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ABSTRACT
Bandwidth sharing networks are important flow level mod-
els of communication networks. We focus on the fact that
it takes a significant number of users to saturate a link, ne-
cessitating the inclusion of individual rate constraints. In
particular we extend work of Reed & Zwart on fluid models
of bandwidth sharing with rate constraints under Markovian
assumptions: we consider a bandwidth sharing network with
rate constraints, where job sizes and deadlines have a general
joint distribution. We introduce a fluid model and investi-
gate several of its properties. In particular we show that
its invariant point approximates the invariant distribution
of the bandwidth sharing network if capacities are large.

Keywords
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1. INTRODUCTION
Bandwidth-sharing networks as considered by Massoulié &

Roberts [10, 14] provide a natural framework for modeling
the dynamic interaction among competing elastic flows that
traverse several links along their source-destination paths,
and offer insight in the behavior of communication networks.
An extensive effort of contemporary research is devoted to
bandwidth-sharing networks. A variety of results related to
stability can be found in [15, 2, 11, 9]. Fluid and diffu-
sion limits are considered in [8, 6, 3, 4, 7, 16]. The latter
works are important, but ignore the impact of individual
peak rate limitations, as has been pointed out by Roberts
[13]. Ayesta & Mandjes [1] allow peak rate limitations and
construct fluid and diffusion approximations in two specific
settings. Reed & Zwart [12] consider a general bandwidth-
sharing network with arbitrary topology, where the rate con-
straints are endogenous part of the network utility maxi-
mization procedure.

This paper builds upon [12] by relaxing the stochastic
assumptions. In [12], the size B and lead time D of a flow
are both exponential and independent, while in the present
work, (B,D) can have an arbitrary distribution. Note that it
is realistic to assume some dependence between B and D. In
particular, it may not make sense for a user to abandon if it
is always served at maximum rate. This work is also related
to previous work on a single class model with impatience [5]
and on bandwidth-sharing networks in overload [4, 3].

We study the model in terms of measure-valued processes.

We propose a fluid model which is shown to arise as the limit
of a scaled sequence of stochastic processes. The scaling in-
volves letting the system capacities and input rates grow
large. We also show that the fluid model has a unique in-
variant point in many cases, and construct an example with
multiple invariant points, which is a feature that is distinc-
tive from earlier cited works. The ideas behind the proofs
are similar to those used in [5, 3, 12]. A new type of result
is that we show that the invariant distribution of the scaled
stochastic model converges to the invariant point of the fluid
model, if the latter is unique. The invariant point of the fluid
model can be found by solving a concave programming prob-
lem with a polyhedral capacity set. Thus, we establish an
approximation of the bandwidth-sharing network that is not
only computable in polynomial time, but also valid for ar-
bitrary network topologies, and holds under non-Markovian
assumptions.

The paper is organized as follows. A model description is
provided in Section 2. In Section 3 we define a fluid model
and discuss uniqueness of its solution for a non-zero initial
state as well as existence and uniqueness of its invariant
solution. The main results on convergence to the fluid model
and convergence of invariant laws are presented in Section 4.
In Section 5 we discuss performance of a single link and, in
particular, give an example of multiple invariant points.

2. MODEL DESCRIPTION
Network parameters Consider a network which con-

sists of a finite number of links labeled by j ≤ J . Link j
has capacity Cj ∈ (0,∞). There is a finite number of enti-
ties called routes, labeled by i ≤ I. Associated with each
is a non-empty subset of links along which traffic offered
to the network can be transferred. Let A be a J × I inci-
dence matrix such that Aji = 1 if route j contains link i,
and Aji = 0 otherwise. Traffic is represented by I classes of
flows, class i flows are transferred along route i. If there are
multiple flows on a route, then all of them are transferred
at the same rate, which is at most mi ∈ (0,∞) for route i.
We also assume that, while being transferred, a flow takes
simultaneous possession of all links on its route.

Suppose there are zi flows on route i. Let Λi denote the
bandwidth allocated to route i which is the sum of rates al-
located to flows on route i. Then AΛ ≤ C and Λ ≤ m · z,
where Λ, C and m are the vectors of bandwidth allocations,
link capacities and rate constraints, and z = (z1, . . . , zI) and
m · z = (m1z1, . . . ,mIzI).

Bandwidth allocation policy To each flow on route i
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we assign a utility Ui which is a function of the rate allocated
to that flow. We assume that Ui(·) is strictly increasing and
strictly concave in [0,∞), and twice differentiable in (0,∞)
with U ′i(0) =∞. Then, given a population z of flows in the
network, the bandwidth allocation vector Λ(z) is determined
as the unique solution to the following optimization problem:

max
Λ: AΛ≤C,

Λ≤m·z

I∑
i=1

zi Ui(Λi/zi), (1)

where Λi/0 := 0. By U ′i(0) = ∞, we have Λi(z) > 0 if zi >
0. Also the function Λ(·) is Lipschitz continuous in any
compact set [δ,∆]I⊂(0,∞)I (see [12]) and continuous in RI+.

Dynamic assumptions Suppose at time 0 there are Z0
i

initial flows on route i, Z0
i < ∞ a.s. New flows arrive on

route i according to a Poisson process Ei(·) with rate ηi,
and Uik denotes the arrival time of flow k on route i. R.v.’s
(B0

il, D
0
il) and (Bik, Dik) represent the initial size and the

initial lead time of initial flow l and of new flow k on route i
respectively. A flow abandons the network as soon as it
has been transferred or its lead time has run out, depend-
ing on what happens earlier. For each i, {(B0

il, D
0
il)}∞l=1 are

(0,∞)2-valued r.v.’s, and {(Bik, Dik)}∞k=1 are i.i.d. copies
of a (0,∞)2-valued r.v. (Bi, Di) with a finite mean value.
We allow dependence between Bi and Di, and assume that
Di ≥ Bi/mi a.s., which in particular implies that a flow
will not abandon when transferred at maximum rate. The
stochastic primitives Ei(·), {(Bik, Dik)}∞k=1, i ≤ I, are mu-
tually independent.

Time evolution of the network For each t ≥ 0, let
Z(t) = (Z1(t), . . . , ZI(t)) denote the population of flows
in the network at time t. We call Z(·) the queue-length
process. For all t ≥ s, let Si(s, t) denote the cumulative
bandwidth allocated per flow on route i during time in-
terval [s, t]. Since the bandwidth allocated to a route is
shared equally by all flows on that route, we have Si(s, t) =∫ t
s

Λi(Z(u))/Zi(u)du, where the integrand is defined to be 0

when Zi(u) = 0. For x ∈ R, let x+ = max{x, 0}. The resid-
ual size and the residual lead time at time t of initial flow
l ≤ Z0

i on route i, and those of flow k ≤ Ei(t) on route i are
given by: B0

il(t) = (B0
il−Si(0, t))+, D0

il(t) = (D0
il− t)+, and

Bik(t) = (Bik − Si(Uik, t))+, Dik(t) = (Dik − (t− Uik))+.
We now introduce a measure-valued process that we call

the state descriptor, and that keeps track of the residual
sizes and the residual lead times of all flows in the network.
For (x, y) ∈ R2

+, let δ+
(x,y) denote the Dirac point measure

at (x, y) if min{x, y} > 0, otherwise δ+
(x,y) is zero measure.

Then the state of the network at time t is represented by the
vector of random measures Z(t) = (Z1(t), . . . ,ZI(t)), where

Zi(t) =

Z0
i∑

l=1

δ+

(B0
il

(t),D0
il

(t))
+

Ei(t)∑
k=1

δ+
(Bik(t),Dik(t)). (2)

The total mass of the state descriptor coincides with the
queue length, Z(t)=Z(t)(R2

+)=(Z1(t)(R2
+), . . . ,ZI(t)(R2

+)).

3. FLUID MODEL
Existence and uniqueness In this section we define a

deterministic fluid model that later will be shown to arise
as the limit of the stochastic model described in the pre-
vious section under a proper scaling (and that will imply
existence of the fluid model). Let M denote the set of finite
non-negative Borel measures on R2

+, endowed with the weak

topology. Let ζ0 = (ζ0
1 , . . . , ζ

0
I ) ∈MI be such that, for all i,

the projections ζ0
i (· ×R+) and ζ0

i (R+ × ·) are free of atoms
in R+. Put z0 = ζ0(R2

+), and let (B0
i , D

0
i ) be a r.v. with

distribution ζ0
i /z

0
i if z0

i > 0, otherwise let (B0
i , D

0
i ) = (0, 0)

a.s. For all i, take r.v.’s (Bi, Di) as defined in Section 2.
Then a continuous function ζ(·) : [0,∞) → MI is called a
measure-valued fluid model solution (m.v.f.m.s.) with initial
state ζ0 if, for i ≤ I, all t ≥ 0 and all (x, y) ∈ R2

+,

ζi(t)([x,∞)× [y,∞)) = z0
i P{B0

i ≥ x+ si(0, t), D
0
i ≥ y + t}

+ ηi

∫ t

0

P{Bi ≥ x+ si(s, t), Di ≥ y + t− s} ds, (3)

where si(s, t) =
∫ t
s

Λi(z(u))/zi(u)du and z(·) is the total-

mass function, z(t) = ζ(t)(R2
+). The function z(·) is called

simply a fluid model solution (f.m.s.) with initial state ζ0.
Note that uniqueness of a f.m.s. is equivalent to unique-

ness of a m.v.f.m.s. because they are uniquely defined by
each other. In the following theorem we show uniqueness of a
f.m.s. with a non-zero and Lipschitz continuous initial state.

Theorem 1. Suppose that ζ0
i (R2

+)>0, i≤I. Suppose fur-
ther that there exists a constant L ∈ (0,∞) such that, for all i,
all x < x′ and all y, ζ0

i ([x, x′]×[y,∞)) ≤ L|x− x′|. Then a
(measure-valued) f.m.s. with initial state ζ0 is unique.

The first assumption implies that f.m.s.’s are bounded away
from 0 in all coordinates. They are also bounded from above.
Then Lipschitz continuity of the rate allocation function
(Λ1(z)/z1, . . . ,ΛI(z)/zI) in any compact set [δ,∆]I⊂(0,∞)I ,
and Lipschitz continuity of the initial state ζ0 imply that a
f.m.s. must be unique.

Invariant point To study invariant points, we consider
only f.m.s.’s because m.v.f.m.s.’s are uniquely defined by
them. Invariant f.m.s.’s are given by the equations Λi =
gi(Λi/zi), i ≤ I, where gi(x) = ηiEmin{Bi, xDi}.

Theorem 2. Suppose that, for i = 1, . . . , I, the left most
point of the support of distribution of Di/Bi is 1/mi. Then
an invariant (measure-valued) f.m.s. exists and is unique.

Let ρi = ηiEBi, ρ = (ρ1, . . . , ρI). Under the conditions of
the theorem, the functions g−1

i (·) are strictly increasing in
[0, ρi]. For any invariant f.m.s. z, Λ(z) is a solution to the
following optimization problem:

max
Λ: AΛ≤C,

Λ≤ρ

I∑
i=1

Gi(Λi), (4)

where functions Gi(·) are such that G′i(x) = U ′i(g−1
i (x)). By

strict concavity of (4), Λ(z) = Λ∗ is unique, and the unique
invariant f.m.s. is given by z∗i = Λ∗i /g

−1
i (Λ∗i ), i ≤ I.

4. LARGE CAPACITY SCALING
Convergence to the fluid model With large capacity

scaling, we let global parameters of the network, link ca-
pacities and arrival rates, grow to ∞, while characteristics
of an individual flow remain of a fixed order. More pre-
cisely, consider a sequence of stochastic models as defined
in Section 2, indexed by n ∈ N. Let capacities and arrival
rates grow linearly in n, and rate constraints, generic flow
sizes and lead times be the same in all models: Cn = nC,
ηn = nη, mn = m, (Bni , D

n
i ) = (Bi, Di) for all i. For all n,

introduce the fluid scaled versions of the queue-length pro-
cess Zn(·) and the state descriptor Zn(·) of the n-th model:



Z
n
(·) = Zn(·)/n and Zn(·) = Zn(·)/n. The processes Z

n
(·)

and Zn(·) take values in the Skorokhod spacesD([0,∞),RI+)
and D([0,∞),MI) of right-continuous functions with left
limits. Finally, we make an assumption about the initial
conditions Zn(0). For ζ ∈MI , put 〈χ, ζ〉 = (

∫
x1dζ1,

∫
x2dζ1,

. . . ,
∫
x1dζI ,

∫
x2dζI). Let (Zn(0), 〈χ,Zn(0)〉)⇒ (ζ0, 〈χ, ζ0〉)

as n → ∞, where ζ0 ∈ MI and 〈χ, ζ0〉 is finite, and the
projections ζ0

i (· × R+) and ζ0
i (R+ × ·) are free of atoms in

R+ for all i. We have the following fluid limit result.

Theorem 3. Suppose that the conditions of Theorem 1
hold. Then the sequence {Zn(·)}∞n=1 as defined above con-
verges in distribution to the unique measure-valued f.m.s.
with initial state ζ0.

By means of a technique developed in [6], we show that the
sequence {Zn(·)}∞n=1 is tight. Due to rate constraints, for

any weak limit point Z̃(·), its total mass function is bounded

away from 0 outside t = 0, which allows to show that Z̃(·)
satisfies the fluid model equation (3) a.s.

Convergence of invariant laws Since the total popu-
lation of the network (as defined in Section 2) is bounded
from above by the length of an M/G/∞ queue with generic
service time D = maxDi, the state descriptor is regenera-
tive and has a unique stationary distribution. Consider a
sequence of stochastic models with parameters Cn = nC,
ηn = nη, mn = m, (Bni , D

n
i ) = (Bi, Di) for all i. Let Yn

have the stationary distribution of the state descriptor of
the n-th model, and put Yn = Yn/n.

Theorem 4. Suppose that, for all i, Bi has a bounded
density. Suppose also that the condition of Theorem 2 holds.
Then the sequence {Yn}∞n=1 converges in distribution to the
unique invariant measure-valued f.m.s.

First we check that a criteria of tightness holds for the se-

quence {Yn}∞n=1. Then consider a weak limit point Ỹ. By
boundedness of flow size densities and by M/G/∞ upper

bounds, Ỹ is Lipschitz continuous in both coordinates. For
each n, run the n-th network starting from Zn(0) = Yn.
Then Theorem 3 implies that Zn(·) converges to the f.m.s.

with initial state Ỹ. Since all Zn(·) are stationary processes,

the limit is stationary, too. Hence Ỹ is an invariant f.m.s.

5. EXAMPLES
A single link in overload Let I =C1 = 1 and the utili-

ties Ui(x) =κi log x. Assume that the network is overloaded

(
∑K
i=1 ρi> 1), and that the condition of Theorem 2 holds.

Given the network is in equilibrium, which classes are served
at the full rate (Λi = ρi) and which are not (Λi<ρi)? Sup-
pose κ1/m1≥ . . .≥κI/mI . Let x∗ be the unique solution to∑K
i=1 gi(κix

∗) = 1, and let i∗ = min{i : κix∗ < mi}. By the
KKT conditions for (1), the unique invariant point is given
by: zi = ρi/min{mi, κix

∗} for i < i∗, zi = gi(κix
∗)/(κix

∗)
for i ≥ i∗; and Λi = ρi for i < i∗, Λi < ρi for i ≥ i∗.

Multiple invariant points In the previous example as-
sume critical load (

∑I
i=1 ρi = 1) and that, for all i, Di = aiBi

with ai≥ 1/mi. Then in the invariant point equation Λi = ρi
are unique. If ai = 1/mi for all i, then the invariant point
z = (ρ1/m1, . . . , ρI/mI) is unique, too. Let a1 > 1/m1,
which violates the condition of Theorem 2. If the set S1 =
[κ1/m1, κ1a1] ∩i>1 (0, κi/mi] is non-empty, then, for any
p∈S1, z= (pρ1/κ1, ρ2/m2, . . . , ρI/mI) is an invariant point.
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