instance, we can use a

75

fast matrix - vector multiplication routine in CGSI hut not in MGSCI. This
consideration clearly favours CGSI.

On the other hand, when less than full precision is sufficient, then the use of
algorithm MGSCI may be advantageous; according to the conjecture stated in

the previous section, the parameter K can be given an optimal value to cut

down on iterations.
In cases that the wanted accuracy TJ is much larger than E, for example TJ = ..Je,
this strategy yields a rather large value for K, which may result in considerable
savings on the number of 'reorthogonalizations'. This is especially valuable for
matrices with a bad condition.

ACKNOWLEDGEMENTS
The author wants to thank professor T.J . Dekker for his contribution to the
proof of theorem 5.

LITERATURE
1. A. Bjorck, Solving linear least squares problems by Gram-Schmidt
orthogonalization, BIT 7, 1-21 (1967).
2 . P. Businger and G.H. Golub, Linear least squares solutions by Householder
transformations, Numer. Math. 1, 269-276 (1965).
3. T.F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88/89,
67-82 (1987).
4. J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, Reorthogonalization
and stable algorithms for updating the Gram-Schmidt QR factorization, Math.

Comp. 30,772-795 (1976).
5. G.H. Golub and C.F. van Loan, Matrix Computations, North Oxford
Academic, Oxford 1983.
6. B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall,
Englewood Cliffs N.J. 1980.
7. A. Ruhe, Numerical aspects of Gram-Schmidt orthogonalization of vectors,
Linear Algebra Appl. 52/53, 591~01 (1983).

76

When you notice a cat in profound meditation,

The reason, I tell you. is always the same:

His mind is engaged in a rapt contemplation

Of the thought. of the thought, of the thought of his name:

His ineffable ejfable

Effaninejfable

Deep and inscrutable singular Name.

T.S. Eliot.

The Naming of Cats.

The Sage falls asleep not because he ought to. Nor even because he wants to.

But because he is sleepy.

Raymond M. Smullyan, The Tao is silent.

Definition and use of

Householder reflections

CHAPTER VI

reprint of:

CS-88-05 Dept. of Comp. Syst.

Univ. of Amsterdam, 1988

78

DEFINITION AND USE OF
HOUSEHOLDER REFLECTIONS

by

W. Hoffmann

Abstract: In this paper we present various ways to define and calculate
Householder reflections for QR-factorization and for orthogonal similarity
transformation to construct a tridiagonal matrix that is similar with a given
symmetric matrix. The latter is a subtask for the solution of the eigenproblem.
The algorithms presented are used for routines on a CYBER 205
vectorcomputer. The performance of these routines is compared with
routines based on Householder reflections from existing program libraries and
with routines using other orthogonal methods.

Keywords and phrases: Householder reflection, QR-factorization, similarity
transformation.
AMS sublect classification: 65Fl5, 65F25.

79

1 . INTRODUCTION

Orthogonal transformations play an important role in numerical linear algebra,

because their application does not change the condition of the problem at

hand. They are used for the construction of a QR-factorization of a matrix and

for orthogonal similarity transformation in the solution of the eigenvalue­

problem.

For QR-factorizations, the suitable methods are described geometrically by

projections (Gram-Schmidt orthogonalization). rotations (Givens transform­

a tions) or reflections (Householder transformations)

In the area of vector computing for full matrices. it apears that the use of

Givens or fast Givens doesn't yield efficient routines. This is explained by the

fact that methods of Givens type operate on rows of a matrix, in contrast with

Householder and Gram-Schmidt type methods, which operate on columns of a

matrix. Even if the matrices that are operated upon can be efficiently accessed

rowwise , one should realise that in general, for this type of problems, the

column vectors are (much) longer than the row vectors.

In this paper we concentrate on Householder reflections . When the

orthogonal matrix from the QR-factorization is needed explicitly (solution of

the so called orthogonal basis problem). the application of iterated Gram­

Schmidt orthogonalization (4,6) is advised, as it gives the fastest code; when

the product form of the orthogonal matrix can be used, then routines based on

Householder's method are to be prefered.

In section 2 we give a description of various ways to define a Householder

reflection and in section 3 we demonstrate how these reflections can be used

for a QR-factorization. Also in section 3 we report experiments on the CYBER

205 vector computer of the Academic Computing Centre SARA at Amsterdam.

If orthogonal transformations are needed for the construction of a similarity

transformation, as is the case in methods for solving the eigenproblem for full

matrices, then methods based on projections can not be used, as the defining

matrices are not invertable. Consequently, only rotations and reflections are

applicable; the methods based on Householder reflections give the most

efficient routines in this area too.

In this paper we deal with similarity transformation for synunetrical matrices;

in section 4 we describe the use of Householder reflections to calculate a

tridiagonal matrix which is similar to a given synunetrical matrix. Also for this

task, we report numerical experiments on the CYBER 205.

2. DEFINITION AND CONSTRUCTION OF HOUSEHOLDER REFLECTIONS

Unless stated otherwise, the vectornorm used will be the 12-norm .

Let x = (1;1 snJT and y = (111 • •• . Ttn)T denote two non-zero vectors in an such

that x is not a multiple of y. It is well known (4), that a reflection H (being an

orthogonal operator of an) can be constructed such that x is transformed into

a multiple of y.

80

The operator defining this transformation. named after Householder [7 ,8, 16],
is of the form

H = (I - KVVT),

where v is either given by
v = llyll2 x + llxll2 y .

or by
v = llyll2 x - llxll2 y

and K is given by

(2.1.)

(2.2.)

(2.3.)

2
K = vTv . (2.4.)

Note that vector v from formula 2.2 corresponds with the inner bisector of the
angle between x and y and vector v from formula 2.3 with the outer bisector .
The computation of v according to formula 2.2 will most probably suffer from
numerical cancelation if x and y are (almost) in opposite direction; formula 2.3
is not to be preferred if x and y are (almost) in the same direction.

A numerically stable algorithm comes from the formula which produces the
larger vector v. This is the vector that corresponds with the bisector of the
acute angle between x and the span of y. From this we see that formula 2.2
may be used in the case xTy > 0 and formula 2.3 otherwise.

To prevent arithmetical overflow or underflow in the calculation of llxll2 and
llyii2 , it is advised that x and y are properly scaled initially. From the formulae
above it follows that a multiplication of x or y by any nonzero factor results in a
vector v that is multiplied by the same factor and that matrix H remains
unaffected under that operation.
In practical applications of Householder matrices, y has a length of order
unity, so the proper scaling of x and y applies only to x. A suitable and easy to
calculate scaling factor is for instance 1 I llxll~ .

An important special case is y = e1. The choice for the proper formula can be
based on the sign of the innerproduct s 1 . The required algorithm now
consists of constructing v = (<!>1 <!>n)T such that a given arbitrary vector x is
mapped on a multiple of e1. An algorithm for this task belongs to the standard
tools of numerical linear algebra.

In the situation that x is a multiple of e1 already, the transform of x may be
defined to be x itself.
This can be interpreted as a replacement of a reflection by the identity, which
is justified if the distance of x to the span of e1 (i.e. llx - s1e1ll2), is less than a
relative tolerance 'eps'. By doing so, however, we introduce a discontinuity in
the linear operator H. A vector x for which this distance is slightly larger than
'eps' will have its image close to -x, while a vector at a smaller distance
remains unchanged. This drawback can be avoided by choosing vector v to
correspond with the outer bisector of the acute angle between x and A.e 1,
instead of the inner bisector as described above. The idea to consider the
outer bisector for a Householder reflection and its numerically stable
computation are due to Parlett [11).

81

For the constuction of the required reflection we may also consider to use a
vector v that is scaled to a predefined length. In that case the value of k is
independent of v so that it needs no longer be stored explicitly. For instance,
if vis scaled such that vTv equals 2. then K becomes 1.
Summarizing, we observe at three points a p_ossibility of choice in the
construction of a Householder reflection:

The possibility of explicit scaling input vector x to protect against
overflow; we denote the alternatives by the use of letter p or letter u
respectively.

Consider the outer bisector instead of the (usual) inner bisector to
define v; we denote the alternatives by the use of letter o or letter i

respectively.
Use the scaling factor k or deliver v at predefined length; we denote

the alternatives by the use of letter k or letter v respectively.

In the following algorithm we present all alternatives for computing the data
of a Householder reflection that maps a given vector x on a vector z = (/;1. 0, ...
. Q)T which is a multiple of e 1• If x is close to a multiple of e1 already (this
includes the case x = Q).. then the transformation is skipped. Only the first
component of vector z is calculated explicitly.
The algorithm is as follows:

{p; overflow protected

1 . µ : = m~x ISil
l

2 . ifµ~ 0 then

{u; unprotected}

1. eh := Si , i

2. µ := 1

1, ... , n

eh := Si I µ, i 1, ... , n

n

3. 't2 l Qli2
i=2

4. if 't2 ~ (eps x 4>1) 2 skip transformation

5. cr ...; 4>1 2 + 't2

{o; outer bisector) {i; inner bisector}

6. if 4>1 ~ 0 then cr - cr 6. if 4>1 < 0 then cr ·= - cr

't2
7. 4>1 ·= - 7. 4>1 ·= 4>1 + cr

4>1 - cr

8. K 1 I (cr 4>1>

{v; scale v}

1, ... , n I {k; use of K}

9. eh ·= Qli I sqrt (K), i = 9. store K

10. s1 -cr µ

We advocate the version that uses the outer bisector and scaling of vector v. In
the case that the transformation is skipped, i.e. is replaced by the identity,
vector v is set equal to the zero vector. With respect to explicit scaling of the

82

input vector x, we observe a substantial speed up of the resulting QR-routine if
this scaling is omitted; this is especially true if the length of the columns is
(much) larger then the total number of columns. More details on this are
reported in the section on numerical experiments.

3. THE USE OF HOUSEHOLDER REFLECTIONS TO CALCULATE A QR FACTORIZATION

Consider an m x n matrix A = [a 1, ... ,a0] with aj e Rm and m ;::: n. It is well

known that an algorithm for constructing a QR-factorization of A can be
designed with the use of Householder's transformation (1,2,6,7,15]. This
construction is via successively premultiplying matrix A by selected
Householder matrices Hj. j = 1, ... , n. A premultiplication by HJ introduces
zeroes in the last n-j positions of the j-th column. It leaves the first j-1
columns of the matrix unchanged and the effect on the remaining n-j columns
is that of a rank-one matrix update.
For a given Householder matrix H (=Hj) and one of the last n-j columns ap. say,
the product Hap is calculated via

Hap = (I - KVVl)ap = ap - K(vTap)v , (3.1.)

which requires a vector-update and the calculation of an innerproduct.
After n premultiplications the result is

H0 H0 _1 .. , H1 A = R, (3.2.)
where the non-zero elements of R form an upper triangular matrix.
Defining Q by QT= H0 H0 _1 ... H1. this latter relation can also be written as

A=QR.
From the fact that each Householder matrix is orthogonal, it follows that g is
an orthogonal matrix.

In step j of the QR-factorization. the appropriate Householder matrix Hj that
introduces the required zero elements in the j-th columnin is constructed as
described in section 2.
Here we consider the premultiplication by matrix HJ. which can be done in
two different ways.

i) each multiplication with Hj is directly effectuated on all remaining columns
ap, p =j+l, ... ,n:

For j = 1,._, n do

1. construct vector Vj and scalar Kj to define Hj

2. Fork= j+l,._, n do

· ak : = Hj ak

ii) before constructing vj. accumulate the effect of all earlier premultiplic­
ations on the j-th column:

For j = l , _ , n do

1. Fork= 1 , ... , j-1 do

aj : = Hk aj

2 . const r uct vector Vj and scalar Kj to define Hj

83

The vectors Vj can be stored in the lower trapezoidal part of matrix A. Th e
diagonal of R can be stored in a one-dimensional array, while the strictly

upper triangular part of R may be stored in the corresponding part of A. If the

variant is used that doesn't scale vj. the scalars Kj must be stored in an extra

one-dimensional array.
From the available data it is possible to calculate Qx, for any vector x, without

calculating matrix Q. If Q is wanted explicitly, all premultiplications H1 ... Hn
must be accumulated starting from the identity matrix. For that purpose,
however, Gram-Schmidt orthogonalisation is faster. This is confirmed by

experiments that are reported below.

Numerical Experiments
All our experiments were carried out on the CYBER 205 vector computer of

SARA, the Academic Computing Centre at Amsterdam. We investigated various
implementations of the QR factorisation using Householder reflections. For
the definition of the Householder reflections we used the variants that follow

from our algorithmic description in section 2 . In all situations we used the
variant that skips a transformation if x is close to a multiple of e1.
Implementations of the choices i or o (inner or outer bisector) and k or v

(store scalar K or explicitly scale v) resulted in subroutines with negligeable

differences in execution time. This can be explained from the fact that only n

different Householder reflections need to be constructed where O(n2)

multiplications Hap are to be executed. The choice between versions p and u
(scaling of the input vector or not) resulted in small differences in the

execution times as reported in table 1.
With respect to choice i versus o, we are in favour of the method using the

outer bisector, because it is less depending on the size of the relative

tolerance that rules the replacement of a reflection by the identity. With
respect to the choice v versus k , we are in favour of version v, because it saves
the use of an extra one-dimensional array and its implementation on a
vectorcomputer gives a code which is by no means slower.

We experimented with our algorithm on a number of matrices, varying in size
and condition. The spectral condition number varied between 1 and io10.
In all cases, we checked the residual llA - QRJI I llAll and found it always to be
about l0-13 , which is roughly the machine precision. We also checked the
measure for orthogonality llQTQ - Ill and found it to be equally small in all cases.
In the next table we show the processing time for the calculation of a QR

factorization for various m x n matrices. We show the total time needed (in

seconds) for a QR factorisation with our routine written in FORTRAN 200
which is a superset of FORTRAN 77 with vector extensions for the CYBER

205. On each line we present in upright font the time for version u that does

84

n ot perform explicit sca ling of the input vector and in italics the time for
version p with explicit scaling.

n = 25 50 100 200

m = 50 0.0019 0.0070
* * 0.0021 0.0073

m = 100 0.0024 0 . 0089 0.0321
* 0 . 002 7 0.0093 0 . 0328

m = 200 0.0034 0 . 0129 0.0478 0.1684
0.0038 0. 0135 0 . 0490 0 . 1703

Table 1.
QR factorisation of m x n matrix ('outer bisector' , scaling of v) - time in sec. 's

If Q is to be calculated explicitly, the total time needed is roughly twice as
much.

In the next table we present the efficiency rate of the algorithm for the same
values of m and n expressed in Megaflops (milion floating-point operations per
second) . For the number of floating point operations we only considered the
contribution of the higher order terms: 2 n 2(m - n/3) .

n = 25 50 100 200

m = 50 27 . 4 23 . 8
* * m = 100 4 7 . 7 46 . 8 41. 6

* m = 200 70 . 5 71.1 69 . 7 63.3
Table 2 .

QR factorisation (outer bisector , scaling of v) - performance in Mflops

For the asymptotical efficiency [5]. we found for this algorithm r~ = 125 . With
respect to the performance parameter n 112 we computed that half of this
efficiency is reached form = 157 .

We also experimented with some well known other methods and compare the
results for a 200 x 100 matrix in the next table.

Givens (R a nd rot a tions):
Fast Given s (R and scaled rotations):
Modifie d Gra m- Schmidt (R and Q) :
Hou seh o lder' s method (Rand Hh . v e c t o rs) :

Table 3.

0.261
0 . 191
0 . 06 4
0.0 48

QR factorization for a 200 x 100 matrix - time in sec.'s
With respect to the calculation of a QR factorisation of a full rectangular matrix
on a vector computer we come to the following conclusions:

If only the triangular matrix R is needed then Householder's method
yields the fastest routine;

If Q is needed explicitly then, in view of the statement following table!,
modified Gram-Schmidt is fastest;

The use of Givens or fast Givens (for full matrices) is not profitable on a
vectorcomputer.

85

4. 0RrHOGONAL SIMILARl'IY TRANSFORMATIONS ON A SYMMETRIC MATRIX

In the context of eigenvalue calculations, Householder matrices are used for
the construction of a similarity transformation to produce a matrix that admits
eigenvalue calculation in a simpler way. In the symmetric case, a similar
tridiagonal matrix is constructed for which the eigenvalues can be calculated
by means of the QR-method or a root finding method which is based on
evaluation of the characteristic polynomial or based on information from an LU
factorisation [7,12].

The construction of a tridiagonal matrix that is similar to a given n x n
symmetric matrix using Householder reflections is carried out in n-2 stages as
follows. In s tage j. a Householder reflection is constructed that introduces
zeroes in the j-th column in positions j+2, ... , n . To retain a similar matrix,
the postmultiplication with the inverse of the premultiplier must also be
applied. For Householder matrices, this inverse is equal to the matrix itself.
The algorithm for constructing the required tridiagonal matrix: has the
following structure:

For j = 1 , ... , n-2 do
l.construct Vj and Kj to define apropriate Householder matrix Hj

2 . A:= Hj A Hj

Execution of the pre- and post multiplication with the Householder matrices
can be performed in two ways, which are described hereafter.
In the sequel, we drop the subscripts j.
i) For a given Householdermatrix H = (I - KVVT) the transformation A:= HA H

can be performed by calculating A:= (I - KVVT)A followed by A:= A (I - KVVT) :

1 . For k = j+l, ... , n do

1 . 1 . Wk := vTak

1.2 . ak ·= ak - K Wk v

2 . enddo

3 . w · = A v

4. A := A - K w vT

If we assume that vector v consists of (n-j) elements, then the number of
multiplications for this piece of algorithm is equal to 4(n-j)2 + O(n). The
algorithm for constructing the required similarity transformation in this

4 way will cost 3n3 + O(n2) multiplications.

On a vector machine such as the CYBER 205, vector w in line 3 is calculated
efficiently by adding appropriate multiples of the columns of A, as is well
known. Line 4 denotes a rank-one matrix update and is implemented in a
standard way. Both statements can be evaluated using BLAS (3,9).
On machines with parallel processors, full advantage can be taken of
efficient matrix-vector calculation. The algorithm has been implemented for
the CYBER 205 and is reported in table 4 as TFSYMT .

86

ii) Observe the following relation:
HA H = (I - KVVT) A (I - KVVT)

= A - KVVTA - KAvvT + K2vvTAvvT. (4.1.)

Defining u = KAv, this can be written as:
I I

HA H = A - v (uT - 2K(vTu) vT) - (u - 2K(vTu) v) vT (4.2 .)

which can be recognized as a rank-two matrix update. The algorithm is

given below.

1. u · = KA v

2 . (J) ·= IC(vTu) /2

3 . y · = u - (J) v

4. A · = A - v y T - y v T

If we do not use the fact that the given matrix is symmetrical, then the

number of multiplications for this piece of algorithm is equal to 3(k)2 +

O(k), where k is the order of the matrix. If the symmetry of the matrix is

used , then 2(k)2 + O(k) multiplications are sufficient. The complete

tridiagonalization algorithm uses n 3 + O(n2) multiplications, or ~3 + O(n2) if

symmetry is exploited. The algorithm is implemented for the CYBER 205

and is reported as TFSY2U .

Numerical Experiments
In the next table we compare our two implementations of the Householder

similarity transformation, TFSYMT ans TFSY2U , with implementations from the

NAG library (10], from QQLIB (13) and from EISPACK [14) . Our routines are

implemented to use all elements of the symmetrical input matrix. Versions

that use only elements from a triangular part of the matrix result in slower

subroutines on the CYBER 205; although only half of the matrix need to be

updated in each step, a matrix-vector multiplication is much more inefficient.

This will be reported in table 5.
In table 4 we also show the execution time for the calculation of all

eigenvalues of the resulting tridiagonal matrix. This was done by NAG routine

F02AVF, which is an implementation of the QR algorithm. Moreover we show

the processing time to calculate the transformationmatrix Q explicitly, i.e. the

time to accumulate all Householder reflections.
2

In the calculation of the values for roo and n112 [5]. we used 2 x '3113 for the

number of floating-point operations needed.

n = 50 100 200 400 roo nin

TFSY2U 0. 0117 0.0507 0.2430 1.2792 72 172

TFSYMT 0.0142 0.0646 0.3281 1. 8316 50 167

NAG (FOlAGF) 0.0229 0.087 3 0. 3 659 1.6989 56 194

QQLIB(QQTRED2) 0.0240 0.1093 0 . 5397 2.9543 31 167

EISPACK(TREDl) 0.0451 0.3287 2.5016 - 4 -

EIGENVAL . CALC . 0 . 0191 0. 0729 0.2795 1.0650

ACCUMULATE Q 0. 0 066 0.0314 0.1675 0.9889

Table 4. Similarity-transformation

87

From this table we draw the following conclusions.
The ratio 4 : 3 of the numbers of multiplications in the two alternative

implementations of the simlarity transformation using Householder's method ,
is almost exactly reflected in the ratio of the execution times.

At the time of our experiments (fall 1988). the FORTRAN subroutine

TRED 1 from EISPACK was clearly not available in a vectorizeable form in

contrast to FOlAGF from NAG
The concept of the n 112 parameter was not applicable for TRED 1.

In table 5 we report on our efforts to implement our subroutines to b e

efficient with respect to usage of memory. At the first line the results of our

routine TFSY2 u are repeated; at the next line we present the results if

relevant pieces of code are replaced by calls to BLAS level 2 routines .

Following this , we present the results if only the triangular part of a 2 -

dimensional array is used and finally the results for the case that this
triangular matrix is stored in linear array.

n = 50 100 200 400 r~ n 112

f u l l mat f 200 0 . 011 7 0 . 0507 0 . 2430 1.2792 72 1 72

full mat blas 0.021 7 0.0775 0.3353 1 . 7585 53 181

triangle f200 0 . 015 7 0.0656 0.2958 1.4481 65 187

triangle bla s 0 . 0228 0.0812 0 . 3297 1 . 5284 62 192

packed array f200 0.0158 0.0664 0.2959 1. 4 481 65 187

oacked arrav blas 0.0231 0.0803 0 . 323 4 1 . 5167 63 1 97

Table 5. Variants of TFSY2U (Similarity-transformation)

The conclusions are:
The use of BLAS subroutines, contributes to (trans)portability of the

codes; for small to moderately large values of n the respective subroutines are

not the most efficient ones on the CYBER 205.
Using only a triangle of a symmetric matrix will not result in faster

routines on the CYBER 205, although only half of the elements of the matrix
need to be updated. If the triangular part is packed in a linear array, only about
half of the memory is necessary to store the matrix.

ACKNOWLEDGEMENTS
The author wants to thank Nico Koning for providing him with most of the

data from table 3.

88

LITERATURE

1. A. Bjorck, Solving linear least squares problems by Gram-Schmidt
orthogonalization, BIT 7. 1-21 (1967).

2. P. Businger and G.H. Golub, Linear least squares solutions by Householder
transformations, Numer. Math. 1, 269-276 (1965).

3. J.J. Dongarra, J. du Croz, S. Hammarling and R.J. Hanson, An extended set
of FORI'RAN Basic Linear Algebra Subprograrns, ACM Trans. Math. Softl.v.
14. 1- 1 7 (1988)

4. G.H. Golub and C.F. van Loan, Matrix Computations, North Oxford
Academic, Oxford 1983.

5. R.W. Hockney & C.R. Jesshope, Parallel Computers - Architecture,
Programming and Algorithms, Adam Hilger, Bristol, 1981.

6. W. Hoffmann, Iterative algorithms for Gram-Schmidt orthogonalization;
report 87-22, Dept. of Mathematics, Univ. of Amsterdam 1987, to apear
in Computing (1989).

7. A.S. Householder, Unitary triangularization of a nonsymmetric matrix, j.
Assoc. Comp. Mach. 5, 339-342 (1958)

8. A.S. Householder & F.L. Bauer, On certain methods for expanding the
characteristic polynomial, Numer. Math. 1, 29-37 (1959)

9. C.L. Lawson, R.J. Hanson, RJ. Kincaid and F.T. Krogh, Basic Linear Algebra
Subprograms for Fortran Usage, ACM Trans. Math. Softw. 5, 308-323
(1979)

10. NAG Library Manual; Numerical Algorithms Group, Oxford 1982.
11. B.N. Parlett, Analysis of algorithms for reflections in bisectors, SIAM

Review , 13, 197-208, (1971)
12. B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall,

Englewood Cliffs N.J. 1980.
13. QQLIB, A library of utility toutines and math. algorithms on the Cyber 200;

Cyber 200 support. Roseville, MN. 1983.
14. B.T. Smith, J.M. Boyle, B.S. Garbow, Y. Ikebe, V.C. Klema and C.B. Moler,

Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in
Computer Science 6, Springer Verlag, Berlin, Heidelberg, New York
(1974)

15. G.W. Stewart, Introduction to matrix computations, Academic Press, New
York (1973)

16. J.H. Wilkinson, Householder's method for the solution of the algebraic
eigenproblem, Computer J. 3, 23-27 (1960)

* * * * *

NUMVEC FOITTRAN Library manual

Chapter: Simultaneous Linear Equations

CHAPTER VII

jointly written with: W.M. Lioen

reprint of NM-R8614

CWI, Amsterdam, 1986

90

NUMVEC FORTRAN Library manual

Chapter: Simultaneous Linear Equations

W. Hoffmann
Department of Mathematics. University of Amsterdam

Roetersstraat t5 . tOtB WB Amsterdam. The Netherlands

W.M. Lioen
Centre tor Mathematics and Computer Science

P. 0. Box 40 79. t 009 AB Amsterdam, The Netherlands

This document desc11bes a set of NUMVEC FORTRAN Library routines, dealing with the unique solution of

real linear systems. Presently , only highly optimized non-pcrtable implementations for the CYBER 200

se11es computer systems are included in the Library .

1980 Mathematics subject class1ficat1on (1985 revision) · 65V05. 65F05, 15A06

1982 CR Catego11es: 5.14

Keywords & Phrases: Gaussian el1m1nallon. LDU-decompcs1t1on , linear equations, sottware.

Note: The implementations are available in FORTRAN 200 (the CYBER 200 se11es FORTRAN, a superse1 of

standard FORTRAN including vector extensions) .

Repcrt NM-R861 4

Centre for Mathema11cs and Computer Science

P.O. Box 4079 , 1009 AB Ams1erdam, The Netherlands

***-Sim11/w11eous Lineur Eq11atiu11s INTRODUCTION - ***

Chapter***

Simultaneous Linear Equations

I. Scope of the Chapter

This chapter is concerned with the solution of the matrix equation AX

single vector or a matrix of multiple right hand sides.
B. where B may be a

2. Background to the problem

A set of linear equations may be written in the form

Ax = b

where the known matrix A is of shape (111 X 11). the known right hand vector b has 111 components.

and the required solution vector x has /1 components. There may also be p vectors

b,. i = 1.2. · · ·. p on the right hand side and the equation may then be written as

AX = B

the required matrix X having as its p col umns the solutions of Ax, = b,. i = 1,2. · · ·. p.

In the following we assume A to be a real square non singular matrix (i.e. rank(A) = /11

Ax = b has a unique solution .

11). so

In the Gaussian elimination case. the computation starts with the LOU decomposition

A = PLDUQ - 1
• where L and U are lower and upper triangular matrices. respectively, D is a

diagonal matrix and P and Q are row and column permutation matrices, respectively, chosen so as

to ensure that the decomposi tion is numerically stable. The solution is then obtained by solving in

succession the simpler equations

LDz = p - 1b

Uy= z

x = Qy

the first by forward substitution. the second by back substitution and the third simply by

Page I

91

92

INTRODUCTION - *** *"'*·Sim11/1a 11 eo11s L111ear t .'q1u11in11s

permutation of the dements of the so lution , ·ectn r.

The applica ti o n of rnmpkte pi,·oting (hoth nm and column interd1ange,). which 'iel(.b a ' table

a lgo rithm. ha, the di sadva ntage of e.\pe11' i,·e code. In 1971 Bu, inger publ i,hed an idea for calcu­

lating. with little extra cost. an upperbou nd for the grn\\·th facto r during Gau»ia n elimination

with partial pi rn ting (see [l j). If thi s upperbo und for the growth facwr become, too large. the

pi voting stra tegy can be switched to complete pivoting. so the etliciency o f parti a l pivo ting is com­

bined with the stability o f complete pirnting. This so-ca lled mixed pi voting stra tegy provide' the

user with a reasonable upperbound for the growth factor. 'o that an estima te of the e rror matrix

can be made (see [4 j) .

In the GauB-Jordan elimination case. the computa tion sta rt s with the diagonalization of the sys tem

AX = B by elementary transfo rmations. using a partial pivo ting scheme.

The p columns x of the solution matrix X are fo und by di viding by the di agonal o f the diagonal­

ized matrix and permuting the elements o f the so lution vector.

Due to rounding errors the computed solution x 0 . say. wi ll a lways be an approximation to the true

solution x bo th fo r Gaussian and Gaul3-Jo rdan elimination. This approxi mation can be sa ti sfac­

to ry. agreeing with x to severa l figures. but if the problem is ill-conditioned then x and x 0 may

have few o r even no fi gures in common.

A deta iled description on the algorithmic choices concerning the no rmaliza ti on o f D and the pivot­

ing strategy can be fou nd in [3].

2.1. References

[I] Businger. P.A .. Monitoring the numeri cal stabi lity of Gauss ian elimination . In : N umer-

ische Mathema tik 16. 1971. pp. 360-361.

[2] G o lub. G.H. and Van Loan. C.F.. Matrix computa tions. North Oxford Academic. 1983 .

[3] Hoffmann . W .. Solving linea r systems on a vector computer. to appear.

[4] Stewart. G.W .. Introduction to matrix computations. Academic Press. 1973.

3. Recommendations on Choice and Use of Available Routines

Since in exceptional cases partial pivo ting may yield useless results. even for well-conditioned

matrices. the user is advised to use CCRMCF. If it is known beforehand. that pa rti a l pivoting will

suffice. one can use CC RPCF.

GAUJOR should never be used just because of its capability of deali ng with multiple right hand

sides: if the problem is large enough the user should use a factori za tion routine (LURMMP or

LURMPC) followed by a call to SLDUC P or SLDUPC, respectively, to solve the equations for each

right hand side.
Only for 'small ' problems (up to order about 50 for the CYBER 205) the user might want to use

GAUJOR which. despite its somewhat grea ter complexity compared to Gaussian elimination, per­

forms rather well due to the fact that all vectors remain o f full length during every stage of the

algorithm.

The Black Box routines CCRMCF and CCRPCF both simply ca ll two general purpose routines and

are provided for convenience.

Warning: No particular paging scheme is implemented, the matrices A and C have to fit in the

working set in order to avoid thrashing (mortal paging).

Page 2 (last)

93

*** -Simulraneous Linear Eq1w1io11s CONTENTS - ***

Routine
name

Purp<»<:

Chapter ContC'nt~ - ***

Black Box Ro111i11es

These routines so lve the matrix e4uation AX = B

CCRMCF

CCRPCF

GAUJOR

CCRMCI' calcu la tes the approximate solu tion of a >et of real linear equations with a single

right hand side. Ax = h. by an LDU factorization method with mixed pivoting.

CCRPCF calculates the approxima te solution of a se t of real linear equations with a single

right hand side. Ax = h. by an LDU fac torization method with partial pivoting.

GAUJOR calcula tes the approxima te solut ion of a set of real linear equations with multi­

ple right hand sides. AX = B. by Gau/3-Jordan elimination with partial pivoting.

General Purpose Ro111ines
These routines solve the matrix equation AX = B

CPIND CPIND searches the element of maximum

(n - j + I) X (11 - j + l) submatrix of the /1 X 11

the submatrix corresponding with AJF

modulus (complete pivot) in the

matrix A with the upper left corner of

LURMMP LURMMP decomposes a real matrix into one diagonal and two triangular matrices by an

LDU factorization method with mixed pivoting.

LURMPC LURMPC decomposes a real matrix into one diagonal and two triangular matrices by an

LDU factorization method with partial pivoting.

SLDUCP SLDUCP calculates the approximate solution of a set of real linear equation; with a single

right hand side. Ax = b. where A has been decomposed using LURMMP.

SLDUPC SLDUPC calculates the approximate solution of a set of real linear equations with a single

right hand side. Ax = b. where A has been decomposed using LURMPC .

Page I (last)

95

••• - Simuilaneous Linear Eqwwvm CCRMCF

CCRMCF - NVMVEC FORTRAN Libra!)· Routine Document

I. Purpose

<CR!'.KI' calculates the apprnximate ,oJution of a set of real linear c4uations \\ith a ,ingk right

hand side. Ax = h. by an LDU factorization method with mixed pi\'oting ('ee [2j).

2. Specification

SUBROUTINE CC RMCF(A. IA. B. N. C. CPIV. RPIV .

+ EPS. GRWLIM. MAXNRM. UPBGRW. !FAIL)

C INTEGER IA. N. C PIV(N). RPIV(N). !FAIL

C REAL A(IA.N). B(N). C(N). EPS. GRWLIM, MAXNRM, UPBGRW

3. Description

Given a set of linear equations. Ax = b. the routine first decomposes A using an LDU factoriza­

tion with mixed pivoting: p - 1 A Q = LDU. where P and Q are permutation matrices, L is lower

triangular. D is diagonal and U is upper triangular. The diagonals are normalized according to:

L11 = U,, = D,~ 1

Partial pivoting by column interchanges will be used as long as the calculated upper bound for the

growth (see [I]) is less than a critical value, that equals G RWLIM X N X flAllx:· In practice. the

upper bound for the growth rarely exceeds the critical value if we choose GRWLIM properly (see [I]

and [4]). hence we will usually take advantage of the greater speed of partial pivoting (maximum

search order N - k + I in the k-th step). while in doubtful cases numerical difficulties will be recog­

nized and the process will switch to complete pivoting (maximum search order (N - k + I)2 in the

k-th step). The process will also switch to complete pivoting if the modulus of the pivot obtained

with partial pivoting is less than EPS.

The choice GRWLIM < N - 1 will result in complete pivoting only. while partial pivoting will be used

in every step if we choose G RWLIM > 21' - 11 x N - 1.

Usually. GRWLIM = 8 will give good results (see [4]).
The approximate solution x is found by forward substitution and backward substitution in

LD= = P - 1 h. U)' = = and x = Qy. where b is the right hand side.

4. References

[I] Businger. P.A .. Monitoring the numerical stability of Gaussian elimination. In: Numerische

Mathematik 16. 1971, pp. 360-361.

[2] Hoffmann. W. , Gaussian elimination algorithms on a vector computer. Report 85-10, Univer­

sity of Amsterdam, Department of Mathematics, 1985.

[3] Numerical Algorithms Group. NAG FORTRAN library manual - mark 11. 1984.

[4] Wilkinson. J.H .. Rounding errors in algebraic processing. Prentice Hall, 1963, Chapter 3. Sec­

tion 16.

[5] Wilkinson, J.H. and Reinsch. C., Handbook for Automatic Computation. Volume II, Linear

Algebra. Springer-Verlag, 1971, pp. 93-110.

Page 1

96

CCRMCF Si11111/11111£'011s Lill<'llr Eq11mio11s

5. Parameters

A - REAi. arrav of Dl~tE>:SIO>: (IA.p) where p ;;, >:.

Before entn. A ,hould contain the ekmcnt' of the real matri,_

On successful <:.xit. it " ·ill contain the LDU factoriLation \\ith the Jiagonab of/, and 1..; unuer­

stoou.

IA - J:-;IL(jl .R.
On entry. IA sp<:cilie, the lirst Jimen,ion or arra,· A as Jedared in the calling (sub)program

(IA ;;, N).
Unchanged on exit.

B - RlAL. array or DIMENSION at least (N).
Before entry. B should contain the elements of the right hand side.

Unchanged on exit. but see Section 11.

N - INTEGER.
On entry. N specifies the order or matrix A.
Unchanged on exit.

(" - REAi. array of DIMENSION at least (N).
On successful exit. c will contain the solution vector.

CPIV - INTEGER array of DIMENSION at least (N).
RPIV - INTEGER array of DIMENSION at least (N).

Used as working space.
(On successful exit, CPtV and RPIV will contain the pivotal column indices and the pivotal row

indices re;pectively.J

EPS - REAL
On entry. EPS must specify a small positive value used as threshold for singularity tests (e.g. the

machine precision: x02AAF).
Unchanged on exit.

GRWLJM - REAL
On entry. GRWLIM must specify a value which is used for controlling the pivoting strategy.

Usually GRWLIM = 8 will give good results. See also Section 3.

Unchanged on exit.

MAXNRM - REAL
On exit, MAXNRM contains the maximum norm llAll"' of the matrix argument.

l 'PBGRW - REAL
On exit, UPBGRW contains an upper bound for the growth factor. Usually, however, this will

be a crude overestimate.

!FAIL - INTEGER.

Page 2

Before entry. !FAIL must be assigned a value. For users not familiar with this parameter

(described in Chapter POi of [3]) the recommended value is 0.

Unless the routine detects an error (see Section 6), IF AIL contains 0 on exit.

••• - Sim11/1a11eous Linear Equations

6. Error indicators and warnings

Errors detected hy the routine:­

tl·Atl. = I
Failure in t.UR~1MP. the matrix A is 'ingular. po"ihl~ due w rounding error,.

7. Auxiliaf) routines

97

CCRMCF

This routine calls the NUMVEC Library routines ('PJND. l.URMMP. SLDUCP and POIAAt.

8. Timing

The time taken is approximately proportional to N3
.

T(ime) in seconds for various Non a CYBER 205 (I-pipe):

N

T (partial pivoting throughout)
T (complete pivoting from the beginning)

9. Storage

25
0.0016
0.0031

50
0.0057
0.0122

There are no internally declared arrays. but see Section 11.1.

10. Accuracy

100
0.0243
0.0550

200
0.1181
0.2171

400
0.6779
1.3704

The accuracy of the computed solution depends on the conditioning of the original matrix. For a
detailed error analysis see [4], page 107.

11. Further comments

If the routine is called with the same name for parameters B and c then the solution vector will
overwrite the right hand side.

11.1. Vectorization information

The routine is written in FORTRAN 200, making use of its vector syntax extensions. Special
call statements are used where appropriate (e.g. the pivot search is done with sign control).

The routine uses at most 2N+max{2N, r ~ min{65535. IA x N} l} words dynamic storage.

12. Keywords

Approximate Solution of Linear Equations.
LDU Factorization.
Real Matrix.
Single Right Hand Side.

13. Example

To solve the set of linear equations Ax = b where

A ~ [-!; -J: =il '" •• ~ P::J
Page 3

98

CC RM CF • • • - Si11111/w11eo11s Linear Eq11a1io11s

13. L Program le xl

c
C CCRMC~ lXA MPl .l PROGRAM ~XT

C :\t.:M\"EC 1986

(MARK I

c
PROGRAMME

REAL A(4.4). 8(6). C(6). WKSl(l8). WKS2(18).

+ EPS, G RWLIM. MAXN RM. UPBGRW

I NTEGER N IN. NOUT. I, N. J. IA. IFA l l.

DATA N I N 151. NOUT / 6 /

OPEN(UN IT= N IN, FILE= ' INPUT')

OPEN(UNIT= NOUT. FILE= 'ouTPUT")

READ (N IN,99999) {WKSl (I), l = 1.7)

W RITE (NOUT.99997) (WKSl (I). l = 1,6)

N = 3
READ (N IN,99998) ((A(l ,J).J = l ,N), l = l.N). (B(l), l = l.N)

IA= 4

EPS = X02AAF(XXXX)

GRWLJ M = 8 .

!FAIL= I

CALL CCRMCF(A. I A.B.N.C. WKS J. WKS2.EPS.GR WLJM.MAXNRM.UPBG R W.IF Al L)

WRITE (NOUT.99996) MAXNRM

IF (IFAI LNE.0) TH EN

W RITE (NOUT.99995) !FAI L

STOP

END IF

W RITE (NOUT.99994) (C(I).1 = l.N)

WRITE (NOUT.99993) UPBGRW

STOP

99999 FORM AT (6A4 . IA3)

99998 FORMAT (3F5.0)

99997 FORMAT (4 (l x /). I x , 5A4 , I A3 . "RESULTS ' /lx)

99996 FORMAT ("OMAXIMUM NORM OF MATRI X: ·, F5.0)

99995 FORMAT ("0ERROR I N CCRMCF !FAI L = ', 12)

99994 FORMAT ('0SOLUTIONS'/(IX. F4.I))

99993 FORMAT ('0UPPER BOUND FOR THE GROWTH FACTOR : ·, F7.4)

END

13.2. Program data

CCRMCF EXAMPLE PROGRAM DATA

33 16 72
-24 - 10 -57

-8 -4 -17
-359 281 85

Page 4

••• - Simultaneous L111ear Equa1w11s

13.3. Program results

CCRMCF EXAMPLE PROGRAM RESULTS

MAXIMUM NORM OF MATRIX : 72.

SOLUTIONS
1.0

-2.0
-5.0

UPPER BOUND FOR THE GROWTH FACTOR: 2.0370

99

CCRMCF

Page 5 (last)

101

••• - Si11111/11111eo11s Lineur Equwiuns CCRPCF

CCRPCF - NU'.\1VEC FORTRAN Libra~ Routine Document

I. Purpo.,c

<Tl<PCJ· calculate' the: approximate solution of a '<:t of r.:al linear equations with a ;, ingle right
hanJ >i<le. Ax = h. b~ an LDU factorization methoJ with partial pirnting (see [I]) .

2. Specification

SUBROUTINE CC RPCF(A. IA. B. N. C. PIV. lPS. If AIL)
C INTEGEI< IA. N. PIV(N). !FAIL
C REAi. A(IA.N). B(N). C(N). EPS

3. Description

Given a set of linear equations. Ax = h. 1he routine first deco mposes A using an LOU factoriza­
tion with partial pivoting by column interchanges: AP = LDU, where Pisa permutation matrix.
L is lower triangular. D is diagonal and U is upper triangular. The diagonals are normalized
according to : L,, = U,, = o;; 1

• The approximate solution x is found by forward substitution and
backward substitution in LDz = b. Uy = ~ and x = Py. where b is the right hand side.

4. References

[IJ Hoffmann. W .. Gaussian elimination algorithms on a vector computer. Report 85- 10. Univer­
sity of Amsterdam. Department of Mathematics. 1985.

[2] Numerical Algorithms Group. NAG FORTRAN library manual - mark 11. 1984.

[3] Wilkinson. J.H . and Reinsch. C.. Handbook for Automatic Computation. Volume II. Linear
Algebra . Springer-Yerlag. 1971. pp. 93-110.

5. Parameters

A - REAL array or DIMENSION (IA,p) where p ;;,,, N.
Before entry. A should contain the elements of the real matrix.
On successful exit. it will contain the LOU factorization with the diagonals of L and U under­
stood.

IA - INTEGER.
On entry. IA specifies the first dimension of array A as declared in the calling (sub)program
(IA ;;,,, N).
Unchanged on exit.

8 - REAL array or DIMENSION at least (N).
Before entry. e should contain the elements of the right hand side.
Unchanged on exit, but see Sectio n 11.

N - INTEGER.
On entry, N specifies the order of matrix A.
Unchanged on exit.

c - REAL array or DIMENSION at least (N).
On successful exit, c will contain the solution vector.

Page I

102

CCRPCF * * * - Sinutl1a1u!ot1s Lineur ElflltJFion.\·

PIV - INTEG ER array of DIMENS ION at leas t(:--:).
Used as working space.
(On successful exit. PJV will contain the pi vo tal co lumn indi..:es.)

EPS - REAi..
On entry. EPS must spec ify a small positive val ue u,eJ <1' threshold for si ngularity te,ts (e .g. the

machine precisi on : x02AAn.
Unchanged on exit.

!FAIL - INTEG ER.
Before en try. IFAIL must be assigned a value. For users not familiar with thi s pa rameter

(described in Chapter POi of [2]) the n:commended value is 0.
Unless the routine detects an error (see Section 6). If AIL contains 0 on exit.

6. Error indicators and warnings

Errors detected by the routine:­

IFAIL = I
Fai lure in LURMPC. the matrix A is singular, possibly due to rounding errors .

7. Auxiliary routines

This routine calls the NUMVEC Library routines LURMPC, SLD UPC and POIAAF.

8. Timing

The time taken is approximately proportional to N3 .

T(ime) in seconds for various Non a CYBER 205 (I-pipe) :

n

T
25

0.0014
50

0.0051
100

0.0232
200

0.1154
400

0.6705

9. Storage

There are no internally declared arrays, but see Section 11 . 1.

10. Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix . For a

detailed error analysis see [3), page 107.

11. Further comments

If the rou tine is called with the same name for parameters B and c then the solution vector will

overwrite the right hand side.

II. I . Vectorization inforrnation

Page 2

The routine is written in FORTRAN 200, making use of its vector syntax extensions. Special

call statements are used where appropriate (e.g. the pivotal column search is done with sign

control).
The routine explicitly uses N words dynamic storage.

*** - Simultaneous Linear Equa1ions

12. Ke~·words

Approximate Solution of Linear Equations.
LDU Factorization.
Real Matrix.
Single Right Hand Side.

13. Example

To solve the set of linear equations Ax = b where

16 72

A = - 24 [3J - 10 - 57 and b = 281

1

- 359

- 8 - 4 - 17

13.1. Program text

c
C CCRPCF EXAMPLE PROGRAM TEXT

C NUMVEC 1986

C MARK I

c
PROGRAMME

REAL A(4.4). 8(6). C(6). WKS(J8). EPS

INTEGER NIN , NOUT, I, N. J. IA, IFAIL

DATA NIN 15/, NOUT /6/

OPEN(UNIT= NIN , FILE= ' INPUT')

OPEN(UNIT= NOUT, FILE= ' OUTPUT')

READ (NIN.99999) (WKs(I), I = J.7)
WRITE (NOUT,99997) (WKS(I),I = 1,6)

N = 3

85

READ (NIN,99998) ((A(I.J),J = l.N),I = i ,N). (B(I), I = l.N)

IA= 4

EPS = X02AAF(XXXX)

IFAIL = I

CALL CCRPCF(A, IA, B, N, C, WKS, EPS, IFAIL)

IF (IFAIL.NE.0) THEN

WRITE (NOUT,99996) IFAIL

STOP

END IF

WRITE (NOUT.99995) (C(I),I= l,N)

STOP

99999 FORMAT (6A4, IA3)

99998 FORMAT (Jf5.0)

99997 FORMAT (4(lx /), Ix, 5A4,]A3, ' RESULTs ' /lx)

99996 FORMAT ('0ERROR IN CCRPCF IFAIL = ', 12)

99995 FORMAT ('0SOLUTIONS'/(IX, F4.l))
END

103

CCRPCF

Page 3

104

CCRPCF

13.2. Program data

CCRPCF EXAMPLE PROGRAM DATA
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85

13.3. Program results

CCRPCF EXAMPLE PROGRAM RESULTS

SOLUTIONS
1.0

- 2.0
-5.0

Page 4 (last)

~ ** - Si11w/1011eous Linear Ec1waio11s

105

* * * - Simulwmmus Li11e11r Eq11111io11s CPIND

CPIND - NUMVEC FORTRAN Librar) Routine Document

I. Purpose

CPl'.':D seard1c' the element of maximum moJulu, (complete pi\'ut) in the (11 - 1 -r I) x (11 - j + I)

;,ubmatrix of the 11 x. 11 matrix A with the upper ldt corner of the ;,ubmatrix rnrrcsponuing with

Aw

2. Specification

SUBROUTINE CPIND(A. IA. N. J . CIND. RIND. ACR. IFAJL)

C INTEGER IA. N. J. CJND. RIND. lfAIL
C REAi. A(tA.N). ACR

3. Description

CPIND searches the (n-j + I)*(n-j + I) submatrix starting in the (j.j)-th element of array A for the
element of maximum modulus (complete pivot). The most efficien t of the two following a lterna­

tives is chosen depending on an estimate of the timings: the first version works on vec to rs of maxi­

mal length: a bit-vector is used to skip those elements of A that do not belong to the submatri x:
the second version first searches every column of the submatrix for the element of maximum

modulus. and afterwards searches these elements for their maximum.

4. References

None.

5. Parameters

A - REAL array of DIMENSION (JA.p) where p ;;;. N.
Before entry. A should contain the elements of the real matrix.

Unchanged on exit.

IA - INTEGER.
On entry. IA specifies the first dimension of array A as declared in the calling (sub)program
(IA ;;,,, N).

Unchanged on exit.

N - INTEGER.
On entry. N specifies the order of matrix A.
Unchanged on exit.

J - INTEGER.
On ent ry. J specifies the upper left corner of the su'Jmatrix: A(J,J).
Unchanged on ex.it.

CIND - INTEGER.
RIND - INTEGER.

On ex.it. CIND and RIND will contain the column and row indices of the complete pivot element.

ACR - REAL
On ex.it. ACR will contain the value of the complete pivot element.

Page I

106

CPIND

IFAIL - INTEGER.

Unused.
JJ·AIL contains 0 on ~xit.

6. Error indicators and warnings

- Non~.

7. Auxiliary routines

None.

8. Timing

The time taken is approximately proportional to (N - J + 1)2 .

9. Storage

There are no internally declared arrays. but see Section 11.1.

10. Accuracy

Not applicable.

11. Further comments

None.

11.1. Vectorization information

• •• - Si11111/w11eo11.I' Linear Et111<1fio11.I'

The routine is written in FORTRAN 200, making use of its vector syntax extensions. Special

call statements are used where appropriate.

The routine uses at most max{2(N - J + I). r ~ min{65535.JA x (N - J+ 1))1} words dynamic

storage.

12. Keywords

Real Matrix.
Complete Pivoting.

13. Example

To search the element of maximum modulus in the 2 X 2 submatrix with the upper left corner

corresponding with A 22 , where

A = 1 - ~! - :~ - ~~1
- 8 - 4 - 17

Page 2

*** - Si11111/tu11eo11s Li11ear Equations

13.1. Program text

c
C CPIND EXA~1PLE PROGRA~I TEXT

NCMHC 1986
C MARK I
c

PROGRAMME

REAL A(4.4). WKSl(J8). ACR

INTEGER NIN. NOUT. I. N. J. IA. !FAIL CIND. RIND

DATA NIN 151. NOUT /6/

OPEN(UNIT= NIN. FILE= . INPtrr')

OPEN(UNIT= NOUT. FILE= ·ouTPUT')

READ (NIN.99999) (WKSl(I).I = J.7)
WRITE (NOUT.99997) (WKSl(I),I = 1.6)

N = 3
READ (NIN,99998) ((A(I.J),J= l.N).I = l.N)

IA = 4

J = 2
!FAIL=

CALL CPIND(A, IA. N, J. CIND. RIND. ACR. !FAIL)

IF (IFAIL.NE.0) THEN

WRITE (NOUT.99996) !FAIL

STOP

ENDIF

WRITE (NOUT.99995) CIND. RIND. ACR

STOP

99999 FORMAT (6A4.] A3)

99998 FORMAT (3F5.0)

99997 FORMAT (4(1x/). Ix, 5A4, IA3 • . RESULTS'llx)

99996 FORMAT COERROR IN CPIND !FAIL = ', 12)

99995 FORMAT ('0A('. 12. ', '. 12. ') = .. F5.0)

END

13.2. Program data

CPIND
33

-24

EXAMPLE PROGRAM DATA
16 72

-10 -57
-8 -4 -17

13.3. Program results

CPIND EXAMPLE PROGRAM RESULTS

A(2, 3) -57.

107

CPIND

Page 3 (last)

109

••• - Simulwneous Linear Equa1w11s GAUJOR

GAUJOR - NUMVEC FORTRAN Librar~ Routine Document

I. Purpose

GAUJOR calculates the approximate ,olution of a 'et of real linear equati<ms with multiple right

hand ,ides. AX = B. by Gau13-Jordan dimination with partial pinlling (see [I]).

2. Specification

SUBROUTINE GAUJOR(A. IA. B. IB. N. M. C. IC. DIAG. PIV. EPS.IFAll.)
C INTEGER IA. N. 18, IC. M. PIV(N). lfAIL
C REAL A(IA,N), B(IB.M). C(IC.M). DIAG(N). EPS

3. Description

Given a set of linear equations. AX = B, the routine first diagonalizes A using elementary

transformations with partial pivoting by rows. The partial pivoting is implemented without actu­

ally interchanging the rows.
The columns x of the solution X are found by dividing by the diagonal and permuting the rows of

x.

4. References

[I] Hoffmann. W .. Solving linear systems on a vector computer. to appear.

[2] Numerical Algorithms Group. NAG FORTRAN library manual - mark 11 , 1984.

[3] Wilkinson. J.H. and Reinsch. C.. Handbook for Automatic Computation. Volume II. Linear

Algebra. Springer-Verlag. 1971. pp. 93-110.

5. Parameters

A - REAL array of DIMENSION (IA.p) where p ;;;,. N.
Before entry, A should contain the elements of the real matrix.
The contents of A are altered on exit.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program

(IA ;;;,. N).
Unchanged on ex.it.

B - REAL array of DIMENSION (rn.p) where p ;;;,. M.
Before entry, B should contain the elements of the M right hand sides stored in columns.

Unchanged on ex.it, but see Section 11.

IB - INTEGER.
On entry, lB specifies the first dimension of array B as declared in the calling (sub)program

(18 ;;;,. N).

Unchanged on exit.

N - INTEGER.
On entry, N specifies the order of matrix A.
Unchanged on exit.

Page I

110

GAUJOR •• * - Si11111/1a11e11us Li11eur Ei111mio11s

M - INTEGER.
On entry. M specifie, the number of right hand sides.

Unchanged on exit.

c - REAi. array of DIMENSION (IC.p) where p ;;;;, ~l.

On successful exit. c will contain the ~1 ,olution vectors.

IC - lNTtGER.
On entry. IC specifies the first dimension of array c as declared in the calling (suh)program

(IC ;;;;, N).

Unchanged on exit.

DIAG - INTEGER array of DIMENSION at least (N).

Used as working space.

(On successful exit. DIAG will contain the non permuted elements of the diagonalized matrix A.)

PIV - INTEGER array of DIMENSION at least (N}.

Used as working space.
(On successfu l exit. PIV will contain the pivotal row indices.)

EPS - REAL.
On entry. EPS must specify a small posi tive value used as threshold for singularity tests (e.g. the

machine precision: x02AAF).

Unchanged on exit.

!FAIL - INTEGER.
Before entry. !FAIL must be assigned a value. For users not familiar with this parameter

(described in Chapter POi of [2]) the recommended va lue is 0.

Unless the routine detects an error (see Section 6). IF AIL contains 0 on exit.

6. Error indicators and warnings

Errors detected by the routine:­

IFAIL = I
The matrix A is singular. possibly due to rounding errors.

7. Auxiliary routines

This routine call s the NUMVEC Library routine POIAAF.

8. Timing

The time taken is approximately proportional to N3 .

T(ime) in seconds for various N on a CY BER 205 (I-pipe):

n
T

9. Storage

25
0.0012

50
0.0051

100
0.0249

200
0.1369

400
0.8649

There are no interna lly declared arrays. but see Section 11.1.

Page 2

111

*** - Sim111Ta11en11s Linear Equarivns GAUJOR

10. Accurac~

The accuracy of the computed solution depends on the conditioning of the original matrix. For a

detailed error analvsis 'ee [3]. page 107.

11. Further comments

If the routine is called with the same name for parameters B and c then the solution vectors will

overwrite the ri ght hand sides.

11.1. Vectorization information

The routine is written in FORTRAN 200. making use of its vector syntax extensions. Special

call statements are used where appropriate (e.g. the pivotal row search is done with sign con­

trol).
The routine explicitly uses N words dynamic storage.

12. Keywords

Approximate Solution of Linear Equations.
Gau13-Jordan elimination.
Multiple Right Hand Sides.
Real Matrix.

13. Example

To solve the set of linear equations AX B where

A = - 24 - 10 - 57 and I
33 16 72

B = 281
[

- 359

- 8 - 4 - 17

13.1. Program text

c
C GAUJOR EXAMPLE PROGRAM TEXT

C NUMVEC 1986

C MARK I
c

PROGRAMME

85

REAL A(4,4). B(6), C(6), WKSl(l8), WKS2(18). EPS

INTEGER NIN, NOUT, I. N, J, IA, !FAIL

DATA NIN 151. NOUT /6/

OPEN(UNIT= NIN. FILE= ' INPUT')

OPEN(UNIT= NOUT, FILE= 'OUTPUT ')

READ (NIN,99999) (WKSl(I),I= 1,7)

WRITE (NOUT,99997) (WKSl(I),I= 1,6)

N = 3
M=I
READ (NIN,99998) ((A(l,J),J = l ,N), l = I ,N), (B(l),l = l,N)

IA= 4

18 = 6
IC= 6

Page 3

112

GAUJOR • •• - Si11111/1a11eo11s Linear Eq11u1io11s

EPS = X02AAl·(XXXX)

!FAIL = I
CALI. GAL:JOR(A. IA. B. Ill. :'>. ~I. C. IC. WK S I. WKS2. EPS. !~All .)

IF (ll·Al l..NE.0) rHES

WRITE (NOUT.99996) !FAIL

STOP

ENI) IF

WRITE (NOUT.99995) (C(l).I= l.N)

STOP

99999 FORMAT (6A4, IA3)

99998 FORMAT (3F5.0)

99997 FORMAT (4(1x/). Ix, 5A4. I A3.
0

RESULTS'llx)

99996 FORMAT ('0ERROR I N GAUJOR !FAIL = '. 12)

99995 FORMAT ('0SOLUTIONS' / (IX, F4. I))

END

13.2. Program data

GAUJOR EXAMPLE PROGRAM DATA
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85

13.3. Program results

GAUJOR EXAMPLE PROGRAM RESULTS

SOLUTIONS
1.0

-2.0
-5.0

Page 4 (lasr)

113

*** - Simu/raneous Linear Equations LURMMP

LURMMP - NUMVEC FORTRAN Libra~ Routine Document

I. Purpose

LlJRMMP decomposes a real matrix into one diagonal and two triangular matrices by an LDU fac­
torization method with mixed pi voting (see [I]).

2. Specification

SUBROUTINE LURMMP(A, IA , N. CP IV, RPIV, EPS, GRWLIM, MAXNRM, UPBGRW, !FAIL)
C INTEGER IA, N, CPIV(N), RPIV(N), IFAIL
C REAL A(IA,N), EPS, GRWLIM, MAXNRM, UPBGRW

3. Description

The routine decomposes A using an LOU factorization with mixed pivoting: p - I AQ = LDU,
where P and Q are permutation matrices, L is lower triangular, D is diagonal and U is upper tri­
angular. The diagonals are normalized according to : L,; = U;, = D;j 1

Partial pivoting by column interchanges will be used as long as the calculated upper bound for the
growth (see (I)) is less than a critical value, that equals GRWLIM X N X llAlloo · In practice, the
upper bound for the growth rarely exceeds the critical value if we choose GRWLIM properly (see (I]
and [4]), hence we will usually take advantage of the greater speed of partial pivoting (maximum
search order N - k + 1 in the k-th step). while in doubtful cases numerical difficulties will be recog­
nized and the process will switch to complete pivoting (maximum search order (N - k + l)2 in the
k-th step). The process will also switch to complete pivoting if the modulus of the pivot obtained
with partial pivoting is less than EPS.
The choice GRWLIM < N- 1 will result in complete pivoting only, while partial pivoting will be used
ineverystepifwechooseGRWLIM > 2(N- li X N- 1•

Usually, GRWLIM = 8 will give good results (see [4)).

4. References

[l] Businger, P.A., Monitoring the numerical stability of Gaussian elimination. In: Numerische
Mathematik 16, 1971 , pp. 360-361.

[2] Hoffmann, W., Gaussian elimination algorithms on a vector computer. Report 85-10, Univer­
sity of Amsterdam, Department of Mathematics, 1985.

(3] Numerical Algorithms Group, NAG FORTRAN library manual - mark 11 , 1984.

(4] Wilkinson, J .H., Rounding errors in algebraic processing. Prentice Hall, 1963, Chapter 3, Sec­
tion 16.

[5] Wilkinson, J .H. and Reinsch, C., Handbook for Automatic Computation. Volume II , Linear
Algebra. Springer-Verlag, 1971, pp. 93-110.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;,, N.
Before entry, A should contain the elements of the real matrix.
On successful exit, it will contain the LOU factorization with the diagonals of L and U under­
stood.

Page I

114

LURMMP ••• · Si11111/u111eo11s Li11eur Eq1w1io11s

IA - INTEGER.

On en try. IA specifies the first dimension of array A •1' declared in the calling (suh)prograrn
(IA ;;,, N).

Unchanged on exi1.

N - INTlcGER.

On entry. N specifies the order of matrix A.

Unchanged on exit.

CPIV - INTEGER array of DIMENSION at least (N).

RPIV - INTEGER array of DIMENSION at least (N).

On successful exit. CP I V and RPIV will contain the pivotal column indices and the pivotal row

indices respectively.

EPS - REAL.

On entry. EPS must specify a small positive value used as threshold for singularity tests (e.g. the

machine precision: x02AAF).

Unchanged on exit.

GRWLIM - REAL.

On entry, GRWLIM must specify _a value which is used for controlling the pivoting strategy.
Usually GRWLIM = 8 will give good results. See also Section 3.
Unchanged on exit.

MAXNRM - REAL.

On exit, MAXNRM contains the maximum norm llAllcx: of the matrix argument.

UPBGRW - REAL.

On exit, UPBGRW contains an upper bound for the growth factor. Usually. however, this will

be a crude overestimate.

!FAIL - INTEGER.

Before entry, !FAIL must be assigned a value. For users not familiar with this parameter
(described in Chapter POi of [3)) the recommended value is 0.
Unless the routine detects an error (see Section 6), !FAIL contains 0 on exit.

6. Error indicators and warnings

Errors detected by the routine:­

IFAIL = I

The matrix A is singular. possibly due to rounding errors.

7. Auxiliary routines

This routine calls the NUMVEC Library routines CPIND and POIAAF.

8. Timing

The time taken is approximately proportional to N3.

9. Storage

There are no internally declared arrays, but see Section 11.1.

Page 2

115

••• - Sim11/ta11eous Linear Equations LURMMP

10. Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix . For a
detailed error analysis see [4]. page 107.

11. Further comment'

None.

11. 1. Vectorization information

The routine is written in FORTRAN 200. making use of its vector syntax extensions. Special
call statements are used where appropriate (e.g. the pivot search is done with sign control) .

The routine uses at most 2N + max{2N, r ~ min(65535.IA x N} 1} words dynamic storage.

12. Keywords

LDU Factorization.
Real Matrix .

13. Example

See SLDUCP.

Page 3 (last)

117

•• • - Sim11/1a11eo11s Linear Equmions LURMPC

LURMPC - NUMVEC FORTRAN Libra!} Routine Document

I. Purpose

LU R~PC decomposes a real matrix into one diagonal a nd two triangular matrice' by an LO U fac­

toriza tion method with partial pivoting (see [I j) .

2. Specification

SU BROUTINE LURMPC(A. IA . N. PIV. EPS. IFAIL)
C INTEGER IA, N. PIV(N). IFAIL
C REA!. A(IA,N). EPS

3. Description

The routine decomposes A using an LOU factorization with partial pivoting by column inter­

changes : AP = LDU, where Pisa permutation matrix , Lis lower triangular. Dis diagonal and U

is upper triangular. The diagonals are no rmalized according to: L,, = U,, = D,~ 1•

4. References

[I] Hoffmann, W .. Gaussian elimination algorithms on a vector computer. Report 85- 10. Univer­

sity of Amsterdam. Department of Mathematics. 1985.

[2] Numerical Algorithms Group. NAG FORTRAN library manual - mark 11. 1984.

[3] Wilkinson. J .H. and Reinsch. C.. Ha ndbook for Automatic Computation . Volume II . Linear

Algebra. Springer-Verlag. 1971. pp. 93-110.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;;., N.
Before entry. A should contain the elements o f the real matrix.

On successful exit. it will contain the LOU factorization with the diagonals of L and U under­

stood.

IA - INTEGER.
On entry. IA specifies the first dimension of array A as declared in the calling (sub)program

(IA ;;;;., N}.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the order of matrix A.
Unchanged on exit.

PIV - INTEGER array of DIMENSION at least (N).
On successful exit, PIV will contain the pivotal column indices.

EPS - REAL.
On entry, EPS must specify a small positive value used as threshold for singularity tests (e.g. the

machine precision: x02AAF).
Unchanged on exit.

Page I

118

LU RM PC *** - Sinw/1a11eous Lineur Equurions

!FAIL - INTEGER.

Before entry. IFAIL must be assigned a value. For users not familiar with this parameter
(descrihcd in Chapter POi of [2)) the recommended value is 0.
Unless the routine detects an error (sec: Section 6). IF AIL contains 0 on exit.

6. Error indicators and warnings

Errors detected hy the routine:­

IFAIL = I
The matrix A is singular. possibly due to rounding errors.

7. Auxiliary routines

This routine calls the NUMVEC Library routine P01AAF.

8. Timing

The time taken is approximately proportional to N3.

9. Storage

There are no internally declared arrays. but see Section 11.1.

10. Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix. For a
detailed error analysis see [3]. page 107.

ll. Further comments

None.

11.1. Vectorization infonnation

The routine is written in FORTRAN 200, making use of its vector syntax extensions. Special
call statements are used where appropriate (e.g. the pivotal column search is done with sign
control).
The routine explicitly uses N words dynamic storage.

12. Keywords

LOU Factorization.
Real Matrix.

13. Example

See SLDUPC.

Page 2 (last)

119

•• * - Simuilanevus Linear Equarions SLDUCP

SLDUCP - NUMVEC FORTRAN Libra~ Routine Document

I. Purpose

SLVUCP calculates the approximate solution of a set of real linear equations with a single right
hand side. Ax = h. where A has been decomposed using u; R:-.1~1P (see [2]).

2. Specification

SUBROUTINE SLDUCP(A. IA . B. N. C. CPIV. RPIV. !FAIL)
C INTEGER IA. N. CPIV(N). RPIV(N). !FAIL
C REAL A(IA,N), B(N), C(N)

3. Description

The routine solves Ax = b where A is real and b is the right hand side. The routine must be pre­
ceded by a call to LURMMP which calculates a permutation of the LDU factorization:
P - 1AQ = LDU.
The approximate solution x is found by forward substitution and backward substitution in
LD: = p - 1 h. Uy = z and x = Qy. where b is the right hand side.

4. References

[I] Businger, P.A. , Monitoring the numerical stability of Gaussian elimination. In: Numerische
Mathematik 16. 1971, pp. 360-361.

[2] Hoffmann, W., Gaussian elimination algorithms on a vector computer. Report 85-10, Univer­
sity of Amsterdam, Department of Mathematics, 1985.

[3] Numerical Algorithms Group. NAG FORTRAN library manual - mark 11 , 1984.

[4] Wilkinson, J.H., Rounding errors in algebraic processing. Prentice Hall. 1963, Chapter 3, Sec­
tion 16.

[5] Wilkinson, J.H. and Reinsch, C. , Handbook for Automatic Computation. Volume II , Linear
Algebra. Springer-Verlag, 1971 , pp. 93-110.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;.. N.
Before entry, A must contain the LDU decomposition. as given by LURMMP.
Unchanged on exit.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program
(IA;;,. N).
Unchanged on exit.

B - REAL array of DIMENSJON at least (N).
Before entry , B should contain the elements of the right hand side.
Unchanged on exit, but see Section 11.

Page 1

120

SLDUCP

N - INTEGER .

On entr>- :-.; specities the order of matrix A.

Unchanged on exit.

c - REAL array of DIMENSION at kast ('.').
On successful exit. c will contain the solution vector.

\PIV - INTEGER array of DIMENSION at least(:-.!).
RPIV - INTEGER array of DIMENSION at least (N).

**-* - Si11wltl111eous Linear Eq1uuions

Before entry cr1v and RPIV must contain the detail s of the column and row interchanges in the
LOU factorization as given by LURMMP.

Unchanged on exit.

!FAIL - INTEGER.

Unused.
!FAIL contains 0 on exit.

6. Error indicators and warnings

None.

7. Auxiliary routines

None.

8. Timing

The time taken is approximately proportional to N2 .

9. Storage

There are no internally declared arrays. but see Section 11.1.

10. Accuraq·

The accuracy of the computed solution depends on the conditioning of the original matrix. For a
detailed error analysis see [4], page 107.

11. Further comments

If the routine is called with the same name for parameters B and c then the solution vector will
overwrite the right hand side.

11.1. Vectorization information

The routine is written in FORTRAN 200, making use of its vector syntax extensions.
The routine explicitly uses N words dynamic storage.

12. Keywords

Approximate Soluti.on of Linear Equations.
LOU Factorization.
Real Matrix.
Single Right Hand Side.

Page 2

• • • - Simuliuneous Linear Equations

13. Example

To so lve the set of linear equations Ax = h wh~re

33 16 72 - 359

A - 24 - 10 - 57 and h 281

- 8 - 4 - 17 85

13.1. Program text

c
C SLDUCP EXAMPLE PROGRAM TEXT

C NUMVEC 1986

C MARK I
c

PROGRAMME

REAL A(4.4), B(6), C(6), WKSl(l8), WKS2(18).

+ EPS, GRWLIM, MAXNRM. UPBGRW

INTEGER NIN, NOUT, I, N. J , IA, IFAIL

DATA NIN / 5 /, NOUT 161

OPEN(UNIT= NIN . FILE=
0

INPUT
0

)

OPEN(UN IT= NOUT, FILE= . OUTPUT')

READ (NIN,99999) (WKSl(I).I= 1.7)

WRITE (NOUT,99997) (WKS)(I}.I= 1,6)

N = 3
READ (NIN,99998) ((A(l,J).J = J.N). I = I ,N). (B(l),1 = J.N)

IA = 4
EPS = x02AAF(XXXX)

GRWLIM = 8.
!FAIL= I

CALL LURMMP(A.IA,N ,WKSl,WKS2,EPS,GRWLIM,MAXNRM.UPBGRW,IFAIL)

WRITE (NOUT,99996) MAXNRM

IF (IFAIL.NE.0) THEN

WRITE (NOUT,99995) !FAIL

STOP

END IF

CALL SLDUCP(A, IA, B, N, C, WKSI , WKS2 , IFAIL)

WRITE (NOUT,99994) (C(I),I = l.N)

WRITE (NOUT,99993) UPBGRW

STOP

99999 FORMAT (6A4, IA3)

99998 FORMAT (3F5.0)

99997 FORMAT (4(lx/), Ix, 5A4, IA3,
0

RESULTS
0

I Ix)

99996 FORMAT ('0MAXIMUM NORM OF MATRIX : ', F5.0)

99995 FORMAT ('0ERROR IN SLDUCP IFAIL = ", 12)

99994 FORMAT ('0SOLUTIONS'/(IX, F4. l))

99993 FORMAT ('0UPPER BOUND FOR THE GROWTH FACTOR: ', F7.4)

END

121

SLDUCP

Page 3

122

SLDUCP

13.2. Program data

SLDUCP EXAMPLE PROGRAM DATA
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85

13.3. Program results

SLDUCP EXAMPLE PROGRAM RESULTS

MAXIMUM NORM OF MATRIX: 72.

SOLUTIONS
1.0

-2.0
-5.0

UPPER BOUND FOR THE GROWTH FACTOR: 2.0370

Page 4 (last)

* * * - Sinnt!taneous Linear Equations

123

•• • - Sim11/1aneo11s Linear Equations SLDUPC

SLDUPC - NUMVEC FORTRAN Libra~ Routine Document

I. Purpose

SLIJlJPC calculates the approximate solution of a set of real linear equations with a single right

hand side. Ax = h. where A has been decomposed using LlJRMPC (see [I]).

2. Specification

SUBROUTINE SLDUPC(A. IA. B. N. C. PIV. !FAIL)
C INTEGER IA. N. PIV(N), !FAIL
C REAL A(IA ,N). B(N). C(N)

3. Description

The routine solves Ax = b where A is real and b is the right hand side. The routine must be pre­

ceded by a call to LURMPC which calculates a column permutation of the LOU factorization :

AP = LDU.
The approximate solution x is found by forward substitution and backward substitution in

LDz = b. Uy = :: and x = Pr. where h is the right hand side.

4. References

[l] Hoffmann. W .. Gaussian elimination algorithms on a vector computer. Report 85-10. Univer­

sity of Amsterdam, Department of Mathematics, 1985.

[2] Numerical Algorithms Group. NAG FORTRAN library manual - mark I I. 1984.

(3] Wilkinson. J .H . and Reinsch. C. . Handbook for Automatic Computation. Volume II . Linear

Algebra. Springer-Yerlag, 1971. pp. 93-110.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;;., N.
Before entry. A must contain the LOU decomposition. as given by LURMPC

Unchanged on exit.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program

(IA ;;;;., N).
Unchanged on exit.

B - REAL array of DIMENSION at least (N).
Before entry, e should contain the elements of the right hand side.

Unchanged on exit, but see Section 11.

N - INTEGER.
On entry, N specifies the order of matrix A.
Unchanged on exit.

c - REAL array of DIMENSION at least (N}.
On successful exit, c will contain the solution vector.

Page I

124

SLDUPC **_* - Sin111/1a 11eous Linear Eqw11io11s

P l\i. I NTEGER arrav of [)l~I EN SION at leas t (N).

Bdore entry. PI\. must contain deta ib 0f the colum n in1 .:rchanges in 1he LD LJ factnri za ti <Hl as

gi\'en by l. t.: R~IPC.

Unchanged on e.\it.

l h \11 • INTEGE R.

Unused.
ll· AII. contains 0 <' 11 ex it.

6. Error indicators and warnings

None.

7. Auxiliary routines

None.

8. Timing

The time taken is approximately proportional to N2.

9. Storage

There are no internally declared arrays. but see Section 11 .1.

10. Accuracy

The accuracy of the computed solution depends on the cond it ioning of the original matri x. For a

deta il ed error analysis see [3). page 107.

11. Further comments

If the routine is called with the same name fo r parameters B and c then the solution vector will

overwrite the right hand side.

11 .1. Vectorization information

The routine is written in FORTRAN 200. making use of its vector syntax ex tensions.
The routine explicitly uses N words dynamic storage.

12. Keywords

Approximate Solution of Linear Equations.
LDU Factorization.
Real Matrix .
Single Right Hand Side.

13. Example

To solve the set of linear equations Ax = b where

[

33 16 721
A = - 24 - 10 - 57

- 8 - 4 - 17 1
-3591

and b = 2:~

Page 2

••• - Si11111/1a11eo11s Linear Equations

13.1. Program text

('

(' Sl.DU'C EXA~IPl.E PROGR.UI TEX r

C :-;L·M\K 1986

c ~!ARK I
c

PROGRAMME

REAL A(4.4). 8(6). C(6), WKS(18). EPS

INTEGER NIN. NOUT. I. N, J. IA. !FAIL

DATA NIN / 5 / . NOUT / 6 /

OPEN(UNIT= NIN. FILE= . INPUT")

OPEN(UNIT= NOUT. FILE= ·ouTPuT')

READ (NIN,99999) (WKS(l).I= 1,7)

WRITE (NOUT,99997) (WKS(l).I = 1.6)

N = 3
READ (NIN ,99998) ((A(l.J),J = l.N),l = l.N). (B(l).1 =] ,N)

IA= 4

EPS = X02AAF(XXXX)

!FAIL= I
CALL LURMPC(A, IA, N, WKS, EPS. !FAIL)

IF (IFAIL.NE.0) THEN

WRITE (NOUT.99996) !FAIL

STOP

END IF

CALL SLDUPC(A, IA, B, N, C. WKS, !FAIL)

WRITE (NOUT,99995) (C(l),1 = l.N)

STOP

99999 FORMAT (6A4. IA3)

99998 FORMAT (3F5 .Q)

99997 FORMAT (4(lx/). Ix, 5A4. IA3. ' RESULTs·/lx)

99996 FORMAT ('0ERROR IN SLDUPC !FAIL = ·• 12)

99995 FORMAT ('OSOLUTIONs· / (Ix. F4 . I))

END

13.2. Program data

SLDUPC EXAMPLE PROGRAM DATA
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85

125

SLDUPC

Page 3

126

SLDUPC

13.3. Program results

SLDUPC EXAMPLE PROGRAM RESULTS

SOLUTIONS
1.0

-2.0
-5.0

Page 4 (last)

"'** - Si111ulta11~011., Linear EtjlWtions

NUMVEC FORTRAN Library manual

Chapter: Simultaneous Linear Equations

CHAPTER VIII

reprint of NM-R8712

CWI, Amsterdam, 1987

128

NUMVEC FORTRAN Library manual

Chapter: Simultaneous Linear Equations

Update #1

W. Hoffmann

Department of Mathematics. University of Amsterdam

Roetersstraat t 5, 1018 WB Amsterdam, The Netherlands

This document describes two NUMVEC FORTRAN Library routines, INVGJ and GJPCF.

INVGJ calculates the approximate inverse of a real square matrix by Gauf}-Jordan elimination with partial

pivoting using column interchan9es.

GJPCF calculates the approximate solution of a set of real linear equations with multiple right hand sides,

AX = B. by Gauf}-Jordan elimination with partial pivoting using column interchanges. GJPCF replaces rou­

tine GAUJOR, documented in Report NM-R8614, May 1986.

1980 Mathematics subject classification (1985 revision): 65V05, 65F05, 15A06

1982 CR Categories: 5.14.

Key Words & Phrases: Gauf}-Jordan elimination , linear equations, software.

Note: The implementations are available in FORTRAN 200 (the CYBER 200 series FORTRAN, a superset of

standard FORTRAN including vector extensions).

Report NM-R8712
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

129

•••-Simultaneous Linear Equations GJPCF

GJPCF - NUMVEC FORTRAN Library Routine Document

I. Purpose

GJPCF calculates the approximate solution of a set of real linear equations with multiple right hand
sides, AX = B. by GauB-Jordan elimination with partial pivoting using column interchanges (see
[I)).

2. Specification

SUBROUTINE GJPCF(A, IA, B, 18, N. M, C, IC, DIAG , PIV, EPS,IFAIL)

C INTEGER IA, N, 18, IC, M, PIV(N), IFAIL

C REAL A(IA,N), 8(18,M), c(IC,M), DIAG(N), EPS

3. Description

Given a set of linear equations, AX = B, the routine firstly diagonalizes A using elementary
transformations with partial pivoting by column-interchanges. The columns of X are found by
dividing by the diagonal and permuting the rows of X.
The columns x of the solution X are found by dividing by the diagonal and permuting the rows of
x.

4. References

[I) Dekker, T.J. and Hoffmann, W., Rehabilitation of the Gauss-Jordan algorithm; Report 86-28,
Math Inst., Univ of Amsterdam, 1986.

[2) Numerical Algorithms Group, NAG FORTRAN library manual - mark 11 , 1984.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;:;,, N.

Before entry, A should contain the elements of the real matrix.
The contents of A are altered on exit.

IA - INTEGER.

On entry, IA specifies the first dimension of array A as declared in the calling (sub)program
(IA ;:;,, N).
Unchanged on exit.

B - REAL array of DIMENSION (IB,p) where p ;:;,, M.

Before entry, e should contain the elements of the M right hand sides stored in columns.
Unchanged on exit, but see Section 11.

18 - INTEGER.

On entry, 10 specifies the first dimension of array B as declared in the calling (sub)program
(18 ;:;,, N).

Unchanged on exit.

N - INTEGER.

On entry, N specifies the order of matrix A.

Unchanged on exit.

Page 1

130

GJPCF

M - INTEGER.
On entry, M specifies the number of right hand sides.
Unchanged on exit.

c - REAL array of DIMENSION (IC,p) where p ;:;. M.

On successful exit, c will contain the M solution vectors.

IC - INTEGER.

***-Simultaneous Linear Equations

On entry, IC specifies the first dimension of array c as declared m the calling (sub)program

(IC;:;. N).
Unchanged on exit.

DIAG - INTEGER array of DIMENSION at l~ast (N).
Used as working space.
(On successful exit, DIAG will contain the permuted elements of the diagonalized matrix A.)

PIV - INTEGER array of DIMENSION at least {N).
Used as working space.
(On successful exit, PIV will contain the pivotal column indices.)

EPS - REAL.

On entry, EPS must specify a small positive value used as threshold for singularity tests (e.g. the

machine precision (x02AAF) times a quantity that reflects the order of magnitude of the matrix,

like a norm of the matrix).
Unchanged on exit.

IFAIL - INTEGER.
Before entry, IFAIL must be assigned a value. For users not familiar with this parameter

(described in Chapter POi of [2)) the recommended value is 0.
Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6. Error indicators and warnings

Errors detected by the routine:­

IFAIL = k
The matrix A is singular, possibly due to rounding errors; in the k-th stage of the elimination

process the pivot was less than EPS.

7. Auxiliary routines

This routine calls the NUMVEC Library routine POIAAF.

8. Timing

The time taken is approximately proportional to N3
•

T(ime) in seconds for various Non a CYBER 205 (I-pipe):

N

T

9. Storage

25
0.0013

50
0.0053

100
0.0252

200
0.1394

400
0.8739

There are no internally declared arrays, but see Section 11.1.

Page 2

131

•••-Simultaneous Linear Equations GJPCF

10. Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix. For a
detailed error analysis see [I].

II. Further comments

If the routine is called with the same name for parameters e and c then the solution vectors will
overwrite the right hand sides.

11.1. Y ectorization infonnation

The routine is written in FORTRAN 200, making use of its vector syntax extensions. Special
call statements are used where appropriate
The routine explicitly uses N words dynamic storage.

12. Keywords

Approximate Solution of Linear Equations.
GauB-Jordan elimination.
Multiple Right Hand Sides.
Real Matrix.

13. Example

To solve the set of linear equations AX = B where

A = 1 - ~! - :~ - ~~ and B = 1 - ~~~1
- 8 - 4 - 17 85

13.1. Program text

c
C GJPCF EXAMPLE PROGRAM TEXT

C NUMYEC] 987

c MARK I
c

PROGRAMME

REAL A(4,4), e(6), c(6), WKSl(J8), WKS2(18), EPS

INTEGER NIN, NOUT, I, N, J, IA, IFAIL

DATA NIN /5/, NOUT /6/
OPEN(UNIT= NIN, FILE= 'INPUT')

OPEN(UNIT= NOUT, FILE= ' OUTPUT ')

READ (NIN,99999) (WKSl(I),I = 1,7)

WRJTE (NOUT,99997) (WKSl(I),I = J,6)
N = 3
M=I

READ (NIN,99998) ((A(I,J),J = l ,N),I =I ,N), (B(I),I = l ,N)

IA= 4

18 = 6
IC= 6
EPS = X02AAF(XXXX)

Page 3

132

GJPCF . •••-Simultaneous Linear Equations

!FAIL = I

CALL GJPCF(A, IA, B, IB, N, M, C, IC, WKSI, WKS2, EPS, !FAIL)

IF (IFAILNE.0) THEN

WRITE (NOUT,99996) !FAIL

STOP

END IF

WRITE (NOUT,99995) (C(l),I= l,N)

STOP

99999 FORMAT (6A4, IAJ)

99998 FORMAT (3F5.0)

99997 FORMAT (4(lx/), Ix, 5A4, IA3, ' RESULTS' I Ix)

99996 FORMAT ('0ERROR IN GJPCF IFAIL = ·, 12)

99995 FORMAT ('0SOLUTIONS'/(IX, F4.J))

END

13.2. Program data

GJPCF EXAMPLE PROGRAM DATA
33 16 72

-24 -10 -57
-8 -4 -17

-359 281 85

13.3. Program results

GJPCF EXAMPLE PROGRAM RESULTS

SOLUTIONS
1.0

-2.0
-5.0

Page 4 (last)

133

***-Simultaneous Linear Equations INVGJ

INVGJ - NUMVEC FORTRAN Library Routine Documenl

I. Purpose

INVGJ calculates the approximate inverse of a square real matrix 'in situ" by GauB-Jordan elimina­

tion with partial pivoting using column interchanges (see [I)).

2. Specification

SUBROUTINE INYGJ(A, IA, N, DIAG, PIV, EPS,IFAIL)

C INTEGER IA, N, PIV{N), IFAIL
C REAL A(IA,N), DIAG(N), EPS

3. Description

The inverse of the given real matrix A is constructed by accumulating the GauB-Jordan transfor­

mations that diagonalize A. Partial pivoting by column interchanges is used throughout.

The result is divided by the calculated diagonal matrix and by the inverse of the permutation

matrix, that corresponds with the column interchanges.

4. References

[I) Dekker, T.J. and Hoffmann, W., Rehabilitation of the Gauss-Jordan algorithm; Report 86-28,

Math Inst., Univ of Amsterdam, 1986.

(2) Numerical Algorithms Group, NAG FORTRAN library manual - mark 11 , 1984.

5. Paramelers

A - REAL array of DIMENSION (IA,p) where p ;;,, N.

Before entry, A should contain the elements of the real matrix.
On successful exit, A contains the inverse matrix.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program

(IA ;;,, N).
Unchanged on exit.

N - INTEGER.
On entry, N specifies the order of matrix A.
Unchanged on exit.

DIAG - INTEGER array of DIMENSION at least (N).
Used as working space.
(On successful exit, DIAG will contain the permu.ed elements of the diagonalized matrix A.)

PIV - INTEGER array of DIMENSION at least (N}.
Used as working space.
(On successful exit, PIV will contain the pivotal column indices.)

EPS - REAL.
On entry, EPS must specify a small positive value used as threshold for singularity tests (e.g. the

machine precision (x02AAF) times a quantity that reflects the order of magnitude of the matrix,

like a norm of the matrix).

Page 1

134

INVGJ ***-Simultaneous Linear Equations

Unchanged on exit.

!FAIL - INTEGER.
Before entry, !FAIL must be assigned a value. For users not fami liar with this parameter

(described in Chapter POi of (2]) the recommended value is 0.

Unless the routine detects an error (see Section 6), !FAIL contains 0 on ex.it.

6. Error indicators and warnings

Errors detected by the routine:­

IFAIL = k
The matrix. A is singular, possibly due to rounding errors; in the k-th stage of the elimination

process the pivot was less than EPS.

7. Auxiliary routines

This routine calls the NUMVEC Library routine POIAAF.

8. Timing

The time taken is approximately proportional to N3 •

T(ime) in seconds for various Non a CYBER 205 (I-pipe):

N

T

9. Storage

25
0.0023

50
0.0098

100
0.0484

200
0.2719

400
1.7230

There are no internally declared arrays, but see Section I I. I.

10. Accuracy

The accuracy of the computed solution depends on the conditioning of the original matrix.. For a

detailed error analysis see [I}.

11. Further comments

None.

11.1. Vectorization infonnation

The routine is written in FORTRAN 200, making use of its vector syntax extensions. Special

call statements are used where appropriate.

The routine explicitly uses N words dynamic storage.

12. Keywords

Inversion
GauB-Jordan elimination.
Real Matrix..

Page 2

•••-Simultaneous Linear Equations

13. Example

To find the inverse of the 3 X 3 matrix:

I
33 16 72

- 24 - 10 -57

-8 - 4 - 17

13.1. Program text

c
C JNVGJ EXAMPLE PROGRAM TEXT

C NUMVEC 1987

C MARK I
c

PROGRAMME

REAL A(5,5), WKSl(7), WKS2(7), EPS

INTEGER NIN, NOUT, I, N, J, IA, IFAIL

DATA NIN /5/, NOUT/6/

OPEN(UNIT= NIN, FILE= 'INPUT')

OPEN(UNIT=NOUT, FILE= 'OUTPUT')

READ (NIN,99999) (WKSl(I),1=1,7)

WRITE (NOUT,99997) (WKSl(I),1= 1,6)

N = 3
READ (NIN,99998) ((A(l,J),J= l,N),1= l,N}

IA= 5

EPS = X02AAF(XXXX)

!FAIL= I

CALL INVGJ (A, IA, N, WKSI, WKS2, EPS, IFAIL)

IF (IFAIL.NE.0} THEN

WRITE (NOUT,99996) IFAIL

STOP

END IF

WRITE (NOUT,99995) ((A(l,J),J = l,N},1 = i,N)

STOP

99999 FORMAT (6A4, IA3)

99998 FORMAT (3F5.0)

99997 FORMAT (4(lx/), Ix, 5A4, IA3, 'RESULTS' I Ix)

99996 FORMAT ('0ERROR IN INVGJ IFAIL = ', 12)

99995 FORMAT ('OJNVERSE' /(IX, 3Fi0.4))

END

13.2. Program data

INVGJ EXAMPLE PROGRAM DATA
33 16 72

-24 -10 -57
-8 -4 -17

135

INVGJ

Page 3

136

INVGJ

13.3. Program results

INVGJ EXAKPLE PROGRAK RESULTS

INVERSE
-9.6667 -2.6667 -32.0000

8.0000
2.6667

Page 4 (last)

2.5000 25.5000
0.6667 9.0000

• •* -Simultaneous Linear Equations

NUMVEC FORTRAN Library manual

Chapter: Simultaneous Linear Equations

CHAPTER IX

jointly written with: K. Potma

reprint of NM-R8903

CWI, Amsterdam, 1989

138

NUMVEC FORTRAN Library manual

Chapter: Simultaneous Linear Equations

W. Hoffmann, K. Potma,
Department of Computer Systems

Faculty of Mathematics and Computer Science
University of Amsterdam

Kruislaan 409, t098 SJ Amsterdam, The Netherlands

This document describes a set of NUMVEC FORTRAN Library routines, dealing with the full-rank linear

least-squares problem and the orthogonal basis problem. In particular, it contains a subroutine for calculat­

ing the factors of a QR decomposition with a compactly stored orthogonal factor. This storage scheme is

customary when using Householder reflections. Moreover, it contains subroutines for calculating the pro­

duct of such a coded orthogonal matrix (or its transposed) with a vector and a subroutine for calculating

the explicit form of this orthogonal matrix .

1980 Mathematics subject classification (1985 revision): 65F20, 65V05, 15A23.

1982 CR Categories: 5.14.

Keywords & Phrases: least squares problems, orthogonal basis problem, QR Decomposition. Householder

reflections.

Note: The implementations are available in FORTRAN 200 (the CYBER 200 series FORTRAN, a superset of

standard FORTRAN including vector extensions).

Report NM-R8903
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

139

***-Simultaneous Linear Equations EXPLQ

EXPLQ • NUMVEC FORTRAN Library Routine Document

I. Purpose

EXPLQ calculates the m X n matrix Q from the QR factorization as calculated by HSHVOX, in its

explicit form.

2. Specifications

SUBROUTINE EXPLQ(A, Q, IA, M, N, w)
C INTEGER IA, M, N

C REAL A(IA, N), Q(IA, N), W{N)

3. Description

The sequence of Householder reflections that defines matrix Q is applied, in reverse order, to the

identity matrix of appropriate size to form matrix Q.

4. References

None.

5. Parameters

A • REAL array of DIMENSION (1A,p) where p ;;;;. N.

Before entry, A should contain in its lower trapezoidal part the Householder vectors as calcu­

lated by HSHVOX.

Unchanged on exit.

Q. REAL array of DIMENSION (1A,p) where p ;;;;. N.

On exit Q contains the m X n orthogonal matrix defining the QR factorization of A as calcu­

lated by HSHVOX.

IA • INTEGER.

On entry, IA specifies the first dimension of arrays A and Q as declared in the calling

(sub)program (IA ;;;;. M).

Unchanged on exit.

M ·INTEGER.

On entry, M specifies the number of rows of matrices A and Q.

Unchanged on exit.

N ·INTEGER.

On entry, N specifies the number of columns of matrices A and Q.

Unchanged on exit.

w • REAL array of DIMENSION at least (M).

Used as work space.

6. Error indicators and warnings

None.

Page I

140

EXPLQ u•-Simultaneous Linear Equations

7. Auxiliary routines

No auxiliary routines are used.

8. Timing

The time taken is proportional to MN2 and is approximately equal to the time of HSHVOX for the

same sizes of M and N.

9. Storage

There are no internally declared arrays.

10. Accuracy

The measure of orthogonality, llQT Q- 111 2 , is roughly equal to machine-precision.

11. Further comments

None.

11.1. Vectorization infonnation

The routine is written in FORTRAN 200, making use of its vector syntax extensions.

12. Keywords

Orthogonal basis.
QR factorization.

13. Example

To calculate an orthogonal basis for the columnspace of matrix A where

2

A
0 - I

2 3

0

13.1. Program text

c

Page 2

C ORTBAS EXAMPLE PROGRAM TEXT

C NUMVEC 1988
c MARK I
c

PROGRAM ORTBAs(OUTPUT, T APE6 =OUTPUT)

REAL A(4,3), Q(4,3), DIAGR(3), wl(3), w2(4)

INTEGER M, N, I, 1, NZER, NMAX

DATA ((A(l,J),J= 1,3),1= 1,4)

+ I I., 2., I.,
+ I., 0., - I.,
+ 1., 2., 3.,

***-Simultaneous Linear Equations

+ I., 0., I. I
M = 4
N = 3
NMAX = 4
WRITE(6,99996)
DO 40 I= I, M

WRITE(6,99997)(A(1,J),J = I, 3)

40 CONTINUE
CALL HSHVOX(A, NMAX, M, N, DIAGR, W2, 0, NZER)

CALL EXPLQ(A, Q, NMAX, M, N, wJ)

WRITE(6,99998)
DO 50 I= I , M

WRITE(6,99999)(Q(I,J),J = I , 3)
50 CONTINUE

STOP
99996 FORMAT ('!ORTHOGONAL BASIS PROGRAM'f'0MATRIX A')

99997 FORMAT (3(1x,F7.3))
99998 FORMAT ('0cALCULATED BASIS: ')

99999 FORMAT (3(JX,F7.3))
END

13.2. Program results

ORTHOGONAL BASIS PROGRAM

MATRIX A
1.000 2.000 1.000
1.000 0.000 -1.000
1.000 2.000 3.000
1.000 0.000 1.000

CALCULATED BASIS:
0.500 0.500 0.500
0.500 -0.500 0.500
0.500 0.500 -0.500
0.500 -0.500 -0.500

141

EXPLQ

Page 3 (last)

143

•••-Simultaneous Linear Equations HSHVOX

HSHVOX - NUMVEC FORTRAN Library Routine Document

I. Purpose

HSHVOX calculates a QR-factorization of a matrix by means of Householder-reflections.

2. Specifications

SUBROUTINE HSHVOX(A, IA, M, N, DIAGR, W , IP, NZER)
C INTEGER IA, M, N, IP, NZER
C REAL A(IA, N), DIAGR(N), W{M)

3. Description

Given an m X n matrix A , m ;;;;. n, a factorization A = QR is calculated where Q is m X n
orthogonal and R is n X n upper triangular. The routine uses Householder's method with optional
scaling of the columnvectors for protection against overflow.
Matrix Q is delivered in factorized form, each factor being defined by the appropriate 'House­
holder vector' . If the diagonal of R contains p (say) entries equal to zero, then the rank of matrix
A is at most n- p.

4. References

(!] Golub, G .H ., Van Loan, C.F., Matrix Computations, North Oxford Academic, Oxford, 1983.

[2] Hoffmann, W., Definition and use of Householder reflections, Report CS-88-05, University of
Amsterdam, Department of Computer Systems, 1988.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;;. N.
Before entry, A should contain the elements of the real matrix.
On successful exit, it will contain, in its lower trapezoidal part, the Householder vectors
defining the reflections applied and, in its strictly upper triangular part the elements of the
strict upper triangle of the calculated matrix R.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program
(IA ;;;;. M).
Unchanged on exit.

M - INTEGER.
On entry, M specifies the number of rows of matrix A.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the number of columns of matrix A.
Unchanged on exit.

DIAGR - REAL array of DIMENSION at least (N).
On successful exit DIAGR will contain the diagonal of R.

w - REAL array of DIMENSION at least (M).

Used as working space.

Page 1

144

HSHVOX ***-Simultaneous Linear Equations

IP - INTEGER value.
If IP has the value - I, then Euclidean norms are calculated without overflow protection. This

causes the subroutine to be less robust, but may save some processing-time.

If IP has a value different from - I , then Euclidean norms are calculated with overflow protec­

tion by appropriate intermediate scaling.

NZER - INTEGER.

If IP is different from - 1, then on output NZER is the number of zeroes in DIAGR; if IP equals

- 1 then NZER becomes zero.

6. Error indicators and warnings

If the routine is used in its robust version, i.e. IP 1' - 1, then the number of zeroes on R's diago­

nal is calculated. If this number is greater than 0 then matrix R is singular. It should be stressed

that the reverse is not true; for example, a matrix R with exclusively ones on the diagonal and a

small norm may be close to a singular matrix.

7. Auxiliary routines

No auxiliary routines are used.

8. Timing

The time taken is approximately proportional to MN2 .

Time in seconds for various M and N on a CYBER 205 (2-pipe) with IP = - I:

N = 25 N = 50 N = 100 N = 200

M = 50
M = 100
M = 200

0.0019
0.0024
0.0034

0.0070
0.0089
0.0129

0.0321
0.0478 0.1684

Time in seconds for various M and N on a CYBER 205 (2-pipe) with IP 1' - 1:

N = 25 N = 50 N = 100 N = 200

M = 50
M = 100
M = 200

9. Storage

0.0021
0.0027
0.0038

0.0073
0.0093
0.0135

0.0328
0.0490

There are no internally declared arrays.

to_ Accuracy

*

0.1703

The measurement for orthogonality of Q, llQTQ-1112, is small within working precision and the

residual llA -QR 11 2 I llA 11 2 is equally small.

11- Further comments

None.

Page 2

145

••*-Simultaneous Linear Equations HSHVOX

I I. I. Vectorization information

The routine is written in FORTRAN 200, making use of its vector syntax extensions.

12. Keywords

Householder reflection.
QR factorization.
Overdetermined systems.

13. Example

See EXPLQ.

Page 3 (last)

147

••*-Simultaneous Linear Equations LINLSQ

LINLSQ - NUMVEC FORTRAN Library Routine Document

1. Purpose

LINLSQ calculates the least-squares solution of a full-rank overdetermined linear system by means
of a QR-factorization and the solution of a triangular system.

2. Specifications

SUBROUTINE LINLSQ(A, IA, M, N, B, X, W , RES, NZER)

C INTEGER IA, M, N, NZER

C REAL A(IA, N), B(M), X(M), W(M + N), RES

3. Description

Given a linear system with not more unknowns than equations, an attempt is made to calculate its
least-squares solution. First the QR factorization of the coefficient matrix A is calculated using
Householder reflections.
If none of the diagonal elements of R is zero, then the unique solution is calculated by means of
back substitution with the triangular .matrix R.
Moreover, the norm of the residual vector is calculated. For a well-posed problem, this norm
should be considerably less than the norm of the original right-hand side.
If one or more diagonal elements of R are zero, then no solution is delivered and the number of
zeroesjs reported ; in that case the user is advised to calculate a minimal-norm solution by means
of singular value decomposition as is performed by NUMVEC routine LSQMNS ; this chapter.

4. References

[l] Golub, G.H., Van Loan, C.F., Matrix Computations, North Oxford Academic, Oxford, 1983.

[2] Hoffmann, W., Definition and use of Householder reflections, Report CS-88-05, University of
Amsterdam, Department of Computer Systems, 1988.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;. N .

Before entry, A should contain the elements of the real matrix.
On exit, it will contain information for the QR factorization as calculated by HSHVOX.

IA - INTEGER.

On entry, IA specifies the first dimension of array A as declared in the calling (sub)program
(IA;;;,, M).

Unchanged on exit.

M ·INTEGER.

On entry, M specifies the number of rows of matrix A.

Unchanged on exit.

N - INTEGER.

On entry, N specifies the number of columns of matrix A.

Unchanged on exit.

B - REAL array of DIMENSION at least (M).

Before entry, B should contain the elements of the right hand side.

Page I

148

LINLSQ ~·*-Simultaneous Linear Equations

Unchanged on exit, but see section 11.

x - REAL array of DIMENSION at least (M).

On exit it will contain the solution vector x in its first N elements.

w - REAL array of DIMENSION at least (M + N).

Used as working space.

RES - REAL.

On exit, RES contains the norm of the residual: ll s - AXll2 .

NZER - INTEGER variable.
On output NZER contains the number of zero diagonal elements that has been detected during

the QR factorization.

6. Error indicators and warnings

If NZER is larger then zero, then no solution is calculated; the rank of the matrix is less than or
equal to N - NZER. The use of LSQMNS is advised.

7. Auxiliary routines

This routine uses the NUMVEC Library routines HSHVOX, MULQTX, and LSSOLU.

8. Timing

The time taken is approximately proportional to MN2.

Time in seconds for various M and N on a CYBER 205 (2-pipe):

N = 25 N = 50 N = 100 N = 200

M = 50
M = 100
M = 200

9. Storage

0.0024
0.0029
0.0041

0.0078
0.0099
0.0142

0.0340
0.0505

There are no internally declared arrays.

10. Accuracy

•

0.1735

The accuracy of the computed solution depends on the condition of the matrix and on the angle

between the right hand side vector and the columnspace of the matrix.

11. Further comments

If the routine is called with the same name for parameters B and x then the solution vector will

overwrite the right hand side vector.

11.1. Vectorization information

The routine uses routines which are written in FORTRAN 200, making use of its vector syntax

extensions.

Page 2

***-Simultaneous Linear Equations

12. Keywords

Linear least-squares solution.
Householder reflection.
QR factorization .
Overdetermined systems.

13. Example

To solve the linear least-squares problem for Ax~b where

- 2 0 0 0 2.01

I - 2 0 0 3.02

A 0 I - 2 0 and b = 4.04

0 0 - 2 5.08

0 0 0 - 3.84

13. J_ Program text

c
C LSTSQR EXAMPLE PROGRAM TEXT
C NUMVEC 1988
c MARK I
c

PROGRAM LSTSQR(OUTPUT,TAPE6=0UTPUT)
REAL A(5,4), Al(5,4), B(5), x(5), wl(IO), w3(5), EPS, RES, SOM
INTEGER M, N, I, J, NZER, NMAX
DATA ((Al(I,J},J= 1,4),1= 1,5),(B(l},1= 1,5)

+ I - 2., 0., 0., 0. ,
+ I., - 2., 0., 0.,
+ 0., I. , - 2., 0.,
+ 0., 0., I. , - 2.,
+ 0., 0., 0., I.,
+ 2.01 , 3.02, 4.04, 5.08,- 3.84 I

M = 5
N = 4
NMAX = 5
DO 20 J = 1, N

DO 191 = 1,M
A(I,J) = A1(I,J)

19 CONTINUE
20 CONTINUE

WRITE(6,99994)
D040 I= 1, M

WRITE(6,99995XA(I,J),J = 1, 4)
40 CONTINUE

WRITE(6,99996Xs(1),1 = 1, 5)
CALL LINLSQ(A, NMAX, M, N, B, X, WI, RES, NZER)
WRITE(6,99997)(x(1),1 = I, 4)
WRITE(6,99998) RES
DO 45 I= 1, M

149

LINLSQ

Page3

150

LINLSQ ***-Simultaneous Linear Equations

w3(I) = B(l)
45 CONTINUE

DO 50 J = I, N

DO 49 I= I , M

w3(I) = w3(I) - A l(I ,J) • X(J)
49 CONTINUE
50 CONTINUE

CALL MULQTX(A, NMAX, M, N, w3, w3)
SOM= 0.
DO 60 I= I, N

SOM = SOM + w3(I) • w3(1)
60 CONTINUE

FI = SQRT(SOM)
WRITE(6,99999) FI

997 CONTINUE
STOP

99994 FORMAT(' ILSTSQR EXAMPLE PROGRAM RESULTS' /'0MATRIX A')
99995 FORMAT (4(1X,F6.2))
99996 FORMAT ('0RIGHT - HANDSIDE VECTOR:' /(IX,F6.2))
99997 FORMAT ('0SOLUTION VECTOR : ' / (IX,F6.2))
99998 FORMAT ('0RESIDUAL NORM OF (B - AX) = ', IPEI0.3)
99999 FORMAT ('0INNER PRODUCT Q**T(B - AX) = ',IPEI0.3)

END

13.2. Program results

LSTSQR EXAMPLE PROGRAM RESULTS

MATRIX A
-2.00 0.00 0.00
1.00 -2.00 0.00
0.00 1.00 -2.00
0.00 0.00 1.00
0.00 0.00 0.00

RIGHT-HANDSIDE VECTOR:
2.01
3.02
4.04
5.08

-3.84

SOLUTION VECTOR:
-1.00
-2.00
-3.00
-4.00

o.oo
0.00
0.00

-2.00
1.00

RESIDUAL NORM OF CB - AX)

INNER PRODUCT Q••TCB-AX)

Page 4 (last)

1.847E-01

3.047E-13

151

***-Simultaneous Linear Equations LSSOLU

LSSOLU - NUMVEC FORTRAN Library Routine Document

I. Purpose

LSSOLU calculates the solution of a triangular system where the data is delivered as in routines

HSHYOX and MULQTX respectively.

2. Specifications

SUBROUTINE LSSOLU(A, IA, N, DIAG, C, X)
C INTEGER IA, N
C REAL A(IA, N}, DIAG(N}, C(N}, X(N}

3. Description

The solution of a linear system Rx = c with an upper triangular coefficient matrix R and right

hand side vector c is solved for x. The strictly upper triangular part of R is given in the

corresponding part of A and the diagonal of R is given in DIAG.

4. References

None.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;., N.
Before entry, A should contain in its strictly upper triangle the corresponding elements of

matrix R.
Unchanged on exit.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program

(IA ;;;., N}.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the number of columns of matrix A.
Unchanged on exit.

DIAG - REAL array of DIMENSION at least (N).
Before entry, DIAG should contain the diagonal elements of matrix R.

Unchanged on exit.

c - REAL array of DIMENSION at least (N}.
Before entry, c should contain the right hand side vector.
Unchanged on exit, but see section 11.

x - REAL array of DIMENSION at least (N).
On exit, x contains the solution of this system.

6. fuor indicators and warnings

None.

Page 1

152

LSSOLU ***-Simultaneous Linear Equations

7. Auxiliary routines

No auxiliary routines are used.

8. Timing

The time taken is approximately proportional to N2.

9. Storage

There are no internally declared arrays.

10. Accuracy

The accuracy of the solution depends on the condition of matrix R.

II. Further c0mments

If the routine is called with the same name for parameters B and x then the solution vector will
overwrite the right hand side vector.

I I. I. Vectorization information

The routine is written in FORTRAN 200, making use of its vector syntax extensions.

12. Keywords

Triangular system.

Page 2 (last)

153

***-Simulraneous Linear Equations MULQTX

MULQTX - NUMVEC FORTRAN Library Routine Docwnent

I. Purpose

MULQTX calculates the product QT x for a given m-vector x where Q is defined by a sequence of

Householder reflections, each one defined by an appropriate Householder vector as calculated by

HSHVOX.

2. Specifications

SUBROUTINE MULQTX(A, IA, M, N, VECIN, VECOUT)
C INTEGER IA, M, N
C REAL A(IA, N), VECIN(M), VECOUT(M)

3. Description

The sequence of Householder matrices which are defined by the columns of the lower trapezoidal

part of matrix A are applied to and accumulated in vector x.

4. References

None.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;,, N.
Before entry, A should contain in its lower trapezoidal part the Householder vectors as calcu­
lated by HSHVOX.
Unchanged on exit.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)prograrn
(IA;;,, M).
Unchanged on exit.

M - INTEGER.
On entry, M specifies the number of rows of matrix A.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the number of columns of matrix A.
Unchanged on exit.

VECIN - REAL array of DIMENSION at least (M).
On entry VECIN should contain the given M-vector which is to be multiplied by Q transposed.
Unchanged on exit, but see section 11.

VECOUT - REAL array of DIMENSION at least (M).
On exit, VECOUT contains in its first N elements the result of the matrix-vector multiplication;
the remaining M-N elements are used for working space.

Page 1

154

MULQTX

6. Error indicators and warnings

None.

7. Auxiliary routines

No auxiliary routines are used.

8. Timing

The time taken is approximately proportional to MN.

9. Storage

There are no internally declared arrays.

10. Accuracy

The accuracy is up to working precision.

11. Further comments

•••-Simultaneous Linear Equations

If the routine is called with the same name for parameters VECJN and VECOUT then the output vec­
tor will overwrite the input vector.

11.1. Vectorization information

The routine is written in FORTRAN 200, making use of its vector syntax extensions.

12. Keywords

Householder matrices.

13. Example

See LINLSQ.

Page 2 (last)

155

•••-Simultaneous Linear Equations MULQX

MULQX - NUMVEC FORTRAN Library Routine Docwnent

I. Purpose

MULQX calculates the product Qx for a given n-vector x where Q is defined by a sequence of

Householder reflections, each one defined by an appropriate Householder vector as calculated by

HSHVOX.

2. Specifications

SUBROUTINE MULQX(A, IA, M, N, VECIN, VECOUT)
C INTEGER IA, M, N
C REAL A(IA, N), VECIN(M), VECOUT(M)

3. Description

The sequence of Householder matrices which are defined by the columns of the lower trapezoidal

part of matrix A are backward applied to and accumulated in vector x.

4. References

None.

5. Parameters

A - REAL array of DIMENSION (IA,p) where p ;;;,, N.
Before entry, A should contain in its lower traperoidal part the Householder vectors as calcu­

lated by HSHVOX.
Unchanged on exit.

IA - INTEGER.
On entry, IA specifies the first dimension of array A as declared in the calling (sub)program

(IA ;;;,, M).
Unchanged on exit.

M - INTEGER.
On entry, M specifies the number of rows of matrix A.
Unchanged on exit.

N - INTEGER.
On entry, N specifies the number of columns of matrix A.
Unchanged on exit.

VECIN - REAL array of DIMENSION at least (M).
On entry VECIN should contain in its first N elements the vector which is to be multiplied by Q;

the remaining M - N elements are used for working space.
Unchanged on exit, but see section 11.

VECOUT - REAL array of DIMENSION at least (M).
On exit, VECOUT contains the result of the matrix-vector multiplication.

Page 1

156

MULQX

6. Error indicators and warnings

None.

7. Auxiliary routines

No auxiliary routines are used.

8. Timing

The time taken is approximately proportional to MN.

9. Storage

There are no internally declared arrays.

10. Accuracy

The accuracy is up to working precision.

11. Further comments

~·*-Simultaneous Linear Equations

If the routine is called with the same name for parameters VECIN and VECOUT then the output vec­

tor will overwrite the input vector.

11.1. Vectorization infonnation

The routine is written in FORTRAN 200, making use of its vector syntax extensions.

12. Keywords

Householder matrices.

13. Example

Analogously to the use of MULQTX ; see example in section LINLSQ.

Page 2 (last)

157

p •

158

SAMENVATTING

Dit proefschrift. waarvan de titel in vertaling luidt: "Fundamentele Transfor­

maties in de Lineaire Algebra voor gebruik op Vector Computers", bevat na een

korte inleiding een aantal artikelen met zowel theoretische als practische

resultaten. De indeling in hoofdstukken volgt de onderverdeling in artikelen.

De introductie geeft als achtergrondinformatie een overzicht van de benodig­

de theorie op het gebied van de numerieke lineaire algebra en van het

verrichten van wetenschappelijk rekenwerk op een vectorcomputer.

Het artikel in het eerste hoofdstuk geeft een klassificatie van methoden om

een LU-ontbinding van een matrix te bepalen. Een LU-ontbinding is equivalent

met het proces van Gauss eliminatie en wordt gebruikt bij het oplossen van

lineaire stelsels op een computer. De door ons aangegeven klassificatie

onderscheidt de methoden naar hun geschiktheid om geprogrammeerd te

worden voor een vectorcomputer.

In het tweede hoofdstuk wordt aangetoond dat het voor de numerieke stabili­

teit bij gebruik van de Gauss-Jordan methode voor het oplossen van een stel­

sel lineaire vergelijkingen, een groot verschil maakt of pivot selectie met

rijverwisselingen dan wel kolomverwisselingen wordt uitgevoerd; bij Gauss

eliminatie is het gedrag t.a.v. de numerieke stabiliteit niet wezenlijk verschil­

lend. In het artikel wordt een bovengrens voor de norm van het residu bij de

gevonden oplossing aangegeven, die alleen geldig is als pivot selectie met

kolomverwisselingen wordt uitgevoerd.

159

Het derde artikel geeft aan, hoe bij gebruik van de Gauss-Jordan methode een
schatting gemaakt kan warden voor de norm van de inverse van de
coefficientenmatrix in slechts 0(n2) bewerkingen. Met deze norm bepaalt
men d.m.v. het conditiegetal de nauwkeurigheid van de berekende oplossing.

Het vierde artikel behandelt een snelle variant van de Gauss-Jordan methode;
door het uitstellen van rijoperaties wordt een cumulatief effect bereikt. zodat

3 2 1
het aantal arithmetische operaties van n3 - 2 n2 + O(n) tot 3 n3 - 2 n2 + O(n)

wordt teruggebracht. Zolang niet bekend was dat de methode ook een goede
pivotstrategie toeliet, leek zij hoofdzakelijk alleen van theoretisch belang. In
ons artikel tonen wij aan dat de pivotstrategie uit het tweede hoofdstuk ook
doelmatig is voor de hier beschouwde variant. De verbeterde numerieke
betrouwbaarheid maakt de methode nu ook practisch van groat belang.

Het vijfde hoofdstuk beschrijft een onderzoek naar de implementatie op een
supercomputer van de orthogonalisatiemethode volgens 'Gram-Schmidt'. Er is
aangetoond hoe de numeriek verwerpelijke doch implementatie-technisch
aantrekkelijke 'klassieke' Gram-Schmidt methode in ere hersteld kan
warden. door toepassing van geselecteerde na-iteratie. Indien het aantal
benodige iteraties niet te groat wordt (dit hangt af van de conditie van de
matrix) kan de verbeterde iteratieve klassieke Gram-Schmidt methode
concurreren met de methode van Householder.

In het zesde artikel wordt uitvoerig ingegaan op de verschillende mogelijk­
heden om een spiegeling te construeren die gebruikt wordt als deelalgoritme
in diverse bekende algoritmen op het gebied van numerieke algebra. Het
gebruik van dergelijke spiegelingen werd voor het eerst aangegeven door A. S.
Householder. daarom dragen de betreffende matrices nu zijn naam. De
toepassing van deze matrices in het proces van QR-factorisatie wordt
bediscussieerd alsmede het gebruik er van bij de constructie van een
gelijkvormigheidstransformatie voor eigenwaarden berekeningen.

De hoofdstukken zeven. acht en negen maken deel uit van het gebruikers
handboek voor NUMVEC routines dat uitgegeven wordt door het CWI. Hier
zijn de beschrijvingen opgenomen van subroutines die gebaseerd zijn op
algoritmen uit de eerste zes hoofdstukken van dit proefschrift. Met name
betreft het routines op het gebied van het oplossen van stelsels lineaire
vergelijkingen, voor het inverteren van matrices en voor het oplossen van
kleinste-kwadraten problemen.

160

Eines schickt sich nicht fur alle!

Sehe jeder. wie er's ireibe,

sehe jeder, wo er bleibe,

und wer steht. dass er nicht falle.

Johann Wolfgang Goethe

Stellingen
behorende bij het proefschrift

Basic Transformations in Linear Algebra for Vector Computing

Walter Hoffmann
19 mei 1989

- I -

Voor het berekenen van de exponentiele functie kan men gebruik maken van
een geschikte transformatie naar het interval [-0.125,0) waar een polynoom
van de graad 10 een benadering levert met een relatieve fout die kleiner is
dan 10-24 .

P.W. Hemker, W. Hoffmann, S .P.N. van Kampen, H.L. Oudshoorn and D.T. Winter;
Single and double-length computation of elementary functions ; NW 7 /73.
Mathematisch Centrum Amsterdam. 1973.

- II -

Bij gebruik van de QL algorttme voor het bepalen van de eigenwaarden van
een symmetrische tridiagonale matrix convergeert het eerste element van de
subdiagonaal naar nul met een orde van convergentie die minstens gelijk aan
twee is doch in het algemeen groter dan drie.

W. Hoffmann and B. N. Parlett; A new proof of global convergence for the
trtdtagonal QL algortlhm; SIAM J . Numer. Anal. 15. 929-937. 1978.

- III -

Voor een test om de berekening van een LU-ontbinding van een tridiagonale
matrix wegens een te kleine pivotwaarde voortijdig te beeindigen, is het aan
te bevelen om een afbreekcriterium te hanteren dat gerelateerd is aan een
norm van de bijbehorende rij en niet aan een norm van de matrix zoals voor
volle matrices gangbaar is.

Procedures DECTRI. DECTRIPIV en DECSYMTRI , daterend ult 1974 en dee! ult
makend van: NUMAL. Numertcal Procedures In ALGOL 60; ed. : P.W. Hemker: MC
syllabus 47. l t/m MC syllabus 47.7; Malhematisch Centrum Amsterdam. 1981.

- IV -

In de lineaire algebra Ieert men dat de 'nieuwe' coordinaten van een vector bij
overgang van de heersende (oude) basis naar een andere (nieuwe) basis
berekend kunnen worden door vermenigvuldiging toe te passen met de
matrix die de identieke afbeelding beschrijft van de ruimte met de oude basis
naar dezelfde ruimte met de nieuwe basis.
Uit didactisch oogpunt is het ongewenst om de inverse van deze matrix 'de
coordinatentransformatiematrlx bij overgang van de oude naar de nieuwe
basis' te noemen. zoals in veel leerboeken gebeurt.

G.W. Decnop , H. van Iperen . R. Ma rtini: Dlctaat Llnealre Algebra; Delftse
UltgeversmlJ .. Delft. 1976.
Ors. J .F . Deckers: Llnealre Algebra l; Wolters-Noordhoff, Grontngen, 1979.
l.N. Hersteln. D.J . Winter ; Matrix theory and Linear Algebra ; Macmlllan
Publishing Company, New York, 1988.
S . Lipschutz; Linear Algebra; Schaum's Outllne series, McGraw-Hlll book Cy, New
York etc .. 1968.

- v -

De Gauss-Jordan algoritme met kolomverwisselingen Jevert op een vector­
computer een snelle en numeriek stabiele routine voor het inverteren van
matrices; het inverteren kan bovendien 'in situ' geschieden.

T .J . Dekker and W. Hoffmann; Numerical Improvement of the Gauss-Jordan
algorithm: Proceedings ICIAM 87. Paris-La Vlllette. June 29 - July 3 1987;
Contributions from the Netherlands: ed.: A.H.P. van der Burgh, R.M.M. MatthelJ.

- VI -

Het oplossen van (grote) lineaire stelsels met behulp van een routine uit de
UNPACK-library op de Alliant FX/4 computer vergt aanmerkelijk minder tijd
indien men de berekening in een grotere precisie laat uitvoeren.

- VII -

Als op de vectoren

[

0.4999]
0.5

J = 0.5001 '
0.5

[

0.5 J [0.5] = 0 .5001 - 0.5
g 0.5 . h - 0.5 '

0 .4999 0.5

de (klassieke) Gram-Schmidt algoritme wordt toegepast om een ortho­
normale basis van span([. g, h) te bepalen en de Euclidische norm van de
eerste vector wordt afgerond op 1, dan zal een verder exact uitgevoerde
berekening een stelsel vectoren opleveren waarvan de hoek tussen de tweede
en de derde vector gelijk is aan it/4 .

- VIII -

Wil men niet het risico lopen dat veel computervoorzieningen uiteindelijk
dubbel betaald worden, dan zal men de faculteiten der Universiteit van
Amsterdam voor het gebrulk van SARA voorzlenlngen een bonus moeten
verstrekken in plaats van een als malus ervaren doorbelastlng In rekening te
brengen.

- IX -

Blj T.V. opnames van cultuurultlngen die nlet speclaal voor televisle zijn
gecreeerd, waaronder opera- en concertultvoerlngen. dient de regtsseur zlch
te onthouden van een etgen 'artlstleke' lnbreng zoals bijvoorbeeld het regis­
treren van dubbelbeelden en extreme close-up's.

-x -
Dat het ontwerp van de mozaiekvloer in de vleugels en gangen van het
Centraal Station te Amsterdam met opzet enlge onregelmatlgheden vertoonde
Is zeer onaannemelijk vanwege het felt dat werkzaamheden zljn ultgevoerd
voor het herstel van onregelmatlgheden. Dat voor het opsporen van deze
onregelmatlgheden geen 'full proof ' algorltme beschikbaar was. wordt
gedemonstreerd door de nog altijd aanwezlge afwijkingen In het patroon.

- XI -

Het is In Amsterdam voor een fietser gevaarlijker om door groen licht te
rljden dan door rood.

