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Abstract. Reflected Brownian motion (RBM) in a wedge is a 2-dimensional stochastic process Z whose state space in R
2 is given

in polar coordinates by S = {(r, θ) : r ≥ 0,0 ≤ θ ≤ ξ} for some 0 < ξ < 2π . Let α = (θ1 + θ2)/ξ , where −π/2 < θ1, θ2 < π/2
are the directions of reflection of Z off each of the two edges of the wedge as measured from the corresponding inward facing
normal. We prove that in the case of 1 < α < 2, RBM in a wedge is a Dirichlet process. Specifically, its unique Doob-Meyer type
decomposition is given by Z = X + Y , where X is a two-dimensional Brownian motion and Y is a continuous process of zero
energy. Furthermore, we show that for p > α, the strong p-variation of the sample paths of Y is finite on compact intervals, and,
for 0 < p ≤ α, the strong p-variation of Y is infinite on [0, T ] whenever Z has been started from the origin. We also show that
on excursion intervals of Z away from the origin, (Z,Y ) satisfies the standard Skorokhod problem for X. However, on the entire
time horizon (Z,Y ) does not satisfy the standard Skorokhod problem for X, but nevertheless we show that it satisfies the extended
Skorkohod problem.

Résumé. Le mouvement Brownien réfléchi (RBM) dans un coin est un processus stochastique 2-dimensionnel Z dont l’espace
d’états dans R2 est donné en coordonnées polaires par S = {(r, θ) : r ≥ 0,0 ≤ θ ≤ ξ} pour un 0 < ξ < 2π . Soit α = (θ1 + θ2)/ξ ,
où −π/2 < θ1, θ2 < π/2 sont les angles de réflexion de Z sur chacun des côtés du cône, mesurés à partir des normales rentrantes
correspondantes. Nous montrons que dans le cas 1 < α < 2, le RBM dans un coin est un processus de Dirichlet. Plus précisément,
son unique décomposition de Doob-Meyer est donnée par Z = X + Y , où X est un mouvement brownien 2-dimensionnel et Y est
un processus continu d’énergie zéro. De plus, nous montrons que pour p > α, la p-variation forte des trajectoires de Y est finie
sur les intervalles compacts, et, pour 0 < p ≤ α, la p-variation forte de Y est infinie sur [0, T ] dès que Z est issu de l’origine.
Nous montrons aussi que sur les intervalles d’excursions de Z en dehors de l’origine, (Z,Y ) satisfait le problème de Skorokhod
standard pour X. Sur l’intervalle de temps infini, (Z,Y ) ne satisfait pas le problème de Skorokhod standard pour X, mais satisfait
néanmoins le problème de Skorokhod étendu.
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1. Introduction

Reflected Brownian Motion (RBM) in a wedge is a 2-dimensional stochastic process Z originally defined by Varadhan
and Williams [28]. Loosely speaking, this process may be described as follows. Let X be a standard 2-d Brownian
motion. Then, Z corresponds to a so-called reflected version of X which is prohibited from exiting a two-dimensional
cone or wedge S in R

2 with angle 0 < ξ < 2π and vertex at the origin. The process Y = Z − X which is used to
constrain X within S is such that its increments may only be in either of the pre-determined directions v1 or v2 when
Z is along the lower and upper boundaries of the wedge, denoted by ∂S1 and ∂S2, respectively. See Figure 1 for an
illustration. For given X finding the pair (Z,Y ) is called the Skorokhod problem for X.
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Fig. 1. The state space S of RBM in a wedge.

In the seminal paper [28] Varadhan and Williams defined RBM in a wedge by formulating the submartingale
problem, which replaces the quest for a pathwise definition of Z with the search for a family of probability measures
on a canonical space equipped with the coordinate-mapping process Z. In the results of [28] as well as in those of
later papers [29–31] on the subject, the quantity

α = θ1 + θ2

ξ
(1)

plays an important role, where θi is the angle of reflection off of the edge ∂Si \ {0}, i = 1,2, measured with respect to
the inward facing normal vector off each edge, with angles directed toward the origin assumed to be positive. Indeed,
in [28] Varadhan and Williams proved that the submartingale problem has a unique solution {P z, z ∈ S} if and only if
α < 2. However, if one disregards Condition 3 of the submartingale problem which requires that Z spend Lebesgue-
zero amount of time at the vertex, then there exists a unique solution for α ≥ 2. The tradeoff being that in this case
absorption occurs at the vertex. It is also shown in [28] that for every z ∈ S under P z the coordinate-mapping process
Z possesses the strong Markov and the Feller properties.

In [29–31], Williams studied several properties of the solution to the submartingale problem. In particular, in [30]
it was proven that Z is a semimartingale under P z if and only if α < 1 or α ≥ 2. Or, to state it conversely, Z is not
a semi-martingale if and only if 1 ≤ α < 2. This naturally raises the following question. What kind of process is Z

under P z in the case of 1 ≤ α < 2? The answer to this question is one of the main contributions of this paper. Recall
that any process that may be decomposed as the sum of a local martingale and a process with zero quadratic variation
is referred to as a Dirichlet process (see Follmer [18]). Every semimartingale is a Dirichlet process, but the opposite
is not necessarily true. Recently it was shown by Kang and Ramanan [19] that if α = 1, then Z is a Dirichlet process
under P z. In the present paper we show that Z is a Dirichlet process not only for the single value of α = 1, but in fact
for every value of α ∈ (1,2). Moreover, we sharpen this result by showing not only that the pushing process Y has
zero quadratic variation, but that almost surely on compact intervals of time its strong p-variation is finite for p > α,
and infinite if 0 < p ≤ α. Our definition of a Dirichlet process differs slightly from that of Follmer [18], however it is
sufficiently strong in order to enable one to apply a change-of-variables formula (Follmer [17]). This then guarantees
that a version of Ito’s rule can be applied to RBM in a wedge even in cases when Z is not a semimartingale. A useful
consequence of the validity of Ito’s rule in the case of α < 1 is that it allows a simple derivation of the Basic Adjoint
Relationship (BAR), which is a characterization of the stationary distribution of Z. This has been accomplished in
several references (see [12,13] and the references therein). The BAR has been successfully used to provide asymptotic
estimates, and in some cases provide explicit formula for the density corresponding to the stationary distribution as a
sum of exponentials. It is reasonable to expect that using our results and the change-of-variable formula for Dirichlet
processes [17] one could proceed in a similar manner to the case of α < 1 in deriving the BAR. Note also that in our
case in order to guarantee the existence of a stationary distribution, one would first need to incorporate an appropriate
drift term to the definition of the submartingale problem.

The second problem which we address in this paper is the following. The submartingale problem was clearly
formulated with the sample path behavior of Z alluded to in the opening paragraph in mind. In fact, for many values
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of α such behavior has been proven rigorously in [20] by showing that almost surely the pair (Z,Y ) pathwise solves
an appropriate Skorokhod problem for X. However, in the case of 1 ≤ α < 2 such a result is impossible since one
of the conditions placed on the solution to the Skorokhod problem is that the process Y have bounded variation on
compact sets.

In order to address the problem above we use the Extended Skorokhod Problem (ESP) formulated by Ramanan
[23]. In a very useful definition, Ramanan [23] relaxed some of the conditions of the Skorokhod problem to allow
for pushing processes Y of infinite variation. The heavy traffic diffusion approximation [24] of the queue length
process of the Generalized Processor Sharing (GPS) model was given in [23] as one example of a process whose
sample paths do not satisfy the conditions of the ordinary Skorokhod problem but do satisfy those of the Extended
Skorokhod Problem. In 2 dimensions the GPS model corresponds precisely to RBM in a wedge with a value of α = 1
and ξ = π/2. Burdzy and Toby [5] and also Kang and Ramanan [19] have shown that the ESP has a unique solution
for α = 1 and arbitrary ξ . In the present paper we show that if {P z, z ∈ S} is the solution of the submartingale problem
and α ∈ (1,2), then the pair (Z,Y ) solves the ESP for X. Thus, we supplement the above examples by providing a
rich family of processes for which the SP does not admit a solution but the ESP does.

From an application standpoint, one of the motivations for studying RBM in a wedge is its connection to diffusion
approximations for queues in tandem. In particular, a large body of literature exists (see [6] and references therein)
rigorously establishing the fact that reflected Brownian in a wedge (and in higher dimensions as well) serves as a
limiting approximation to the properly scaled queue length process of a variety of queueing networks as they become
fully loaded. This is important because in many cases it turns out that RBM in a wedge is significantly easier to analyze
than the underlying queuing network itself. While this connection with queueing theory has not yet been proven in
the cases of 1 < α < 2 studied in the present paper, we suspect it to be true as well with the coupled processor model
[10,15] serving as our underlying example. It is shown by Ramanan and Reiman [24] that such systems may not lead
to semimartingales when taking a scaling limit. We expect that the results developed in this paper will form a stepping
stone towards the development of a comprehensive theory.

The remainder of this paper is organized as follows. In Section 2, we provide a rigorous problem description
followed by our main results. In Section 3, we provide some useful results related to the zero set of RBM in a wedge.
Much of the material found in Section 3 is based on the results of Williams [31]. In Section 4, we identify the Brownian
motion X which appears in the Doob-Meyer decomposition of Z given by Theorem 2.4. Our proofs of Theorems 2.4,
2.6 and 2.8 may be found in Sections 5, 6 and 7, respectively. Unless otherwise explicitly stated, we assume going
forward in the paper that

1 < α < 2.

2. Main results

As discussed in the Introduction, reflected Brownian motion (RBM) in a wedge was originally defined by Varadhan
and Williams [28] as a 2-dimensional stochastic process Z whose state space in R

2 is given in polar coordinates by
S = {(r, θ) : r ≥ 0,0 ≤ θ ≤ ξ} for some 0 < ξ < 2π . In the interior of S, RBM in a wedge behaves as a standard 2-d
Brownian, whereas upon hitting the boundary of S, it is reflected back into the interior at an angle that depends upon
which edge of the boundary has been hit. Let ∂S1 = {(r, θ) : r ≥ 0, θ = 0} and ∂S2 = {(r, θ) : r ≥ 0, θ = ξ}. The angle
of reflection off of ∂S1 \ {0} is denoted by θ1, and the angle of reflection off of ∂S2 \ {0} is denoted by θ2. Both of
these angles are measured with respect to the inward facing normal off of each edge, with angles directed toward the
origin assumed to be positive. The angle of reflection at the vertex of the wedge is discussed later in the paper.

In [28], Varadhan and Williams provided the following rigorous definition of RBM in a wedge as the solution to a
submartingale problem. For each j = 1,2, denote the direction of reflection off of the edge ∂Sj \ {0} by vj . Assume
moreover that vj is normalized such that vj · nj = 1, where nj is the inward facing unit normal vector off of the
edge ∂Sj \ {0}. Let CS denote the space of continuous functions with domain R+ = [0,∞) and range S. For each
t ≥ 0 and ω ∈ CS , we denote by Z(t) : CS �→ S the coordinate map Z(t)(ω) = Z(t,ω) = ω(t), and we also define the
coordinate mapping process Z = {Z(t), t ≥ 0}. Then, for each t ≥ 0, we define Mt = σ {Z(s),0 ≤ s ≤ t}, and define
the process M = σ {Z(s), s ≥ 0}. Next, for each n ≥ 1 and F ⊂R

2, denote by Cn(F ) the set of n-times continuously
differentiable functions in some domain containing F and let Cn

b be the set of functions in Cn(F ) that have bounded
partial derivatives up to and including order n on F . Finally, define the differential operators Dj = vj · ∇ for j = 1,2,
and denote by 
 the Laplacian operator.
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Definition 2.1 (Varadhan and Williams [28]). A family of probability measures {P z, z ∈ S} on (CS,M) is said to
solve the submartingale problem if for each z ∈ S, the following 3 conditions hold,

1. P z(Z(0) = z) = 1,
2. For each f ∈ C2

b(S), the process

{
f
(
Z(t)

)− 1

2

∫ t

0

f

(
Z(s)

)
ds, t ≥ 0

}

is a submartingale on (CS,M,Mt , P
z) whenever f is constant in a neighborhood of the origin and satisfies

Dif ≥ 0 on ∂Si for i = 1,2,
3.

Ez

[∫ ∞

0
1
{
Z(t) = 0

}
dt

]
= 0.

Now recall the definition of α = (θ1 + θ2)/ξ from (1) in the Introduction. In [28], it was shown that if α < 2, then
there exists a unique solution {P z, z ∈ S} to the submartingale problem. Moreover [28], the family {P z, z ∈ S} possess
the strong Markov property. If α ≥ 2, then there is no solution [28] to the submartingale problem but there is a unique
family of probability measures {P z, z ∈ S} satisfying Conditions 1 and 2 of Definition 2.1. Probabilistically speaking,
the process Z is absorbed upon reaching the origin when α ≥ 2 and hence may spend a positive amount of Lebesgue
time there so that Condition 3 no longer holds. In this case, we may continue to refer to {P z, z ∈ S} as the solution to
the submartingale problem, with the understanding that only Conditions 1 and 2 of Definition 2.1 are satisfied.

Now, as in Williams [29], let BS denote the Borel σ -algebra on S and for each probability measure μ on (S,BS),
define the measure P μ on (CS,M) by setting

P μ(A) =
∫

S

μ(dz)P z(A), A ∈M.

We then denote by (CS,Mμ,P μ) the completion of (CS,M,P μ) and for each t ≥ 0, we let Mμ
t be the augmentation

of Mt with respect to (CS,Mμ,P μ). If μ = δ{z} for some z ∈ S (the Dirac measure centered at z), then we shall write
Mz and Mz

t instead of Mμ and Mμ
t . Next, define F = ⋂

μ Mμ, where the intersection is taken over all μ which
are probability measures on (S,BS), and similarly set Ft = ⋂

μ M
μ
t . It then follows [29] that the filtration Ft is

right-continuous and, moreover, the process Z = (CS,F,Ft ,Z(t), θt ,P
z) is a Hunt process with state space (S,BS),

where θt is the usual shift operator.

2.1. Dirichlet process result

As mentioned in the Introduction, in [30] Williams proved that for each z ∈ S, Z is a semimartingale on
(CS,F,Ft , P

z) if and only if α < 1 or α ≥ 2. More recently, Kang and Ramanan [19] have proven that in the
boundary case of α = 1, Z is a Dirichlet process (see Definition 2.3 below) on (CS,F,Ft , P

z) for each z ∈ S. The
proofs of the results in [19] rest upon several bounds. One of the most important of these bounds is Assumption 2 of
[19] which requires that for some p > 1 and q ≥ 2 the conditional expectation of the pth power of the oscillation of
the pushing process is dominated by the conditional expectation of the qth power of the oscillation of the Brownian
motion over any finite interval [s, t]. In the case of RBM in a wedge, this has only been shown to hold in the special
case of α = 1 (see Ramanan [23]). As a result, the approach of [19] cannot be easily extended to the remaining cases
of 1 < α < 2. On the other hand, there are many discrete models, such as the coupled processor model of Fayolle
and Isanogorodski [15], for which RBM in a wedge with 1 < α < 2 is conjectured to arise as the natural scaling
limit (see also the dissertation of Foddy [16] for a discussion of the case α < 1). In the present paper, using newly
developed techniques, we prove in Theorem 2.4 below that in the cases of 1 < α < 2, Z is in fact a Dirichlet process
on (CS,F,Ft , P

z) for each z ∈ S. This implies, for instance, that one may apply a change-of-variables formula to Z

in order to obtain further results.
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For each E ⊆ R+, let

π(E) = {
π = {ti , i = 0, . . . , n} ⊆ E : n ∈N0, ti−1 ≤ ti , i = 1, . . . , n

}
denote the set of all partitions of E, and define the mesh of a partition π ∈ π(E) by setting

‖π‖ = max
{|ti − ti−1| : i = 1, . . . , n

}
.

We then recall the definition of a continuous process with zero energy (see, for instance, Definition 3.2 of Kang and
Ramanan [19]).

Definition 2.2. Let z ∈ S. A 2-dimensional continuous process Y defined on (CS,F,Ft , P
z) is said to be of zero

energy if for each T > 0,

∑
ti∈πn

∥∥Y(ti) − Y(ti−1)
∥∥2 P→0 as n → ∞,

for any sequence {πn,n ≥ 1} of partitions of [0, T ] with ‖πn‖ → 0 as n → ∞.

We now define a Dirichlet process as follows (see Definition 2.4 of Coquet et al. [11] or Definition 3.3 of [19]).

Definition 2.3. Let z ∈ S. The stochastic process Z is said to be a Dirichlet process on (CS,F,Ft , P
z) if we may

write

Z = X + Y, (2)

where X is an Ft -adapted local martingale and Y is a continuous, Ft -adapted zero energy process with Y(0) = 0.

The above definition of a Dirichlet process differs slightly from that of Föllmer [18]. However, it is sufficiently
strong in order to enable one to obtain formulas for performing certain operations on Z, such as a change-of-variables
(see Föllmer [17]). This can be useful in further analysis, for instance in analyzing the transient behavior of the
process. Note also that if Z is a semi-martingale, then it is also a Dirichlet process as defined above. However, the
converse is not necessarily true. It may also be shown that the Doob-Meyer type decomposition of Z given by (2) is
unique (see Remark 3.4 of [19]).

Theorem 2.4. Suppose that 1 < α < 2. Then, Z has the decomposition

Z = X + Y, (3)

where (X,Y ) is a pair of processes on (CS,F,Ft ) and for each z ∈ S the following hold:

• X is a standard 2-dimensional Brownian motion under P z such that X(0) = z, P z-a.s.;
• Y is a process of zero energy under P z.

In particular, for each z ∈ S, the process Z is a Dirichlet process on (CS,F,Ft , P
z).

The Brownian motion X appearing in Theorem 2.4 is the same as the one established in Kang and Ramanan [20].
However, we have a slightly different definition in order to facilitate the proof of Lemma 4.11. The exact difference
will be pointed out at the beginning of Section 4.1.

Our construction of the Brownian motion X appearing in Theorem 2.4 is similar to the corresponding construction
found in Kang and Ramanan [20]. However, here we also prove that (Z,Y ) solves a corresponding Skorokhod problem
for X on excursion intervals of Z away from the origin. This result is then used together with the local behavior of
Z at the origin in order to piece together the process Y on a excursion-by-excursion interval basis. In particular, we
show that for each p > α, Y is a composition of a locally Hölder continuous function with exponent 1/p, and a non-
decreasing continuous function. Using the fact that 1 < α < 2, it then follows in a straightforward manner that Y is of
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zero energy. We also emphasize that the pair of processes (X,Y ) appearing in Theorem 2.4 do not depend on z ∈ S.
That is, there exists a single pair of processes (X,Y ) on (CS,F,Ft ) such that the statement of the above theorem
holds for each z ∈ S.

2.2. Roughness of the paths of Y result

Theorem 2.4 implies that in the case of 1 < α < 2, the paths of Y are of zero energy on (CS,F,Ft , P
z) for each z ∈ S.

We now turn our attention to providing a refinement of this result using the concept of strong p-variation.

Definition 2.5. Let E ⊂R+ and p > 0. The strong p-variation of a function f :R+ �→ R
n on E is defined by

Vp(f,E) = sup

{∑
ti∈π

∥∥f (ti) − f (ti−1)
∥∥p : π ∈ π(E)

}
.

Theorem 2.6. Suppose that 1 < α < 2. Then, for each p > α and z ∈ S,

P z
(
Vp

(
Y, [0, T ])< +∞)= 1, T ≥ 0. (4)

Furthermore, for each 0 < p ≤ α,

P 0(Vp

(
Y, [0, T ])< +∞)= 0, T ≥ 0. (5)

Our proof of Theorem 2.6 has two parts. In order to prove the identity (4), we rely upon the relationship between
functions of finite p-variation and Hölder continuous functions with exponent 1/p. In particular, since as alluded to
after the statement of Theorem 2.4 above, for each p > α, Y is a composition of a locally Hölder continuous function
with exponent 1/p, and a non-decreasing continuous function, it is straightforward to show that Y also has finite
p-variation on compact intervals. Our proof of the identity (5) proceeds by first showing that on a specific subset of
the zero set of Z, the process Y is a stable process of index α if Z is started from the origin. It then follows from
available results in the literature (see, for instance, Bretagnolle [3]) that Y has infinite p-variation for 0 < p ≤ α.

2.3. Extended Skorokhod map result

We now provide an additional connection between the pair of processes (X,Y ) appearing in Theorem 2.4 and the
process Z itself. Let D(R+,R2) denote the space of R2-valued functions, with domain R+, that are right-continuous
with left limits. Also, let DS(R+,R2) be the set of f ∈ D(R+,R2) such that f (0) ∈ S. Next, let d(·) be a set-valued
mapping defined on S such that d(z) is a closed convex cone in R

2 for every z ∈ S. In particular, we define

d(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{av1, a ≥ 0}, for z ∈ ∂S1 \ {0},
{av2, a ≥ 0}, for z ∈ ∂S2 \ {0},
V , for z = 0,

{0}, for z ∈ int(S),

(6)

where the selection of the closed convex cone V ⊂ R
2 will be discussed in a moment. For a set A ⊆ R

2, let co(A)

denote the closure of the convex hull of A. We then recall from Ramanan [23] the definition of the extended Skorokhod
problem (ESP).

Definition 2.7. The pair of processes (φ, η) ∈ DS(R+,R2)×D(R+,R2) solve the ESP (S, d(·)) for ψ ∈ DS(R+,R2)

if φ(0) = ψ(0), and if for all t ∈R+, the following properties hold,

1. φ(t) = ψ(t) + η(t),
2. φ(t) ∈ S,
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3. For every s ∈ [0, t],

η(t) − η(s) ∈ co

[ ⋃
u∈(s,t]

d
(
φ(u)

)]
,

4. η(t) − η(t−) ∈ co[d(φ(t))].

Theorem 2.8. Suppose that 1 < α < 2. Then, for each z ∈ S, the ESP (S, d(·)) for the Brownian motion X on
(CS,F,Ft , P

z) has a solution P z-a.s. if and only if

co
(
V ∪ {av1, a ≥ 0} ∪ {av2, a ≥ 0})=R

2. (7)

In this case, (Z,Y ) solves the ESP (S, d(·)) for X.

By trivially setting V = R
2, it follows that one may always find a V such that (7) holds. However, using the fact

that 1 < α < 2, it is straightforward to verify that the smaller set V = {av0, a ≥ 0} for any v0 in the interior of S

satisfies (7) as well. Note also that we stop short of claiming in Theorem 2.8 that (Z,Y ) is the unique solution to the
ESP (S, d(·)) for X.

3. Results related to the zero set of Z

The following results are helpful as we proceed throughout the paper. Let 
 = {t ∈ R+ : Z(t) = 0} denote the zero
set of Z and note that since Z is a continuous process for every ω ∈ CS , it follows that 
 is a closed set for every
ω ∈ CS . Next, let z ∈ S and recall (see Definition 4.2.9 of [21]) that the origin is said to be regular for Z under P z if
P z(σ0̄ = 0) = 1, where σ0̄ = inf{t > 0 : Z(t) �= 0}. Then, since by Lemma 2.2 of Williams [31] the origin is regular
for Z under P z for each z ∈ S, using standard arguments (see Theorem 2.9.6 of Karatzas and Shreve [21]) it may be
shown that for each z ∈ S the set 
 contains no isolated points P z-a.s. Next, let 
C = {t ∈R+ : Z(t) �= 0} denote the
complement of 
 in R+. It then follows that 
C is an open set in R+, and in fact it may be written as


C = [0, τ0) ∪
( ∞⋃

i=1

(Gi,Di)

)
, (8)

where τ0 is the first hitting time of the origin by Z, i.e.,

τ0 = inf
{
t > 0 : Z(t) = 0

}
. (9)

Note that τ0 = 0, P 0-a.s., in which case we interpret [0,0) as the empty set. For each i ≥ 1, we refer to (Gi,Di)

as an excursion interval of Z away from the vertex and refer to the paths of Z over such intervals as excursions from
the vertex. It may easily be shown that the sequence of random times {(Gi,Di), i ≥ 1} can be selected such that
(Gi,Di) : CS �→ R

2+ is a measurable function on (CS,F) for each i ≥ 1. We assume for the remainder of the paper
that such a selection has been made.

Closely related to the zero set 
 is the concept of the local time of Z at the origin. Since the origin is a regular
point for Z, it follows by the results of Blumenthal and Getoor [2] that there exists a continuous, non-decreasing,
perfect, adapted functional L with support {0}. We refer to this process as the local time of Z at the origin. Moreover,
the results of [2] also guarantee that L is uniquely determined up to a multiplicative constant. As in [31], we assume
for the remainder of the paper that the multiplicative constant is chosen such that

E0
[∫ ∞

0
e−t dL(t)

]
= 1.

Now note that since 1 < α < 2, it is straightforward to show using Theorem 2.2 of Varadhan and Williams [28],
together with the strong Markov property [28] of Z, that L(t) → ∞ as t → ∞, P z-a.s. for each z ∈S. Hence, we may
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P z-a.s. define the inverse local time process

L−1(a) = inf
{
t ≥ 0 : L(t) > a

}
, a ≥ 0, (10)

and we set L−1 = {L−1(a), a ≥ 0}. By Corollary 2.7 of Williams [31], under P 0, L−1 is a stable subordinator of
index α/2. In particular, lnE0[e−λL−1(a)] = −aλα/2 for a,λ ≥ 0. Hence, under P 0, L−1 is a strictly increasing,
right-continuous, pure jump process (see Bertoin [1]), and so we have that P 0-a.s.,

L−1(a) =
∑

0≤κ≤a

�L−1(κ), a ≥ 0,

where

�L−1(κ) = L−1(κ) − L−1(κ−), κ ≥ 0,

with the convention that L−1(0−) = 0. In particular, whenever �L−1(κ) �= 0, then it is straightforward to show that
�L−1(κ) = Di − Gi for the unique value of i ≥ 1 such that L(Gi) = L(Di) = κ . Thus, we also have that P 0-a.s.,

L−1(a) =
∑

i:L(Gi)≤a

(Di − Gi), a ≥ 0. (11)

We note that using arguments similar to the proof of Corollary 5.11 (page 411) of Çinlar [8], it may be shown that
P 0-a.s., L−1(R+) ⊂ 
 with


 \ L−1(R+) =
∞⋃
i=1

{Gi}. (12)

Finally, a note on notation. It is customary to write L(t) instead of L(t,ω) = L(t,Z(·,ω)), and we shall do so.
However, in Section 6 we need to write down the local time calculated for an element of Cs other than ω = Z(·,ω).
For example, for the additivity property, we need to write down the local time at time t − s applied to Z(s + ·,ω)

for some 0 ≤ s ≤ t . In order to strike a compromise between clarity and brevity, we shall write L(t) instead of
L(t,ω) = L(t,Z(·,ω)). However, for u, s ≥ 0 we shall write L(u,Z(s +·)) instead of L(u,Z(s +·,ω)). For example,
we write the additivity property as

L(t) = L(s) + L
(
t − s,Z(s + ·)), (13)

P z-a.s., for all z ∈ S, and 0 ≤ s ≤ t . Note that the exceptional set on which (13) does not hold does not depend on s

and t since L is assumed to be perfect.

4. Identification of X and the standard Skorokhod problem

In this section, we prove the existence of a 2-dimensional process X on (Cs,F,Ft ) which is a standard 2-dimensional
Brownian motion started from z on (CS,F,Ft , P

z) for each z ∈ S. Moreover, letting Y = Z − X, we show that over
each excursion interval [Gi,Di] for i ≥ 1 (and if z �= 0, then also over the interval from zero to the first time that Z

hits the origin), the pair of processes (Z,Y ) solves the standard Skorokhod problem for X given by Definition 4.1
below. In Section 5, it is proven that the process Y is of zero energy on (CS,F,Ft , P

z) for each z ∈ S, and hence
(X,Y ) is the desired Doob-Meyer type decomposition of Z given by Theorem 2.4. We also note that our construction
of the process X is similar to that of Kang and Ramanan [20], but differs in an important way in order to allow us to
prove our results related the Skorokhod problem.

We now recall the definition of the standard Skorokhod problem (SP) as given in Ramanan [23]. Recall first
from Section 2.3 the definition of D(R+,R2) as the space of R2-valued functions, with domain R+, that are right-
continuous with left limits, and the definition of DS(R+,R2) as the set of f ∈ D(R+,R2) such that f (0) ∈ S. Also, let
BV (R+,R2) ⊂ D(R+,R2) denote the subset of functions in D(R+,R2) which have finite variation on each bounded
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interval. For each f ∈ BV (R+,R2) and t ≥ 0, we denote the variation of f on [0, t] by f̄ (t), which is a shorthand
notation for V1(f, [0, t]). Next, recall from (6) of Section 2.3, the definition of the set-valued mapping d(·) defined on
S, and, for each z ∈ S, let d1(z) denote the intersection of d(z) with the unit sphere S1(0) in R

2 which is centered at
the origin. We then recall from Ramanan [23] the definition of the standard Skorokhod problem (SP).

Definition 4.1. The pair of processes (φ, η) ∈ DS(R+,R2)×D(R+,R2) solves the SP (S, d(·)) for ψ ∈ DS(R+,R2)

if φ(0) = ψ(0), and if for all t ∈R+, the following properties hold,

1. φ(t) = ψ(t) + η(t),
2. φ(t) ∈ S,
3. η ∈ BV (R+,R2),
4. η̄(t) = ∫

[0,t] 1{φ(s) ∈ ∂S}dη̄(s),

5. There exists a measurable function γ : R+ �→ S1(0) such that dη̄-almost everywhere we have that γ (t) ∈ d1(φ(t))

and

η(t) =
∫ t

0
γ (s) dη̄(s).

Our main result of this section is the following.

Theorem 4.2. Suppose that 1 < α < 2.

1. There exists a 2-dimensional process X on (Cs,F,Ft ) such that X is a standard 2-dimensional Brownian motion
started from z on (CS,F,Ft , P

z) for each z ∈ S.
2. Let X be as above, Y = Z − X, and let V in (6) be an arbitrary, non-empty closed convex cone in R

2. Then, for
each z ∈ S, P z-a.s. the pair (Z((Gi + ·) ∧ Di),Y ((Gi + ·) ∧ Di) − Y(Gi)) solves the SP (S, d(·)) for X((Gi +
·) ∧ Di) + Y(Gi) for each i ≥ 1. In addition, for each z ∈ S \ {0}, P z-a.s. the pair (Z(· ∧ τ0), Y (· ∧ τ0)) solves the
SP (S, d(·)) for X(· ∧ τ0).

The two parts of Theorem 4.2 are proven respectively in Sections 4.1 and 4.2 below. Also note that d(0) = V in the
definition of d(·), and the selection of V turns out to be important in Theorem 2.8. However, since Z does not reach
the origin on (Gi,Di), or on [0, τ0) if z �= 0, the selection of V in the above theorem is irrelevant.

4.1. Proof of Part 1 of Theorem 4.2

For each δ > 0, let Sδ ⊂ S be the closed set defined in polar coordinates by Sδ = S + δeiξ/2. Next, set τ δ
0 = 0, and, for

each k ≥ 1, recursively define

σ δ
k = inf

{
t ≥ τ δ

k−1 : Z(t) ∈ S2δ

}
and τ δ

k = inf
{
t ≥ σ δ

k : Z(t) ∈ ∂Sδ

}
.

In the definition of σ δ
k we have S2δ instead of ∂S2δ because in the case when Z(0) lies in the interior of S2δ we want

σ δ
1 to be defined zero. The time intervals [σ δ

k , τ δ
k ] define the successive excursions of Z from the boundary of S2δ to

the boundary of Sδ , except that for k = 1 when Z(0) is in the interior of S2δ then [σ δ
1 , τ δ

1 ] is the excursion interval
from Z(0) to the boundary of Sδ . See Figure 2.

Since Z(·,ω) is continuous for every ω ∈ CS , we may equivalently set τ δ
k = inf{t ≥ σ δ

k : Z(t) ∈ Sc
δ ∩ So}, where

Sc
δ denotes the complement of Sδ in S, and So is the interior of S. It is immediate by Proposition 2.1.5 of Ethier and

Kurtz [14] that σ δ
k and τ δ

k are, for each k ≥ 1, stopping times relative to the right-continuous filtration {Ft , t ≥ 0}.
Now, for each k ≥ 1, let Wδ

(k) be the process defined by setting

Wδ
(k)(t) = Z

(
t ∧ τ δ

k

)− Z
(
t ∧ σ δ

k

)
, t ≥ 0, (14)

and then define the process Wδ by setting

Wδ(t) =
∞∑

k=1

Wδ
(k)(t), t ≥ 0.
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Fig. 2. Basic notations.

This process is not exactly the same as the corresponding process in Kang and Ramanan [20] defined under (5.7)
there (it is denoted by Wm in that paper). It can be shown though that in the limit (as δ → 0 here and m → ∞ in
Kang and Ramanan [20]) these two definitions lead to the same Brownian motion. However, the present definition is
more convenient to prove a pathwise functional relationship between the solution of the submartingale problem and
the Brownian motion, that will be accomplished in Lemma 4.11.

Recall next from Section 2 the definition of the augmented sigma fields Mz and Mz
t for z ∈ S and t ≥ 0. For

each z ∈ S, let ϒ
c,z
2 denote the space of continuous, square-integrable martingales M with time horizon R+ on

(CS,Mz,Mz
t ,P

z), and such that M(0) = 0. It is well-known (see for instance Proposition 1.5.23 of Karatzas and
Shreve [21]) that the space ϒ

c,z
2 is complete under the norm

‖M‖z =
∞∑

n=1

1

2n

(√
Ez

[
M2(n)

]∧ 1
)
, M ∈ ϒ

c,z
2 . (15)

Now, for each δ > 0 and k ≥ 1 and i = 1,2, denote the ith component process of Wδ
(k) by Wδ

(k),i . We begin our
proof of Part 1 of Theorem 4.2 by recalling a result from Kang and Ramanan [20].

Lemma 4.3. For each δ > 0, k ≥ 1, i = 1,2, and z ∈ S, the process Wδ
(k),i ∈ ϒ

c,z
2 with quadratic variation processes

〈
Wδ

(k),i

〉
t
= (

t ∧ τ δ
k

)− (
t ∧ σ δ

k

)
, t ≥ 0,

for i = 1,2, and 〈Wδ
(k),1,W

δ
(k),2〉t = 0, t ≥ 0.
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Proof. This follows from Lemma 5.1 in [20]. �

Lemma 4.4. For each δ > 0 and k, � ≥ 1 with k �= �, we have under P z for every z ∈ S that〈
Wδ

(k),i ,W
δ
(�),j

〉
t
= 0, t ≥ 0,

for i, j = 1,2.

Proof. This follows immediately from (14). �

Lemma 4.5. For each z ∈ S, δ > 0 and i = 1,2, we have that Wδ
i ∈ ϒ

c,z
2 with quadratic and cross variations

〈
Wδ

i

〉
t
=

∞∑
k=1

((
t ∧ τ δ

k

)− (
t ∧ σ δ

k

))
, t ≥ 0, (16)

and 〈Wδ
1 ,Xδ

2〉t = 0, t ≥ 0.

Proof. All these statements follow immediately from Lemmas 4.3 and 4.4. �

Let � be the set of sequences {a(n),n ≥ 1} such that a(n) ↓ 0 as n → ∞ and 2a(n + 1) < a(n) for every n ≥ 1.
The set � will be useful for the following reason. Suppose that {a(n),n ≥ 1} ∈ � and let n > m ≥ 1 arbitrary. Then
for every k ≥ 1 there exists an integer l ≥ 1 such that [σa(m)

k , τ
a(m)
k ] ⊂ [σa(n)

l , τ
a(n)
l ]. In other words, every excursion

from ∂S2a(m) to ∂Sa(m) is included in an excursion from ∂S2a(n) to ∂Sa(n).

Lemma 4.6. For every sequence {δ(n), n ≥ 1} ∈ � we have that {Wδ(n)
i , n ≥ 1} is Cauchy in ϒ

c,z
2 for every z ∈ S and

i = 1,2.

Proof. Let {δ(n), n ≥ 1} ∈ �. Clearly it is sufficient to prove that {Wδ(n)
i (T ), n ≥ 1} is Cauchy in L2(CS,F,P z) for

each T ≥ 0. Suppose that for each n > m ≥ 1 we show that

Ez
[(

W
δ(n)
i (T ) − W

δ(m)
i (T )

)2]≤ Ez

∫ T

0
1
{
Z(t) ∈ S \ S2δ(m)

}
dt. (17)

Then by the Dominated Convergence Theorem and Lemma 4.2 of Williams [29] we have that

lim
m→∞Ez

[∫ T

0
1
{
Z(t) ∈ S \ S2δ(m)

}
dt

]
= Ez

[∫ T

0
1
{
Z(t) ∈ ∂S

}
dt

]
= 0, (18)

and so {Wδ(n)
i (T ), n ≥ 1} is Cauchy in L2(CS,F,P z) as desired.

Hence we need to show only (17), and that is what we shall do in the rest of this proof. Now write

Ez
[(

W
δ(n)
i (T ) − W

δ(m)
i (T )

)2] = Ez
[〈
W

δ(n)
i − W

δ(m)
i

〉
T

]
= Ez

[ ∞∑
k=1

[〈
W

δ(n)
i − W

δ(m)
i

〉
τ

δ(m)
k ∧T

− 〈
W

δ(n)
i − W

δ(m)
i

〉
σ

δ(m)
k ∧T

]]

+ Ez

[ ∞∑
k=1

[〈
W

δ(n)
i − W

δ(m)
i

〉
σ

δ(m)
k ∧T

− 〈
W

δ(n)
i − W

δ(m)
i

〉
τ

δ(m)
k−1 ∧T

]]
.

We analyze each of the terms on the right hand side above separately. Regarding the first term one can see easily that
for each k ≥ 1 and n > m ≥ 1 there exists an � ≥ 1 such that [σ δ(m)

k , τ
δ(m)
k ] ⊆ [σ δ(n)

� , τ
δ(n)
� ]. It then follows that for

k ≥ 1 and n > m,

W
δ(m)
i

(
T ∧ τ

δ(m)
k

)− W
δ(m)
i

(
T ∧ σ

δ(m)
k

)= W
δ(n)
i

(
T ∧ τ

δ(m)
k

)− W
δ(n)
i

(
T ∧ σ

δ(m)
k

)
,
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Fig. 3. If t ∈ (τ
δ(m)
k−1 , σ

δ(m)
k

) then Z(t) ∈ S \ S2δ(m) .

hence by Proposition IV.1.13 in [25] the first term is zero. Regarding the second term note that by (16) for every δ > 0,
0 ≤ s < t , and i = 1,2 we have 〈Wδ

i 〉t − 〈Wδ
i 〉s ≤ t − s, and on the interval [τ δ(m)

k−1 , σ
δ(m)
k ] the process Wδ(m) is flat.

Then it follows that for i = 1,2, we have

∞∑
k=1

[〈
W

δ(n)
i − W

δ(m)
i

〉
σ

δ(m)
k ∧T

− 〈
W

δ(n)
i − W

δ(m)
i

〉
τ

δ(m)
k−1 ∧T

] =
∞∑

k=1

[〈
W

δ(n)
i

〉
σ

δ(m)
k ∧T

− 〈
W

δ(n)
i

〉
τ

δ(m)
k−1 ∧T

]

≤
∞∑

k=1

[(
σ

δ(m)
k ∧ T

)− (
τ

δ(m)
k−1 ∧ T

)]
.

Now note that if t ∈ (τ
δ(m)
k−1 , σ

δ(m)
k ) for some k ≥ 1 then Z(t) ∈ S \ S2δ(m) (see Figure 3), thus

∞∑
k=1

[(
σ

δ(m)
k ∧ T

)− (
τ

δ(m)
k−1 ∧ T

)]=
∫ T

0

∞∑
k=1

1
{
t ∈ (

τ
δ(m)
k−1 , σ

δ(m)
k

)}
dt ≤

∫ T

0
1
{
Z(t) ∈ S \ S2δ(m)

}
dt, (19)

and (17) follows. �

Proposition 4.7. There exists a process W on (CS,F,Ft ) such that for every sequence {δ(n), n ≥ 1} ∈ � and every
z ∈ S, the process W is a standard 2-dimensional Brownian motion under P z started at zero, and

lim
n→∞W

δ(n)
i = Wi, i = 1,2, (20)

in the norm topology given in (15).

Proof. For every z ∈ S a standard argument now shows the existence of a P z-Brownian motion Wz such that (20)
holds with Wi replaced by Wz

i . The existence of a single W not depending on z follows from Cinlar, Jacod, Protter,
and Sharpe [9], Lemma 3.29. �
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Proof of Part 1 of Theorem 4.2. We define

X(t,ω) = W(t,ω) + ω(0), t ≥ 0, (21)

and note that by Proposition 4.7 for every z ∈ S the 2-dimensional process X is indeed a standard Brownian motion
on (CS,F,Ft , P

z) started at z, exactly as required. �

4.2. Proof of Part 2 of Theorem 4.2

Let the set of continuous functions ω : [0,∞) �→ R
2 be denoted by CR2 , which is an extension of CS . On this space,

for each t ≥ s ≥ 0, let M̃t = σ {ω(s) : 0 ≤ s ≤ t}, the sigma-field of subsets of CR2 generated by the coordinate maps
ω �→ ω(s) for 0 ≤ s ≤ t . Similarly, define M̃ = σ {ω(s) : s ∈ [0,∞)}. As explained in Williams [30], these σ -fields
represent the natural extensions of Mt and M from CS to CR2 . Let X̃ : [0,∞) × CR2 �→ R

2 be the coordinate-
mapping process

X̃(t,ω) = ω(t), t ≥ 0,w ∈ CR2 .

For each z ∈ S, let Qz be a probability measure on M̃ such that X̃ is a Brownian motion starting at z under Qz.
Recall that v1 and v2 are the directions of reflection, and let R be the 2 × 2 matrix whose column vectors are v1 and
v2. The set A defined below will play a central role in this subsection.

Definition 4.8. Let A⊂ CS × CR2 be the set that consists of all pairs (z, y) ∈ CS × CR2 satisfying the following two
properties:

1. There exists u ∈ CR2 such that both components of u are non-decreasing, and y(t)=Ru(t) for all t ≥ 0.
2. For j = 1,2, the j th component uj of u increases only at times t ≥ 0 when z(t) ∈ ∂Sj , i.e.,

∫∞
0 1{z(v) ∈ S \

∂Sj }duj (v) = 0.

One can show that the set A is measurable, that is, A ∈ M× M̃, but for brevity we omit the proof.
The next proposition is a restatement of the results on page 163 and of Theorem 1 of Williams [30].

Proposition 4.9. There exists a unique pair (Z̃, Ỹ ) of continuous, adapted processes on (CR2 ,M̃,M̃t ) (both Z̃ and
Ỹ are two-dimensional) such that

Ỹ (0) = 0, Z̃(t) ∈ S for each t ≥ 0, (22)

Ỹ (t ∨ τ̃0) = Ỹ (τ̃0), t ≥ 0, (23)

Z̃(t) =
{

X̃(t) + Ỹ (t) if t ≤ τ̃0,

0 if t ≥ τ̃0,
(24)

where τ̃0 = inf{t ≥ 0 : Z̃(t) = 0},
(Z̃, Ỹ ) ∈A.

Furthermore, for every z ∈ S, Z(· ∧ τ0) has the same law under P z as Z̃(· ∧ τ̃0) = Z̃(·) has under Qz, i.e., for any
B ∈M

P z
(
Z(· ∧ τ0) ∈ B

)= Qz
(
Z̃(· ∧ τ̃0) ∈ B

)
.

Recall now the definitions of the stopping times τ δ
k , σ δ

k from the beginning of Section 4. Since Z is the coordinate-
mapping process, these definitions could be cast in the form σ δ

k (w) = inf{t ≥ τ δ
k−1 : w(t) ∈ S2δ} and τ δ

k (w) = inf{t ≥
σ δ

k : w(t) ∈ ∂Sδ} for w ∈ CS . We can also write τ0 = inf{t > 0 : w(t) = 0} for w ∈ CS . In principle, some of these
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stopping times may be infinity for some w ∈ S, but by the continuity of ω we have limk→∞ σ δ
k (ω) = limk→∞ τ δ

k (ω) =
∞ for all ω ∈ CS . For δ > 0, we define the measurable mapping Iδ : CS �→ CR2 as

Iδ(ω)(·) =
∞∑

k=1

[
ω
(· ∧ τ δ

k (ω)
)− ω

(· ∧ σ δ
k (ω)

)]
.

By the continuity of ω, for any t ≥ 0, in the infinite sum defining Iδ(ω)(t) all terms except finitely many are zero. We
also note that

Iδ(ω)(·) = Wδ(·,ω). (25)

Now let 0 be the zero function in CR2 .

Definition 4.10. For any given sequence {γ (n), n ≥ 1} ∈ �, we define the mapping Fγ : CS �→ CR2 in the following
way: if there exists a function ω̃ ∈ CR2 such that for each m ∈N+,

sup
t≤m

∥∥Iγ (n)(ω)(t) − ω̃(t)
∥∥2 → 0 as n → ∞,

then Fγ (ω) = ω̃. If such ω̃ does not exist, then let Fγ (ω) be 0.

It follows from part R on page 111 in [4], that Fγ is M/M̃ measurable.
A few rather obvious properties of Iδ(·) and Fγ (·) will be listed in the Appendix, see Lemmas A.1, A.2, A.3, and

A.4.
Recall the process W from Proposition 4.7 which also appears implicitly in (3) via (21). The following lemma is

instrumental for the developments in this section. It specifies the exact form of the dependence of W(·,ω) on ω.

Lemma 4.11. For every z ∈ S and {δ(n), n ≥ 1} ∈ � there exists a sequence {γ z(n), n ≥ 1} ⊂ {δ(n), n ≥ 1} such that

P z
(
Fγ z(ω) = W(·,ω)

)= 1. (26)

In addition, the following three statements hold:

(a) If for some z ∈ S and {γ (n), n ≥ 1} ∈ � we have P z(Fγ (ω) = 0) = 0 then

P z
(
Fγ (ω) = W(·,ω)

)= 1; (27)

(b) For every stopping time τ on (Cs,F,Ft ) and z ∈ S,

Ez
[
P Z(τ)

(
Fγ z(ω) = W(·,ω)

)]= 1; (28)

(c) For every z ∈ S,

P 0(Fγ z(ω) = W(·,ω)
)= 1. (29)

Proof. Let {δ(n), n ≥ 1} ∈ � be arbitrary. By the concavity of the function x �→ √
x ∧ 1, (25), Doob’s Maximal

Inequality, and (20)

lim
n→∞

∞∑
m=1

1

2m
Ez

[
sup
t≤m

{∥∥Iδ(n)(ω)(t) − W(t,ω)
∥∥∧ 1

}]

≤ lim
n→∞

∞∑
m=1

1

2m

{(
Ez

[
sup
t≤m

{∥∥Iδ(n)(ω)(t) − W(t,ω)
∥∥2}])1/2 ∧ 1

}
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≤ lim
n→∞

∞∑
m=1

1

2m

{(
Ez

[
sup
t≤m

{∥∥Wδ(n)(t,ω) − W(t,ω)
∥∥2}])1/2 ∧ 1

}

≤ lim
n→∞

∞∑
m=1

1

2m

{(
4
∑
i=1,2

Ez
[(

W
δ(n)
i (m) − Wi(m)

)2])1/2

∧ 1

}

= 0. (30)

Then there exists a subsequence {γ z(n), n ≥ 1} ⊂ {δ(n), n ≥ 1} such that

lim
n→∞

∞∑
m=1

1

2m
sup
t≤m

{∥∥Iγ z(n)(ω)(t) − W(t,ω)
∥∥∧ 1

}= 0,

P z-a.s., which implies (26). Next we are going to show the statement in (a). From our assumption that P z(Fγ (ω) =
0) = 0, it follows that limn→∞ Iγ (n)(ω) = Fγ (ω) in the topology of uniform convergence on compacts, P z-a.s. On
the other hand, similarly to (30) one can show that

lim
n→∞

∞∑
m=1

1

2m
Ez

[
sup
t≤m

{∥∥Iγ (n)(ω)(t) − W(t,ω)
∥∥∧ 1

}]= 0,

which implies (27). Next we are going to show part (b). By (70) and (26) we have P z-a.s.

Fγ z

(
ω(τ + ·))= Fγ z(ω)(τ + ·) − Fγ z(ω)(τ ) = W(τ + ·) − W(τ) �= 0, (31)

thus by the strong Markov property

1 = P z
(
Fγ z

(
ω(τ + ·)) �= 0

)= P z
(
Fγ z

(
Z(τ + ·)) �= 0

)= Ez
[
P Z(τ)

(
Fγ z

(
Z(·)) �= 0

)]
.

Therefore there exists a set Sτ ∈ BS such that P z(Z(τ) ∈ Sτ ) = 1 and

P z′(
Fγ z

(
Z(·)) �= 0

)= 1 for all z′ ∈ Sτ

(Sτ is a Borel set by Varadhan and Williams [28], Corollary 3.3). Then by part (a) we have P z′
(Fγ z(ω) =

W(·,ω)) = 1 for all z′ ∈ Sτ , which implies (28). Finally we show part (c). By part (a) all we need to show is that
P 0(Fγ z(ω) = 0) = 0. By the strong Markov property the left-hand side is equal to P z(Fγ z(Z(τ0 + ·)) = 0), which is
indeed 0 by (31). �

The following proposition studies the behavior of the pair (Z,Y ) on the interval [0, τ0]. A similar result may
be derived using the combination of Theorem 3 in [20], Theorem 2.9 in [23] and Theorem 1 in [30]. However, the
Brownian motion in [20] is defined differently than it is defined in the present paper, and so we present a proof below
utilizing the functional relationship (26) between Z(ω) = ω and W(ω). This functional relationship will be essential
in studying the behavior of (Z,Y ) over excursion intervals of Z away from the origin. Also, we note that for the proof
of (26) (and for the other statements in Lemma 4.11) it is important that our definition of X differs from that in [20].

For every z ∈ S, we fix a sequence {γ z(n), n ≥ 1} such that (26) holds. Recall the class A from Definition 4.8.

Proposition 4.12. For each z ∈ S, we have P z-a.s. that (Z(· ∧ τ0), Y (· ∧ τ0)) ∈A.

Proof. (26) implies that for any subsequence {α(n),n ≥ 1} ⊂ {γ z(n), n ≥ 1} we have Fα(ω) = W(·,ω), P z-a.s., and
by (67) and by Z(·,ω) = ω we have

Fα

(
Z(· ∧ τ0)

)= W(· ∧ τ0) = X(· ∧ τ0) − z,
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P z-a.s. Then it is sufficient to show that there exists a sequence {α(n),n ≥ 1} ⊂ {γ z(n), n ≥ 1} such that

Fα

(
Z̃(·))= X̃(· ∧ τ̃0) − z, Qz-a.s. (32)

Indeed, suppose that (32) holds, then(
Z̃(·), Ỹ (·)) = (

Z̃(·), Z̃(·) − X̃(· ∧ τ̃0)
)= (

Z̃(·), Z̃(·) − Fα

(
Z̃(·))− z

)
d= (

Z(· ∧ τ0),Z(· ∧ τ0) − Fα

(
Z(· ∧ τ0)

)− z
)= (

Z(· ∧ τ0), Y (· ∧ τ0)
)
,

where the sign
d= means that the law of the expression on the left-hand side under Qz agrees with the law of the ex-

pression on the right-hand side under P z. Then the statement of the present proposition follows from Proposition 4.9.
For the rest of this proof we shall prove (32) which amounts to showing that for some {α(n),n ≥ 1} ⊂ {γ z(n), n ≥ 1}
and every m ∈ N+ we have

sup
t≤m

∥∥Iα(n)

(
Z̃(·))(t) − (

X̃(t ∧ τ̃0) − z
)∥∥2 → 0 (33)

as n → ∞, Qz-a.s.
Analog to τ δ

0 , τ δ
1 , σ δ

1 , τ δ
2 , σ δ

2 , . . . for δ > 0 we define the stopping times τ̃ δ
0 = 0, σ̃ δ

k = inf{t ≥ τ̃ δ
k−1 : Z̃(t) ∈ S2δ} and

τ̃ δ
k = inf{t ≥ σ̃ δ

k : Z̃(t) ∈ ∂Sδ}, k ≥ 1. In the rest of the proof we shall drop the superscript z from γ z(n) whenever it
leads to double superscript, and write σ̃ γ (n) and τ̃ γ (n) instead.

By the fact that Z̃ is flat on [τ̃0,∞), we have

Iγ z(n)

(
Z̃(·))(t ∧ m) =

∞∑
k=1

[
Z̃
(
t ∧ τ̃0 ∧ τ̃

γ (n)

k ∧ m
)− Z̃

(
t ∧ τ̃0 ∧ σ̃

γ (n)

k ∧ m
)]

.

Moreover, since Ỹ is flat on [σ̃ δ
k ∧ m, τ̃ δ

k ∧ m], we can cast this in the form

Iγ z(n)

(
Z̃(·))(t ∧ m) =

∞∑
k=1

[
X̃
(
t ∧ τ̃0 ∧ τ̃

γ (n)

k ∧ m
)− X̃

(
t ∧ τ̃0 ∧ σ̃

γ (n)

k ∧ m
)]

=
∫ t

0

∞∑
k=1

1
{
u ∈ [

σ̃
γ (n)

k ∧ τ̃0 ∧ m, τ̃
γ (n)

k ∧ τ̃0 ∧ m
]}

dX̃(u).

Hence by the the Dominated Convergence Theorem, the fact that Z(· ∧ τ0) has the same law as Z̃(· ∧ τ̃0), and by
Williams [29], Lemma 4.2, it follows that

lim
n→∞Ez

Q

[∥∥Iγ (n)

(
Z̃(·))(τ̃0 ∧ m) − (

X̃(τ̃0 ∧ m) − z
)∥∥2]

= 2 lim
n→∞Ez

Q

[ ∞∑
k=0

∫ τ̃0∧m

0
1
{
u ∈ [

τ̃
γ (n)

k , σ̃
γ (n)

k+1

]}
du

]

≤ 2 lim
n→∞Ez

Q

[∫ τ̃0∧m

0
1
{
Z̃(u) ∈ S \ S2γ z(n)

}
du

]

= 2Ez
Q

[∫ τ̃0∧m

0
1
{
Z̃(u) ∈ ∂S

}
du

]

= 2Ez

[∫ τ0∧m

0
1
{
Z(u) ∈ ∂S

}
du

]

= 0.
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Then Doob’s inequality applied to the square-integrable martingale Iγ (n)(Z̃ ∧ m)(·) − (X̃(· ∧ τ̃0 ∧ m) − z) gives

Ez
Q

[
sup
t≤m

{∥∥Iγ (n)

(
Z̃(·))(t ∧ τ̃0) − (

X̃(t ∧ τ̃0) − z
)∥∥2}]

≤ 4Ez
Q

[∥∥Iγ (n)

(
Z̃(·))(τ̃0 ∧ m) − (

X̃(τ̃0 ∧ m) − z
)∥∥2]→ 0, as n → ∞,

and so the existence of a subsequence {α(n),n ≥ 1} ⊂ {γ z(n), n ≥ 1} follows such that (33) holds. �

Proposition 4.13. For each z ∈ S, and each excursion interval [Gi,Di] of Z away from the origin, we have P z-a.s.
that (

Z
(
(Gi + ·) ∧ Di

)
, Y

(
(Gi + ·) ∧ Di

)) ∈A.

Proof. Let {(Un
k , T n

k ), k ≥ 1} be the sequence of excursion intervals of Z away from zero with length strictly larger
than 1/n, i.e., T n

k − Un
k > 1/n for every n ∈ N+, and let V n

k = Un
k + 1/n. Clearly it is sufficient to show that for all

k,n ∈ N+ and z ∈ S,

P z
((

Z
((

V n
k + ·)∧ T n

k

)
, Y

((
V n

k + ·)∧ T n
k

)) ∈ A
)= 1,

which is the same as

P z
((

Z
((

V n
k + ·)∧ T n

k

)
,Z

((
V n

k + ·)∧ T n
k

)− X
((

V n
k + ·)∧ T n

k

)) ∈ A
)= 1. (34)

By (26) and (72) in the Appendix we have P z-a.s. that

X
((

V n
k + t

)∧ T n
k

)= Fγ z

(
Z(·))((V n

k + t
)∧ T n

k

)+ z = Fγ z

(
Z
((

V n
k + ·)∧ T n

k

))
(t) + Fγ z

(
Z(·))(V n

k

)+ z,

hence we can replace the X((V n
k +·)∧T n

k ) term in (34) by Fγ z(Z((V n
k +·)∧T n

k )), since the terms Fγ z(Z(·))(V n
k )+z

have no impact on the fact whether the pair (Z((V n
k + ·) ∧ T n

k ),Z((V n
k + ·) ∧ T n

k ) − X((V n
k + ·) ∧ T n

k )) is included in
A or not. Thus the left-hand side of (34) is equal to

P z
((

Z
((

V n
k + ·)∧ T n

k

)
,Z

((
V n

k + ·)∧ T n
k

)− Fγ z

(
Z
((

V n
k + ·)∧ T n

k

)) ∈A
))

,

and by the strong Markov property and (67) this is equal to

Ez
[
P Z(V n

k )
((

Z(· ∧ τ0),Z(· ∧ τ0) − Fγ z

(
Z(· ∧ τ0)

)) ∈A
)]

= Ez
[
P Z(V n

k )
((

Z(· ∧ τ0),Z(· ∧ τ0) − Fγ z

(
Z(·))(t ∧ τ0)

) ∈ A
)]

. (35)

When applying (67) above, we needed the condition Ez[P Z(V n
k )(Fγ z(Z(·)) �= 0)], but this follows from (28). Applying

(28) and Proposition 4.12, we get that (35) is equal to

Ez
[
P Z(V n

k )
((

Z(· ∧ τ0),Z(· ∧ τ0) − X(· ∧ τ0)
) ∈A

)]= 1,

as desired. �

Proof of Part 2 of Theorem 4.2. Let [Gi,Di] be an arbitrary excursion interval of Z(·,ω) away from zero. By
Proposition 4.13 there exist two non-decreasing functions U1,U2 :R+ �→ R, such that Y((Gi + t)∧Di) = v1U1(t)+
v2U2(t) for t ≥ 0, and∫ ∞

0
1
{
Z
(
(Gi + p) ∧ Di

)
/∈ ∂Sj

}
dUj (p) = 0,

for j = 1,2. Then, by Lemma A.5 in the Appendix,

V1
(
Y
(
(Gi + ·) ∧ Di

)
, [0, t])= ‖v1‖

(
U1(t) − U1(0)

)+ ‖v2‖
(
U2(t) − U2(0)

)
, t ≥ 0. (36)
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The first three requirements of Definition 4.1 are obviously satisfied. Item 4 of Definition 4.1 follows from (36).
Moreover, from (36) it follows that

Y
(
(Gi + t) ∧ Di

)− Y(Gi) =
∫ t

0
γ (p)d

(‖v1‖U1(p) + ‖v2‖U2(p)
)
,

where

γ (p) = v1

‖v1‖1
{
Z
(
(Gi + p) ∧ Di

) ∈ ∂S1}+ v2

‖v2‖1
{
Z
(
(Gi + p) ∧ Di

) ∈ ∂S2},
and so Item 5 of Definition 4.1 follows. Clearly the same proof applies if instead of [Gi,Di] we consider the interval
[0, τ0], whenever τ0 > 0; the only difference is that we have to use Proposition 4.12 instead of Proposition 4.13. �

5. Proof of Theorem 2.4

Let the process X be as in Theorem 4.2, so for each z ∈ S the process X is a Brownian motion started from z on
(CS,F,Ft , P

z), and let Y be defined by Z = X +Y . In particular, X is a local martingale on (CS,F,Ft , P
z). Hence,

by Definition 2.3 of Section 2, in order to prove Theorem 2.4 it suffices to prove that for each z ∈ S, Y is a continuous,
zero-energy process (see Definition 2.2) on (CS,F,Ft , P

z) with P z(Y (0) = 0) = 1. The fact that Y is continuous
with P z(Y (0) = 0) = 1 is immediate since Y = Z − X, and so the proof of Theorem 2.4 is reduced to proving that Y

is of zero-energy on (CS,F,Ft , P
z).

Now let E ⊆ R+ and f : E �→ R
d . Then, for each γ > 0 the function f is said to be Hölder continuous with

exponent γ and Hölder constant H(f ) ∈R+, if∥∥f (t) − f (s)
∥∥≤ H(f )|t − s|γ for s, t ∈ E.

In addition, we say that f is locally Hölder continuous on R+ if it is Hölder continuous on compact E ⊂R+. In order
to prove that Y is of zero-energy on (CS,F,Ft , P

z) for each z ∈ S, it suffices to show (see the proof of Theorem 2.4
below) that P 0-a.s. we have the decomposition Y = g ◦ ϕ, where ϕ : R+ �→ R+ is a continuous, non-decreasing
function and g : ϕ(R+) �→R

2 is a locally Hölder continuous function with Hölder exponent greater than 1/2. The fact
that such a decomposition exists is the content of the following proposition.

Proposition 5.1. Suppose that α < p < 2. Then, for P 0-a.e. ω ∈ CS , there exists a continuous, nondecreasing function
ϕp : R+ �→ R+ and a map gp : ϕp(R+) �→ R

2, which is locally Hölder continuous with exponent 1/p, such that
Y(·,ω) = gp ◦ ϕp on R+.

In the following subsection, we provide the proof of Proposition 5.1. We close this subsection with the proof of
Theorem 2.4.

Proof of Theorem 2.4. We first treat the case of z = 0. By the decomposition Z = X + Y , where X is a Brownian
motion started from 0 on (CS,F,Ft , P

0), in order to show that Z is a Dirichlet process on (CS,F,Ft , P
0), it suf-

fices by Definition 2.3 to prove that Y is a process of zero energy on (CS,F,Ft , P
0). Let α < p < 2 and recall by

Proposition 5.1 that for P 0-a.e. ω ∈ CS , Y(·,ω) = gp ◦ϕp on R+, where ϕp : R+ �→R is a continuous, nondecreasing
function and gp : ϕp(E) �→ R

2 is locally Hölder continuous on R+ with exponent 1/p.
Now let T ≥ 0 and let Hϕp(T )(gp) denote the Hölder constant of gp on [0, ϕp(T )]. Then, for any partition π of

[0, T ],∑
ti∈π

∥∥Y(ti) − Y(ti−1)
∥∥2 =

∑
ti∈π

∥∥gp ◦ ϕp(ti) − gp ◦ ϕp(ti−1)
∥∥2

≤ (
Hϕp(T )(gp)

)2 ∑
ti∈π

∣∣ϕp(ti) − ϕp(ti−1)
∣∣2/p

≤ (
Hϕp(T )(gp)

)2(
ϕp(T ) − ϕp(0)

)
max
ti∈π

∣∣ϕp(ti) − ϕp(ti−1)
∣∣2/p−1

.
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Next let {πn,n ≥ 1} be a sequence of partitions of [0, T ] with ‖πn‖ → 0 as n → ∞, and note that since α < p < 2,
2/p − 1 > 0. Then, since ϕp is P 0-a.s. continuous, it follows that maxti∈πn |ϕp(ti) − ϕp(ti−1)|2/p−1 → 0 as n →
∞,P 0-a.s., and so by the above∑

ti∈π

∥∥Y(ti) − Y(ti−1)
∥∥2 → 0 as n → ∞,P 0-a.s.,

which implies that Y is of zero-energy on (CS,F,Ft , P
0). Thus, Z is a Dirichlet process on (CS,F,Ft , P

0).
Now let z ∈ S arbitrary. Again by the decomposition Z = X + Y , where X is a Brownian motion started from

z on (CS,F,Ft , P
z) it suffices by Definition 2.3 to prove that Y is a process of zero energy on (CS,F,Ft , P

z).
By the arguments of the previous portion of the proof, it then suffices to show that for P z-a.e. ω ∈ CS , we have for
each α < p < 2 the decomposition Y(·,ω) = gp ◦ ϕp on R+, where ϕp : R+ �→ R is a continuous, nondecreasing
function and gp : ϕp(E) �→ R

2 is locally Hölder continuous on R+ with exponent 1/p. However, by Theorem 3.1 of
Chistyakov and Galkin [7] this will be implied if for each α < p < 2 we have that

P z
(
Vp

(
Y, [0, T ])< ∞)= 1, T ≥ 0. (37)

Recall from (9) of Section 4 the definition of the stopping time τ0 = inf{t > 0 : Z(t) = 0}. By Theorem 2.2 of Varadhan
amd Williams [28], since α > 0, P z(τ0 < ∞) = 1. By the monotonicity property of Vp (see (P2) in Chistyakov and
Galkin [7]),

P z
(
Vp

(
Y, [0, T ])< ∞)≥ P z

(
Vp

(
Y, [0, τ0 + T ])< ∞)

.

By the semi-additivity property (see (P3) in Chistyakov and Galkin [7]) the right-hand side in the above equation is
equal to

P z
(
Vp

(
Y, [0, τ0]

)
< ∞ and Vp

(
Y, [τ0, τ0 + T ])< ∞)

.

Now using the strong Markov property [28], this expression can be written as

Ez
[
1
{
Vp

(
Y, [0, τ0]

)
< ∞}

P z
(
Vp

(
Y, [τ0, τ0 + T ])< ∞ | Fτ0

)]
= P z

(
Vp

(
Y, [0, τ0]

)
< ∞)

P 0(Vp

(
Y, [0, T ])< ∞)

. (38)

However, using Theorem 3.1 of Chistyakov and Galkin [7] it has already been shown earlier in the proof that the
second factor in (38) is equal to 1. By Part 2 of Theorem 4.2, P z(V1(Y, [0, τ0]) < ∞) = 1, and this implies that the
first term in (38) is also equal to 1. �

5.1. Proof of Proposition 5.1

In this section, we provide the proof of Proposition 5.1. For each p > α and q > α/2, define the function ϕp,q : R+ �→
R+ by setting

ϕp,q(t) =

⎧⎪⎨
⎪⎩

Vq(L−1, [0,L(t)]), for t ∈ L−1(R+),

Vq(L−1, [0,L(t))), for t ∈ 
 \ L−1(R+),

ϕp,q(Gi) + (Di−Gi)
q

Vp(Y,[Gi,Di ]) · Vp(Y, [Gi, t]), for t ∈ (Gi,Di) for i ≥ 1,

(39)

where we recall from Section 3 the definition of 
 as the zero set of Z, and of L as the local time of Z at the origin.
Also recall from (8) of Section 3 the definition of the sequence {(Gi,Di), i ≥ 1)} of excursion intervals away from the
origin of Z. Our proof of Proposition 5.1 will involve showing that for each p > α and 1 > q > α/2, we may P 0-a.s.
write Y(t) = Y ◦ ϕ−1

p,q ◦ ϕp,q(t) for t ∈ R+. Moreover, it will be shown that ϕp,q : R+ �→ R+ is P 0-a.s. well-defined,
non-decreasing and continuous with ϕp,q(R+) = R+, and that for each p > α there exists some α/2 < q < p/2 such
that Y ◦ ϕ−1

p,q is locally Hölder continuous on R+ with Hölder exponent 1/p.
We begin with the following three preparatory lemmas.
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Lemma 5.2. For each p > α and q > α/2, the function ϕp,q : R+ �→ R+ is P 0-a.s. well-defined and strictly in-
creasing on the set 
. Moreover, if in addition to the above assumptions for p and q it is also true that q < 1, then
P 0-a.s.,

ϕp,q(t) =
∑

i:Gi<t

(Di − Gi)
q, t ∈ 
. (40)

Proof. Let p > α and q > α/2. First note that by (8), it follows that P 0-a.s. the three cases provided in the def-
inition of ϕp,q are disjoint. Now recall from Theorem 2.6 of Williams [31] that L−1 is a stable subordinator of
index α/2 under P 0. Hence, by the results of Simon [27] (see immediately below display (9) of [27]), it follows that
P 0(Vq(L−1, [0,1]) < ∞) = 1. Using the scaling property [31] under P 0,

L−1(λ·) d= λ2/αL−1(·), λ > 0,

it then follows that P 0(Vq(L−1, [0, T ]) < ∞) = 1 for each T ≥ 0. Moreover, by the monotonicity property of strong
q-variation (see (P2) of Chistyakov and Galkin [7]), Vq(L−1, [0, ·]) is P 0-a.s. a non-decreasing function. Hence,
P 0(Vq(L−1, [0, T ]) < ∞, T ≥ 0) = 1. It now follows from (39) that ϕp,q is P 0-a.s. well-defined on the set 
.

Next, we show (40). It follows from (11) of Section 3 and (9) of Simon [27] that for α/2 < q < 1, P 0-a.s.,

Vq

(
L−1, [0, a])=

∑
i:L(Gi)≤a

(Di − Gi)
q and Vq

(
L−1, [0, a)

)=
∑

i:L(Gi)<a

(Di − Gi)
q, a ≥ 0. (41)

(40) now follows from (39) and (41), combined with the identity (12).
Finally, we show that ϕp,q is P 0-a.s. strictly increasing on the set 
. By Item 3 of Definition 2.1, it follows that

P 0-a.s. for every t, t ′ ∈ 
 such that t < t ′, there exists some s ∈ (t, t ′) such that s /∈ 
. But then by (8), Gi ∈ [t, t ′) for
some i ≥ 1, and so (40) implies ϕp,q(t) < ϕp,q(t ′). �

Lemma 5.3. For each i ≥ 1 and ε > 0,

P 0(V1
(
Y,
[
Gi,Di ∧ (Gi + ε)

])
> 0

)= 1. (42)

Proof. First, we need a slight generalization of Definition 2.9.10 and Theorem 2.9.12 in Karatzas and Shreve [21].
Let f : R+ �→ R be given. A time t ≥ 0 will be called a point of local maximum (minimum) from the right if there
exists a δ > 0 such that f (s) ≤ f (t) (f (s) ≥ f (t)) for every s ∈ (t, t + δ). A time t ≥ 0 will be called a point of
strict local maximum (minimum) from the right if there exists a δ > 0 such that f (s) < f (t) (f (s) > f (t)) for every
s ∈ (t, t + δ). Now let w be a standard (1-dimensional) Brownian motion on some probability space. Then, following
the proof of Theorem 2.9.12 in [21], for almost every sample path of w all points of local maximum from the right
are strict. In a similar manner, it is also true that for almost every path w all points of local minimum from the right
are strict.

Now we are ready to prove (42). We shall use the same notation as in Williams [31]. In particular, we adjoin a point
∂ to CS , and define the excursion process {Ut, t ≥ 0} as the (CS,M)-valued point process given for t ≥ 0 by

Ut(s) =

⎧⎪⎨
⎪⎩

Z(L−1(t−) + s), if 0 ≤ s < L−1(t) − L−1(t−),

0, if s ≥ L−1(t) − L−1(t−) > 0,

∂, if L−1(t) − L−1(t−) = 0.

Now let N(A,U) be the number of times t such that (t,Ut ) ∈ A, where A ∈ B × M and B is the σ -field of Borel
subsets of (0,∞). Then, from Theorem 3.3 of Williams [31] it follows that

E0[N(
(0, t) × {

ω : T∂S(ω) > 0
}
,U

)]= 0,

where T∂S(ω) = inf{t > 0 : ω(t) ∈ ∂S} for ω ∈ CS . Then, by the Monotone Convergence Theorem [22],

E0[N(
(0,∞) × {

ω : T∂S(ω) > 0
}
,U

)]= 0.
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This implies that for P 0-a.e. sample path T i
∂S = Gi for all i ≥ 1, where

T i
∂S = inf

{
t > Gi : Z(t) ∈ ∂S

}
.

Suppose now that (42) does not hold. That is, Y is flat on [Gi, (Gi + ε) ∧ Di] for some i ≥ 1. Since Z(Gi) = 0,

Z(t) = X(t) + Y(Gi) = X(t) − X(Gi), t ∈ [
Gi, (Gi + ε) ∧ Di

]
. (43)

Now T i
∂S = Gi implies the existence of a sequence tn ↓ Gi such that Z(tn) ∈ ∂S1 for all n ≥ 1, or Z(tn) ∈ ∂S2 for all

n ≥ 1. In the first case, Z2(tn) = 0 for all n ≥ 1. Thus, by (43), Gi is a point of local minimum from the right for the
Brownian motion X2 (where X2 is the second component of the two-dimensional Brownian motion X), but not strict,
which is a contradiction. In the second case, we proceed similarly. Gi is a point of local minimum from the right for
the Brownian motion 〈n2,X〉, but not strict, which is again a contradiction. �

Lemma 5.4. For each p > α and q > α/2, the function ϕp,q :R+ �→ R+ is P 0-a.s. well-defined, non-decreasing and
continuous on the set (Gi,Di) for i ≥ 1.

Proof. Let p > α and q > α/2. By (8), it follows that P 0-a.s. the three cases provided in the definition of ϕp,q

are disjoint. We now show that ϕp,q is P 0-a.s. well-defined on (Gi,Di) for each i ≥ 1. By (39) and the fact that
Vp(Y, [Gi, ·]) is non-decreasing on (Gi,Di), it suffices to show that P 0-a.s., 0 < Vp(Y, [Gi,Di]) < +∞. The fact
that P 0-a.s., 0 < Vp(Y, [Gi,Di]) follows by Lemma 5.3 above. The fact that P 0-a.s., Vp(Y, [Gi,Di]) < +∞ follows
since by Part 2 of Theorem 4.2, V1(Y, [Gi,Di]) < +∞ P 0-a.s., and the fact that Vp(Y, [Gi,Di]) ≤ (V1(Y, [Gi,Di]))p
(see Remark 2.5 of Chistyakov and Galkin [7]) since by assumption p > α > 1. The fact that ϕp,q : R+ �→ R+ is P 0-
a.s. continuous and non-decreasing on (Gi,Di) follows by (39) and the facts that Vp(Y, [Gi, ·]) is non-decreasing on
(Gi,Di) and, since Y is P 0-a.s. continuous, Vp(Y, [Gi, ·]) is P 0-a.s. continuous on (Gi,Di) as well. �

Combining Lemmas 5.2 and 5.4 together, we may now prove the following.

Proposition 5.5. For each p > α and 1 > q > α/2, the function ϕp,q : R+ �→ R+ is P 0-a.s. well-defined, non-
decreasing and continuous with ϕp,q(R+) =R+.

Proof. Let p > α and 1 > q > α/2. By (8), it follows that P 0-a.s. the three cases provided in the definition of ϕp,q are
disjoint and cover all of R+. The fact that ϕp,q : R+ �→ R+ is P 0-a.s. well-defined and non-decreasing now follows
immediately by Lemmas 5.2 and 5.4.

We next prove that ϕp,q : R+ �→ R+ is P 0-a.s. continuous. By Lemma 5.4, it suffices to show that P 0-a.s. ϕp,q is
continuous at each point t ∈ 
. Let H1 be the set of all ω ∈ CS such that the following four conditions hold,

1. Identity (8) holds,
2. Identity (40) holds,
3. Vp(Y (·,ω), [Gi, ·]) is continuous on (Gi,Di) for each i ≥ 1,
4. ϕp,q(·,ω) :R+ �→ R+ is well-defined and non-decreasing.

By the discussion in Section 3, together with the definition of ϕp,q and Lemmas 5.2 and 5.4, and the discussion of the
preceding paragraph, it follows that P 0(H1)=1. It therefore suffices to show that ϕp,q(·,ω) :R+ �→R+ is continuous
for each ω ∈ H1. Hence, fix an arbitrary ω̂ ∈ H1 for the remainder of this paragraph. Let t ∈ 
 be arbitrary. We show
that ϕp,q is both left- and right-continuous at t . We start with left-continuity at t . Obviously then we can assume
that t > 0. If t isolated from the left in 
, then since identity (8) holds by condition 1, t = Di for some i ≥ 1, and
so left-continuity follows from the fact that by condition 4, ϕp,q is well-defined, the continuity of Vp(Y, [Gi, ·]) on
(Gi,Di), which is guaranteed by condition 3, and the identity (40) guaranteed by condition 2. Suppose now that t is
not isolated from the left in 
, i.e. there exists a sequence {tn, n ≥ 1} ⊂ 
 such that tn ↑ t as n → ∞. Then, since (40)
holds by condition 2, it follows that

lim
n→∞

(
ϕp,q(t) − ϕp,q(tn)

)= lim
n→∞

∑
i:tn≤Gi<t

(Di − Gi)
q = 0,
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and so left-continuity follows since by condition 4, ϕp,q is non-decreasing. The proof of right-continuity of ϕp,q at t

is quite similar and so we omit the details.
We now complete the proof by showing that P 0-a.s., ϕp,q(R+) =R+. First note that using the fact from Section 3

that L−1 is a subordinator under P 0, and the subadditivity property of strong q-variation (see (P3) in Section 2.2
of Chistyakov and Galkin [7]), it is straightforward to show that P 0-a.s., Vq(L−1, [0,A]) → +∞ as A → +∞.
Hence, since by the discussion in Section 3, P 0-a.s., L(t) → +∞ as t → +∞, it follows by (39) and the fact that
ϕp,q : R+ �→ R+ is P 0-a.s. non-decreasing, that P 0-a.s., ϕp,q(t) → +∞ as t → +∞. Moreover, it is clear from (39)
that P 0-a.s., ϕp,q(0) = 0. The desired result now follows since ϕp,q is P 0-a.s. continuous on R+. �

By Proposition 5.5 above, we now have that for each p > α and 1 > q > α/2 the function ϕp,q : R+ �→ R+ is
P 0-a.s. well-defined, non-decreasing and continuous with ϕp,q(R+) = R+. Hence, we may P 0-a.s. define its right-
continuous inverse function

ϕ−1
p,q(τ ) = inf

{
t ≥ 0 : ϕp,q(t) > τ

}
, τ ≥ 0.

In preparation for the ultimate proof of Proposition 5.1 below, we first provide two lemmas regarding ϕ−1
p,q .

Lemma 5.6. For each p > α and 1 > q > α/2, it follows that P 0-a.s., ϕ−1
p,q ◦ ϕp,q(t) = t for t ∈ 
. Moreover, ϕ−1

p,q is

P 0-a.s. Hölder continuous on ϕp,q(
) with Hölder exponent 1/q and Hölder constant H(ϕ−1
p,q) ≤ 1.

Proof. Let p > α and 1 > q > α/2. Next, let H2 be the set of all ω ∈ CS such that the following five conditions
hold,

1. There are no isolated points in 
 and the identities (8) and (12) hold,
2. L−1 is strictly increasing and right-continuous,
3. ϕp,q : R+ �→R+ is well-defined, non-decreasing and continuous with ϕp,q(R+) =R+,
4. ϕp,q is strictly increasing on 
,
5. V1(Y, [Gi,Di ∧ (Gi + 2−j )]) > 0 for i, j ≥ 1.

By the discussion in Section 3, Proposition 5.5, and Lemmas 5.2 and 5.3, it follows that P 0(H2) = 1. It therefore
suffices to show that the results of the lemma hold for each ω ∈ H2. Hence, fix an arbitrary ω̂ ∈ H2 for the remainder
of the proof.

We first prove that ϕ−1
p,q ◦ ϕp,q(t) = t for t ∈ 
. Since the identities (8) and (12) are guaranteed by condition 1, no

point t ∈ L−1(R+) is isolated from the right in 
. Hence, since by condition 4, ϕp,q is strictly increasing on 
, it
follows that ϕ−1

p,q ◦ ϕp,q(t) = t for t ∈ L1(R+). Next, note that by (12), which is guaranteed by condition 1, it follows

that if t ∈ 
 \L1(R+), then t = Gi for some i ≥ 1. Hence, since by condition 5, V1(Y, [Gi,Di ∧ (Gi + 2−j )]) > 0 for
i, j ≥ 1, it follows since by condition 3, ϕp,q is well-defined and non-decreasing on R+, that using (39), ϕp,q(t ′) >

ϕp,q(t) for t ′ > t . Hence, it follows that ϕ−1
p,q ◦ ϕp,q(t) = t for t ∈ 
 \ L1(R+), and so we have now shown that

ϕ−1
p,q ◦ ϕp,q(t) = t for t ∈ 
, as desired.

Next, we show that ϕ−1
p,q is Hölder continuous on ϕp,q(
) with Hölder exponent 1/q and Hölder constant

H(ϕ−1
p,q) ≤ 1. First note that since by condition 3, ϕp,q is well-defined on R+, it follows using the definition of

ϕp,q in (39) that

ϕp,q(t) = Vq

(
L−1,

[
0,L(t)

])
, t ∈ L−1(R+).

Trivially, L−1 = e◦L−1, where e : R+ �→ R+ is the identity function, and so since L−1 is non-decreasing by condition
2, the change-of-variable formula for strong q-variation (see (P4) of Chistyakov and Galkin [7]) implies that

ϕp,q(t) = Vq

(
L−1,

[
0,L(t)

])= Vq

(
e,L−1([0,L(t)

]))= Vq

(
e,
(
L−1(R+)

)−
t

)
, t ≥ 0,

where the final equality follows since by condition 2, L−1 is non-decreasing, and since L−1 ◦ L(t) = t for
t ∈ L−1(R+). Now note that since by condition 3, ϕp,q is continuous on R+ with ϕp,q(R+) = R+, it follows that
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ϕp,q ◦ ϕ−1
p,q(τ ) = τ for τ ∈ R+. Moreover, since it has been shown in the preceding discussion that ϕ−1

p,q ◦ ϕp,q(t) = t

for t ∈ 
, it follows that ϕ−1
p,q(τ ) ∈ L−1(R+) for τ ∈ ϕp,q(L−1(R+)). Thus, for τ, τ ′ ∈ ϕp,q(L−1(R+)) with τ ≤ τ ′,

by the minimality property and the semi-additivity property of strong q-variation (see (P1) and (P3) of Chistyakov
and Galkin [7]), it follows that

∣∣ϕ−1
p,q

(
τ ′)− ϕ−1

p,q(τ )
∣∣q ≤ Vq

(
e,
(
L−1(R+)

)ϕ−1
p,q (τ ′)

ϕ−1
p,q (τ )

)
≤ Vq

(
e,
(
L−1(R+)

)−
ϕ−1

p,q (τ ′)
)− Vq

(
e,
(
L−1(R+)

)−
ϕ−1

p,q (τ )

)
= τ ′ − τ.

Thus, ϕ−1
p,q meets the desired Hölder conditions on ϕp,q(L−1(R+)).

We now complete the proof by showing that ϕ−1
p,q meets the desired Hölder conditions on all of ϕp,q(
). Let τ, τ ′ ∈

ϕp,q(
). If τ, τ ′ ∈ ϕp,q(L−1(R+)), then the Hölder conditions are met by the preceding paragraph. On the other hand,
suppose that τ ∈ ϕp,q(L−1(R+)) and τ ′ ∈ ϕp,q(
)\ϕp,q(L−1(R+)). Let t ∈ L−1(R+) and t ′ ∈ 
\L−1(R+) be such
that ϕp,q(t) = τ and ϕp,q(t ′) = τ ′. By the identity (12), which holds by condition 1, it follows that t ′ = Gi for some
i ≥ 1. Thus, using the fact by condition 1 that there are no isolated points in 
 and that the identities (8) and (12)
hold, it is straightforward to show that there exists a non-decreasing sequence {t ′k} of elements of L−1(R+) such that
t ′k ↑ Gi and L(t ′k) ↑ L(Gi). Hence, by the continuity of ϕp,q on R+, which is guaranteed by condition 3, it follows
that τ ′

k = ϕp,q(t ′k) ↑ ϕp,q(Gi) = τ ′. Thus, since τ ′
k ∈ ϕp,q(L−1(R+)), and noting that ϕ−1

p,q ◦ ϕp,q(t) = t for t ∈ 


implies that ϕ−1
p,q(τ ′

k) = t ′k ↑ t ′ = ϕ−1
p,q(τ ′), it follows that

∣∣ϕ−1
p,q(τ ) − ϕ−1

p,q

(
τ ′)∣∣= lim

k→∞
∣∣ϕ−1

p,q(τ ) − ϕ−1
p,q

(
τ ′
k

)∣∣≤ lim
k→∞

∣∣τ − τ ′
k

∣∣1/q = ∣∣τ − τ ′∣∣1/q
.

In a similar manner, it may be shown that ϕ−1
p,q meets the desired Hölder conditions if τ, τ ′ ∈ ϕp,q(
) \

ϕp,q(L−1(R+)). �

Now, for each p > α and 1 > q > α/2, let

�i =
(

V1(ϕp,q, [Gi,Di])
Vp(Y, [Gi,Di])

)1/p

, i ≥ 1. (44)

Lemma 5.7. For each p > α and 1 > q > α/2 and i ≥ 1, it follows that P 0-a.s., Y ◦ ϕ−1
p,q ◦ ϕp,q(t) = Y(t) on

t ∈ [Gi,Di]. Moreover, Y ◦ ϕ−1
p,q is P 0-a.s. Hölder continuous on [ϕp,q(Gi), ϕp,q(Di)] with Hölder exponent 1/p

and Hölder constant Hi(Y ◦ ϕ−1
p,q) ≤ 1/�i .

Proof. Let p > α and 1 > q > α/2 and i ≥ 1. Since ϕp,q : R+ �→ R+ is, by Proposition 5.5, P 0-a.s. well-defined, it
follows by (39) that P 0-a.s.,

V1(ϕp,q, [Gi,Di])
Vp(Y, [Gi,Di]) · Vp

(
Y, [Gi, t]

)= Vp

(
�iY, [Gi, t]

)
, t ∈ [Gi,Di], (45)

where �i is defined in (44) above. Next, define the right-continuous inverse function V −1
p (�iY, ·) : [0,Vp(�iY,

[Gi,Di])] �→ [Gi,Di] by

V −1
p (�iY, τ ) = inf

{
t ∈ [Gi,Di] : Vp

(
�iY, [Gi, t]

)
> τ

}
, τ ∈ [

0,Vp

(
�iY, [Gi,Di]

)]
,

where inf∅ = Di . Since Y is P 0-a.s. continuous, it follows that Vp(�iY, ·) is P 0-a.s. continuous as well, and so
P 0-a.s.,

Vp

(
�iY,V −1

p (�iY, τ )
)= τ, τ ∈ [

0,Vp

(
�iY, [Gi,Di]

)]
.
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It then follows that P 0-a.s.,

Y ◦ V −1
p (�iY ) ◦ Vp

(
�iY, [Gi, t]

)= Y(t), t ∈ [Gi,Di],

and, using the same argument as in the proof of Lemma 3.3 of [7], that Y ◦V −1
p (�iY, ·) : [0,Vp(�iY, [Gi,Di])] �→R

2

is P 0-a.s. Hölder continuous with Hölder exponent 1/p and Hölder constant H(Y ◦ V −1
p (�iY, ·)) ≤ 1/�i .

Now recall by (39) that P 0-a.s.,

ϕp,q(t) = ϕp,q(Gi) + Vp

(
�iY, [Gi, t]

)
, t ∈ [Gi,Di]. (46)

Moreover, by (45), P 0-a.s.,

Vp

(
�iY, [Gi,Di]

)= V1
(
ϕp,q, [Gi,Di]

)= ϕp,q(Di) − ϕp,q(Gi).

Hence, in order to complete the proof, it suffices by the preceding paragraph to show that P 0-a.s.,

V −1
p (�iY, τ ) = ϕ−1

p,q

(
ϕp,q(Gi) + τ

)
, τ ∈ [

0,Vp

(
�iY, [Gi,Di]

)]= [
0, ϕp,q(Di) − ϕp,q(Gi)

]
.

However, the fact that by Proposition 5.5, ϕp,q is P 0-a.s. non-decreasing, implies that P 0-a.s.,

ϕ−1
p,q

(
ϕp,q(Gi) + τ

) = inf
{
t ≥ 0 : ϕp,q(t) > ϕp,q(Gi) + τ

}
= inf

{
t ∈ [Gi,Di] : ϕp,q(t) > ϕp,q(Gi) + τ

}
,

for τ ∈ [0, ϕp,q(Di) − ϕp,q(Gi)]. Then, by (46), P 0-a.s.,

inf
{
t ∈ [Gi,Di] : ϕp,q(t) > ϕp,q(Gi) + τ

} = inf
{
t ∈ [Gi,Di] : Vp

(
�iY, [Gi, t]

)
> τ

}
= V −1

p (�iY, τ ),

for τ ∈ [0, ϕp,q(Di) − ϕp,q(Gi)]. �

The proof of Proposition 5.1 is as follows.

Proof of Proposition 5.1. Combining Lemmas 5.6 and 5.7 above, it follows that for each p > α and 1 > q > α/2, P 0-
a.s., Y ◦ ϕ−1

p,q ◦ ϕp,q(t) = Y(t) for t ∈ R+. It is also immediate by Proposition 5.5 that ϕp,q is P 0-a.s. non-decreasing
on R+, with ϕp,q(R+) =R+. Hence, in order to complete the proof, it suffices by Theorem 3.1 of [7] to show that for
each α < p < 2, there exists some α/2 < q < p/2 < 1 such that Y ◦ ϕ−1

p,q is P 0-a.s. locally Hölder continuous on R+
with Hölder exponent 1/p.

Let H3 be the set of all ω ∈ CS such that the following six conditions hold,

1. Identity (12) holds with Di → +∞ as i → ∞,
2. ϕp,q : R+ �→R+ is well-defined, non-decreasing and continuous, with ϕp,q(R+) =R+,
3. ϕ−1

p,q ◦ ϕp,q(t) = t for t ∈ 
, and ϕ−1
p,q Hölder continuous on ϕp,q(
) with Hölder exponent 1/q and Hölder

constant H(ϕ−1
p,q) ≤ 1,

4. For each i ≥ 1, Y ◦ ϕ−1
p,q ◦ ϕp,q(t) = Y(t) on t ∈ [Gi,Di]. Moreover, Y ◦ ϕ−1

p,q is Hölder continuous on

[ϕp,q(Gi), ϕp,q(Di)] with Hölder exponent 1/p and Hölder constant Hi(Y ◦ ϕ−1
p,q) ≤ 1/�i ,

5. X : R+ �→R
2 is locally Hölder continuous with Hölder exponent η for each 0 ≤ η < 1/2,

6. The components of R−1Y are non-decreasing on [Gi,Di] for each i ≥ 1.

By the discussion in Section 3, it is straightforward to show that condition 1 holds P 0-a.s. Proposition 5.5, and
Lemmas 5.3 and 5.6 imply that conditions 2 through 4 hold P 0-a.s. By Part 1 of Theorem 4.2 of Section 4, X is
a standard 2-dimensional Brownian motion under P 0, and so condition 5 holds P 0-a.s. by Remark 2.12 of [21].
Condition 6 holds P 0-a.s. by Part 2 of Theorem 4.2. Thus, P 0(H3) = 1. In order to complete the proof, it therefore
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suffices to show that for each ω ∈ H3, for each α < p < 2, there exists some α/2 < q < p/2 < 1 such that Y ◦
ϕ−1

p,q(·,ω) is locally Hölder continuous on R+ with Hölder exponent 1/p. Hence, fix an arbitrary ω̂ ∈ H3 for the
remainder of the proof.

First note that since by condition 1, Di → +∞ as i → ∞, and since by condition 2, ϕp,q(t) → +∞ as t → +∞, it
suffices to show that Y ◦ϕ−1

p,q is Hölder continuous on [0, ϕp,q(Di)] for each i ≥ 1. Let i ≥ 1 and τ, τ ′ ∈ [0, ϕp,q(Di)]
with 0 ≤ τ ≤ τ ′ ≤ ϕp,q(Di) such that τ, τ ′ ∈ ϕp,q(
). Then, by condition 3, ϕ−1

p,q(τ ), ϕ−1
p,q(τ ′) ∈ 
, and so Y ◦

ϕ−1
p,q(τ ) = −X ◦ ϕ−1

p,q(τ ) and Y ◦ ϕ−1
p,q(τ ′) = −X ◦ ϕ−1

p,q(τ ′). This then implies that

∥∥Y ◦ ϕ−1
p,q

(
τ ′)− Y ◦ ϕ−1

p,q(τ )
∥∥= ∥∥X ◦ ϕ−1

p,q

(
τ ′)− X ◦ ϕ−1

p,q(τ )
∥∥. (47)

Now, by condition 5, for each 0 ≤ η < 1/2 and T ≥ 0, there exists a constant Cη,T such that∥∥X(t) − X(s)
∥∥≤ Cη,T |t − s|η, 0 ≤ s ≤ t ≤ T . (48)

Moreover, by condition 3 and the fact that τ, τ ′ ∈ [0, ϕp,q(Di)] with τ, τ ′ ∈ ϕp,q(
), it follows since ϕp,q :R+ �→R+
is non-decreasing by condition 2, that 0 ≤ ϕ−1

p,q(τ ) ≤ ϕ−1
p,q(τ ′) ≤ Di . Therefore, by (48), for each 0 ≤ η < 1/2, it

follows again by condition 3 that∥∥X ◦ ϕ−1
p,q

(
τ ′)− X ◦ ϕ−1

p,q(τ )
∥∥≤ Cη,Di

∣∣ϕ−1
p,q

(
τ ′)− ϕ−1

p,q(τ )
∣∣η ≤ Cη,Di

∣∣τ ′ − τ
∣∣η/q

. (49)

Now let 0 ≤ η� < 1/2 be such that q < η�p. Note that such an η� exists since by assumption q < p/2. Then
η�/q > 1/p, and since 0 ≤ τ ≤ τ ′ ≤ ϕp,q(Di), it follows that |τ ′ − τ |η�/q ≤ Kη�,i |τ ′ − τ |1/p , where Kη�,i =
(ϕp,q(Di))

η�/q−1/p . Hence, by (47) and (49),

∥∥Y ◦ ϕ−1
p,q

(
τ ′)− Y ◦ ϕ−1

p,q(τ )
∥∥≤ Kη�,iCη�,Di

∣∣τ ′ − τ
∣∣1/p

. (50)

Next, suppose that τ, τ ′ ∈ [0, ϕp,q(Di)] with 0 ≤ τ ≤ τ ′ ≤ ϕp,q(Di), and such that τ ∈ ϕp,q(
) and τ ′ /∈ ϕp,q(
).
In this case, by conditions 1 and 2, it follows that τ ′ ∈ (ϕp,q(Gj ),ϕp,q(Dj )) for some j ≥ 1. By condition 4, it follows
that ∥∥Y ◦ ϕ−1

p,q

(
τ ′)− Y ◦ ϕ−1

p,q

(
ϕp,q(Gj )

)∥∥≤ (1/�j )
∣∣τ ′ − ϕp,q(Gj )

∣∣1/p
.

Also since ϕp,q(Gj ) ∈ ϕp,q(
) ∩ [0, ϕp,q(Di)], it follows by (50) that

∥∥Y ◦ ϕ−1
p,q

(
ϕp,q(Gj )

)− Y ◦ ϕ−1
p,q(τ )

∥∥≤ Kη�,iCη�,Di

∣∣ϕp,q(Gj ) − τ
∣∣1/p

.

Hence, since 0 ≤ τ ≤ ϕp,q(Gj ) < τ ′ ≤ ϕp,q(Di), it follows by the triangle inequality that

∥∥Y ◦ ϕ−1
p,q

(
τ ′)− Y ◦ ϕ−1

p,q(τ )
∥∥≤ (

(1/�j ) + Kη�,iCη�,Di

)∣∣τ ′ − τ
∣∣1/p

. (51)

Similar reasoning leads to the same inequality if we assume that τ, τ ′ ∈ [0, ϕp,q(Di)] with 0 ≤ τ ≤ τ ′ ≤ ϕp,q(Di),
and such that τ /∈ ϕp,q(
) and τ ′ ∈ ϕp,q(
).

Next consider τ, τ ′ ∈ [0, ϕp,q(Di)] with 0 ≤ τ ≤ τ ′ ≤ ϕp,q(Di), and such that τ, τ ′ /∈ ϕp,q(
). Suppose first that
τ ∈ (ϕp,q(Gj ),ϕp,q(Dj )) and τ ∈ (ϕp,q(Gk),ϕp,q(Dk)) with j �= k. In this case, similar reasoning to the above leads
to the bound∥∥Y ◦ ϕ−1

p,q

(
τ ′)− Y ◦ ϕ−1

p,q(τ )
∥∥≤ (

(1/�j ) + Kη�,iCη�,Di
+ (1/�k)

)∣∣τ ′ − τ
∣∣1/p

. (52)

On the other hand, if τ, τ ′ ∈ (ϕp,q(Gj ),ϕp,q(Dj )), it is immediate by condition 4 that

∥∥Y ◦ ϕ−1
p,q

(
τ ′)− Y ◦ ϕ−1

p,q

(
ϕp,q(τ )

)∥∥≤ (1/�j )
∣∣τ ′ − τ

∣∣1/p
. (53)

Combining the cases (50), (51), (52) and (53) we now obtain that∥∥Y ◦ ϕ−1
p,q

(
τ ′)− Y ◦ ϕ−1

p,q(τ )
∥∥≤ (2�i + Kη�,iCη�,Di

)
∣∣τ ′ − τ

∣∣1/p for τ, τ ′ ∈ [
0, ϕp,q(Di)

]
,
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where

�i = sup
{
(1/�k) : Dk ≤ Di

}
.

Hence, in order to show that Y ◦ ϕ−1
p,q is Hölder continuous on [0, ϕp,q(Di)] with Hölder exponent 1/p, it suffices to

show that �i < +∞. Using the definition of �i in (44) it suffices to show that there exists 0 < Ki < +∞ such that
for k ≥ 1,

1{Dk ≤ Di}
(

Vp(Y, [Gk,Dk])
V1(ϕp,q, [Gk,Dk])

)1/p

< Ki. (54)

Recall the definition of the reflection matrix R from Section 4.2 and let Ȳ = R−1Y . By condition 6, the components
of Ȳ are non-decreasing on [Gk,Dk] for each k ≥ 1. Thus, since Z = X + Y and recalling that Z(Gk) = Z(Dk) = 0,
it follows that

Y(Dk) − Y(Gk) = −(
X(Dk) − X(Gk)

)
.

On the other hand, by the definition of Ȳ ,

Ȳ (Dk) − Ȳ (Gk) = R−1(Y(Dk) − Y(Gk)
)
.

Hence, using the local Hölder continuity (48) of X given by condition 5, it follows that for k ≥ 1 such that Dk ≤ Di ,∥∥Ȳ (Dk) − Ȳ (Gk)
∥∥≤ ∥∥R−1

∥∥∥∥X(Dk) − X(Gk)
∥∥≤ ∥∥R−1

∥∥Cη,Di
(Di − Gi)

η, (55)

for each 0 ≤ η < 1/2, where ‖R−1‖ denotes the operator norm of R−1. Next, for x = (x1, x2) ∈ R
2, it is straightfor-

ward to show that

‖x‖ρ ≤ |x1|ρ + |x2|ρ for 0 ≤ ρ ≤ 2.

Hence, letting Ȳ = (Ȳ1, Ȳ2) and using the definition of strong p-variation, it is immediate since α < p < 2 that

Vp

(
Ȳ , [Gk,Dk]

)≤ Vp

(
Ȳ1, [Gk,Dk]

)+ Vp

(
Ȳ2, [Gk,Dk]

)
.

However, since Ȳ has components which are non-decreasing on [Gk,Dk] and 1 < α < p, it follows that

Vp

(
Ȳ�, [Gk,Dk]

)= (
Ȳ�(Dk) − Ȳ�(Gk)

)p ≤ ∥∥Ȳ (Dk) − Ȳ (Gk)
∥∥p for � = 1,2.

Thus, by (55),

Vp

(
Ȳ , [Gk,Dk]

)≤ C̄η,Di
(Dk − Gk)

ηp,

where C̄η,Di
= 2(‖R−1‖Cη,Di

)p . Next, note that

Vp

(
Y, [Gk,Dk]

)= Vp

(
RȲ , [Gk,Dk]

)≤ ‖R‖pVp

(
Ȳ , [Gk,Dk]

)
,

where ‖R‖ denotes the operator norm of R. Hence,

Vp

(
Y, [Gk,Dk]

)≤ ¯̄Cη,Di
(Dk − Gk)

ηp,

where ¯̄Cη,Di
= 2(‖R‖‖R−1‖Cη,Di

)p . Now again let 0 ≤ η� < 1/2 be such that q < η�p. Then, since (Dk −Gk) < Di ,
it follows that

Vp(Y, [Gk,Dk])
(Dk − Gk)q

≤ ¯̄̄
Cη�,Di

,

where
¯̄̄
Cη,Di

= (Di)
ηp−q ¯̄Cη,Di

. Hence, (54) holds with Ki = (
¯̄̄
Cη�,Di

)1/p . �
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6. Proof of Theorem 2.6

Theorem 2.4 implies that Z has the unique decomposition Z = X + Y , where for each z ∈ S, X is a standard 2-
dimensional Brownian motion started at z and Y is a process of zero energy on (CS,F,Ft , P

z). In the proof of
Theorem 2.4, it was also shown (see (37) and the ensuing arguments) that for each 2 > p > α and z ∈ S,

P z
(
Vp

(
Y, [0, T ])< ∞)= 1, T ≥ 0. (56)

The fact that (56) may be extended to all p > α is an immediate consequence of the identity Vq(Y, [0, T ]) ≤
(Vp(Y, [0, T ]))q/p for 1 ≤ p ≤ q (see Remark 2.5 of Chistyakov and Galkin [7]). Hence, in order prove Theorem 2.6
it only remains to prove the partial converse result (5).

Recall from Section 3 the definition of L as the local time of Z at the origin and let Y ◦ L−1 be the process defined
by Y ◦ L−1 = {Y ◦ L−1(t), t ≥ 0}. For each t ≥ 0, we have by (10) that L−1(t) is a stopping time relative to the
filtration Ft and so we may define the new filtration FL−1 = {FL−1(t), t ≥ 0}.

Proposition 6.1. For each z ∈ S, the process Y ◦ L−1 is a Lévy process on (CS,F,FL−1 ,P z). In particular, it is an
α-stable process on (CS,F,FL−1 ,P 0), i.e. under P 0,

λ− 1
α Y ◦ L−1(λ·) d= Y ◦ L−1(·), λ > 0. (57)

Proof. Recall the notational remark from the end of Section 3. Let 0 ≤ a < b be arbitrary. Then applying (13) to
s = L−1(a), we obtain

L−1(b) = inf
{
t ≥ L−1(a) : L(t) > b

}
= inf

{
t ≥ L−1(a) : a + L

(
t − L−1(a),Z

(
L−1(a) + ·))> b

}
= L−1(a) + inf

{
u ≥ 0 : L(u,Z

(
L−1(a) + ·))> b − a

}
= L−1(a) + L−1(b − a,Z

(
L−1(a) + ·)), (58)

P z-a.s., for every z ∈ S. Then, for any B ∈ B(S), by (26), (71), (58), (29), the Strong Markov Property (see Theo-
rem 3.14 of Varadhan and Williams [28]), and the fact that by (12) Z(L−1(a)) = 0, we have

P z
(
Y
(
L−1(b)

)− Y
(
L−1(a)

) ∈ B | FL−1(a)

)
= P z

(
X
(
L−1(a)

)− X
(
L−1(b)

) ∈ B | FL−1(a)

)
= P z

(
Fγ z

(
Z(·))(L−1(a)

)− Fγ z

(
Z(·))(L−1(b)

) ∈ B |FL−1(a)

)
= P z

(−Fγ z

(
Z
(
L−1(a) + ·))(L−1(b) − L−1(a)

) ∈ B | FL−1(a)

)
= P z

(−Fγ z

(
Z
(
L−1(a) + ·))(L−1(b − a,Z

(
L−1(a) + ·))) ∈ B | FL−1(a)

)
= P 0(−Fγ z

(
Z(·))(L−1(b − a)

) ∈ B
)

= P 0(−X
(
L−1(b − a)

) ∈ B
)= P 0(Y (L−1(b − a)

) ∈ B
)
,

which shows that Y ◦ L−1 is indeed a Lévy process on (CS,F,FL−1 ,P z). Next, we show that it is also an α-stable
process on (CS,F,FL−1 ,P 0).

Recall the function φ : S �→ R from [31] given by φ(r, θ) = rα cos(αθ − θ1), r ≥ 0, 0 ≤ θ ≤ ξ (r and θ are polar
coordinates). It is shown in [31] that {φ(Z(t)), t ≥ 0} is a local submartingale on (CS,F,Ft , P

z) for each z ∈ S, that
can be uniquely decomposed as

φ
(
Z(t)

)= φ
(
Z(0)

)+ M(t) + A(t), (59)
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where M is a continuous local martingale, and A is an adapted, measurable, non-decreasing, continuous process, and
M(0) = A(0) = 0, P z-a.s. (see (2.6) in [31]). It is also shown in [31] that the processes A and M can be selected so
that they do not depend on z. Moreover, by Theorem 2.6 in [31] we have that

L(t) = cA(t), t ≥ 0,P z-a.s., (60)

for some positive constant c. Next for all λ > 0 we introduce the transformed processes

Aλ(t) = λ−α/2A(λt), Xλ(t) = λ−1/2X(λt),

Mλ(t) = λ−α/2M(λt), Zλ(t) = λ−1/2Z(λt), t ≥ 0.

By Lemma 2.1 in [31], we have that Zλ(·) d= Z(·) under P 0. Consider now the following identities given in the proof
of Theorem 2.6 of [31]:

φ
(
Z(·)) d= φ

(
Zλ(·)

)= φ
(
λ−1/2Z(λ·))= λ− α

2 φ
(
Z(λ·))

= λ− α
2
(
M(λ·) + A(λ·))= Mλ(·) + Aλ(·),

where the identity in law is understood to be under P 0. By the uniqueness of the decomposition in (59), Aλ(·) must
depend on Zλ(·) in the same way as A(·) depends on Z(·). Since A(·) = A(·) ◦ Z(·), so we have P 0-almost surely
Aλ(·) = A ◦ Zλ(·). Furthermore, {γ 0(n), n ≥ 1} ∈ � implies {λ−1/2γ 0(n), n ≥ 1} ∈ �, thus by Lemma 4.11 there
exists a sequence {ελ(n), n ≥ 1} ⊂ {γ 0(n), n ≥ 1} such that

Fλ−1/2ελ(ω) = W(·,ω) = X(·,ω), P 0-a.s.

By (73), we have that P 0-almost surely

Xλ(t) = λ−1/2X(λt) = λ−1/2Fελ

(
Z(·))(λt) = Fλ−1/2ελ

(
λ−1/2Z(λ·))(t) = Fλ−1/2ελ

(
Zλ(·)

)
(t).

We summarize all these as

(
Xλ(·),Aλ(·)

)= (
Fλ−1/2ελ ◦ Zλ(·),A(·) ◦ Zλ(·)

) d= (
Fλ−1/2ελ ◦ Z(·),A(·) ◦ Z(·))= (

X(·),A(·))
under P 0, that is,

(
λ− 1

2 X(λ·), λ− α
2 A(λ·)) d= (

X(·),A(·)).
However, the identity (60) implies

λ− α
2 L(λt) = cλ− α

2 A(λt),

and thus we have that

(
λ− 1

2 X(λ·), λ− α
2 L(λ·)) d= (

X(·),L(·)).
We now conclude that

λ− 1
2 X

(
L−1(λα

2 ·)) d= X
(
L−1(·)),

which implies (57). �

We now present the proof of Theorem 2.6.
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Proof of Theorem 2.6. Following the discussion at the outset of the section, it only remains to prove the identity (5).
Let T ≥ 0. Since Y = −X on (L−1(R+))−T ⊂ 
−

T ⊂ [0, T ], it follows by Definition 2.5 that

Vp

(
Y, [0, T ])≥ Vp

(
Y,
(
L−1(R+)

)−
T

)= Vp

(
X,

(
L−1(R+)

)−
T

)
, p ≥ 0.

Hence it suffices to show that P 0(Vp(X, (L−1(R+))−T ) < +∞) = 0 for 0 < p ≤ α. For each A > 0, let TA be defined
by L−1(A) = TA. Since L−1 is P 0-a.s. right-continuous with L−1(0) = 0, it follows that TA ⇒ 0 as A ↓ 0. Also recall
that P 0(TA > 0) = 1 for each A > 0. Moreover, since L−1 is P 0-a.s. non-decreasing, it follows by the change-of-
variables for p-variation (see (P4) of Chistyakov and Galkin [7]) that Vp(X, (L−1(R+))−TA

) = Vp(X ◦ L−1, [0,A]),
A > 0. Thus, in order to complete the proof it suffices to show that for 0 < p ≤ α,

P 0(Vp

(
X ◦ L−1, [0,A])< +∞)= 0, A > 0. (61)

Let ν be the Levy measure of X ◦ L−1 under P 0. According to Bretagnolle [3] (see also Simon [27]), (61) holds if
and only if∫

|u|<1
|u|pν(du) = ∞. (62)

However, since by Proposition 6.1, Y ◦ L−1 = −X ◦ L−1 is an α-stable process on (CS,F,FL−1,P 0), it follows by
Theorem 14.3(ii) of [26] that ν(dB) = ∫

C

∫∞
0 1B(rξ)r−1−α dr λ(dξ), where C is the unit circle in R

2 and λ is a finite
measure on C. (62) now follows immediately. �

7. Proof of Theorem 2.8

Before providing the proof of Theorem 2.8, we first proceed with some propositions, starting with a result that condi-
tion (7) is necessary for the existence of a solution to the ESP.

Proposition 7.1. Let z ∈ S. If the ESP (S, d(·)) for the Brownian motion X on (CS,F,Ft , P
z) has a solution P z-a.s.,

then (7) holds.

Proof. Let the polar coordinates of vi be (‖vi‖, βi) for i = 1,2. Then β1 = θ1 + π/2 and β2 = −(π/2 − ξ + θ2).
Thus, since by assumption 1 < α < 2, it follows that ξ < β1 < π and −(π − ξ) < β2 < 0. In addition, the condition
α > 1 implies that the angle of v1 and v2 on the side which contains S is β1 − β2 > π . Let C = co(V ∪ {αv1, α ≥
0} ∪ {αv2, α ≥ 0}), which is a closed convex cone, and assume that C �= R

2, which implies C ∩ S = {0}. Let Z̃, Ỹ be
a solution of the ESP (S, d(·)) for X. Let B be an arbitrary open set in C such that 0 /∈ B , and let t > 0 arbitrary. Now
we have P z(X(t) ∈ B) > 0, and also X(t) + Ỹ (t) = Z̃(t) ∈ S. However, whenever X(t) ∈ B , then Ỹ (t) ∈ C implies
X(t) + Ỹ (t) ∈ C, which implies X(t) + Ỹ (t) = 0. But this is impossible, since a non-zero vector and its negative can
not be in a closed convex cone that is neither R2, nor a single line. �

We now proceed to show that if the condition (7) holds, then (Z,Y ) solves the ESP (S, d(·)) for X. We first provide
some prepatory lemmas. For each i = 1,2, let

T∂Si = inf
{
t > 0 : Z(t) ∈ ∂Si \ {0}}.

Lemma 7.2. For each i = 1,2, P 0(T∂Si > 0) = 0.

Proof. Let i = 1 or 2, and

T c
∂Si = inf

{
t ≥ 0 : Z(ct)√

c
∈ ∂Si \ {0}

}
, c > 0.
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Then, by Lemma 2.1 in [31],

P 0(T c
∂Si > t

)= P 0(T 1
∂Si > t

)
, t ≥ 0.

On the other hand,

T c
∂Si = inf

{
t ≥ 0 : Z(ct) ∈ ∂Si \ {0}}= inf

{
u

c
≥ 0 : Z(u) ∈ ∂Si \ {0}

}
= 1

c
T 1

∂Si .

Hence,

P 0(T 1
∂Si > ct

)= P 0(T 1
∂Si > t

)
,

which implies P 0(T∂Si = 0) + P 0(T∂Si = ∞) = 1. By the Blumenthal 0-1 law, P 0(T∂Si = 0) is either 0 or 1. Hence,
in order to complete the proof it suffices that P 0(T∂Si = ∞) < 1, and this is what we shall do.

By Lemma 4.2 in [29], for Lebesgue-almost every t ∈ (0,∞),

P 0(Z(t) ∈ ∂S
)= 0. (63)

However, by Lemma 2.1 in [31], for every c > 0

P 0(Z(t) ∈ ∂S
)= P 0

(
Z(ct)√

c
∈ ∂S

)
= P 0(Z(ct) ∈ ∂S

)
,

and so (63) holds for every t > 0. Now let t > 0 be arbitrary and

T∂Si (t) = inf
{
s ≥ t : Z(s) ∈ ∂Si \ {0}}.

Then, by the Markov property,

P 0(T∂Si (t) < ∞)= E0[P 0(T∂Si (t) < ∞ | Z(t)
)]= E0[P Z(t)(T∂Si < ∞)

]
. (64)

Let T∂S = inf{t ≥ 0 : Z(t) ∈ ∂S}. By Proposition 4.9, for each z ∈ int(S) the law of Z(·∧T∂S) under P z coincides with
the law of a Brownian motion started at z and stopped at the first hitting time of ∂S. It follows that for all z ∈ int(S) we
have P z(T∂S < ∞) = 1 and P z(Z(T∂S) ∈ ∂Si \ {0}) > 0, which implies P z(T∂Si < ∞) > 0. Then it follows from (63)
that the last expression in (64) is strictly positive, and so also is the first expression there, i.e. P 0(T∂Si (t) < ∞) > 0.
Thus, P 0(T∂Si < ∞) > 0. �

Lemma 7.3. For each z ∈ S and P z-a.e. ω ∈ Cs , the following holds: for the endpoint D of each excursion interval
of Z(ω) away from zero and each ε > 0, there exist u1, u2, u ∈ (D,D + ε) such that

Z(u1) ∈ ∂S1 \ {0}, Z(u2) ∈ ∂S2 \ {0}, and Z(u) = 0. (65)

Proof. Recall the sequence of stopping times {T n
k , k ≥ 1} from the proof of Proposition 4.13, that is the sequence of

endpoints of excursions away from zero with length larger than 1/n. By the Strong Markov Property, Proposition 7.2,
and the regularity of the vertex (see Lemma 2.2 of [31]), for every k,n ≥ 1, we have that P z-almost surely there exist
u1, u2, u ∈ (T n

k , T n
k + ε) such that (65) holds. Since the set of excursions is countable, and

⋃
n≥1{T n

k , k ≥ 1} is exactly
the set of endpoints of all excursion intervals, the statement follows. �

The following is an immediate corollary of Lemma 7.3.

Corollary 7.4. For each z ∈ S and P z-a.e. ω ∈ Cs , the set 
 has no isolated point.

We now present the proof that under (7), (Z,Y ) solves the ESP (S, d(·)) for X.
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Proposition 7.5. If (7) holds, then for each z ∈ S, (Z,Y ) P z-a.s. solves the ESP (S, d(·)) for the Brownian motion
X on (CS,F,Ft , P

z).

Proof. Let z ∈ S. We will verify that P z-a.s. (Z,Y ) satisfies Conditions 1 through 4 of Definition 2.7 with ψ = X

and (φ, η) = (Z,Y ). Condition 1 is clear since by the Doob-Meyer type decomposition of Theorem 2.4, we have that
Z = X +Y . Next, Condition 2 is immediate as well since Z ∈ CS . Now recall that X is a Brownian motion started at z

on (CS,F,Ft , P
z) and so X is P z-a.s continuous. Hence Y = Z −X is P z-a.s. continuous as well and so Condition 4

holds since 0 ∈ co[d(φ(t))] for t ≥ 0.
In order to complete the proof, it suffices to show that P z-a.s. Condition 3 holds. That is, it suffices to show that

P z-a.s. for each t ≥ 0 and s ∈ [0, t],

Y(t) − Y(s) ∈ co

[ ⋃
u∈(s,t]

d
(
Z(u)

)]
. (66)

Let 0 ≤ s < t arbitrary. We distinguish between two cases. In the first case, the interval [s, t] lies entirely within a single
excursion of Z away from zero, i.e. (s, t) ∩ 
 =∅. In this case, by Part 2 of Theorem 4.2, Y(v) = RU(v) where U is
non-decreasing on [s, t], and Ui is increasing on [s, t] only at times v ∈ [s, t] when Z(v) ∈ ∂Si for i = i,2, and then
(66) follows. Next, we show that (66) holds in the second case, where (s, t) ∩ 
 �= ∅. In this case, let v ∈ (s, t) ∩ 
.
By Corollary 7.4, there exists another point u besides v in (s, t) ∩ 
, and, by Condition 3 of Definition 2.1, there
exists an excursion interval included in [u,v] or in [v,u], depending on whether u < v or v < u. In either case, by
Lemma 7.3 this implies the existence of u1, u2 ∈ (s, t) such that Z(ui) ∈ ∂Si \ {0}, i = 1,2. Then, by (7),

co

( ⋃
u∈(s,t]

d
(
Z(u)

))= co
(
V ∪ {av1, a ≥ 0} ∪ {av2, a ≥ 0})=R

2,

and thus (66) is trivially satisfied. �

The proof of Theorem 2.8 is now immediate.

Proof of Theorem 2.8. The theorem follows by the combination of Propositions 7.1 and 7.5. �

Appendix

In this section we list some elementary results that are used at various places in the main body of the paper.

Lemma A.1. For δ > 0, T ≥ 0, and ω ∈ CS ,

Iδ(ω)(· ∧ T ) = Iδ

(
ω(· ∧ T )

)
,

and for all ω ∈ CS such that Fγ (ω) �= 0, we have

Fγ (ω)(· ∧ T ) = Fγ

(
ω(· ∧ T )

)
. (67)

Lemma A.2. Let δ > 0, T ≥ 0, ω ∈ CS such that

ω(T ) ∈ S0
2δ ∪ (S \ Sδ), (68)

where S0
2δ is the interior of S2δ . Then

Iδ

(
ω(T + ·))(t) = Iδ(ω)(T + t) − Iδ(ω)(T ), t ≥ 0. (69)

Lemma A.3. For every sequence γ ∈ �, T ∈ [0,∞), and ω ∈ CS such that Fγ (ω) �= 0, we have

Fγ

(
ω(T + ·))= Fγ (ω)(T + ·) − Fγ (ω)(T ). (70)
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The relationship (70) can be cast in the form

Fγ (ω)(t) − Fγ (ω)(s) = Fγ

(
ω(s + ·))(t − s), 0 ≤ s ≤ t. (71)

That is, Fγ is additive on {ω ∈ CS : Fγ (ω �= 0}. The combination of (70) and (67) yields that for 0 ≤ T1 ≤ T2, ω ∈ CS ,
and {γ (n), n ≥ 1} ∈ � such that Fγ (ω) �= 0, we have

Fγ

(
ω
(
(T1 + ·) ∧ T2

))
(t) = Fγ (ω)

(
(T1 + t) ∧ T2

)− Fγ (ω)(T1). (72)

Lemma A.4. Let a,λ > 0, {γ (n), n ≥ 1} ∈ � and ω ∈ CS be such that Fγ (ω) �= 0. Then

aFγ (ω)(λ·) = Faγ

(
aω(λ·)), (73)

where aγ = {aγ (n),n ≥ 1}.

Lemma A.5. Suppose that (z, y) ∈ A and T > 0 are such that z(s) �= 0 for s ∈ (0, T ). Then, letting u = (u1, u2) be
the non-decreasing function from Definition 4.8, we have that for t ∈ [0, T ],

V1
(
y, [0, t])= ‖v1‖

(
u1(t) − u1(0)

)+ ‖v2‖
(
u2(t) − u2(0)

)
. (74)

For the sake of brevity we omit the proofs of the above lemmas.
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