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A Jacobi series expansion with nonnegative coefficients related to a special

class of orthogonal polynomials in two variables

by

I.G. Sprinkhuizen—Kuyper

ABSTRACT

A special class of orthogonal polynomials in two variables is considered
for which the region of orthogonality is bounded by two straight lines and
a parabola. It is proved that these polynomials when restricted to the para-
bolic boundary line of its orthogonality region, have a certain Jacobi se-
ries expansion with nonnegative coefficients. As a special case Gasper's
positivity result for the linearization coefficients of the product of two

Jacobi polynomials is obtained.
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1. INTRODUCTION

Let Ri:i’y(g,n) denote the orthogonal polynomial in two variables of
degree (n,k) and order (a,B,y) as defined in KOORNWINDER & SPRINKHUIZEN [7].
These polynomials are orthogonal over a region bounded by two straight lines
and a parabola. On each of the three parts of the boundary of the region of
orthogonality there exists a natural expansion in Jacobi polynomials of cer-
tain order. On the straight lines the coefficients in these expansions are
explicitly known and, in particular, they are nonnegative if the parameters
a,B and vy satisfy some inequalities (cf. [7, section 6]). This nonnegativity

and the property of Jacobi polynomials Réu’s)(x) that
(a,8) (a,B)
IR Gl < RV,
with certain conditions on o and B, results in the property that
a,B,Y R%? B Y
@] < R P Y 0,0,

for (g,n) on the straight boundary lines of the region of orthogonality if
u;B,Y satisfy the inequalities o > B, y > -} and max(a,B+y+i) > -1.

The main purpose of this paper is to prove the nonnegativity of the expansion
coefficients on the parabolic boundary line. It is sufficient to give the

proof for the polynomials R ’B’Y(E n); the coefficients corresponding to

o, B

n k’Y(g,n) then follow from a simple recurrence relation.

The positivity result is proved in section 3. The method followed here
is quite similar to that used by GASPER [3] to prove the nonnegativity of
the linearization coefficients for the product of two Jacobi polynomials.
He used a three terms recurrence relation which was obtained by HYLLERAAS
[5] from a fifth order differential equation for the product of two Jacobi
polynomials. Remarking that Ra B’Y(g

function F (cf. KOORNWINDER & SPRINKHUIZEN [7]), we obtain a three terms

,N) can be expressed as an Appell's

recurrence relation from a third order differential equation which was de-
rived by APPELL & KAMPE DE FERIET [1] for the restriction of Appell's

function F4 to the parabolic singular line of its differential equations.

The linearization coefficients of the product of two Jacobi polynomials



are included as a special case (y=-}) of the expansion coefficients of
Rg:i’Y(g,n) on the parabolic boundary line of its region of orthogonality.
So the nonnegativity of these coefficients is proved again and the proof
given here has some minor simplifications with respect to that given by

Gasper.

2. PRELIMINARIES

2.1. APPELL'S FUNCTION F4

The hypergeometric function F, (a,b;c,c';x,y) of two variables is

defined by

4

o o (a)...(b). . . .
2.1) F,(a.bsc,e’sx,y) = ] ] SN R 4P

i=0 §=0 (e);(e");ilj!

1 1
a,b,c,c' ¢ ¢, c,ec' # 0,-1,-2,...,%x,y € C, |x|2 + |y|? <1,

cf. APPELL & KAMPE DE FERIET [1] or SLATER [8]. It is a solution of the set

of partial differential equations

. 2
(2.2a) x(]—x)zxx - 2xyzxy y zyy + (c—(a+b+l)x)zx

- (at+b+1)y zy— abz = 0,

2
(2.2b) x zXX 2xyzXy + vy (1 y)zyy (a+b+1)xzX

+ (c'-(a+b+1)y)zy - abz = 0.

These differential equations admit four linearly independent solutions as
long as we avoid the singular lines x = 0, y = 0, (l-x—y)2 = 4xy, X = o,

y = », As remarked by APPELL & KAMPE DE FERIET [1, Part I, Chapter V], the
function z(x,f(x)) is a solution of a linear differential equation of at
most fourth order. If the function y = £(x) is the equation of one of the
singular lines a differential equation of lower order is obtained. In

particular if y = 0 then (2.2a) results in a second order hypergeometric



differential equation. For our purpose we need a differential equation for
Appell's function F4 restricted to the parabolic singular line (léx-y)2= 4xy,
which can be parametrized by x = t2, y = (1—t)2. For F4 (a,b;c,c';tz,(l—t)z)
'APPELL & KAMPE DE FERIET [1, Note II] derived the following differential

equation

2 d32 d2z 2, dz
(2.3) t (1 t) —3 t t(1-t) (L-Mt) + (N-Pt+Qt~) == + 4ab(R-ST)z = O,
dt ac? de

a+b+2c-c¢'" , M

4ab + 2c(2a+2b+1), Q

2+ 2a+2b+c+c’yN= (2c-1)(1+a+b-c")
4ab + (2a+2b+1) (c+c' ),

av}
Il

=1-c , S=1-¢-2c'.

2,2. PROPERTIES OF A SPECIAL CLASS OF ORTHOGONAL POLYNOMIALS IN TWO VARIABLES

In the following R( »8)

(a, 6)(1) - 1.

(x) denotes a Jacobi polynomial normalized such
that R
ERDELYI [2].

For Jacobi polynomials see SZEGO [10, Chapter 4] or

Let @ be the region

={(£,n)ln>0,1-€+n>0,Ez-4n>0,0<5<2}-

Let
2
v, o € = nta-em PEtan, g e o,
9 PsY
DEFINITION 2,1. Let a,B,y > -1, o + v + % >0, B+ vy + % > 0. Let n,k be
integers, n > k > O Then R.n k’Y(E n) 1is a linear combination of monomlals
3 -1 k

lagan:g ,ETI n ,E ,E Nyeo ,En,En ,E such that

) R%> B,y m-{ K -

(1) ” n, (g,m)¢ 0L’B,Y(E,n)da dn =0

Q

if m > £ and if either m <norm =n, £ < k;

(ii) n;%om



In definition 2.1 a special class of orthogonal polynomials in two variables
is defined. This class of orthogonal polynomials is studied in KOORNWINDER
[6], SPRINKHUIZEN [9] and, most recently, in KOORNWINDER & SPRINKHUIZEN [7].
Two formulas which give explicit expressions for Rgzi’Y(g,n) with some re-
striction on the parameters or the degree are (cf. [7, (3.4) and (7.15)]

(2.4) Rg: _%(X+Y,XY) = %{Réa’s)(l—ZX)Réa’B)(1—2Y) + Ré“’s)(1—2X)R§“’B%1-2Y)},

2
k
(-DR(B+)_

(G+Y+g)n

(2.5) Ri’ﬁ’Y(X+Y,XY) = F4(—n,n+a+8+y+%;a+l,B+I;XYAT;X)(1-Y)).

On the parabolic boundary line of the region of orthogonality Q the following
Jacobi series expansion for the polynomial Ri’ﬁ;ﬁg,n) is quite natural

9
(cf. [7, section 5])

n+k 1 1
(2.6) Ra’B’Y(Zt,tz) = Z bo"’Bs'Y R(a+Y+2’B+Y+2)(]—2t).
nak _ n,k;m m
m=n-k
For the coefficients bg’i’l the following relation holds
3 9
asBsy = a,B,y+n-k
2.7) bn,k;m bk,k;m—n+k'

The aim of this paper is to prove the positivity of the coefficients

B BsY

nokem" By (2.7) it is clear that it is sufficient to prove the positivity
b 9

of ba’B’Y;
n,n;m

Formulas (2.4) and (2.6) result in

(@8) 0 oo o(0,B) oo R ag-h (a,8)
(2.8) R (1-26)R (1-2t) = m=§_k bn’k;m2 R (1-2t).

-1
Thus the coefficients ba’B’ 2
n,k;m

product of two Jacobi polynomials.

are just the linearization coefficients of the

In the following section we will study the expansion of Rz’g’Y(Zt,tz)

3
in Jacobi polynomials of order (a+y+i,B+y+i). We summarize the following

formulas for



(a+y+3,B+y+1)
ym(t) = RlIl (I_Zt) 3

which are needed in the remainder of this paper

3
(2.9) v, (£) = ,F, (-m,m+o+B+2y+2;0+y+5 3 t)
B m (—m)k(m+oa+6+2y+2)k tk
= R
k=0 (a+y+§)k k!
. 3
(2.10) t(l—t)y; + (a+y+§-(a+8+2v+3)t)yé

+ m(m+a+8+2y+2)ym =0,

(2.11) t(l-t)y;' + (a+y+§-(a+8+2v+5)t)y;

+ (m-1) (mta+B+2y+3)y . = 0,

Cvor o m(mB+y+i) - _ m(mBry+})
(2.12) t(1 t)ym (Zmta+B+2y+1) “m mt Yo (mta+B+2y+1) Tm-1°

(m+a+y+%)(m+a+8+2y+2)

(2.13) ty, T 7 (Omto+B+2y+2) (Zmto+B+2y+3) Ym+1

(0=B) (0+B+2y+1)

1
MEAC (2m+a+B+2y+1) (Zmta+p+2y+3) m

_ m(m+B+y+3}) .
(2m+a+B+2y+1) (2m+o+B+2y+2) ym—l'

3., THE POSITIVITY OF CERTAIN COEFFICIENTS RELATED TO THE LINEARIZATION
COEFFICIENTS OF THE PRODUCT OF TWO JACOBI POLYNOMIALS

Let us consider

2n (avy+d,Bry+h)

0,B,Y 2 _ a,BsY _
(3.1) R (2t,t°) = mZo"n,n;m R (1-2t)

LEMMA 3.1. If m = 0 or m = 2n the coefficients bZ’EfY are given by
3

?
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3 3
_ (v+3) , (ota+B+l)  (B+y+3)

3.2 psBoY o
(3.2) 2,m;0 N Crwae) P
(n+a+y+§) (n+o+B+1) (n+a+s+y+§)
(3.3) ba,B,Y - 2’n n 2’n
: n,n;2n (a+1)n (2n+a+8+2y+2)2n

PROOF. First observe that

ba’Ban_k-E bOL,B,‘% =
k,k;0 n,k;n-k

1R {B0-20 R B (1-26)r %P (1-26) 2 (1-6) P e
o B n-k ,

@B (1m26))? 2 -0)P ae

n-k

0
can be evaluated. It follows that (3.2) holds if y = -%,%,g,... . For general
Y we have '

1 1 1
I RQ’B’Y(Zt,tZ)ta+Y+2(1—t)B+Y+2 dt
bu’BsY -0 n,n
n,n;0 1 :

If a,B and n are fixed then ba”B’Y is rational in y by (2.5) and the right

n,n;0
hand side of (3.2) is also rational in y. Hence (3.2) holds for all ¥.

Formula (3.2) also can be proved by restricting the recurrence relation

- a,B,Y - 0y BsY
(1-2e+4m)R 107 (€5 - ,,lecm,z Ryp ' (€sm)
3
(cf. [9, section 9, u =1 - 2§ + 4nl]) to the boundary line & = 2t, n = t2.
(o+y+3, B+y+3)
By comparing the coefficients of RO (1-2t) and by remarking that the
right hand side only contributes when (m,£) = (n,n), a two term recurrence
relation is obtained which connects ba’B’Y = ba’B’Y+2 with ba’B’Y.
n+l,n-132 n—-1,n-1;0 _ n,n;0

1 immediately results in (3.2).
2n

This recurrence relation together with bO 0:0
s

Formula (3.3) follows by comparing the coefficients of t
of (2.5) and (2.9). [

in (3.1) with use



THEOREM 3.2. Let a,B,y satisfy the inequalities of definition 2.1, If

o+ B+ 120 and a 2B then the coefficients bz’if; in the Jacobi series
3 3

expansion (3.1) are nonnegative.

 PROOF., Using (2.5) we have

D7 (8+1) |
Rz’S’Y(Zt’tz) = ——_"————E'Fa('n,n+a+B+Y+%;a+l,B+l;tz,(l—t)z)

> - (atyg)

Thus R E Y(2t t ) is a solution of the differential equation (2.3) with

a=-n,b=n+ag+ B+ y+ %, c=oa+ 1 and c' = B +1. Application of the
(a+Y+z,B+Y+2)
left hand side of (2.3) on ym(t) = R.In (1-2t) results in (use (2.10),

(2.11), (2.12) and (2.13))

(m+a+B+1)(m+a+y+%)(m+a+6+2y+2)(2n—m)(2n+m+2a+26+2y+3)

y.

(2m+a+B+2y+2) (2m+a+p+2y+3) m+1

(m+1) (m+2y+2) (2n-m) (2n+m+2a+2B+2y+3)
(2m+a+B+2y+3)

+ %(a-B)[

_ m(m+2y+1) (2n-m+1) (2ntm+20+2B+2y+2)
(2m+o+B+2vy+1) Im

_ m(m+B+y+}) (m+2y+1) (2n-m+o+B+1) (2n+mta+p+2y+2)
(2m+o+BR+2vy+1) (2m+o+B+2y+2) m~1

Thus in order that the right hand side of (3.1) is a solution of (2.3) the

- o . .
coefficients b ’EfY must obey the following recurrence relation:
2

(3.4) AO‘:B:’Y ba:B’Y + Bo‘sB9Y ba’BaY = Cuss’YbasssY

n;m n,n;m-1 n;m n,n;m n;m n,njm+l ’

with

Aa,B,y (m+a+6)(m+a+y+2)(m+a+8+27+1)(2n~m+l)(2n+m+2a+26+2y+2)
n,m (2m+o+B8+2v) (2m+a+B+2y+1)



‘Ba,B,Y - 1 (a) f(m&l)(m+2y+2)(2n-m)(2n+m&2u+26+2y+3)
n;m 210 | (Cm+a+B+2y+3)

_ m(m+2y+1) (2n-m+1) (2n+m+20+2R+2y+2)
(Cm+a+B+2y+1) ?

c®sBsY _ (m+1)(m*B+Y+%)(m+2Y+2)(2n-m+a+B)(2n+m+a+8+2y+3)
n;m Qmta+B+2v+3) 2mta+p+2y+4) °

In addition with ba’s’Y = ba’B’Y = 0 and bd,B,Y and ba’B’Y as given by
n,n3—1 n,n;2n+l n,n;0 n,n;2n
(3.2) and (3.3) this recurrence relation completly defines the coefficients

bg’sf;. In the remainder of the proof the following lemma is needed.
E Rt

LEMMA 3.3. Let a,B and y satisfy the inequalities of theorem 3.2. Then there
exists an integer M., 0 < M. < 2n, such that Bu’s’Y 20 form=0,1,...,M
0 0 n;m 0

o
and Bn;El’Y <0 form=M, +1,...,20.

PROOF of lemma 3.3. We will give two different proofs. The first is equi-

valent to GASPER's [3, pp. 174,175]. The second proof, which only holds

if vy =2 -!, is due to Koornwinder. It exploits the fact that BG"B’Y is

.
3

given as the difference of two related rational functions.

If m = 0 or m = 2n we have respectively

a,B,y _ (@=B) (2y+2)n(2n+20+2B+2y+3)
(3.5) Bn;O = (a*BF2y+3) > 0,
(3.6) g% 8,7 _ _ 2(a=B)n(2n+2y+1) ntorpy+l) _

n;2n (4n+a+p+2y+1)

Let us write

C!,S,‘Y 1 — F(m-l)
(3.7) Bn;m AC (2mta+B+2y+1) (2mta+B+2y+3)

and temporarily use M=m -1, a=o + B+ 1, ¢ =y + 1, then

0 and ¢ > 0,

1\

M=-1,...,2n~1, a

F(M) (M+2) (M+2c+1) (2n-M-1) (2n+M+2a+2c) (2M+a+2c)

(M+1) (M+2c) (2n—M) (2n+M+2a+2c-1) (2M+a+2c+2)

—6M* - 12(a+2c+1)M> + 2[4n(n+a+c-}) - (3a’+(16c+11)a+16c2+20c+3) M> +
+ 2(a+2c+1) [4n(n+atc-1) - (4ac+4c2+53+8c)]M +

+ 4 [n(n—l)(4c2+2(c+1)a) + (n—])(a+c+%)(4c2+2(c+1)a) + a2 + al.



Notice that the coefficients of M4 and'M3 are negative and the constant term
is positive (for a > 0, and n = 1,2,...; the case n = 0 is trivial, and the
case a = 0 follows from analytical continuation). Denoting the coefficient

of Mk in F(M) by coef(Mk) we obtain
(3.8) coef (M) - (a+2c+1) coef (M2) = 6(a+2c+1)> > 0.

If coef(Mz) < 0, then it is obvious that F(M) has only one variation of sign
for M > 0. If coef(Mz) > 0, then, by (3.8), coef(M) > 0 and thus again F(M)
has only one variation of sign for M > 0. Consequently F(M) has exactly one
positive root in the interval (0,2n-1) (temporarily considering M as a real

variable) and hence there exists a positive integer M. e (0,2n-1) depending

0
0-1 and F(M) < 0,
0,...,2n—1. Therefore by (3.5), (3.6) and (3.7) the lemma is proved.
For the second proof observe that

on n, a and ¢ such that F(M) 2 0, M= 0,1,...,M
M=M

G(m+1) G(m)

a,B8,Y - - - -
Bn;m 6 (a B){G"'(m+1) ¢ (m) }9
where
G(x) = x(x+2y+1) (x-2n-1) (x+2n+20+2p+2y+2),
G"' (x) = 24(x+ia+iB+y+i).
Since

( ﬁfx))i _ ¢ (06 () - 246(x)
G (Xl (G"'(X))z

it is clearly sufficient to prove that the fourth degree polynomial
(%) H(x) := G"" (x)G'(x) - 24G(x)

changes sign at most once in (1,2n+1). Suppose that vy = =}, a + 8 + 1 2 0,
n = 1, Then G(x) has zeros X <%y < X3 <%, with X, i= -2n - 20 = 2B - 2y -2,
:= 2n + 1 and G (x) has zero y :

x, 1= -2y = 1, x -3 (0+B+2y+1).

2 3 4
Observe that x. <y < 1, Now suppose that H(x) changes sign at least twice

1
on (1,2n+1).

:= 0, x



10

Since H'(x) = G"' (x)G"(x) there exists A > 0 such that
H(x) = 3(G"(x)-A) (G"(x)+A)

Hence, if H(z) = O then H(2y-z) = 0. Thus H(x) has four distinct real zeros

2152952352, such that Zy <z, <y < 1< Zg3 < 2, and

z = -z, —0—f=2y-1 < =2y=1 = x,.

1,2 4,3 2
Now using that H(x]) > 0, H(x4) > 0 (by (x)) and that H'(x) = G" (x)G"(x)
has three zeros on (XI’X4) we conclude that x, <z, <z, < x

1 1 2 2
supposed that x, <z, <z, < x,. It follows that H(x.) > 0 for i = 1,2,3,4.
3 3 4 4 i

However, by (%), H(Xi) and H(Xi+l) can have the same sign only if

. We already

X. < < X.
i %7

i+l This is clearly impossible for all three cases i = 1,2,3. [

PROOF of theorem 3.2 (continuation) .

Considering the coefficients in the recurrence relation (3.4) we can remark

the following. It is clear that Aa:B’Y > 0 and AQfﬁ’Y >0 form = 2,3,...,2n

v n;l 5
and Ca’B’Y >0 form=0,1,...,2n-2 and Ca’s’Y > 0, From lemma 3.3 it
n;m n;2n-1 .
r%sBsY o - a,B,Y -
follows that Bn;m. 2 0, m 0,1,...,M0 and Bn;m <0, m MO+1,...,2n.
From lemma 3.1 it is clear that ba’s’Y > 0 and bOL’B’Y > 0. By successive
n,n;0 n,n;2n
applications of (3.4) we obtain bg’ifl 20 if m = 1,2,...,M0 and (trans-
3 3 -

posing the term with ba?BfY to the other side of the equal sign)
baseay > 2

n.n3m >0, m = 2n-1, 2n—2,...,M0+1. g

Remark 3.4. The recurrence relation (3.4) is equivalent to that used by
GASPER [3, (5)] to prove the positivity of the linearization coefficients
of the product of two Jacobi polynomials: At the one hand (3.4) results

in Gasper's recurrence relation because use of (2.7) yields

a,B,n~k-3 ba’B,—% + a,B,n—k-% “,Bs_% = asB,n—k_% a’B,_%
Ak;m.—n+k n,k;m-1 k ;m-n+k n,k;m k;m—n+k n,kym+1

-1

a . . . . .
where b ’Ef ? denotes the linearization coefficient for the product of two
3

b
Jacobi polynomials (cf. (2.8)). At the other hand the recurrence relation



11

for the linearization coefficients of the Jacobi polynomials gives the
113
903050

marking that the coefficients ba’BfY are rational with respect to vy (by
5 H

(2.5)), and that the same holds for the coefficients generated by (3.4),

relation (3.4) for the coefficients bg’ifl for y = . Now re-
3

E

it follows by analytical continuation that the recurrence relation (3.4)

holds for all values of y.

COROLLARY 3.5. The coefficients bg’i’Y in the Jacobi series expansion (2.6)
2

are nonnegative if o 2 Band o + B+ 1 > 0,
PROOF., Use theorem 3.2 and (2.7). [

A special case of corollary 3.5 is (cf. (2.8)).

COROLLARY 3.6. (=GASPER [3, theorem]).

The linearization coefficients for the product of two Jacobi polynomials of

order (a,B) are nonnegative if o =2 B and o + B + 1 2 0.

[\

COROLLARY 3.7. If a > =}, a 2B, a + B+ 1 >0 and y = -}, then the poly-

nomials Rz’E’Y(g,n) satisfy
3
[R5 Y, m| < k50,00 = 1, (g, < 90
n,k ’ T n,k ’ ’ Al ?

where 30 denotes the boundary of the region of orthogonality Q (cf. defini-
tion 2.1).

PROOF. This corollary follows from [7, corollary 6.11 and its proof ] and

ba,B,Y. 0

the nonnegativity of the coefficients
n,k;m

Remark 3.8. It is possible to refine the condition o + B + 1 2 0 in theo-
rem 3.3 as is done by GASPER [4] in the case of the Jacobi polynomials
(e 1 13 )

Y 2 39393/
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