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Abstract

Bandwidth-sharing networks as introduced by Massoulié & Roberts (1998) model the
dynamic interaction among an evolving population of elastic flows competing for several
links. With policies based on optimization procedures, such models are of interest both from
a Queueing Theory and Operations Research perspective.

In the present paper, we focus on bandwidth-sharing networks with capacities and ar-
rival rates of a large order of magnitude compared to transfer rates of individual flows. This
regime is standard in practice. In particular, we extend previous work by Reed & Zwart
(2010) on fluid approximations for such networks: we allow interarrival times, flow sizes and
patient times (i.e. abandonment times measured from the arrival epochs) to be generally dis-
tributed, rather than exponentially distributed. We also develop polynomial-time computable
fixed-point approximations for stationary distributions of bandwidth-sharing networks, and
suggest new techniques for deriving these types of results.

Keywords: bandwidth-sharing, rate constraints, impatience, large capacity scaling, fluid
limits, fixed-point approximations.

MSC2010: Primary 60K25, 60K30, 60F17, 60G57; Secondary 90B15, 90B22.

1 Introduction

Bandwidth-sharing policies as introduced by Massoulié & Roberts [25, 21] dynamically distribute
network resources among a changing population of users. Processor sharing is an example of such
a policy and assumes a single resource. Bandwidth-sharing networks are of great research and
practical interest. Along with the basic application in telecommunications media, e.g. Internet
congestion control, they also have recently been suggested as a tool in analyzing problems in
road traffic [19].

The main issues in bandwidth-sharing related research are stability conditions and performance
evaluation. A variety of results regarding the first topic may be found in De Veciana et al.
[27, 28], Bonald & Massoulié [5], Mo & Walrand [22], Massoulié [20], Bramson [7], Gromoll &
Williams [12], and Chiang et al. [8]. As for the second topic, for special combinations of network
topologies and bandwidth-sharing policies, the network stationary distribution may be shown
to be of a product form insensitive to the flow size distribution, see Bonald et al. [6]. However,
in general, approximation methods must be used, which is the subject matter of the present
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paper. Fundamental papers on fluid limit approximations for bandwidth sharing-networks are
Kelly & Williams [18] and Gromoll & Williams [13], some more results on fluid and diffusion
approximations are to be found in Borst et al. [9, 4], Kang et al. [16] and Ye & Yao [29, 30]. The
latter works ignore the fact that generally in practice the maximum service rate of an individual
user is constrained, as has been pointed out by Roberts [24].

To the best of our knowledge, Ayesta & Mandjes [2] were the first to deal with fluid and diffusion
approximations of bandwidth-sharing networks with rate limitations. They consider two specific
settings first without rate constraints, and then they truncate the capacity constraints at the rate
maxima. Reed & Zwart [23] develop a different approach in the context of general bandwidth-
sharing networks. They incorporate the rate constraints into the network utility maximization
procedure that defines bandwidth allocations. Thus, users operating below the maximal rate are
allowed to take up the bandwidth that is not used by other rate constrained users, and bandwidth
allocations are Pareto optimal. Another interesting feature of this work is the scaling regime.
In contrast to the papers mentioned above, which mostly focus on the large-time properties of
networks with fixed-order parameters, Reed & Zwart view networks on a fixed-time scale letting
arrival rates and capacities grow large. This large capacity scaling reflects the fact that overall
network capacity and individual user rate constraints may be of different orders of magnitude.
For example, it is common that Internet providers set download speed limitations for individual
users which are typically measured in megabits per second, while network capacities are measured
in gigabits or terabits per second.

The framework of [23] is rather comprehensive. In particular, it allows abandonments of flows:
each flow knows how long it can stay in the system and abandons as soon as its service is
finished or its patience time expires, whichever happens earlier. The present paper builds upon
[23] by relaxing its stochastic assumptions: we assume general distribution for interarrival times
and general joint distribution for the size and patience time of a flow (in particular, the flow
size and patience time are allowed to be dependent), while [23] assumes a Markovian setting
with independent arrivals, flow sizes and patience times. We study the behavior of bandwidth-
sharing networks in terms of measure-valued processes that are called state descriptors and
that keep track of residual flow sizes and residual patience times. The first main result of the
paper is a fluid limit theorem (it generalizes the fluid limit result of [23] to non-Markovian
stochastic assumptions). We propose a fluid model, or a formal deterministic approximation of
the stochastic bandwidth-sharing model, and show that the scaled state descriptors are tight with
all weak limit points a.s. solving the fluid model equation. We provide a sufficient condition for
the fluid model to have a unique solution, which converts tightness of the scaled state descriptors
into convergence to this fluid model solution. In the sense of techniques used in the proofs, this
part of the paper is closely related to previous work on bandwidth-sharing [13], processor-sharing
with impatience [11], and bandwidth-sharing in overload [4, 9]. The rate constraints play a crucial
role in adopting these techniques. For example, the proof of convergence to fluid model solutions
in [11] requires an additional assumption of overload to eliminate problems at zero. However, in
our case, due to the rate constraints, the network never empties, and the load conditions become
irrelevant.

Our second main result, which is a new type of result for bandwidth-sharing networks, is con-
vergence of the scaled network stationary distribution to the fixed point of the fluid model,
provided the fixed point is unique. There is a similar result by Kang & Ramanan [17] for a call
center model, but the techniques of [17] are different than ours. Applying the approach of Borst
et al. [4], we prove that in many cases the fixed point can be found by solving an optimization
problem with a strictly concave objective function and a polyhedral constraint set, and thus is
unique and computable in polynomial time. We also construct an example with multiple fixed
points, which is a feature that is distinctive from earlier cited works. Besides proving new results
for the particular model of bandwidth-sharing, we also suggest new ideas and believe that they
can be adjusted to other models, too. In particular, we derive equations for asymptotic bounds
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for fluid model solutions (see Theorem 3) that can be solved for a wide class of networks, and
then asymptotic stability of the fixed point can be shown. Another interesting idea is that, in
the stationary regime, the properties of a network depend on newly arriving flows only, since
all initial flows are gone after some point (see Lemma 2). Throughout this part of the paper,
we assume Poisson arrivals, since that guarantees existence of a unique stationary distribution.
Poisson arrivals also imply M/G/∞ bounds that are exploited heavily in the proofs.

The structure of the paper is as follows. Section 2 describes the stochastic bandwidth-sharing
model, and Section 3 introduces its deterministic analogue, the fluid model. Also Section 3 states
sufficient conditions for a fluid model solution to be unique, and for a fixed fluid model solution
to be unique and asymptotically stable. Sections 4 and 5 discuss convergence of the scaled state
descriptor and its stationary distribution to the fluid model and its fixed point, respectively.
Sections 6, 7 and 8 contain the proofs of the statements from Sections 3, 4 and 5. The Appendix
proves auxiliary results. In the remainder of this section, we list the notation we use throughout
the paper.

Notation In order to introduce the notation, we use the signs =: and :=.

The standard sets are denoted as follows: the reals R = (−∞,∞), the non-negative reals R+ =
[0,∞), the positive reals (0,∞), the non-negative integers Z+ = {0, 1, 2, . . .}, and the natural
numbers N = {1, 2, . . .}.

The signs ∧ and ∨ stand for minimum and maximum respectively. For x ∈ R, x+ := x ∨ 0.

The signs lim and lim denote the lower and upper limits of a sequence of numbers.

The coordinates of a vector from a set SI are denoted by the same symbol as the vector with
lower indices 1, . . . , I added. If a vector has a superscript, tilde-sign, or overlining, they remain
in its coordinates. For example x0 ∈ SI , x0 = (x0

1, . . . , x
0
I). The space R

I is endowed with the
supremum norm ‖x‖ := max1≤i≤I |xi|. Vector inequalities hold coordinate-wise. The coordinate-
wise product of vectors of the same dimensionality I is x ∗ y := (x1y1, . . . , xIyI).

The signs ⇒,
d
= and ≤st stand for convergence in distribution, equality in distribution and

stochastic order respectively. Recall that, for real-valued r.v.’s X andX ′, X≤stX
′ if P{X > x} ≤

P{X ′ > x} for all x ∈ R. The notation Π(λ), λ ∈ (0,∞), stands for the Poisson distribution
with parameter λ.

For metric spaces S and S′, denote by CS→S′ the space of continuous functions f : S → S′. By
DR+→S denote the space of functions f : R+ → S that are right-continuous with left limits, and
endow this space with the Skorokhod J1-topology.

The superscript −1 is only used to denote the inverse of a function.

For a measure ξ on R
2
+ and a ξ-integrable function f : R2

+ → R, define 〈f, ξ〉 :=
∫
R2
+

fdξ. If

ξ = (ξ1, . . . , ξI) is a vector of such measures, 〈f, ξ〉 := (〈f, ξ1〉, . . . , 〈f, ξI〉). Let M be the space
of finite non-negative Borel measures on R

2
+ endowed with the weak topology: ξk

w
→ ξ in M as

k → ∞ if and only if 〈f, ξk〉 → 〈f, ξ〉 for all continuous bounded function f : R2
+ → R. Weak

convergence of elements of M is equivalent to convergence in the Prokhorov metric: for ξ, ϕ ∈ M,
define

d(ξ, ϕ) := inf{ε : ξ(B) ≤ ϕ(Bε) + ε and ϕ(B) ≤ ξ(Bε) + ε

for all non-empty closed B ⊆ R
2
+},

where Bε = {x ∈ R
2
+ : infy∈B ‖x− y‖ < ε}.

For ξ, ϕ ∈ MI , define
dI(ξ, ϕ) := max1≤i≤I d(ξi, ϕi).

Equipped with the metric dI(·, ·), the space MI is separable and complete.
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2 Stochastic model

This section contains a detailed description of the model under consideration. In particular, it
specifies the structure of the network, the policy it operates under and the stochastic dynamical
assumptions. Also, a stochastic process is introduced that keeps track of the state of the network,
see the state descriptor paragraph.

Network structure Consider a network that consists of a finite number of links labeled by
j = 1, . . . , J . Traffic offered to the network is represented by elastic flows coming from a finite
number of classes labeled by i = 1, . . . , I. All class i flows are transferred through a certain
subset of links, we call it route i. Transfer of a flow starts immediately upon its arrival and is
continuous with all links on the route of the flow being traversed simultaneously. Let A be the
J × I incidence matrix, where Aji = 1 if route i contains link j and Aji = 0 otherwise.

Suppose that at a particular time t the population of the network is z ∈ Z
I
+, where zi stands for

the number of flows on route i. All flows on route i are transferred at the same rate λi(z) that
is at most mi ∈ (0,∞). If zi = 0, put λi(z) := 0. We refer to Λi(z) := λi(z)zi as the bandwidth
allocated to route i. The sum of the bandwidths allocated to the routes that contain link j is the
bandwidth allocated through link j and is at most Cj ∈ (0,∞). We call Cj the capacity of link j.
Hence, the vectors λ(z) = (λ1(z), . . . , λI(z)) and Λ(z) = (Λ1(z), . . . ,ΛI(z)) must satisfy

A(λ(z) ∗ z) = AΛ(z) ≤ C, λ(z) ≤ m, Λ(z) ≤ m ∗ z,

where C = (C1, . . . , CJ ) and m = (m1, . . . ,mI) are the vectors of link capacities and rate
constraints.

Bandwidth-sharing policy At each point in time, the link capacities should be distributed
among the routes in such a way that the network utility is maximized. Namely, to each flow
on route i we assign a utility Ui(·) that is a function of the rate allocated to that flow. Assume
that the functions Ui(·) are strictly increasing and concave in R+, and twice differentiable in
(0,∞) with limx↓0 U

′
i(x) = ∞. We also allow limx↓0 Ui(x) = −∞ as, for example, in the case of

a logarithmic function. Then, for z ∈ R
I
+, the vector λ(z) of rates is the unique optimal solution

to

maximize
∑I

i=1
zi Ui(λi) subject to A(λ ∗ z) ≤ C, λ ≤ m, (1)

where, by convention, 0× (−∞) := 0. Although the population vector has integer-valued coor-
dinates, we assume that λ(z) and Λ(z) := λ(z) ∗ z are defined via (1) in the entire orthant RI

+

to accommodate fluid analogues of the population process later.

The utility maximization procedure (1) implies that λi(z) = Λi(z) = 0 if zi = 0. The assumption
limx↓0 U

′
i(x) = ∞ guarantees non-idling, that is λi(z),Λi(z) > 0 if zi > 0. Reed & Zwart [23]

proved that the functions λ(·) and Λ(·) are differentiable in any direction and, in particular, lo-
cally Lipschitz continuous in the interior of RI

+. We also show continuity of Λ(·) on the boundary
of RI

+ (see the Appendix).

Lemma 1. The bandwidth allocation function Λ(·) is continuous in R
I
+.

Stochastic assumptions All stochastic primitives introduced in this paragraph are defined
on a common probability space (Ω,F ,P) with expectation operator E.

Suppose at time zero there is an a.s. finite number of flows in the network, we call them initial
flows. A random vector Z0 ∈ R

I
+ represents the initial population, and Z0

i is the number of
initial flows on route i. New flows arrive to the network according to a stochastic process E(·) =
(E1(·), . . . , EI(·)) with sample paths in the Skorokhod space D

R+→RI
+
. The coordinates of the
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arrival process are independent counting processes. Recall that a counting process is a non-
decreasing non-negative integer-valued process starting from zero. For t ≥ 0, Ei(t) represents
the number of flows that have arrived to route i during the time interval (0, t]. The kth such
arrival occurs at time Uik = inf{t ≥ 0: Ei(t) ≥ k}, it is called flow k on route i, k ∈ N.
Simultaneous arrivals are allowed.

Flows abandon the network due to transfer completions or because they run out of patience,
depending on what happens earlier for each particular flow. Flow sizes and patience times are
drawn from sequences {(B0

il,D
0
il)}l∈N, {(Bik,Dik)}k∈N, i = 1, . . . , I, of (0,∞)2-valued r.v.’s. For

l = 1, . . . , Z0
i , B

0
il and D0

il represent the residual size and residual patience time at time zero of
initial flow l on route i. For k ∈ N, Bik and Dik represent the initial size and initial patience time
of flow k on route i, where “initial” means as upon arrival at time Uik. Let (Bik,Dik), k ∈ N, be
i.i.d. copies of a r.v. (Bi,Di) with distribution law θi; and let the mean values EBi =: 1/µi and
EDi = 1/νi be finite. Assume that the sequences {(Bik,Dik)}k∈N are independent and do not
depend on the arrival process E(·). For the moment, we do not make any specific assumptions
about the sequences {(B0

il,D
0
il)}l∈N.

State descriptor We denote the population process by Z(·) = (Z1(·), . . . , ZI(·)), where Zi(t)
is the number of flows on route i at time t. As can be seen from what follows, Z(·) is a random
element of the Skorokhod space D

R+→RI
+
.

For i = 1, . . . , I, introduce operators Si : DR+→RI
+
→ C

R2
+
→R+

defined by

Si(z, s, t) :=

∫ t

s
λi(z(u))du,

For t ≥ s ≥ 0, Si(Z, s, t) is the cumulative bandwidth allocated per flow on route i during time
interval [s, t]. The residual size and residual lead time at time t of initial flow l = 1, . . . , Z0

i on
route i are given by

B0
il(t) := (B0

il − Si(Z, 0, t))
+ and D0

il(t) := (D0
il − t)+,

and those of flow k = 1, . . . , Ei(t) on route i by

Bik(t) := (Bik − Si(Z,Uik, t))
+ and Dik(t) := (Dik − (t− Uik))

+.

The state of the network at any time t is defined by the residual sizes and residual patience
times of the flows present in the network. With each flow, we associate a dot in R

2
+, whose

coordinates are the residual size and residual patience time of the flow (see Fig. 1). As a flow is
getting transferred, the corresponding dot moves toward the axis: to the left at the transfer rate
(which is λi(Z(t)) for a flow on route i) and downward at the constant rate of 1. As a dot hits
the vertical axis, the corresponding flow leaves due to completion of its transfer. As a dot hits
the horizontal axis, the corresponding flow leaves due to impatience. We combine these moving
dots into the stochastic process Z(·) ∈ DR+→MI with

Zi(t) :=
∑Z0

i

l=1
δ+
(B0

il
(t),D0

il
(t))

+
∑Ei(t)

k=1
δ+(Bik(t),Dik(t))

, (2)

where, for x ∈ R
2
+, δ

+
x ∈ M is the Dirac measure at x if x1 ∧ x2 > 0 and zero measure otherwise

(i.e. assigns a zero mass to any Borel subset of R2
+). That is, Zi(t) is a counting measure on R

2
+

that puts a unit mass to each of the dots representing class i flows except those on the axes.
The process Z(·) given by (2) is called the state descriptor. Note that the total mass of the state
descriptor coincides with the network population, 〈1,Z(·)〉 = Z(·).

When proving the results of the paper, we decompose the state descriptors into two parts keeping
track of initial and newly arriving flows, respectively. That is,

Z(·) = Z init(·) + Znew(·),
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where

Z init
i (t) :=

∑Zi(0)

l=1
δ+
(B0

il
(t),D0

il
(t))

and Znew
i (t) :=

∑Ei(t)

k=1
δ+(Bik(t),Dik(t))

.

We also define the corresponding total mass processes

Z init(·) := 〈1,Z init(·)〉 and Znew(·) := 〈1,Znew(·)〉.

residual 

patience time

residual 

flow sizepatience 

expired

service

completion

Figure 1: The i-th coordinate Zi(·) of the state descriptor puts a unit mass to
the dots representing class i flows except those on the axes.

3 Fluid model

In this section we define and investigate a fluid model that is a deterministic analogue of the
stochastic model described in the previous section. Later on the fluid model will be shown to
arise as the limit of the stochastic model under a proper scaling. This convergence implies, in
particular, existence of the fluid model.

To define the fluid model we need data (η, θ, ζ0) ∈ (0,∞)I ×MI×MI . The coordinates of η play
the role of arrival rates. As in the previous section, θi is the joint distribution of the generic size
Bi and patience time Di of a newly arrived flow on route i with finite expectations EBi = 1/µi

and EDi = 1/νi. We also introduce the constants

ρi := ηi/µi, σi := ηi/νi,

and the vectors ρ, σ ∈ (0,∞)I ,

ρ := (ρ1, . . . , ρI), ρ := (σ1, . . . , σI).

Finally, the measure-valued vector ζ0 characterizes the initial state of the network. Put z0 :=
〈1, ζ0〉 and, for all i, take a r.v. (B0

i ,D
0
i ) that is degenerate at (0, 0) if z

0
i = 0 and has distribution

ζ0i /z
0
i otherwise. Then z0 represents the initial population, and (B0

i ,D
0
i ) the generic size and

patience time of an initial flow on route i. We only consider initial conditions ζ0 such that the
(marginal) distributions of B0

i and D0
i have no atoms. This restriction is necessary because we

require the fluid model to be continuous, see Definition 1 below.

Denote by C the collection of corner sets,

C := {[x,∞)× [y,∞) : (x, y) ∈ R
2
+}.

6



Definition 1. A pair (ζ, z) ∈ CR+→MI × C
R+→RI

+
is called a fluid model solution (FMS) for

the data (η, θ, ζ0) if z(·) = 〈1, ζ(·)〉 and, for all i, t ≥ 0 and A ∈ C,

ζi(t)(A) =z0i P{(B
0
i ,D

0
i ) ∈ A+ (Si(z, 0, t), t)}

+ ηi

∫ t

0
P{(Bi,Di) ∈ A+ (Si(z, s, t), t− s)}ds. (3)

In particular, for all i and t ≥ 0,

zi(t) = ζi(t)(R
2
+) =z0i P{B

0
i ≥ Si(z, 0, t),D

0
i ≥ t}

+ ηi

∫ t

0
P{Bi ≥ Si(z, s, t),Di ≥ t− s}ds. (4)

The function ζ(·) is called a measure-valued fluid model solution (MVFMS) and the function
z(·) a numeric fluid model solution (NFMS)

Equations (3) and (4) have appealing physical interpretations. For example, (4) simply means
that a flow is still in the network at time t if its size and patience exceed, respectively, the
amount of service it has received and the time that has passed since its arrival up to time t.

Remark 1. By Dynkin’s π-λ theorem (see [11, Section 2.3]), FMS’s satisfy (3) with any Borel
set A ⊆ R

2
+.

Remark 2. FMS’s are invariant with respect to time shifts in the sense that, if (ζ, z)(·) is an FMS,
then, for any δ > 0, (ζδ, zδ)(·) := (ζ, z)(· + δ) is an FMS for the data (η, θ, ζ(δ)). That is, for
all i, t ≥ δ and Borel sets A ⊆ R

2
+,

ζi(t)(A) = ζi(δ)(A + (Si(z, δ, t), t − δ)) + ηi

∫ t

δ
P{(Bi,Di) ∈ A+ (Si(z, s, t), t − s)}ds, (5a)

zi(t) = ζi(δ)([Si(z, δ, t),∞) × [t− δ,∞)) + ηi

∫ t

δ
P{Bi ≥ Si(z, s, t),Di ≥ t− s}ds. (5b)

Remark 3. The measure-valued and numeric components of an FMS uniquely define each other.
In particular, uniqueness of an NFMS implies uniqueness of an MVFMS, and the other way
around.

As was mentioned earlier, the existence of FMS’s is guaranteed by Theorem 5 that follows in the
next section. In the rest of this section, we discuss sufficient conditions for an FMS to be unique
and for an invariant (i.e. constant) FMS to be unique and asymptotically stable. To prove the
stability result, we derive relations for asymptotic bounds for FMS’s, which seems to be a novel
approach since we have not seen analogous results in the related literature. We also give an
example of multiple invariant FMS’s.

Uniqueness of an FMS The proof of the following theorem follows along the lines of the
proofs of similar results [4, Proposition 4.2] and [11, Theorem 3.5], see Section 6.

Theorem 1. Suppose that either (i) z0i = 0 for all i, or (ii) z0 ∈ (0,∞)I and the first projection
of ζ0 is Lipschitz continuous, i.e. there exists a constant L ∈ (0,∞) such that for all i, x < x′

and y,
ζ0i ([x, x

′]× [y,∞)) ≤ L(x′ − x).

Then an FMS for the data (η, θ, ζ0) is unique.

Uniqueness of an invariant FMS Let (ζ, z) be an invariant FMS. By Lemma 3 in Section 6,
all of the coordinates of z are positive, and the fluid model equations (3) and (4) for (ζ, z) look
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as follows: for all i, Borel subsets A ⊆ R
2
+ and t ≥ 0,

ζi(A) = ζi(A+ (λi(z)t, t)) + ηi

∫ t

0
θi(A+ (λi(z)s, s))ds, (6)

zi = ζi([λi(z)t,∞) × [t,∞)) + ηi

∫ t

0
P{Bi ≥ λi(z)s,Di ≥ s}ds. (7)

Letting t → ∞ in (6) and (7), we obtain the equations

ζi(A) = ηi

∫ ∞

0
θi(A+ (λi(z)s, s))ds, (8)

zi = ηiE(Bi/λi(z) ∧Di), (9)

which are actually equivalent to (6) and (7).

Thus, we have the closed-form equation (9) for the numeric components of invariant FMS’s, and
the corresponding measure-valued components are defined by (8). In particular, uniqueness of
an invariant FMS is equivalent to uniqueness of a solution to (9).

Multiplying the coordinates of (9) by the corresponding rates λi(z), we obtain the equivalent
equation

Λi(z) = gi(λi(z)) for all i, (10)

where
gi(x) := ηiE(Bi ∧ xDi), x ≥ 0.

We suggest a sufficient condition for uniqueness of a solution to (10) (i.e. of an invariant NFMS)
that involves the left most points of supports of certain distributions.

Definition 2. For an R-valued r.v. X, denote by infX the left most point of its support. Recall
that the support of X is the minimal (in the sense of inclusion) closed interval S such that
P{X ∈ S} = 1.

As we show later (see Lemmas 6 and 7 in Section 6), if mi ≤ 1/ inf(Di/Bi), where 1/0 := ∞ by
definition, the function gi(·) is continuous and strictly increasing in the interval [0,mi], implying
that its inverse is well-defined in [0, gi(mi)]. Then we can prove the following result.

Theorem 2. Let
inf(Di/Bi) ≤ 1/mi for all i. (11)

Then there exists a unique invariant FMS (ζ∗, z∗), and the bandwidth allocation vector Λ(z∗) is
the unique solution to the optimization problem

maximize
∑I

i=1
Gi(Λi) subject to AΛ ≤ C, Λi ≤ gi(mi) for all i, (12)

with strictly concave functions Gi(·) such that G′
i(·) = U ′

i(g
−1
i (·)) in [0, gi(mi)].

Remark 4. Note that it is realistic to assume that flows do not abandon if they are always
served at the maximum rate, i.e. that Di ≥ Bi/mi. For such routes, we have gi(mi) = ρi, and
the sufficient uniqueness condition (11) reads as inf(Di/Bi) = 1/mi.

The complete proof of Theorem 2 is postponed to Section 6, here we only discuss the main
ideas. For now, let z∗ be any invariant NFMS. As we plug the fixed point equation (10) into the
optimization problem (1) for the rate vector λ(z∗), the problem (12) follows, which is strictly
concave and does not depend on z∗. Hence, Λ(z∗) =: Λ∗ is the same for all invariant points z∗.
This idea of transforming the optimization problem defining the rate vector combined the fixed
point equation into an independent problem for the bandwidth allocation vector we adopted
from Borst et al. [4, Lemma 5.2]. Now, since the functions gi(·) are invertible in the feasible rate
intervals [0,mi], it follows from (10) that the fixed point is unique and given by

z∗i = Λ∗
i /g

−1
i (Λ∗

i ). (13)
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Note that this method not only proves uniqueness of an invariant FMS, but also suggests a two-
step algorithm to compute it: first we need to solve the strictly concave optimization problem (12)
for Λ∗, which can be done with any desired accuracy in a polynomial time, and then we can
compute the fixed point z∗ itself by formula (13).

Asymptotic bounds for FMS’s Here we derive asymptotic bounds for NFMS’s that, for a
wide class of bandwidth-sharing networks, imply convergence to the invariant NFMS provided
it is unique.

Theorem 3. There exist constants l, u ∈ (0,∞)I such that, for any NFMS z(·),

0 < li ≤ limt→∞zi(t) ≤ limt→∞zi(t) ≤ ui for all i.

These constants satisfy the relations

li = ηiE(Bi/Ri(l, u) ∧Di), ui = ηiE(Bi/ri(l, u) ∧Di) for all i, (14)

where the functions r(·, ·) and R(·, ·) are defined by

ri(x, x
′) := infx≤z≤x′ λi(z), Ri(x, x

′) := supx≤z≤x′ λi(z) for all i and x ≤ x′.

Remark 5. There could be more than one pair (l, u) solving (14). The asymptotic bounds l and u
for NFMS’s given by Theorem 3 form one of such pairs.

We now proceed with the proof of Theorem 3.

Proof. Note that if

0 < l̃i ≤ limt→∞zi(t) ≤ limt→∞zi(t) ≤ ũi for all i, (15)

then also

ηiE(Bi/Ri(l̃, ũ) ∧Di) ≤ limt→∞zi(t) ≤ limt→∞zi(t) ≤ ηiE(Bi/ri(l̃, ũ) ∧Di) for all i. (16)

Indeed, by (15), for any ε ∈ (0,min1≤i≤I l̃i), there exists a tε such that

l̃i − ε ≤ zi(t) ≤ ũi + ε for all i and t ≥ tε.

Introduce the vectors

l̃ − ε := (l̃1 − ε, . . . , l̃I − ε), ũ+ ε := (ũ1 + ε, . . . , ũI + ε).

Then
ri(l̃ − ε, ũ+ ε)(t− s) ≤ Si(z, s, t) ≤ Ri(l̃ − ε, ũ+ ε)(t− s) for t ≥ s ≥ tε,

which, when plugged into the shifted fluid model equation (5b), implies that

zi(t) ≥ ηi

∫ t

tε

P{Bi ≥ Ri(l̃ − ε, ũ+ ε)(t− s),Di ≥ (t− s)}ds,

zi(t) ≤ ζi(tε)
(
[Si(z, tε, t),∞) × [t− tε,∞)

)

+ ηi

∫ t

tε

P{Bi ≥ ri(l̃ − ε, ũ+ ε)(t− s),Di ≥ (t− s)}ds for t ≥ tε,

where ζ(·) is the corresponding MVFMS. Taking t → ∞ in the last two inequalities, we obtain

ηiE(Bi/Ri(l̃ − ε, ũ+ ε) ∧Di) ≤ limt→∞zi(t) ≤ limt→∞zi(t) ≤ ηiE(Bi/ri(l̃ − ε, ũ+ ε) ∧Di),

and then (16) follows as ε → 0.

Now we will iterate (15)–(16). The rate constraints plugged into (4) imply the initial bounds

0 < l0i := ηiE(Bi/mi ∧Di) ≤ limt→∞zi(t) ≤ limt→∞zi(t) ≤ ηiEDi =: u0i for all i,
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and then (15)–(16) yield the recursive bounds

lki := ηiE(Bi/Ri(l
k−1, uk−1) ∧Di) ≤ limt→∞zi(t),

uki := ηiE(Bi/ri(l
k−1, uk−1) ∧Di) ≥ limt→∞zi(t) for all k ∈ N and i.

(17)

The sequence {lk}k∈N is non-decreasing and bounded from above by u0. The sequence {uk}k∈N
is non-increasing and bounded from below by l0. Hence, there exist the limits lim lk =: l and
limuk =: u. In (17), let k → ∞, then (14) follows.

Note finally that the recursive bounds {lk}k∈N and {uk}k∈N as well as their limits l and u do
not depend on a particular NFMS.

Asymptotic stability of an invariant fluid model solution It is tractable to assume that
transfer rates in a bandwidth-sharing network decrease as its population grows. In particular,
tree networks satisfy this property, see [4].

Definition 3. If z′ ≥ z ∈ (0,∞)I implies λ(z′) ≤ λ(z), the network is called monotone.

For monotone networks, the system of equations (14) decomposes into two independent systems
of equations for the lower bound l and for the upper bound u:

li = ηiE(Bi/λi(l) ∧Di) for all i, (18a)

ui = ηiE(Bi/λi(u) ∧Di) for all i, (18b)

which implies the following result.

Corollary 1. Suppose that the network is monotone and has a unique invariant FMS (ζ∗, z∗).
Then any FMS (ζ, z)(t) → (ζ∗, z∗) as t → ∞.

Indeed, both (18a) and (18b) coincide with the fixed point equation (9), and since Corollary 1
assumes that the latter equation has a unique solution z∗, it immediately follows by Theorem 3
that, for any NFMS z(·),

li = limt→∞zi(t) = limt→∞zi(t) = ui = z∗i for all i.

In the Appendix we also show that z(t) → z∗ implies ζ(t) → ζ∗.

Example: Single Link The sufficient condition for uniqueness of an invariant FMS given by
Theorem 2 is sometimes also necessary. Consider, for example, processor sharing in critical load,
that is J = I = 1 and (omitting the link and class indices) ρ = C. In this case, the fixed point
equation (9) looks like

z = ηE

(
B

C/z ∧m
∧D

)
,

which, for z such that C/z ≤ m and Bz/C ≤ D a.s., reduces to

z = ηE(Bz/C ∧D) = ηEBz/C = ρz/C = z.

I.e. any z ∈ [C/m,C infD/B] is an invariant NFMS. In particular, if infD/B > 1/m, which
violates the assumption of Theorem 2, then there is a continuum of invariant FMS’s.

For a single link critically loaded by multiple classes of flows, we have an analogous result, which
is more complicated to derive and therefore the proof is postponed to Section 6.

Theorem 4. Assume that J = 1 (in what follows we omit the link index), and that the utility
functions are Ui(x) = κi log x. If

∑I
i=1 ηiE(Bi/mi ∧ Di) 6= C, then there is a unique invariant

FMS. Otherwise there might be a continuum of invariant FMS’s.
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4 Sequence of stochastic models and fluid limit theorem

In this section we study the asymptotic behavior of the stochastic network described in Section 2
as its global parameters — capacities and arrival rates — grow large, while the characteristics of
an individual flow remain of a fixed order. We refer to this scaling as the large capacity regime.

Large capacity scaling To a sequence R of positive numbers increasing to ∞, we associate
a sequence of stochastic models as defined in Section 2. We mark all parameters associated with
the r-th model with a superscript r and assume the following:

(A.1) network structure, rate constraints and utility function are the same in all models:
Ar = A, mr = m and Ur

i (·) = Ui(·) for all i;

(A.2) link capacities grow linearly in r: Cr = rC;

(A.3) arrival rates grow linearly in r: E
r
(·) := Er(·)/r ⇒ η(·) as r → ∞, where η(t) := tη and

η ∈ (0,∞)I ;

(A.4) flow sizes and patience times remain of a fixed order: for all i, (Br
i ,D

r
i ) ⇒ (Bi,Di),

where (Bi,Di) are (0,∞)I -valued r.v.’s with distributions θi and finite mean values
(1/µi, 1/νi), and also (1/µr

i , 1/ν
r
i ) → (1/µi, 1/νi);

(A.5) the scaled initial configuration converges in distribution to a random vector of finite
measures: Z

r
(0) := Zr(0)/r ⇒ ζ0;

(A.6) the projections ζ0i (· × R+) and ζ0i (R+ × ·) are a.s. free of atoms for all i.

Fluid limit theorem In the large capacity regime, the stochastic model defined is Section 2
converges to the fluid model defined in Section 3. More precisely, introduce the scaled state
descriptors and population processes

Z
r
(·) := Zr(·)/r, Z

r
(·) := 〈1,Z

r
(·)〉 = Zr(·)/r.

Also introduce the scaled versions of the two components of the state descriptor:

Z
r, init

(·) := Zr, init(·)/r, Z
r, init

(·) := 〈1,Z
r, init

(·)〉 = Zr, init(·)/r,

Z
r,new

(·) := Zr, new(·)/r, Z
r,new

(·) := 〈1,Z
r,new

(·)〉 = Zr,new(·)/r.

Remark 6. Let λ(·) be the rate allocation function in the unscaled network, then

λr(z) =: argmaxA(λ∗z)≤rC
λ≤m

∑I

i=1
zi Ui(λi)

= argmaxA(λ∗z/r)≤C
λ≤m

∑I

i=1
(zi/r)Ui(λi) =: λ(z/r),

and

Sr
i (Z

r, s, t) :=

∫ t

s
λr
i (Z

r(u))du =

∫ t

s
λi(Z

r
(u))du =: Si(Z

r
, s, t).

We now provide the definition of a fluid limit followed by the main result of this section.

Definition 4. We refer to weak limits along convergent subsequences {(Z
q
, Z

q
)(·)}q∈Q, Q ⊆ R,

as fluid limits.

Theorem 5. Under the assumptions (A.1)–(A.6), the sequence {(Z
r
, Z

r
)(·)}r∈R is tight in

DR+→MI × D
R+→RI

+
, and all fluid limits are a.s. FMS’s for the data (η, θ, ζ0). In particular,

if there is a unique FMS (Z, Z)(·) for the data (η, θ, ζ0), then (Z
r
, Z

r
)(·) ⇒ (Z, Z)(·) as r → ∞.

The proof follows in Section 7. To show tightness we adjust the techniques of [13] to the two-
dimensional case, since in [13] flows are patient and state descriptors are vectors of measures on
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R+. The proof of convergence to FMS’s follows the lines of that in [11]. It uses the boundedness
of fluid limits away from zero, and the key difference is that in [11] this property is guaranteed by
the overload regime, while in our model it holds in any load regime due to the rate constraints.

5 Convergence of stationary distributions

Assume that, in the stochastic model defined in Section 2, the arrival processes are Poisson of
rates η1, . . . , ηI . Then there exists a unique stationary (and also limiting as t → ∞) distribution
of the state descriptor Z(·). Indeed, without loss of generality, there are i.i.d. r.v.’s {D̃ik}k∈N,1≤i≤I

distributed as max1≤i≤I Di and such that a.s.Dik ≤ D̃ik for all k and i. Then the total population∑I
i=1 Zi(·) of the network is a.s. and within the whole time horizon R+ bounded from above

by the length of the M/G/∞ queue with the following parameters. At time t = 0, there are∑I
i=1 Zi(0) customers in the queue whose service times are patience times of initial flows in

the network. The input process for the queue is the composition of those for the network, and
hence is Poisson of rate

∑I
i=1 ηi. Service times of new customers in the queue are drawn from

the sequence {D̃ik}k∈N,1≤i≤I of upper bounds for patience times of new flows in the network.
As any other M/G/∞ queue, the defined queue is regenerative. The instants when a customer
enters the empty queue form an embedded renewal process whose cycle length is non-lattice and
has a finite mean value exp(

∑I
i=1 ηi ED̃11)/

∑I
i=1 ηi. With respect to this renewal process , the

state descriptor Z(·) is also regenerative. Then, by [1, Chapter V.I, Theorem 1.2], there exists
a limiting distribution for Z(·).

Now consider a sequence of stochastic models as defined in Section 2 that satisfies the assump-
tions (A.1), (A.2), (A.4) (see Section 4) and

(A′.3) the input processes Er
1(·), . . . , E

r
I (·) are independent Poisson processes of rates ηr1, . . . , η

r
I ,

and ηr/r → η ∈ (0,∞)I as r → ∞.

Let Yr have the stationary distribution of Zr(·) and put Y r := 〈1,Yr〉. Introduce also the scaled
versions

Y
r
:= Yr/r, Y

r
:= 〈1,Y

r
〉 = Y r/r.

We now have the following result.

Theorem 6. Under the assumptions (A.1), (A.2), (A′.3) and (A.4), the sequence {(Y
r
, Y

r
)}r∈R

is tight, and any weak limit point (Y, Y ) is a weak invariant FMS, i.e. there exists a stationary

FMS (Z, Z)(t)
d
= (Y, Y ), t ≥ 0. In particular, by Corollary 1, if the network is monotone and

has a unique invariant FMS (ζ∗, z∗), then (Y
r
, Y

r
) ⇒ (ζ∗, z∗) as r → ∞.

The general strategy of the proof is adopted from [17, Theorem 3.3]: we check that any con-

vergent subsequence of initial conditions {Z
q
(0)

d
= Y

q
}q∈Q, Q ⊆ R, Y

q
⇒ Y, satisfies the

assumptions of the fluid limit theorem (we only need to check (A.6)). Then the correspond-
ing subsequence {Z

q
(·)}q∈Q of the scaled state descriptors converges to an MVFMS that is

stationary (i.e. Y is a weak invariant MVFMS) since all Z
q
(·) are stationary.

The techniques we use to implement this strategy are different from the techniques of [17],
though. Our key instruments for establishing tightness are M/G/∞ bounds, see Section 8.
Below we present an elegant proof of (A.6) for weak limit points of {Y

r
}r∈R.

Lemma 2. Any weak limit point Y of {Y
r
}r∈R has both projections Y(· × R+) and Y(R+ × ·)

a.s. free of atoms.

Proof. The key idea is the following. Consider the network in its stationary regime. Then, on
one hand, it always has the same distribution, and on the other hand, all initial flows are gone
at some point, and newly arriving flows do not accumulate along horizontal and vertical lines.
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Let Y be the weak limit along a subsequence {Y
q
}q∈Q, and run the q-th network starting from

Z
q
(0)

d
= Y

q
. By [11, Lemma 6.2], it suffices to show that, for any δ > 0 and ε > 0, there exists

an a > 0 such that

limq→∞P
q{supx∈R+

‖Y
q
(Hx+a

x )‖ ∨ ‖Y
q
(V x+a

x )‖ ≤ δ} ≥ 1− ε, (19)

where Hb
a := R+ × [a, b] and V b

a := [a, b]× R+ for all b ≥ a ≥ 0.

First we estimate the time when there is only a few (when scaled) initial flows left. The initial
flows whose initial patience times are less than t are already gone at time t. Then Lemma 16 (see
Section 8) implies that (recall that Π(λ) stands for the Poisson distribution with parameter λ)

Z
q, init
i (t) ≤ Z

q
i (0)(R+ × [t,∞))

d
= Y

q
i (R+ × [t,∞))

≤st
1

q
Π(ηqi

∫ ∞

t
P
q{Dq

i > y}dy) ⇒ ηi

∫ ∞

t
P{Di > y}dy.

Take T such that max1≤i≤I ηi
∫∞
t P{Di > y}dy < δ/2, then

limq→∞ P
r{‖Z

q, init
(T )‖ ≤ δ/2} = 1.

Now, in Lemma 11 (see Section 7), we prove that newly arriving customers do not accumulate
in thin horizontal and vertical strips, i.e. there exists an a > 0 such that

limq→∞P
q{supt∈[0,T ] supx∈R+

‖Z
q,new

(t)(Hx+a
x )‖ ∨ ‖Z

q,new
(t)(V x+a

x )‖ ≤ δ/2} ≥ 1− ε.

Finally, because of stationarity of Yq,

P
q{supx∈R+

‖Y
q
(Hx+a

x )‖ ∨ ‖Y
q
(V x+a

x )‖ ≤ δ}

=P
q{supx∈R+

‖Z
q
(T )(Hx+a

x )‖ ∨ ‖Z
q
(T )(V x+a

x )‖ ≤ δ}

≥P
q{‖Z

q, init
(T )‖ ≤ δ/2, supx∈R+

‖Z
q,new

(T )(Hx+a
x )‖ ∨ ‖Z

q, new
(T )(V x+a

x )‖ ≤ δ/2},

which implies (19) by the choice of T and a.

6 Proof of fluid model properties

Here we prove the results of Section 3.

6.1 Proof of Theorem 1

In the proof of Theorem 1, we exploit boundedness of NFMS’s away from zero and in the norm
(see Lemma 3), and Lipschitz continuity of MVFMS’s in the first coordinate (see Lemma 5). We
also use the auxiliary Lemma 4.

Recall the notations σi = ηiEDi and σ = (σ1, . . . , σI).

Lemma 3. Let z(·) be an NFMS Then supt≥0 ‖z(t)‖ ≤ ‖z(0)‖ + ‖σ‖ < ∞ and, for any δ > 0,
inft≥δ min1≤i≤I zi(t) > 0. In particular, if zi(0) > 0, then inft≥0 zi(t) > 0.

Proof. By the rate constraints, Si(z, s, t) ≤ mi(t− s) for all s ≤ t, which, when plugged into the
fluid model equation (4), implies the following lower bound: zi(t) ≥ ηi

∫ t
0 P{Bi/mi ∧Di ≥ s}ds.

Since fi(s) := P{Bi/mi ∧Di ≥ s} ↑ P{Bi/mi ∧Di > 0} = 1 as s ↓ 0, in a small enough interval

[0, ε], fi(·) ≥ 1/2. Then, for t ≥ δ, zi(t) ≥ ηi
∫ δ∧ε
0 fi(s)ds ≥ ηi(δ∧ ε)/2. The upper bound follows

from (4) directly: zi(t) ≤ zi(0) + ηi
∫ t
0 P{Di ≥ s}ds ↑ zi(0) + σi as t ↑ ∞.

Lemma 4. For an R-valued r.v. ξ and x ≤ x′,
∫
R
P{u+ x ≤ ξ ≤ u+ x′}du ≤ x′ − x.
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See the Appendix for the proof.

Lemma 5. Under assumption (ii) of Theorem 1, any MVFMS ζ(·) at any time t ≥ 0 has
a Lipschitz continuous first projection, i.e. there exists a constant L(ζ, t) ∈ (0,∞) such that for
all i, x < x′ and y,

ζi(t)([x, x
′]× [y,∞)) ≤ L(ζ, t)(x′ − x).

Proof. For an FMS (ζ, z)(·), for all i, t ≥ 0, x < x′ and y,

ζi(t)([x, x
′]× [y,∞)) ≤ fi(x, x

′, y) + ηigi(x, x
′, y),

where

fi(x, x
′, y) := ζ0i ([x+ Si(z, 0, t), x

′ + Si(z, 0, t)] × [y + t,∞)),

gi(x, x
′, y) :=

∫ t

0
P{x+ Si(z, s, t) ≤ Bi ≤ x′ + Si(z, s, t)}ds. (20)

By Lipschitz continuity of the initial condition, fi(x, x
′, y) ≤ L(x′ − x). In (20), change the

variable of integration for v = V (s) := Si(z, s, t). Then

gi(x, x
′, y) =

∫ Si(z,0,t)

0
P{x+ v ≤ Bi ≤ x′ + v}/λi(z(V

−1(v)))dv ≤ M(ζ, t)(x′ − x),

where M(ζ, t) := sups∈[0,t]max1≤i≤I 1/λi(z(s)). By Lemma 3, the functions 1/λi(z(·)) are con-
tinuous in [0, t]. Hence M(ζ, t) is finite and the first projection of ζ(t) is Lipschitz continuous
with the constant L(ζ, t) := L+ ‖η‖M(ζ, t).

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Let (ζ1, z1)(·) and (ζ2, z2)(·) be two FMS’s for the data (η, θ, ζ0).

(i) We show that the two FMS’s coincide in an interval [0, δ]. We check that z1(δ) = z2(δ) ∈
(0,∞)I and that the first projection of ζ1(δ) = ζ2(δ) is Lipschitz continuous. Then, by Remark 2
and the second part of the theorem, the two FMS’s coincide everywhere.

Note that, for a vector z ∈ (0,∞)I of a small enough norm, λi(z) = mi for all i. Lemma 3 and
the fluid model equation (4) imply that 0 < z1i (t), z

2
i (t) ≤ ηit for all i and t > 0. Then, for all i

and s, t ∈ [0, δ], where δ is small enough,

Si(z
1, s, t) = Si(z

2, s, t) = mi(t− s). (21)

Plugging (21) into (4), we obtain, for t ∈ [0, δ] and all i,

z1i (t) = z2i (t) = ηi

∫ t

0
P{Bi/mi ∧Di ≥ s}ds.

By Remark 3, ζ1(·) and ζ2(·) coincide in [0, δ], too. Lipschitz continuity of the first projection
of ζ1(δ) = ζ2(δ) follows as we plug (21) into the fluid model equation (3) (recall that it is valid
for all Borel sets): for all i, x < x′ and y,

ζji (δ)([x, x
′]× [y,∞)) = ηi

∫ δ

0
P{x+mis ≤ Bi ≤ x′ +mis,Di ≥ y + s}ds

≤ ηi

∫ δ

0
P{x/mi + s ≤ Bi/mi ≤ x′/mi + s}ds

≤ ηi(x
′ − x)/mi, j = 1, 2,

where the last inequality holds by Lemma 4.

(ii) Suppose that the two FMS’s are different, that is t∗ := inf{t > 0: z1(t) 6= z2(t)} < ∞.
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Without loss of generality we may assume that t∗ = 0. Indeed, otherwise we can consider the
time-shifted FMS’s (ζj, zj)(t∗ + ·), j = 1, 2. By Lemmas 3 and 5, they start from z1(t∗) =
z2(t∗) ∈ (0,∞)I and ζ1(t∗) = ζ2(t∗) with a Lipschitz continuous first projection.

By Lemma 3, the two NFMS never leave a compact set [δ,∆]I ⊂ (0,∞)I . Since the rate functions
λi(z) are Lipschitz continuous in such sets, there exists a constant K ∈ (0,∞) such that, for
all i and s ≤ t,

|Si(z
1, s, t)− Si(z

2, s, t)| ≤ Kt sups∈[0,t] ‖z
1(s)− z2(s)‖ =: Ktε(t).

Then, by Lipschitz continuity of the initial condition, we have, for all i and t ≥ 0,

|z1i (t)− z2i (t)| ≤ LKtε(t) + ηi

∫ t

0
P{Si(z

1, s, t)−Ktε(t) ≤ Bi ≤ Si(z
1, s, t) +Ktε(t)}ds.

In the last equation, change the variable of integration for v = Si(z
1, s, t) (cf. the proof of

Lemma 5) and put M = supz∈[δ,∆]I max1≤i≤I 1/λi(z). Then

|z1i (t)− z2i (t)| ≤ LKtε(t) + ηiM2Ktε(t) for all i and ε(t) ≤ (L+ 2‖η‖M)Ktε(t),

which implies that ε(t) = 0 for small enough t, and we arrive at a contradiction with t∗ = 0.

6.2 Proof of Theorem 2

Before proceeding with the proof of the theorem, we discuss some properties of the functions
gi(·) in the auxiliary Lemmas 6 and 7. Recall that these functions are given by

gi(x) = ηiE(Bi ∧ xDi), x ≥ 0.

Lemma 6. The function gi(·) is continuous. Also gi(·) is strictly increasing in [0, αi] and con-
stant in [αi,∞), where

αi := inf{x : gi(x) = ρi} > 0,

and infimum over the empty set is defined to be ∞.

Proof. Continuity of gi(·) follows by the dominated convergence theorem.

The situation αi = 0 is not possible since in that case gi(x) = ρi for all x > 0 by the definition
of αi. But gi(·) is continuous and gi(x) → gi(0) = 0 as x → 0.

If αi < ∞, then, again by the definition of αi and continuity of gi(·), we have gi(x) = ρi for all
x ≥ αi and gi(x) < ρi = gi(αi) for all x < αi.

It is left to check that gi(·) is strictly increasing in [0, αi). Assume that 0 ≤ x < y < αi, but
gi(x) = gi(y). Then

0 = gi(y)/ηi − gi(x)/ηi =EBiI{Bi≤xDi} + EBiI{xDi<Bi≤yDi} + EyDiI{Bi>yDi}

− EBiI{Bi≤xDi} − ExDiI{xDi<Bi≤yDi} − ExDiI{Bi>yDi})

=E (Bi − xDi)I{xDi<Bi≤yDi}︸ ︷︷ ︸
=: X

+(y − x)EDiI{Bi>yDi}︸ ︷︷ ︸
=: Y

,

where the r.v.’s X and Y are non-negative, so they must a.s. equal zero. In particular, we have
Bi ≤ yDi and gi(y) = ρi, which contradicts the definition of αi since y < αi.

The stabilization points αi of the functions gi(·) are related with the r.v.’s (Bi,Di) in the
following way.

Lemma 7. If αi < ∞, then infDi/Bi = 1/αi. If αi = ∞, then infDi/Bi = 0.
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Proof. First assume αi < ∞. Rewrite the relation gi(x) = ρi as EBi(1− (1 ∧ xDi/Bi)) = 0,
which, for x > 0, is equivalent to Di/Bi ≥ 1/x a.s. Hence αi = inf{x > 0: Di/Bi ≥ 1/x a.s.}
and 1/αi = sup{y > 0: Di/Bi ≥ y a.s.}. In the right-hand side of the latter equation we see the
definition of infDi/Bi.

Now consider the case αi = ∞. Assume that infDi/Bi = y > 0, then Di/y ≥ Bi a.s. and
gi(1/y) = ρi. On the other hand, since αi = ∞, there is no x > 0 such that gi(x) = ρi. Hence
y = 0.

Having established the above properties of the gi(·)’s, we now can prove Theorem 2 by adapting
a technique developed by Borst et al. [4, Lemma 5.2].

Proof of Theorem 2. We first show uniqueness. Let z∗ ∈ (0,∞)I be an invariant NFMS. Recall
that λ(z∗) is the unique optimal solution for the concave optimization problem (1). The necessary
and sufficient conditions for that are given by the Karush-Kuhn-Tucker (KKT) theorem (see
e.g. [3, Theorem 3.1]): there exist p ∈ R

J
+ and q̃ ∈ R

I
+ such that

z∗i U
′
i(λi(z

∗)) = z∗i
∑J

j=1
Ajipj + q̃i for all i,

pj(
∑I

i=1
Ajiλi(z

∗)z∗i − Cj) = 0 for all j, (22)

q̃i(λi(z
∗)−mi) = 0 for all i.

or equivalently, there exist p ∈ R
J
+ and q ∈ R

I
+ (qi = q̃i/z

∗
i ) such that

U ′
i(λi(z

∗)) =
∑J

j=1
Ajipj + qi for all i, (23a)

pj(
∑I

i=1
AjiΛi(z

∗)− Cj) = 0 for all j, (23b)

qi(λi(z
∗)−mi) = 0 for all i. (23c)

By the assumptions of the theorem and Lemmas 6 and 7, the functions gi(·) are strictly in-
creasing in the intervals [0,mi], which implies two things (see also Fig. 2). First, the fixed point
equation (10) can be rewritten as λi(z

∗) = g−1
i (Λi(z

∗)) for all i, and we plug that into (23a).
Second, the second multiplier in (23c) is zero if and only if gi(λi(z

∗)) = gi(mi), and that, by (10),
is equivalent to Λi(z

∗) = gi(mi). Hence, Λ(z
∗) satisfies

U ′
i(g

−1
i (Λi(z

∗)) =
∑J

j=1
Ajipj + qi for all i, (24a)

pj(
∑I

i=1
AjiΛi(z

∗)− Cj) = 0 for all j, (24b)

qi(Λi(z
∗)− gi(mi)) = 0 for all i. (24c)

Now note that the last three equations form the KKT conditions for another optimization prob-
lem. Indeed, take functions g̃i(·) that are continuous and strictly increasing in R+ and coincide
with gi(·) in [0,mi] (and hence, the inverse functions g̃−1

i (·) and g−1
i (·) coincide in [0, gi(mi)]).

Also take functions Gi(·) such that G′
i(·) = U ′

i(g̃
−1
i (·)) in (0,∞). Then (24) gives necessary and

sufficient conditions for Λ(z∗) to solve (12). Since the functions Ui(·) are strictly concave, their
derivatives U ′

i(·) are strictly decreasing. Then G′
i(·) are strictly decreasing and, equivalently,

Gi(·) are strictly concave, which implies that Λ(z∗) = Λ∗ is actually the unique solution to (12)
and does not depend on z∗. Then we invert the gi(·)’s in the fixed point equation (10), which
implies that the fixed point z∗i = Λ∗

i /g
−1
i (Λ∗

i ) is unique because Λ∗ is unique.

The existence result follows similarly. There exists a unique optimal solution Λ∗ to (12) and
it satisfies the KKT conditions (24). Put λ∗

i = g−1
i (Λ∗

i ) for all i. Then λ∗ and Λ∗ satisfy the
KKT conditions (23) and (22) , i.e., for the vector z∗ with z∗i := Λ∗

i /λ
∗
i , we have λ∗ = λ(z∗)

and Λ∗ = Λ(z∗). Plugging the last two relations into the definition of λ∗, we get the fixed point
equation.
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Figure 2: Graph of the function gi(·) in the two possible cases:
when mi ≤ αi (left) and when mi > αi (right); z is a invariant NFMS.

6.3 Proof of Theorem 4

The fixed point equation (10) and the monotonicity of the functions gi(·) imply that the band-
width class i gets in an equilibrium is at most gi(mi). Therefore, we refer to the scenarios∑I

i=1 gi(mi) < C,
∑I

i=1 gi(mi) = C and
∑I

i=1 gi(mi) > C as underloaded, critically loaded and
overloaded, respectively. Below we calculate the invariant NFMS’s in the three cases.

Summing up (9), the KKT conditions (23) for (1) and the capacity and rate constraints, a
z ∈ (0,∞)I is an invariant NFMS if and only if there exist p ∈ R+ and q ∈ R

I
+ such that (we

omit the argument of the rates λi(z) and bandwidth allocations Λi(z))

Λi = gi(λi) for all i, (25a)

κi/λi = p+ qi for all i, (25b)

p(
∑I

i=1
Λi − C) = 0 (25c)

qi(λi −mi) = 0 for all i, (25d)
∑I

i=1
Λi ≤ C, (25e)

λi ≤ mi for all i. (25f)

Underload In this case, there is no interaction between the classes, they do not compete but
all get the maximum rate allowed. Indeed, (25c) and (25b) imply that p = 0 and all qi > 0.
Then, by (25d) and (25a), all λi = mi and all Λi = gi(mi). Hence, there is a unique invariant
NFMS given by

zi = gi(mi)/mi for all i.

Critical load First note that
Λi = gi(mi) for all i. (26)

Indeed, there are two possibilities: either p = 0
(25b)
⇒ all qi > 0

(25d)
⇒ all λi = mi

(25a)
⇒ (26), or p > 0

(25c)
⇒

∑I
i=1Λi = C ⇒ (26), where the last implication is due to Λi ≤ gi(mi) and

∑I
i=1 gi(mi) = C.

Recall from Lemma 7 that

αi := inf{x : gi(x) = ρi} = 1/ inf(Di/Bi).

By (26), the relations (25a) and (25f) are equivalent to mi ∧ αi ≤ λi ≤ mi ( see Fig. 2). Hence,
(25) reduces to

κi/λi = p+ qi, (27a)

qi(λi −mi) = 0, (27b)

mi ∧ αi ≤ λi ≤ mi. (27c)
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Let
Icrit := {i : mi ≤ αi}.

For i ∈ Icrit, by (27c), we have λi = mi and zi = gi(mi)/mi. Then (27b) is satisfied, and (27a)
implies that p ≤ κi/mi.

Now divide {1, . . . , I} \ Icrit into two subsets I1 ∩ I2 = ∅. For i ∈ I1, put λi = mi, then (as
for i ∈ Icrit) zi = gi(mi)/mi, (27b) is satisfied, and (27a) implies that p ≤ κi/mi. For i ∈ I2,
assume αi ≤ λi < mi. Then qi = 0 by (27b), κi/λi = p by (27a), and κi/mi < p ≤ κi/mi. Also
z = gi(mi)p/κi.

Summing up everything said above, the set of invariant NFMS’s is given by

Sz :=
⋃

I⊇Icrit
{z : zi = gi(mi)/mi for i ∈ I and zi = gi(mi)p/κi for i /∈ I,

where p ∈ (maxi/∈I κi/mi,mini∈I κi/mi ∧mini/∈I κi/αi]}.

Equivalent descriptions of Sz are

Sz = {z : zi = gi(mi)/mi if p ≤ κi/mi and zi = gi(mi)p/κi if p > κi/mi, p ∈ Sp},

Sp := (0,mini∈Icrit κi/mi ∧mini/∈Icrit κi/αi] = (0,min1≤i≤I κi/(mi ∧ αi)],

and

Sz = {z : zi = gi(mi)/(mi ∧ κix), x ∈ Sx},

Sx := [max1≤i≤I(mi ∧ αi)/κi,∞).

We now apply the last formula in a couple of simple examples.

Example 1. If mi ≤ αi for all i, then Sx = [max1≤i≤I mi/κi,∞), and κix ≥ mi for all x ∈ Sx and
all i. Hence, there is a unique invariant NFMS given by zi = gi(mi)/mi for all i, which agrees
with Theorem (2).

Example 2. Ifm1 > α1,mi ≤ αi for i 6= 1 and α1/κ1 ≥ maxi 6=1 mi/κi, then, for any λ1 ∈ [α1,m1],
z = (g1(m1)/λ1, g2(m2)/m2, . . . , gI(mI)/mI) is an invariant NFMS.

Overload In this situation, by the capacity constraint (25e), at least one class of flows does
not receive the maximum service, i.e. at least one Λi < gi(mi). We first find out which classes
get the maximum service and which do not, and then calculate the unique invariant NFMS.

Who gets the maximum service. Since at least one Λi < gi(mi), at least one λi < mi ∧ αi (see
Fig. 2). Then (25d), (25b) and (25c) imply that at least one qi = 0, p > 0 and

∑I
i=1 Λi = C.

At this point, we can equivalently rewrite (25) as follows: there exist x > 0 and ε ∈ R
I
+ such

that (the functions g̃i(·) are introduced below)

Λi = gi(λi) ⇔ Λi = g̃i(λi), (28a)
∑I

i=1
gi(λi) = C ⇔

∑I

i=1
g̃i(λi) = C (28b)

λi = κi(x− εi), (28c)

εi(λi −mi) = 0, (28d)

λi ≤ mi. (28e)

For all i and x ≥ 0, put
g̃i(x) := gi(mi ∧ x).

By the rate constraints (28e), in (28), we can equivalently replace gi(·) by g̃i(·).

If λi < mi, then, by (28d) and (28c), εi = 0 and λi = κix, and hence

g̃i(λi) = g̃i(κix). (29)
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If λi = mi, then, by (28c), κix ≥ mi and g̃i(κix) = gi(mi), and, again, (29) holds.

Plugging (29) into (28b), we get ∑I

i=1
g̃i(κix) = C. (30)

The function g̃(x) :=
∑I

i=1 g̃i(κix) is continuous everywhere, strictly increasing in the interval

0 ≤ x ≤ max1≤i≤I(mi ∧ αi)/κi =: x0

and constant for x ≥ x0, and also g̃(0) = 0 and g̃(x0) =
∑I

i=1 gi(mi) > C, which implies that
there exists a unique x solving (30) and x ∈ (0, x0).

By (28a) and (29), Λi = g̃i(κix). Then (see Fig. 3) Λi = gi(mi) if (mi ∧ αi)/κi ≤ x and
Λi < gi(mi) if (mi ∧ αi)/κi > x. Hence, the set of classes that get the maximum service is

Iover := {i : (mi ∧ αi)/κi ≤ x}. (31)

Invariant NFMS. For i /∈ Iover, Λi = gi(λi) < gi(mi), which implies that (see Fig. 2) λi <
mi ∧αi. Then, by (28d) and (28c), εi = 0 and λi = κix (meeting the rate constraint (28e)), and
zi = Λi/λi = gi(κix)/(κix).

For i ∈ Iover, consider the two possible cases: κix < mi and κix ≥ mi. If κix < mi, then, by (28c)
and (28d), λi ≤ κix < mi and εi = 0, and, again by (28c), λi = κix. If κix ≥ mi, then λi = mi

because otherwise we would arrive at a contradiction: λi < mi
(28d)
⇒ εi = 0

(28c)
⇒ λi = κix ≥ mi.

Hence, for i ∈ Iover, λi = mi ∧ κix and zi = Λi/λi = gi(mi)/(mi ∧ κix).

Summing up, the unique invariant NFMS is given by

zi = gi(mi)/(mi ∧ κix) for i ∈ Iover and zi = gi(κix)/(κix) for i /∈ Iover,

where x is the unique solution to (30) and Iover is defined by (31).

Figure 3: Graphs of the functions g̃i(·); x is the unique solution to (30).

7 Proof of Theorem 5

To prove C-tightness (that is, tightness with all weak limits being a.s. continuous) of {Z
r
(·)}r∈R,

we check standard conditions (see e.g. [10]) of compact containment (Section 7.2) and oscillation
control (Section 7.4). In Section 7.6, we check that fluid limits satisfy the fluid model equation (3).

To establish these main steps of the proof, we develop a number of auxiliary results. Section 7.1
contains a law of large numbers result for the load process. Section 7.3 proves that, for large r,
Z

r
(·) puts arbitrarily small mass to thin horizontal and vertical strips, which in particular implies

that fluid limits have both projections free of atoms. In Section 7.5, fluid limits are shown to be
coordinate-wise bounded away from zero outside t = 0.
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7.1 Load process

Introduce the measure valued load processes and their scaled versions: for all r, i and t ≥ s ≥ 0,

Lr
i (t) :=

∑Er
i (t)

k=1
δ(Br

ik
,Dr

ik
), L

r
i (t) := Lr

i (t)/r,

Lr
i (s, t) := Lr

i (t)−Lr
i (s), L

r
i (s, t) := L

r
i (t)− L

r
i (s).

The following property is useful when proving other results of the section. Only minor adjust-
ments in the proof of [13, Theorem 5.1] are needed to establish it.

Lemma 8. By (A.3) and (A.4), as r → ∞, (L
r
(·), 〈χ1,L

r
(·)〉, 〈χ2,L

r
(·)〉) ⇒ (η(·)∗θ, ρ(·), σ(·)),

where χ1(x1, x2) := x1, χ2(x1, x2) := x2, and η(t) := tη, ρ(t) := tρ, σ(t) := tσ.

7.2 Compact containment

The property we prove here, together with the oscillation control result that follows in Sec-
tion 7.4, implies tightness of the scaled state descriptors.

Lemma 9. By (A.3)–(A.5), for any T > 0 and ε > 0, there exists a compact set K ⊂ MI such
that

limr→∞P
r{Z

r
(t) ∈ K for all t ∈ [0, T ]} ≥ 1− ε.

Proof. Fix T and ε. It suffices to show that, for each i, there exist a compact set Ki ⊂ M such
that

limr→∞P
r{Z

r
i (t) ∈ Ki for all t ∈ [0, T ]} ≥ 1− ε/I. (32)

We use the following criterion (see e.g. [15, Theorem 15.7.5]).

Proposition 1. A set M ⊂ M is relatively compact if and only if supξ∈M ξ(R2
+) < ∞ and

supξ∈M ξ(R2
+ \ [0, n]2) → 0 as n → ∞.

Note that
Z

r
i (t)(R

2
+) = Z

r
i (t) ≤ Z

r
i (0) + E

r
i (T ) = Z

r
i (0)(R

2
+) + L

r
i (T )(R

2
+). (33)

Also note that, if the residual size (patience time) of a flow at time t exceeds n, then its initial
size (patience time), must have exceeded n, too, which implies the following bound:

Z
r
i (t)(R

2
+ \ [0, n]2) ≤ Z

r
i (0)(R

2
+ \ [0, n]2) + L

r
i (T )(R

2
+ \ [0, n]2). (34)

The sequence {Z
r
i (0) + L

r
i (T )}r∈R converges and hence in tight, i.e. there exists a compact set

K ′
i ⊂ M such that

infr∈R P
r{Z

r
i (0) + L

r
i (T ) ∈ K ′

i} ≥ 1− ε/I. (35)

Put

K ′′
i := {ξ ∈ M : for some ξ′ ∈ K ′

i, ξ(R
2
+) ≤ ξ′(R2

+) and

ξ(R2
+ \ [0, n]2) ≤ ξ′(R2

+ \ [0, n]2), n ∈ N}.

Then the criterion of relative compactness for K ′′
i follows from that for K ′

i, and (33)–(35) im-
ply (32) with Ki taken as the closure of K ′′

i .

7.3 Asymptotic regularity

This section contains three Lemmas. Lemmas 10 and 11 prove that neither initial nor newly
arriving flows concentrate along horizontal and vertical lines. These two results are combined in
Lemma 12 that implies the oscillation control result of the next section, and also is useful when
deriving the limiting equations for the state descriptors in Section 7.6.
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Recall from Section 5 that, for b ≥ a ≥ 0,

Hb
a = R+ × [a, b], V b

a = [a, b] × R+,

and introduce similar notations

H∞
a := R+ × [a,∞), V ∞

a := [a,∞)× R+.

Lemma 10. By (A.5) and (A.6), for any δ > 0 and ε > 0, there exists an a > 0 such that

limr→∞P
r{supx∈R+

‖Z
r
(0)(Hx+a

x )‖ ∨ ‖Z
r
(0)(V x+a

x )‖ ≤ δ} ≥ 1− ε.

Proof. Fix δ and ε. Since, for any ξ ∈ MI and a > 0,

supx∈R+
‖ξ(Hx+a

x )‖ ∨ ‖ξ(V x+a
x )‖ ≤ 2 supn∈N ‖ξ(Hna

(n−1)a)‖ ∨ ‖ξ(V na
(n−1)a)‖,

it suffices to find an a such that

limr→∞P
r{Z

r
(0) ∈ Ma} ≥ 1− ε,

where Ma := {ξ ∈ MI : supn∈N ‖ξ(Hna
(n−1)a)‖ ∨ ‖ξ(V na

(n−1)a)‖ < δ/2}.

The set Ma is open because ξk
w
→ ξ ∈ Ma implies that ξk ∈ Ma for k large enough. Indeed,

pick an N ∈ N such that ‖ξ(H∞
Na)‖ ∨ ‖ξ(V ∞

Na)‖ < δ/2. Then, by the Portmanteau theorem,

limk→∞ supn∈N ‖ξk(Hna
(n−1)a)‖ ∨ ‖ξk(V na

(n−1)a)‖

≤limk→∞max1≤n≤N ‖ξk(Hna
(n−1)a)‖ ∨ ‖ξk(V na

(n−1)a)‖ ∨ ‖ξk(H∞
Na)‖ ∨ ‖ξk(V ∞

Na)‖

≤max1≤n≤N ‖ξ(Hna
(n−1)a)‖ ∨ ‖ξ(V na

(n−1)a)‖ ∨ ‖ξ(H∞
Na)‖ ∨ ‖ξ(V ∞

Na)‖ < δ/2.

By (A.6) and [13, Lemma A.1], there exists an a such that P{ζ0 ∈ Ma} ≥ 1 − ε. Then, again
by the Portmanteau theorem,

limr→∞P
r{Z

r
(0) ∈ Ma} ≥ P{ζ0 ∈ Ma} ≥ 1− ε.

Besides being used in the proof of the fluid limit theorem, the following result is also used
when establishing convergence of the stationary distributions of the scaled state descriptors, see
Section 5.

Lemma 11. By (A.3) and (A.4), for any T > 0, δ > 0 and ε > 0, there exists an a > 0 such
that

limr→∞P
r{supt∈[0,T ] supx∈R+

‖Z
r, new

(t)(Hx+a
x )‖ ∨ ‖Z

r,new
(t)(V x+a

x )‖ ≤ δ
︸ ︷︷ ︸

=: Ωr
∗

} ≥ 1− ε.

Proof. Fix T , δ and ε. We first construct auxiliary events Ωr
0 such that limr→∞P

r{Ωr
0} ≥ 1− ε,

and then show that Ωr
∗ ⊇ Ωr

0 for all r, which implies the theorem.

Definition of Ωr
0. By Lemma 9, there exists a compact set K ⊂ MI such that

limr→∞P
r{Z

r
(t) ∈ K for all t ∈ [0, T ]︸ ︷︷ ︸

=: Ωr
1

} ≥ 1− ε,

and by Proposition 1, M := supξ∈K ‖ξ(R2
+)‖ < ∞ and supξ∈K ‖ξ(R2

+) \ [0, L]2‖ ≤ δ/4 for
a large enough L.

For each i, the rate function λi(·) is positive on {z ∈ R
I
+ : zi > 0} and, by Lemma 1, it is

continuous there. Hence,

λ∗ := min1≤i≤I inf{λi(z) : zi ≥ δ/4, ‖z‖ ≤ M} > 0. (36)
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Put

γ :=
δ

72‖η‖
∧ T and a :=

γ(λ∗ ∧ 1)

3
.

Also pick an N large enough so that

Na > L+ (‖m‖ ∨ 1)T.

For m,n ∈ N, define the sets

Im,n := [(m− 1)a,ma) × [(n− 1)a, na),

Im,n := [(m− 2)+a, (m+ 1)a)× [(n − 2)+a, (n + 1)a),

and pick functions gm,n ∈ CR2
+
→[0,1] such that

IIm,n(·) ≤ gm,n(·) ≤ IIm,n(·).

Since θ is a vector of probability measures,
∑

m,n∈N
‖〈gm,n, θ〉‖ ≤ ‖

∑
m,n∈N

θ(Im,n)‖ ≤ 9. (37)

By Lemma 8 and the continuous mapping theorem, for all m,n ∈ N, 〈gm,n,L
r
(·)〉 ⇒ η(·)〈gm,n, θ〉

as r → ∞. Since the limits are deterministic, we have convergence in probability. Since the limits
are continuous, we have uniform convergence on compact sets. Hence,

limr→∞ P
r{max1≤m,n≤N supt∈[0,T ] ‖〈gm,n,L

r
(t)〉 − tη ∗ 〈gm,n, θ〉‖ ≤ δ/(16N2)

︸ ︷︷ ︸
=: Ωr

2

} = 1.

Similarly, by (A.3),
limr→∞ P

r{supt∈[0,T ] ‖E
r
(t)− tη‖ ≤ δ/16

︸ ︷︷ ︸
=: Ωr

3

} = 1.

For all r, put
Ωr
0 := Ωr

1 ∩Ωr
2 ∩Ωr

3,

then limr→∞P
r{Ωr

0} ≥ 1− ε, and it is left to show that Ωr
0 ⊆ Ωr

∗.

Proof of Ωr
0 ⊆ Ωr

∗. Fix r ∈ R, t ∈ [0, T ], x ∈ R+ and i. Also fix an outcome ω ∈ Ωr
0. All random

objects in the rest of the proof will be evaluated at this ω. We have to check that

Z
r, new
i (t)(Hx+a

x ) ≤ δ, (38a)

Z
r,new
i (t)(V x+a

x ) ≤ δ. (38b)

We will show (38a), (38b) follows similarly.

Define the random time τ := sup{s ≤ t : Z
r, new
i (s) < δ/4} (supremum over the empty set equals

0 by convention). Although in general τ is not a continuity point for Z
r, new
i (·), we still can

estimate Z
r,new
i (τ):

Z
r,new
i (τ) ≤ δ/2. (39)

Indeed, if τ = 0, then Z
r,new
i (τ) = 0, and (39) holds. If τ > 0, pick a τ ′ ∈ [(τ − γ)+, τ ] such that

Z
r,new
i (τ ′) < δ/4. Then, by the definition of Ωr

3,

Z
r, new
i (τ) ≤ Z

r,new
i (τ ′) + (E

r
i (τ)− E

r
i (τ

′)) ≤ δ/4 + ηi(τ − τ ′) + δ/8 ≤ ‖η‖γ + 3δ/8,

and (39) holds by the choice of γ.
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Now, if τ = t, then (39) implies (38a), and the proof is finished. Assume that τ < t. Then, by
the choice of L and (39),

Z
r,new
i (t)(Hx+a

x ) ≤ Z
r,new
i (t)(Hx+a

x ∩ [0, L]2) + δ/4

≤ Z
r, new
i (τ)︸ ︷︷ ︸
≤ δ/2

+
1

r

∑Er
i (t)

Er
i (τ)+1

IHx+a
x ∩[0,L]2(B

r
ik − Si(Z

r
, U r

ik, t),D
r
ik − (t− U r

ik)︸ ︷︷ ︸
=: sk

+δ/4

and in order to have (38a), it suffices to show that

Σ :=
1

r

∑Er
i (t)

Er
i (τ)+1

sk =
∑

m,n∈N

1

r

∑Er
i (t)

Er
i (τ)+1

skIIm,n(B
r
ik,D

r
ik)

︸ ︷︷ ︸
=: Σm,n

≤ δ/4. (40)

First note that
Σm,n = 0 if m > N or n > N. (41)

Indeed, consider a flow on route i that arrived at U r
ik ∈ (τ, t] with (Br

ik,D
r
ik) ∈ Im,n. If m > N ,

then Br
ik > L+ ‖m‖T by the choice of N , Br

ik − Si(Z
r
, U r

ik, t) > L by the rate constraints, and
sk = 0. If n > N , then Dr

ik > L+ T by the choice of N , Dr
ik − (t− U r

ik) > L and again sk = 0.

Now we estimate Σm,n for 1 ≤ m,n ≤ N . Fix m, n. Consider two flows k < l such that U r
ik, U

r
il ∈

(τ, t] and (Br
ik,D

r
ik), (B

r
il,D

r
il) ∈ Im,n. In (τ, t], Z

r
i (·) ≥ Z

r,new
i (·) ≥ ε/4 and ‖Z

r
(·)‖ ≤ M , and

then (36) implies that
infs∈(τ,t] λi(Z

r
(s)) ≥ λ∗.

If U r
il − U r

ik ≥ γ, then

(Br
il − Si(Z

r
, U r

il, t))− (Br
ik − Si(Z

r
, U r

ik, t)) ≥

≥ 3a︷︸︸︷
γλ∗ −

≤ a︷ ︸︸ ︷
(Br

ik −Br
il) ≥ 2a,

(Dr
il − (t− U r

il)− (Dr
ik − (t− U r

ik)) ≥ γ︸︷︷︸
≥ 3a

− (Dr
ik −Dr

il)︸ ︷︷ ︸
≤ a

≥ 2a,

and hence at most one of sk and sl is non-zero. This implies that all arrivals to route i during
(τ, t] that correspond to non-zero summands in Σm,n occur actually during a smaller interval
(tm,n, tm,n + γ] ⊆ (τ, t]. Then, by the definition of Ωr

2,

Σm,n ≤
1

r

∑Er
i (tm,n+γ)

k=Er
i (tm,n)+1

IIm,n(B
r
ik,D

r
ik) ≤ sups∈[0,T−γ]

1

r

∑Er
i (s+γ)

k=Er
i (s+1)

gm,n(B
r
ik,D

r
ik)

= sups∈[0,T−γ](〈gm,n,L
r
i (s + γ)〉 − 〈gm,n,L

r
i (s)〉) ≤ γηi〈gm,n, θi〉+ δ/(8N2).

We plug the last inequality and (41) into Σ =
∑

m,n∈NΣm,n, then (40) follows by (37) and the
choice of γ.

The previous two lemmas are summed up into the following result.

Lemma 12. By (A.3)–(A.6), for any T > 0, δ > 0 and ε > 0, there exists an a > 0 such that

limr→∞P
r{supt∈[0,T ] supx∈R+

‖Z
r
(t)(Hx+a

x )‖ ∨ ‖Z
r
(t)(V x+a

x )‖ ≤ δ} ≥ 1− ε.

Proof. Note that

supx∈R+
‖Z

r, init
(t)(Hx+a

x )‖ ∨ ‖Z
r, init

(t)(V x+a
x )‖

≤ supx∈R+
‖Z

r
(0)(Hx+a

x )‖ ∨ ‖Z
r
(0)(V x+a

x )‖.

Indeed,

Z
r, init
i (t)(Hx+a

x ) ≤ Z
r
i (0)(H

x+a+t
x+t ) and Z

r, init
i (t)(V x+a

x ) ≤ Z
r
i (0)(V

x+a+Si(Z
r
,0,t)

x+Si(Z
r
,0,t)

).
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Then the lemma follows by Z
r
(·) = (Z

r, init
+ Z

r,new
)(·) and Lemmas 10 and 11.

7.4 Oscillation control

Here we establish the second key ingredient of tightness of the scaled state descriptors, the first
one is proven in Section 7.2.

Lemma 13. By (A.3)–(A.6), for any T > 0, δ > 0 and ε > 0, there exists an h > 0 such that

limr→∞P
r{ω(Z

r
, h, T ) ≤ δ︸ ︷︷ ︸
=: Ωr

∗

} ≥ 1− ε,

where ω(Z
r
, h, T ) := sup{dI(Z

r
(s),Z

r
(t)) : s, t ∈ [0, T ], |s− t| < h}.

Proof. Fix T , δ and ε. By (A.3),

limr→∞ P
r{supt∈[0,T ] ‖E

r
(t)− tη‖ ≤ δ/4

︸ ︷︷ ︸
=: Ωr

1

} = 1.

By Lemma 12, there exists an a > 0 such that

limr→∞P
r{supt∈[0,T ] ‖Z

r
(t)(Ha

0 ∪ V a
0 )‖ ≤ δ

︸ ︷︷ ︸
=: Ωr

2

} ≥ 1− ε.

Pick an h such that h(‖m‖ ∨ 1) ≤ δ ∧ a and h‖η‖ ≤ δ/2. We now show that, for all r ∈ R,
Ωr
∗ ⊇ Ωr

1 ∩Ωr
2, then the lemma follows.

Fix r ∈ R, i and s, t ∈ [0, T ] such that s < t, t − s < h. Also fix an outcome ω ∈ Ωr
1 ∩ Ωr

2. All
random objects in the rest of the proof will be evaluated at this ω. We have to check that, for
any non-empty closed Borel subset B ⊆ R

2
+,

Z
r
i (s)(B) ≤ Z

r
i (t)(B

δ) + δ, (42a)

Z
r
i (t)(B) ≤ Z

r
i (s)(B

δ) + δ. (42b)

First we check (42a). Note that it suffices to show

Z
r
i (s)(B) ≤ Z

r
i (τ)(B

δ) + δ, (43)

where τ := inf{u ∈ [s, t] : Z
r
i (u) = 0} and infimum over the empty set equals t by defini-

tion. Indeed, if τ = t, then (43) implies (42a). If τ < t, then by the right-continuity of Z
r
i (·),

Z
r
i (τ)(B

δ) = Z
r
i (τ) = 0, and again (43) implies (42a).

Now prove (43). If τ = s, then (43) holds. Assume that τ > s. By the defintion of Ωr
2,

Z
r
i (s)(B) ≤ Z

r
i (s)(B ∩ [a,∞)2) + δ. (44)

Since Si(Z
r
, s, τ) < ‖m‖h ≤ δ ∧ a and τ − s < h ≤ δ ∧ a,

Z
r
i (s)(B ∩ [a,∞)2) ≤ Z

r
i (τ)(B

δ),

which together with (44) implies (43).

It is left to check (42b). Since Si(Z
r
, s, τ) < ‖m‖h ≤ δ and τ − s < h ≤ δ,

Z
r
i (t)(B) ≤ Z

r
i (s)(B

δ) + (E
r
i (t)− E

r
i (s)),

and (42b) follows by the definition of Ωr
1.
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7.5 Fluid limits are bounded away from zero

Rate constraints provide infinite-server-queue lower bounds for bandwidth-sharing networks.
First we show that properly scaled infinite server queues are bounded away from zero, and then
the same follows for bandwidth-sharing networks with rate constraints.

Consider a sequence of infinite server queues marked by r ∈ R. At t = 0, the queues are empty.
To the r-th queue, customers arrive according to a counting process Ar(·) and have i.i.d. service
times {Br

k}k∈N distributed as Br. Let A
r
(·) := Ar(·)/r ⇒ α(·), where α(t) := tα and α > 0.

Also let Br ⇒ B, where P{B > 0} > 0. Denote by Qr(·) the population process of the r-th
queue and put Q

r
(·) := Qr(·)/r.

Lemma 14. For any δ > 0, there exists a C(δ) > 0 such that, for any ∆ > δ,

P
r{infδ≤t≤∆ Q

r
(t) ≥ C(δ)} → 1 as r → ∞.

Proof. Let us first explain the result heuristically. Consider the arrivals with long service times,
i.e. exceeding a b > 0. During (0, b/2], there are rαP{B > b}b/2 such arrivals to the r-th queue.
They will leave the queue after t = b, and hence, in (b/2, b], the scaled queue length Q

r
(·)

is bounded from below by αP{B > b}b/2. Similarly, Q
r
(·) ≥ αP{B > b}b/2 in any interval

((n− 1)b/2, nb/2], n ∈ N.

We now proceed more formally. Pick an b ∈ (0, δ) such that b is a continuity point for the
distribution of B, and

p := P{B ≥ b} > 0.

Then, as r → ∞,
pr := P

r{Br ≥ b} → p.

Partition (0,∆] into subintervals of length b/2,

(0,∆] ⊆
⋃

1≤n≤N(∆)
((n − 1)b/2, nb/2].

Denote by A
r
n the scaled number of arrivals during ((n − 1)b/2, nb/2], and by A

r
n(b) the scaled

number of arrivals during ((n − 1)b/2, nb/2] with service times at least b,

A
r
n := A

r
(nb/2)−A

r
((n − 1)b/2),

A
r
n(b) :=

1

r

∑Ar(nb/2)

k=Ar((n−1)b/2)+1
I{Br

k
≥b}.

By A
r
⇒ α(·) and pr → p as r → ∞,

(A
r
1, . . . , A

r
N(∆)) ⇒ (αb/2, . . . , αb/2),

(A
r
1(b), . . . , A

r
N(∆)(b)) ⇒ (αpb/2, . . . , αpb/2).

Pick a C(δ) < αpb/2, then

P
r{infδ≤t≤∆ Q

r
(t) ≥ C(δ)}

≥ P
r{inft∈((n−1)b/2,nb/2] Q

r
(t) ≥ C(δ), n = 2, . . . , N(∆)}

≥ P
r{A

r
n(b) ≥ C(δ), n = 1, . . . , N(∆)− 1} → 1 as r → ∞.

We can now prove easily that all fluid limits are bounded away from zero outside t = 0.

Lemma 15. For any δ > 0, there exists a C(δ) > 0 such that, for any fluid limit (Z, Z)(·),

a.s. inft≥δ min1≤i≤I Zi(t) ≥ C(δ).

Proof. Consider a flow k on route i in the r-th network. By the rate constraints, this flow will stay
in the network at least for Br

ik/mi ∧Dr
ik since its arrival. Hence, the route i population process
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Zr
i (·) is bounded from below by the length Qr

i (·) of the infinite server queue with arrivals Er
i (·)

and i.i.d. service times {Br
ik/mi ∧ Dr

ik}k∈N. Assume that Qr
i (0) = 0 and put Q

r
i (·) = Qr

i (·)/r.
Then, by Lemma 14, for any δ > 0 there exists a C(δ) > 0 such that, for any ∆ > δ,

P
r{inft∈[δ,∆]min1≤i≤I Z

r
i (t) ≥ C(δ)} ≥ P

r{inft∈[δ,∆]min1≤i≤I Q
r
i (t) ≥ C(δ)} → 1.

Now consider a fluid limit (Z, Z)(·) along a subsequence {(Z
q
, Z

q
)(·)}q∈Q. For any compact

set K ⊂ R+, the mapping ϕK : DR+→R → R, ϕK(x) := inft∈K minq≤i≤I x(t) is continuous at

continuous x(·). Hence, ϕ[δ,∆](Z
q
) ⇒ ϕ[δ,∆](Z) and, by the Portmanteau theorem,

P{ϕ[δ,∆](Z) ≥ C(δ)} ≥ limq→∞P
q{ϕ[δ,∆](Z

q
) ≥ C(δ)} = 1,

where ∆ > δ is arbitrary. Then the lemma follows.

Note also that the constant C(δ) does not depend on a particular fluid limit (Z, Z)(·).

7.6 Fluid limits as fluid model solutions

Here we show that fluid limits a.s. satisfy the fluid model equation (3).

Let (Z, Z)(·) be a fluid limit along a subsequence {(Z
q
, Z

q
)(·)}q∈Q. Lemma 12 implies that

(cf. the proof of [11, Lemma 6.2])

a.s. Zi(t)(∂A) = 0 for all t ≥ 0, all i and A ∈ C, (45)

where ∂A denotes the boundary of A. Then, when proving (3) for (Z, Z)(·), it suffices to consider
sets A from

C+ := {[x,∞) × [y,∞) : x ∧ y > 0}.

It also suffices to consider t from a finite interval [0, T ].

The rest of the proof splits into two parts. First we derive dynamic equations for the prelimiting
processes (Z

q
, Z

q
)(·), and then show that these equations converge to (3).

Prelimiting equations Fix q ∈ Q, i, t ≤ T and A ∈ C+. Fix also an outcome ω ∈ Ωq. In
what follows up to equation (48), all random elements are evaluated at this ω. We have

Z
q
i (t)(A) =Z

q
i (0)(A + (Si(Z

q
, 0, t), t))

+
1

q

∑Eq
i (t)

k=1

=: sk︷ ︸︸ ︷
IA(B

q
ik − Si(Z

q
, U q

ik, t),D
q
ik − (t− U q

ik))

︸ ︷︷ ︸
=: Σ

.
(46)

Fix a partition partition 0 < t0 < t1 < ... < tN = t, then

Σ =
1

q

∑Eq
i (t0)

k=1
sk +

1

q

∑N−1

j=0

∑Eq
i (tj+1)

k=Eq
i (tj )+1

sk.

Suppose that a function y(·) is non-increasing in [t0, t] and that, for some δ,

sups∈[t0,t] |Si(Z
q
, s, t)− y(s)| ≤ δ.

Now we can estimate Σ. If U q
ik ∈ (tj, tj+1], then

Bq
ik − (y(tj) + δ) ≤ Bq

ik − S(Z
q
, U q

ik, t) ≤ Bq
ik − (y(tj+1)− δ),

Dq
ik − (t− tj)) ≤ Dq

ik − (t− U q
ik) ≤ Dq

ik − (t− tj+1),
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and

Σ ≥
∑N−1

j=0

1

q

∑Eq
i (tj+1)

k=Eq
i (tj)+1

IA(B
q
ik − (y(tj) + δ),Dq

ik − (t− tj)),

Σ ≤ E
q
i (t0) +

∑N−1

j=0

1

q

∑Eq
i (tj+1)

k=Eq
i (tj )+1

IA(B
q
ik − (y(tj+1)− δ),Dq

ik − (t− tj+1)),

which can be rewritten as

Σ ≥
∑N−1

j=0
L
q
i (tj , tj+1)(A+ (y(tj) + δ, t − tj))

Σ ≤ E
q
i (t0) +

∑N−1

j=0
L
q
i (tj , tj+1)(A + (y(tj+1)− δ, t− tj+1)).

(47)

Put
Xq := supA∈C sup0≤s≤t≤T ‖(L

q
(s, t)(A)− (t− s)η ∗ θq(A)‖,

then, by (47) and (46),

∑N−1

j=0

(
ηi(tj+1 − tj)θ

q
i (A+ (y(tj) + δ, t− tj))−Xq

)

≤ Z
q
i (t)(A) −Z

q
i (0)(A + (Si(Z

q
, 0, t), t))

≤ ηit0 +Xq +
∑N−1

j=0

(
ηi(tj+1 − tj)θ

q
i (A+ (y(tj+1)− δ, t− tj+1) +Xq

)
.

(48)

To summarize, we have shown that, for all q ∈ Q and ω ∈ Ωq,

(Z
q
(·),Xq) ∈ Aq, (49)

where Aq ⊂ DR+→MI × R+ is the set of pairs (ζ(·), x) such that, for any set A ∈ C+, any
partition 0 < t0 < t1 < . . . < tN = t ≤ T and any function y(·) that is non-increasing in [t0, t]
and that satisfies sups∈[t0,t] |Si(〈1, ζ〉, s, t) − y(s)| ≤ δ for some i and δ,

∑N−1

j=0

(
ηi(tj+1 − tj)θ

q
i (A+ (y(tj) + δ, t− tj))− x

)

≤ ζ(t)(A)− ζi(0)(A + (Si(〈1, ζ〉, 0, t), t))

≤ ηit0 + x+
∑N−1

j=0

(
ηi(tj+1 − tj)θ

q
i (A+ (y(tj+1)− δ, t− tj+1) + x

)
.

Limiting equations By (A.3) and (A.4) (cf. the proof of [11, Lemma 5.1]),

Xq ⇒ 0 as q → ∞.

Since the limit of Xq is deterministic, then the joint convergence (Z
q
(·),Xq) ⇒ (Z(·), 0) holds.

By the Skorokhod representation theorem, there exist random elements {Z̃q(·)}q∈Q, Z̃(·) and

{X̃q}q∈Q defined on a common probability space (Ω̃, F̃ , P̃) such that (Z̃q(·), X̃q)
d
= (Z

q
(·),Xq),

q ∈ Q, and Z̃(·)
d
= Z(·), and

a.s. (Z̃q(·), X̃q) → (Z̃(·), 0) as q → ∞. (50)

Introduce also the total mass processes Z̃q(·) := 〈1, Z̃q(·)〉, q ∈ Q, and Z̃(·) := 〈1, Z̃(·)〉.
By Lemma 15, (45) and (49),

a.s. Z̃i(t) > 0 for all t > 0 and all i, (51a)

a.s. Z̃i(t)(∂A) = 0 for all t ≥ 0, all i and A ∈ C, (51b)

a.s. (Z̃q(·), X̃q) ∈ Aq for all q ∈ Q. (51c)
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Denote by Ω̃∗ the set of outcomes w ∈ Ω̃ for which (50) and (51) hold. We will show that, for
all ω ∈ Ω̃∗, all i, t ∈ [0, T ] and A ∈ C+,

Z̃i(t)(A) =Z̃i(0)(A + (Si(Z̃, 0, t), t))

+ ηi

∫ t

0
θi(A+ (Si(Z̃, s, t), t− s))ds,

(52)

and that will complete the proof of Theorem 5.

Fix t ∈ [0, T ], i and A ∈ C+. Also fix an outcome ω ∈ Ω̃∗. All random elements in the rest of the
proof are evaluated at this ω.

By (50) and (51b),
Z̃q
i (t)(A) → Z̃i(t)(A) as q → ∞. (53)

By (51a), the rate constraints and the dominated convergence theorem,

Si(Z̃
q, s, t) → Si(Z̃, s, t) for all s ∈ [0, t] as q → ∞, (54)

which in particular implies that

Z̃q
i (0)(A + (Si(Z̃

q, 0, t), t)) → Z̃i(0)(A + (Si(Z̃, 0, t), t)) as q → ∞. (55)

Fix t0 ∈ (0, t) and δ > 0. By (51a), the function Si(Z̃, ·, t) is continuous in [t0, t], and the functions
Si(Z̃

q, ·, t) are monotone. Then the point-wise convergence (54) implies uniform convergence
in [t0, t], and for q large enough,

sups∈[t0,t] |Si(Z̃
q, s, t)− Si(Z̃, s, t)| ≤ δ. (56)

Now fix a partition t0 < t1 < . . . < tN = t. The bound (56) and (51c) imply that (in the
definition of Aq we take y(·) = Si(Z̃, ·, t))

∑N−1

j=0

(
ηi(tj+1 − tj)θ

q
i (A+ (Si(Z̃, tj , t) + δ, t − tj))− X̃q

)

≤ Z̃q
i (t)(A)− Z̃q

i (A+ (Si(Z̃
q, 0, t), t))

≤ ηit0 + X̃q +
∑N−1

j=0

(
ηi(tj+1 − tj)θ

q
i (A+ (Si(Z̃, tj+1, t)− δ, t− tj+1) + X̃q

)
.

(57)

Since θi(·×R+) and θi(R+×·) are probability measures, the set of B ∈ C for which θi(∂B) > 0 is
at most countable. By (51), Si(Z̃, ·, t) is strictly monotone in [t0, t]. Hence, the set D of s ∈ [t0, t]
for which θi(∂A+(Si(Z̃,s,t)+δ,t−s)) > 0 or θi(∂A+(Si(Z̃,s,t)−δ,t−s)) > 0 is at most countable, too.

In (57), let q → ∞ assuming that the partition contains no points from D. Then, by (50), (53)
and (55),

∑N−1

j=0
ηi(tj+1 − tj)θi(A+ (Si(Z̃, tj , t) + δ, t − tj))

≤ Z̃i(t)(A) − Z̃i(0)(A + (Si(Z̃, 0, t), t))

≤ ηit0 +
∑N−1

j=0
ηi(tj+1 − tj)θi(A+ (Si(Z̃, tj+1, t)− δ, t− tj+1).

(58)

Now, in (58), let the diameter of the partition go to 0 keeping t0 fixed. Then

ηi

∫ t

t0

θi(A+ (Si(Z̃, s, t) + δ, t− s))ds

≤ Z̃i(t)(A) − Z̃i(0)(A + (Si(Z̃, 0, t), t))

≤ ηit0 + ηi

∫ t

t0

θi(A+ (Si(Z̃, s, t)− δ, t− s)ds.

Finally, in the last inequality, let δ → 0 (recall (51b)) and t0 → 0, then (52) follows.
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8 Proof of Theorem 6

By the discussion following Theorem 6 and Lemma 2, it is left to show tightness of the scaled sta-
tionary distributions. It suffices to show coordinate-wise tightness, so fix i. By [14, Theorem 2.1]
and [15, Theorem 15.7.5], the sequence {Y

r
i , Y

r
i }r∈R is tight if

supr∈R E
rY

r
i < ∞, (59a)

limn→∞ E
rY

r
i (V

∞
n ) = 0, (59b)

limn→∞ E
rY

r
i (H

∞
n ) = 0, (59c)

where V ∞
n = [n,∞)× R+ and H∞

n = R+ × [n,∞).

First check (59a). For each r, the route i population process Zr
i (·) is bounded from above by

the length Qr
i (·) of the M/G/∞ queue with the following parameters:

(Q.1) at t = 0, there are Zr
i (0) customers whose service times are patience times of the initial

flows on route i of the r-th network;

(Q.2) the input process is the route i input process of the r-th network;

(Q.3) service times of newly arriving customers are patience times of newly arriving flows
on route i of the r-th network.

For all r and t, Zr
i (t) ≤ Qr

i (t). As t → ∞, Zr
i (t) ⇒ Y r

i and Qr
i (t) ⇒ Π(ηriE

rDr
i ). Hence,

Y r
i ≤st Π(η

r
iE

rDr
i ) and E

rY
r
i ≤ ηriE

rDr
i /r → ηiEDi as r → ∞, which implies (59a).

Now check (59b). Note that, if at some point the residual flow size is at least n, then the initial
flow size was at least n, too. Hence, Zr

i (·)(V
∞
n ) is bounded from above by the length Qr,n

i (·)
of the M/G/∞ queue whose initial state is as in (Q.1), newly arriving customers are newly
arriving flows on route i of the r-th network with initial sizes at least n, and service times of
newly arriving customers are patience times of the corresponding flows. In particular, the input
process for this queue is Poisson with intensity ηri P

r{Br
i ≥ n}.

Let fn(·) be a continuous function on R
2
+ such that

IV ∞

n+1
(·) ≤ fn(·) ≤ IV ∞

n
(·).

Then, for all r and t,
〈fn,Z

r
i (t)〉 ≤ Zr

i (t)(V
∞
n ) ≤ Qr,n

i (t)

Letting t → ∞, we obtain

Yr
i (V

∞
n+1) ≤ 〈fn,Y

r
i 〉 ≤st Π(η

r
i P

r{Br
i ≥ n}ErDr

i ),

E
rY

r
i (V

∞
n+1) ≤ ηri P

r{Br
i ≥ n}ErDr

i /r,

and then (59b) follows.

Finally, (59c) is valid due to the following lemma.

Lemma 16. For any r ∈ R, i and Borel set S ⊆ R+,

Yr
i (R+ × S) ≤st Π(η

r
i E

rDr
i P

r{D̃r
i ∈ S}),

where D̃r
i has density P

r{Dr
i > x}/ErDr

i , x ≥ 0.

Proof. Fix r ∈ R, i and a Borel set S ⊆ R+. It suffices to show that, for any δ > 0,

Yr
i (R+ × S) ≤st Π(η

r
iE

rDr
i P

r{D̃r
i ∈ Sδ}),

so fix δ > 0.
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Consider the upper bound queue Qr
i (·) with parameters (Q.1)–(Q.3). Denote by Qr

i (t)(S
δ)

the number of customers in this queue whose residual service times at time t are in Sδ. Then

Zr
i (·)(R+ × Sδ) ≤ Qr

i (·)(S
δ).

Given at time t there are k customers in the queue, denote by D1(t), . . . ,Dk(t) their residual
service times. By [26, Chapter 3.2, Theorem 2],

limt→∞ P
r{D1(t) ≤ x1, . . . ,Dk(t) ≤ xk|Q

r
i (t) = k} = P

r{D̃r
i ≤ x1} . . . P

r{D̃r
i ≤ xk},

which together with Qr
i (t) ⇒ Π(ηriE

rDr
i ) as t → ∞ implies that

Qr
i (t)(S

δ) ⇒ Π(ηriE
rDr

i P
r{D̃r

i ∈ Sδ}).

Let gδ be a continuous function on R
2
+ such that

IR+×S(·) ≤ gδ(·) ≤ IR+×Sδ(·).

Then, for any t,
〈gδ ,Zr

i (t)〉 ≤ Zr
i (t)(R+ × Sδ) ≤ Qr

i (t)(S
δ),

and as t → ∞,

Yr
i (R+ × S) ≤ 〈gδ,Yr

i 〉 ≤st Π(η
r
iE

rDr
i P

r{D̃r
i ∈ Sδ}).

Appendix

Proof of Lemma 1. It suffices to show that, for a vector z ∈ R
I
+ with the first I ′ < I coordinates

positive and the rest of them zero, and a sequence {zk}k∈N ⊂ (0,∞)I such that zk → z, we have
Λ(zk) → Λ(z).

Suppose that zk → z but Λ(zk) 6→ Λ(z). Since {Λ(zk)}k∈N is a subset of the compact set
{Λ ∈ R

I
+ : ‖Λ‖ ≤ ‖C‖}, without loss of generality we may assume that Λ(zk) → Λ′ 6= Λ(z).

Recall that Λ(z) is the unique optimal solution to

maximize
∑I

i=1
zi Ui(Λi/zi) subject to AΛ ≤ C, Λ ≤ m ∗ z, (60)

where, by convention, Λi/0 := 0 and 0× (−∞) := 0.

For all k, AΛ(zk) ≤ C and Λ(zk) ≤ m · zk. Hence, Λ′ is feasible for (60) and Λ′
i = 0 = Λi(z) for

i > I ′. Since Λ′ 6= Λ(z) is not optimal for (60),

l :=
∑I′

i=1
zi Ui(Λi(z)/zi) >

∑I′

i=1
zi Ui(Λ

′
i/zi) =: r. (61)

Now we construct a sequence Λk → Λ(z) such that Λk is feasible for the optimization prob-
lem (60) with zk in place of z. Introduce vectors Ck ∈ R

J
+ with Ck

j =
∑I

i=I′+1 AjiΛi(z
k).

Put the first I ′ coordinates of Λk to be Λk
i = (Λi(z) − ‖Ck‖)+ ∧ miz

k
i , and the rest of them

Λk
i = Λi(z

k). That is, in the bandwidth allocation Λ(z), the bandwidth Ck, which is required
for the last I − I ′ routes, is taken away from the first I ′ routes.

Since zk → z, Λk → Λ(z) and Λ(zk) → Λ′,

∑I′

i=1
zki Ui(Λ

k
i /z

k
i ) → l and

∑I′

i=1
zki Ui(Λi(z

k)/zki ) → r.

Also, for all k, ∑I

i=I′+1
zki Ui(Λ

k
i /z

k
i ) =

∑I

i=I′+1
zki Ui(Λi(z

k)/zki ).

Then, by (61), for k big enough,

∑I

i=1
zki Ui(Λ

k
i /z

k
i ) >

∑I

i=1
zki Ui(Λi(z

k)/zki ),
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which contradicts to Λ(zk) being optimal for (60) with zk in place of z.

Proof of Corollary 1. Fix an FMS (ζ, z)(·). In Section 3, we discussed how Theorem 3 implies
that z(t) → z∗ as t → ∞. Here we prove that z(t) → z∗ implies ζ(t) → ζ∗. It suffices to show
that, for any ε > 0, there exists a tε such that, for all t ≥ tε, i and Borel sets A ⊆ R

2
+,

ζi(t)(A) ≤ ζ∗i (A
ε) + ε,

ζ∗i (A) ≤ ζi(t)(A
ε) + ε,

(62)

so fix ε > 0.

For any δ ∈ (0,min1≤i≤I z
∗
i ), there exists a τδ such that, for all t ≥ τδ,

z∗ − δ := (z∗1 − δ, . . . , z∗I − δ) ≤ z(t) ≤ (z∗1 + δ, . . . , z∗I + δ) =: z∗ + δ.

Then, for all t ≥ s ≥ τδ and i, we have

ri(z
∗ − δ, z∗ + δ)︸ ︷︷ ︸
=: rδi

(t− s) ≤ Si(z, s, t) ≤ Ri(z
∗ − δ, z∗ + δ)︸ ︷︷ ︸
=: Rδ

i

(t− s),

which, when plugged into the shifted fluid model equation (5a), implies that, for all t ≥ τδ, i
and Borel sets A ⊆ R

2
+,

ζi(t)(A) ≤ ζi(τδ)(R
2
+ × [t− τδ,∞)) + ηi

∫ t−τδ

0
θi(A+ (rδi s, s))ds, (63a)

ζi(t)(A) ≥ ηi

∫ t−τδ

0
θi(A+ (Rδ

i s, s))ds. (63b)

Recall from Section 3 that, for all i and Borel sets A ⊆ R
2
+,

ζ∗i (A) = ηi

∫ ∞

0
θi(A+ (λi(z

∗)s, s))ds. (64)

Now, there exists a t′ε such that, for all i, Borel sets A ⊆ R
2
+ and δ ∈ (0,min1≤i≤I z

∗
i ),

ηi

∫ ∞

t′ε

θi(A+ (rδi s, s))ds ≤ ηi

∫ ∞

t′ε

P{Di ≥ s}ds ≤ ε/2, (65a)

ηi

∫ ∞

t′ε

θi(A+ (λi(z
∗)s, s))ds ≤ ηi

∫ ∞

t′ε

P{Di ≥ s}ds ≤ ε/2. (65b)

Take δ ∈ (0,min1≤i≤I z
∗
i ) such that

‖Rδ − λ(z∗)‖t′ε ≤ ε/2 and ‖rδ − λ(z∗)‖t′ε ≤ ε/2.

Then, for all i and Borel sets A ⊆ R
2
+,

ηi

∫ t′ε

0
θi(A+ (rδi s, s))ds ≤ ηi

∫ t′ε

0
θi(A

ε + (λi(z
∗)s, s))ds (66a)

ηi

∫ t′ε

0
θi(A+ (λi(z

∗)s, s))ds ≤ ηi

∫ t′ε

0
θi(A

ε + (Rδ
i s, s))ds. (66b)

Also take t′′ε such that, for all i,

ζi(τδ)(R
2
+ × [t′′ε − τδ,∞)) ≤ ε/2. (67)

31



Now we put (63)–(67) together in order to obtain (62): for all t ≥ tε := (τδ+ t′ε)∨ t′′ε , i and Borel
sets A ⊆ R

2
+,

ζi(t)(A)
(63a),(67)

≤ ε/2 + ηi

∫ t−τδ

0
θi(A+ (rδi s, s))ds

(65a)

≤ ε/2 + ηi

∫ t′ε

0
θi(A+ (rδi s, s))ds + ε/2

(66a)

≤ ηi

∫ t′ε

0
θi(A

ε + (λi(z
∗)s, s))ds + ε

(64)

≤ ζ∗i (A
ε) + ε

and

ζ∗i (A)
(64),(65a)

≤ ηi

∫ t′ε

0
θi(A+ (λi(z

∗)s, s))ds+ ε/2

(66b)

≤ ηi

∫ t′ε

0
θi(A

ε + (Rδ
i s, s))ds + ε/2

(63b)

≤ ζi(t)(A
ε) + ε.

Proof of Lemma 4. For all s ≤ t and ε > 0,
∫ t

s
P{u+ x ≤ ξ < u+ x′ + ε}du =

∫ t+x

s+x
P{ξ ≥ u}du −

∫ t+x′+ε

s+x′+ε
P{ξ ≥ u}du

≤

∫ s+x′+ε

s+x
P{ξ ≥ u}du ≤ x′ − x+ ε.

The lemma follows as we first let ε → 0 (applying the dominated convergence theorem) and
then s → −∞, t → ∞.
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