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Induced representations and semidirect products 

by 

H.A. van der Meer 

ABSTRACT 

The basic theory of induced representations is treated, for finite 

groups and for locally compact second countable groups. In connection with 

this subject the concept of imprimitivity is- discussed, with an application 

to the notion of localizability in quantum mechanics. Finally, we demonstrate 

how to use induction and imprimitivity to find complete families of irreduc­

ible unitary representations of regular semidirect products by an abelian 

subgroup. An important example, the continuous Poincare group, is also pre­

sented. 
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PREFACE 

The concept of induction is a most powerful tool in representation the­

ory. For finite groups, this method of obtaining representations of a group 

by means of representations of its subgroups was designed by Frobenius in 

1898. In the period 1939-1950, Wigner, Bargmann and others used induction 

in an implicit manner, in papers which dealt with the representations of 

special noncompact groups, such as the Lorentz group (cf. [l],[5],[23]). It 

was G.W. Mackey in the years around 1950, who constructed a unified theory 

of induced representations for general locally compact groups, (see [12]). He 

also developed an extension of the important concept of imprimitivity to 

locally compact groups. Imprimitivity is closely related to representation 

theory, in particular to the theory of induced representations. Finally, 

Mackey showed how to apply induction and imprimitivity to obtain irreducible 

unitary representations of locally compact semidirect products from certain 

proper subgroups ("little groups"). For an important class of semidirect 

products(*) these results are fairly complete (see §4.3). This method, known 

as the little group method, had been used earlier by Wigner in connection 

with the Poincare group (see [23]). 

The main aim of these notes is to discuss this representation theory 

for locally compact semidirect products, framed by Mackey. This is done in 

the last chapter; the other chapters contain preliminaries. Some of the sub­

jects in these chapters are perhaps developed somewhat out of proportion, and 

not always entirely associated with the last chapter. The cause of this is 

that we have not tried to be efficient, that is, to reach our ultimate goal 

as quickly as possible. On the contrary, we have been guided in some cases (e.g. 

quasi-invariant measures on coset spaces) by our apprecia4ion of nice results. 

The chapters I, III and IV have been used (in not quite the same form) 

for the colloquium "Representations of locally noncompact groups with appli­

cations", organized by the Mathematisch Centrum in the academic year 1977/ 

1978, and will be published in the series "MC Syllabus". 

(*) 
For instance, the Poincare group and the Euclidean groups belong to 
this class. 
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I INDUCED REPRESENTATIONS OF FINITE GROUPS 

1.1 Introduction 

In this chapter we plan to discuss rather extensively the basic fea­

tures of induction on finite groups. In the first place we aim to provide 

a motivation for the theory of Mackey, which is to be discussed in the next 

chapters. Secondly, this chapter could serve as a simple introduction for 

people who take interest in advanced representation theory of finite groups. 

For further reading in this direction we refer to the excellent expos~ of 

SERRE [19], where among other things the important theorems of Artin and 

Brauer are discussed, which ensue from the induction process. 

We will start with reviewing briefly some basic facts from the general 

representation theory of finite groups. Next the inducing construction will 

be presented, first for characters only (§ 1 •· 3), and then for representations 

(§1.4). Finally we will prove a useful theorem, which provides us with a way 

of deciding whether an arbitrary representation is induced from a subgroup. 

The extension of this theorem to locally compact groups will be given in 

§ 3. I • 

We emphasize that G will always denote a finite group, unless other­

wise stated. Furthermore, all vector spaces are assumed to be complex and 

finite-dimensional. 

The reader may keep in mind that many of the results apply to compact 

groups as well. This can be seen by replacing expressions of the form 

_1_ I 
I GI XEG 

by f ... dx, 

G 

where IGI denotes the cardinality of a finite group G and dx the normalized 

Haar measure on a compact group G. 

1.2 General representation theory for finite groups 

Let V be a finite-dimensional complex vector space. By Gl(V) we will 

denote the group of invertible linear operators on V. A homomorphism T from 

a finite group G into Gl(V) is called a representation of G on V. 
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Suppose that there exists a linear subspace V' of V, which is stable 

under the action of T, i.e. ,(x) V' = V' for all x in G. Then, denoting the 

operators ,(x) restricted to V' by ,'(x), we obtain a new representation of 

G; ,': G ➔ G~~(V'). We call,' a subrepresentation of T. If T admits no non­

trivial stable subspaces, then Tis said to be irreducible. Let now,' be 

a subrepresentation of Ton V'. ·By 'ITO we denote the "averaee" of a mapping 

'IT from V into itself with 'IT(V) = V' and 'IT 2 = 'IT, that is, 

1 \ -1 
1r0 := Tcf l T(X)'ITT(x) • 

XEG 

Clearly 'IT0 (V) = V', and one verifies easily that the complement V" in V 
of V'corresponding to 'ITO (i.e. V" = kernel('IT0)) is stable under T, The sub­

representation ," corresponding to V" is called complementary to,', and T 

is called the direct sum of T1 and,". This is denoted by T =,'EB,". Con­

versely, if we are given two representations T and cr of G on spaces V and 

W respectively, we can form in an obvious way a new representation T EB cr 

on the direct: sum V EB W. 
By iterating the construction of complementary subrepresentations given 

above, we see that any representation T of G can be written as a direct sum 

of irreducible subrepresentations. This result is known as the theorem of 

Maschke. Unfortunately, such a decomposition is not always unique, as a 

simple counterexample may show, We will say more about this below. 

Let Rep(G) denote the set of all representations of G. We define an 

equivalence relation in Rep(G) by calling ,,cr E Rep(G) equivalent (notation: 

T ::::: cr) if there exists an invertible linear mapping T: l/('r) ➔ V(a) such 

that 

( I. 1) T,(x) = cr(x)T, V XE G. 

(By V(,) we denote the representation space of a representation,.) It is 

clear that an equivalence class containing an irreducible representation, 

can contain only irreducible representations. The set of equivalence classes 

-of irreducible representation is called the dual of G and denoted by G. 

Let TE Rep(G). The complex-valued function x on G defined by 
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x(x) = trace(.(x)), XE G, 

is called the character of T, One verifies easily the following properties 

of characters. 

LEMMA I.I. Let .,a E Rep(g) and Zet x and$ denote their respective charac­

ters. Then 

(i) x(e) = dimension (V(.)); 

(ii) -I 
= x(x), V G; x(x ) X E 

(iii) 
-1 

x(yxy ) = x(x), V x,y E G, 

(iv) the character of T EB O equaZs X + $, 

(v) • ::::::.. a ~ X = IP• 

We continue with discussing several important consequences of this simple 

lemma, especially of (iii). 

Tw 1 d f G 'd b . 1.'f -I f o e ements x an yo are sa1. to e conJugate x = zyz or 

some z in G. This defines an equivalence relation in G, so we can partition 

G into equivalence classes, which are called conjugacy classes. We shall see 

below that the number of conjugacy classes, the so-called class number of G, 

is an important feature of the group G. From lermna I.I (iii) it follows that 

characters are constant on conjugacy classes. In general, we call a complex­

valued function on G which satisfies this condition a class function (or 

central function). The set of all class functions on G, denoted by ci.(G), 

is a linear subspace of the space l 2 (G) of all complex-valued functions 

on G. The latter space can be equipped with an inner product, defined 

by 

I \ -($,~) := lGT l $(x)~(x), 
XEG 

2 $,~El (G). 

With an irreducible character we mean the character of an irreducible rep­

resentation. The set of all irreducible characters of G will -be denoted by 

IM(G). The following lemma exposes the distinguished role played by IJr.Jr.(G) 

in the space c.l(G). 

LEMMA 1.2. The eZements of IJr.Jr.(G) form an orthonormaZ basis for ci.(G). 
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COROLLARY I. 3. A class function ct> is a character if and only if for each 

x in IJUL(G) the number (ct>,x) is a nonnegative integer. 

PROOF. Clear from the theorem of Maschke, mentioned above, lemma I.I (iv) 

and lemma 1.2. D 

We continue this preliminary subsection with a discussion of the proof 

of lemma 1.2, and some of its corollaries. First we need the celebrated 

lemma of Schur. We will take the elements of G to be proper representations, 

for convenience. By virtue of lemma I.I (v) we can unambiguously speak 

about the character of TE G. 
A 

LEMMA 1.4. (Schur) Let T,CJ E G, and suppose we are given a nonzero linear 

mapping T: V(T) ➔ V(CJ), which satisfies 

TT(x) = CJ(x)T, V XE CJ. 

Then T = CJ and Tis a scalar multiple of the identity on the representation 

space. 

PROOF. The obvious observation that the kernel and the range of Tare 

invariant subspaces for T and CJ, respectively, shows that Tis either zero 

or invertible. In the second case we have T = CJ, Moreover, if Tis invert­

ible and if A is any eigenvalue of T, then iteration of the preceding argu­

ment yields T - Al= O, where I denotes the identity on V(T) = V(CJ). D 

A 

Next we choose a basis in V(T) and in V(a) for T,CJ E G. Then T and CJ 

can be written in matrix form: T(x) = (T.J.(x)) and CJ(x) = (CJ .. (x)). 
1 1J 

The Schur lemma implies the following orthogonality relations between 

matrix elements of T and CJ. 

COROLLARY I • 5 • 

(i) For T ,,,: CJ one has 

I \ -1 Wi l Ti. (x) CJ kl (x ) = 0' 
xEG J 

.. 
V i,j,k,l. 

(ii) 
I 

= dim(V(T)) 0ik0jk' 



PROOF. Let T = (T .. ) be a linear mapping from V(.) into V(cr). Then 
l.J 

0 1 \ ~1 
T := lGf l cr(x )T,(x) 

XEG 

is also a linear mapping from V(.) into V(a). Moreover, one checks easily 

that TO satisfies relation (1.1). Since 

0 1 \ trace(T ) =m l 
XEG 

trace(cr(x- 1)T.(x)) = trace(T), 

the eigenvalues of TO are all equal.to (dim V(T))- 1• trace(T). Finally, 

choosing for T the matrix with T = o .o k' the identities stated in the -- rs rJ s 
corollary are readily verified. D 

5 

Let x and <P be irreducible characters of G. After choosing the indices 

in the orthogonality relations stated above conveniently, we find (x,x) = 1 

and (x,<P) = 0 for x I <fi, In order to finish the proof of lemma 1.2, we have 

to check completeness of the syst,~m IM(G) in cl'..(G). 

Let a E cl'..(G), and let. be an irreducible representation of G with 

character X• The operator ,(a) on V(.) defined by 

,(a)= l a(x).(x) 
XEG 

satisfies (1.1), and is therefore a scalar multiple of the identity on V(.) 

(possibly zero). We have 

trace(.(a)) = I a(x)x(x) = IGl.(a,x), 
XEG 

where x(x) := x(x). Hence, 

.(a)= dim(V( .) ) (a,x). I. 

Next, suppose (a,x) = 0 for all XE IM(G). Then .(a)= 0 for all• E G. 

If we define cr(a) for an arbitrary representation of G, we have again 

cr(a) = 0, by direct sum decomposition. In order to finish our argument, we 

need the following example. 
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EXAMPLE 1.6. Let A be the representation of G on the space t 2 (G), defined 

by 
~1 

(A(x)f)(y) = f(x y), 2 
f E. l (G). 

A basis for t 2 (G) is fanned by the functions {E} G' defined by 
X XE 

E (y) 
X 

-- {01 
if X = Y, 

otherwise. 

Note that A(x)E = E • The representation A is called the left regular y xy 
representation of G. The right regular representation p of G is defined on 

t 2 (G) by 

(p(x)f)(y) = f(yx), 

For cr in the paragraph preceding this ~xample we take A. Then 

0 = A(a)E = 
e 

a(x)A(x)E 
e 

= I 
XEG 

a(x)E • 
X 

Hence, a(x) = 0 for all x in G. Thus, we proved that any function in ci.(G) 

which is orthogonal to the system {x;x E IM(G)} must be zero. Clearly this 

implies the same for the system IM(G), so we are through with lennna 1.2. 

This lennna has important consequences. First, note that it follows from the 

orthogonality relations for the irreducible characters that non-equivalent 

irreducible representations have different characters. This fact yields 

LEMMA 1.7. The number of non-equivalent irreducible representations of G 

equals the class number of G. 

PROOF. The cardinality of G is equal to that of IM(G), by the observation 

made above. The number of elements in IM(G) is, in its turn, equal to the 

dimension of Cl(G), which obviously is the class number of G. 0 

Next, let, be any representation of G, and let 

( 1 • 2) 

be a decomposition of, into irreducible representations. Write x,x 1, ••• ,xn 
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for the characters of T,cr 1, .•. ,crn, respectively. The following lemma estab­

lishes the de~gree of uniqueness of decomposition (1.2). 

LEMMA 1.8. The number of cr. equivalent to a certain cr. (1 :,; i,j :,; n) is 
J i 

equal to the number (x,x,). In particular, it does not depend on the chosen 
i 

decomposition. 

PROOF. We have (x,xi) = Ij=l (xj,xi)' and the result follows from the ortho­

normality relations for irreducible character. D 

The character x of the regular representation pis readily found to 

be given by x(e) = !GI and x(x) = 0 if x ,f:. e. Let 1jJ be an irreducible char­

acter of G. Then 

(x,1/!) = i¾r I x(x)iµ(x) = iµ(e). 
xeG 

-Hence, each Tin G occurs in the direct sum decomposition of p, with multi-

plicity equal to dim(V(T)) (we call the number of subrepresentations equiv­

alent to a given irreducible representation T, occuring in a representation 

cr, the multiplicity of Tin cr). This observation implies the following lemma. 

LEMMA 1. 9. 

l- (dim(V(T))) 2 = !GI. 
TEG 

PROOF. Dim(l2 (G)) = !GI. □ 

Last but not least we notice that the converse of lemma I.I (v) follows 

from lemma 1.1. Thus we have 

LEMMA I.IO. Thlo representations of Gare equivalent if and only if they have 

the same character. 

EXAMPLE 1.11. Let s3 = {(l),(12),(13),(23),(123),(132)} be the permutation 

group of an ordered set of three elements. This group is isomorphic to the 

dihedral group n3 , which consists of those rotations and reflections of the 

real plane that preserve a regular triangle. If we sets (12) and r = 
2 3 2 2 (123), we gets = (1) = e, r = e, sr =rs and rs= sr . The conjugacy 
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2 classes are readily seen to be K1 = {e}, K2 = {s,sr,rs} and K3 = {r,r }. 

Hence, there are three irreducible characters. Furthermore, we must have 

Therefore, two of the irreducible characters are one-dimensional and one is 

two-dimensional. Let x1 be the trivial character (x 1 = 1) and let x2 be the 

one-dimensional character that can be defined on all permutation groups: 

x2 (x) = 1 if xis even and x2 (x) = -1 if xis odd (we call a permutation 

even (odd) if it contains an even (odd) number of inversions). For s3 we 

get x2 (K2) = -1 and x2 (K3) = 1, denoting by x(K) the constant value of x on 

a conjugacy class K. The third character can now be reconstructed from the 

orthogonality relations, knowing that x3 (e) = 2: 

Hence, x3(K2) = 0 and x3(K3) = -1. It is convenient to store our knowledge 

in a so-called character table, that is, a matrix, with at the ij-th place 

the value of the i-th character on the j-th conjugacy class. 

Kl K2 K3 

X1 1 1 1 

Xz 1 -1 1 

X3 2 0 -1 

The representation • 3 corresponding to x3 can be realized in't2 by the 

aforementioned isomorphism of s3 on n3 . Choosing the regular traingle con-

. 1 ' JR.2 "'2 b ' h f ' d venient yin c ~, we o tain as t e generators o n3 two matrices X an 

Y which are given by 
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and 
-½/3\ 

) , 
-~ 

respectively a reflection and a rotation through an angle½ TT. Clearly s 

corresponds with X and r with Y. Hence, • 3 (s) = X, • 3 (s 2) = •3 (e) = I (the 

identity matrix), • 3 (r) = Y, • 3(r2) = Y2, • 3 (sr) = XY, • 3 (rs) = YX. 

The group s3 contains an invariant subgroup of index two, namely A3 := 

{e,r,r2 }, the so-called alternating group, which contains all even permuta­

tions. This subgroup is cyclic, and its character table is easily verified 

to be 

{e} {r} 2 {r} 

*1 1 1 I 

*2 l 2 w w 

t/13 I w2 w 

2iTT 
-3-

where w = e Note that it is in general not true that a subgroup inher-

its the conjugacy class structure from the original group • 
• 

1.3. Induction of characters 

Restricting representations of G to a subgroup H yields representations 

of H, with the same representation space. In general this restriction can 

not be reversed, that is, it is not always possible to extend representations 

of H to representations of G with the same representation space. For instance, 

the representations of A3 corresponding to its nontrivial irreducible char­

acters (example I.II) cannot be extended to one-dimensional representations 

of s3 • However, there is a canonical construction which assigns a represen­

tation of G to every representation of H, and which is in some sort dual to 

the process of restriction, It proceeds by extending the representation 

space of a given representation of H to a larger space in which a represen­

tation of G can be defined (§1.4). For the sake of clarity we will show by 

means of characters that such a construction is possible, before discussing 
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it in detail. The sense of duality in this context is to be explained at the 

end of this subsection. 

Thus, let. be a representation of Hand let x be its character. We 

shall show how x can be extended to a character of G. The most natural way, 

perhaps, would be to produce a function x: G ➔ C by the following defini­

tion: 

x(x) 
J x(x) 

:= l o 
if XE H 

otherwise. 

Unfortunately, this yields in general not even a class function: take for 

example any irreducible character of A3 c s3 • Another possible step is to 

cent-PaUze x: 

(I. 3) - I \ • -I 
x(x) := TGT l x(y xy). 

yEG 

Here we have a class function on G, but is it a character? To check this we 

compute its Fourier coefficients in the space Cl(G). Let~ be in I!Vt(G). By 

(-,-)G and (-,-)H we denote the inner products in Cl(G) and Cl(H), respect­

ively. 

= ffi I 
xEG 

I \ -I ~ (TGT l x(y xy))~\XJ = 
yEG 

= I b I I X (x)$ (x) = 
XEG 

I \ -= "jGf l x(x)~(x) = 
XEH 

Here ~IH denotes the character of H obtained by restricting~- From corollary 



1.3 we see that taking (IGI/IHl)·x instead of x yields a character of G. 

Denoting this character by xG, it follows from (1.3) that 

(1.4) 
G 1 \ • -1 

x (x) = - l x(y xy), 
IHI yEG 

XE G. 

1 1 

DEFINITION 1.12. The character xG defined by (1.4) is said to be induced on 

G by X• The corresponding representation is denoted by TG. It is also call­

ed induced on G (by T). 

PROPOSITION 1.13. (Frobenius reciprocity theorem). If x and~ are characters 

of Hand G respectively, H being a subgroup of G, then 

(1.5) 

The proof of this proposition follows directly from the above computa­

tion, in which we did not use the irreducibility of~. It provides us with 
G information about the decomposition of x when xis irreducible. For, sup-

pose that 

G 
X I m ,,, 1/J 

iµdM(G) X,'I' 
and I n"' n. 

ndM(H) 'l',n 

Then one has for all~ in IM(G) and all x in IM(H) 

Hence, we find the following corollary to proposition 1.13: 

COROLLARY 1.14. If T and a are irreducible representations of Hand G, re­

spectively, then the rrrultiplicity of Gin TG equals the rrrultiplicity of T 

in crlH" 

Using formula (1.4) the reader will find no difficulty in verifying 

the following results: 

PROPOSITION 1.15. Let X and~ be characters of the subgroup H c G. Then 
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, )G G ,1,G 
(X + <I> = X +'I' 

and, if~ is a character of G, 

COROLLARY 1.16. For representations T and a of Hand a representation v of 

G, one has 

G G G 
(T $ a) = T $ CJ 

and 
G I G T © V = (T © V H) , 

G COROLLARY 1.17. If the induced representation T is irreducible, then, is 

irreducible. 

Unfortunately, the converse of this statement is in general false (cf. 

example 1.19). 

PROPOSITION 1.18. (Induction in stae;es). If HJ and H2 are subgroups of G 

such that HJ c H2, and if, is a representation of H1, then 

H G G 
(T 2 ) T , 

REMARK. 

(i) If n is the dimension of a representation T of H, then the dimension 

f G . d 
0 T l.S n. , where dis the index of Hin G, that is, the number of 

different left H-cosets. This follows from (I. 4). 

(ii) We can define a linear mapping 

which semds a class function on G to its restriction to H. Formula 

(1.4) may be considered as a definition of <j>G for all <j>·in Cl(G), 
G and the resulting mapping <I> ➔ <I> : 

JndH: Cl(H) + Cl(G) 

is then linear, and, moreover, it is the adjoint of Re.oH by (1.5). In 

this sense, restriction and induction are dual actions. 
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EXAMPLE 1.19. If we take H c G to be the trivial subgroup {e}, and if we in­

duce the trivial one-dimensional representation of {e} (denote it by le), 

then we obtain 

if X = e 

otherwise. 

This is just the character of the regular representation of G. Application 

of proposition 1.18 shows that induction of the regular representation of 

any subgroup results in the regular representation of G. 

EXAMPLE 1.20. Consider the subgroup A3 of s 3 discussed in §1.2. Inducing 

the character ¢ 2 of A3 on s 3 yields 

s3 
(Kt) 2, 

s3 
(K2) 0 and 

s3 
(K3) = -1, ¢2 = ¢2 = ¢2 

2 
2iTI 

since l+w+w = o, w = e----:r-. Thus we obtain the only irreducible charac-

ter of s 3 of dimension greater than one. In general we call a group mono­

mial whenever all its irreducible representations are induced by one-dimen­

sional representations. 

EXAMPLE 1.21. Suppose that there are two subgroups N and Hof G, such that 

(i) N is invariant, 

(ii) G = N•H and 

(iii) N n H = {e}. 

Then G is called a semidirect product (of N and H). Note that (ii) and 

(iii) imply that every element of G can be written uniquely as the pro­

duct of an element of N and an element of H. If the additional condition 

(iv) N is coilll!lutative 

is satisfied, then G enjoys the property of having all of its irreducible 

representations induced from subgroups of the form N•H', where H' is a sub­

group of H (a little group). This is also true for infinite locally com­

pact semidirect products satisfying (iv), be it under a certain restriction 

of a measure theoretical kind. We will come to this in chapter IV. Note that 

s 3 = A3•{e,s} is an example of a semidirect product. 
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1.4. The inducing construction 

G We will now explicitly construct the representation T , induced by a 

given repres,entation T of a subgroup H of G. First we define a representa­

tion T of Gin terms of T and then we prove that its character equals xG, 

where xis the character of T, Except for a lot of technical complications 

of a mainly 1neasure theoretical kind, the following procedure is the same 

as that for locally compact groups. 

Let V = V(T) be the representation space of T, Define FT as the linear 

space of all functions f: G ➔ V that satisfy 

( 1. 6) 

(1. 7) 

-I 
f(xy) = T(y )f(x), (Vx E G, Vy EH). 

In F we define an action T(y) for yin G, by 
T 

(i(y)f)(x) : = f (y - 1 x), (f E F ) 
T 

Obviously, for all y in G and all f in F the new function T(y)f belongs 
T 

to F as well. Horeover, i(e) is the identity and, for all x, y and z in 
T 

G: 

,., 
(T(yz)f) (x). 

In particular, it follows that (;(y))-l = ;(y-1), so ;(y) is invertible for 

ally in G. Hence; is a homomorphism of G into the group of all invertible 

linear mappings of F into itself. Consequently, ; is a representation of 
T 

G. 
d Fix a set of representatives of left H-cosets xH, say {x.}. 1, with 

]. ].= 

d = IG/HI; the index of H in G. Thus, G = x 1H u .•• u xdH' and xiH n xjH = Ql 

if if j. Clearly the functions in F 
T 

are determined by their values on 

the xi. Hence, the mapping f ➔ (f(x 1), ... ,f(xd)) defines a vector space 

isomorphism from F onto Vd = V e ... e V. In order to compute the character 
T 

of;, it is convenient to lift the action of Ton F to an action on Vd, 
T 

also denoted by i, by means of this isomorphism. The action of T(y) on Vd 

can be represented by a dxd array (T .. (y)) of operators on V. That is, 
l.J 
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for ally in G we have 

d 
(1.8) (r (y) f)(x.) = 

l. I 
j=l 

T .. (y)f(x.). 
l.J J 

Let now xl be the representative 
-1 

of the coset containing y x .• Then 
-1 -l · · . . d'ff xl y xi EH, or, saying 1.t 1.n a 1. erent way, 

-1 -1 1 
x. y x. EH if and only if 

J l. 

j = l. Hence, using (1.6) and (1.7) we obtain 

where 

= { .(xo) 
;(x) 

if x € H 

otherwise. 

Combining this with (1.8) yields~- .(y) 
l.J 

-1 
= T(x. yx.). We are now in a posi-

1. J 
tion to compute the trace of ~(y). 

d 
trace (;(y)) = I trace (T .. (y)) = 

i=l l. l. 

d 
'"( -1 )) = I trace I..• x. yx. = 

i=l l. l. 

I 
i=l 

• -1 
x(x. yx.). 

l. l. 

-1 
Since x(z yz) = x(y) for ally E G and all z EH, we may rewrite this ex-

pression as 

d 
\ 1 \ • -] -1 ) 
l Tiff l x(z x. yx.z . 

i=l H ZEH 1 1 

If i runs from 

G, so we have 

to d and z runs through H, x.z runs precisely once through 
l. 

trace 
A -] G 

(.(y)) = TIIT l x<x yx) = X (y). 
XEG 

Since the trace of the lifted operator T(y) equals the trace of ;(y) in 
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... G F, we have proved that• • • 
REMARK. Formula (1.7) defines an action similar to the left regular repre­

sentation, be it in a different space. If we take H = {e} and for. the 

trivial representation of H, we get F = l 2 (G). Hence the above construction • 
is in fact a generalization of the regular representation. Generalizing in 

the same way the right regular representation we obtain an alternative ap­

proach. 

(1.6)' f(yx) = .(y)f(x) (Vy e: H, Vx e: G) 

and 

(1. 7)' (T'(y)f)(x) = f(xy), (x,y e: G). 

However, it is easily verified that T and T' are equivalent. If we take H 

to be an arbitrary subgroup of G, we can also induce the trivial represent-
2 

ation. In that case we have that F = l (G/H), the space of all complex-• 
valued functions on G which are constant on left cosets of H. The induced 

representation acts in this space just as the left regular representation. 

It is often called the permutation representation of G corresponding to H. 

EXAMPLE 1.12. Let• be the representation of A3 c s3 corresponding to the 

character ~2 (example 1.11). Note that .(x) = ~2(x)•li for all x e: A3 , since 

~2 is a one-dimensional character. We will construct • 83 explicitly. 

can 

and 

and 

Choosing e ands as representatives of the left A3-cosets in s3, we 

identify F with i 2 , by sen~ing f e: F to (f(e),f(s)) e: t 2 • Using (1.6) 
• S 2 • 

(1.7), the action of. 3 on C can be computed: 

s 

{ 
(. 3(e)f)(e) = f(e) 

s 
(. 3 (e)f)(s) = f(s) 

f (.83 (s)f)(e) = f(s) 

l (.83 (s)f)(s) 
, 

= f(e) 

(.83(r)f)(e) = f(r2) = .(r)f(e) = wf(e) 

{ (.83(r)f)(s) = f(r2s) = f(sr) = .(r2)f(s) = w2f(s). 
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In the same way one finds 

S3 2 T (r ) : (f(e),f(s))-+ 
2 (w f(e),wf(s)), 

T83 (sr): (f(e),f(s))-+ 2 (w f(s),wf(e)) 

and 

T83 (rs): (f(e),f(s))-+ 2 (wf(s),w f(e)). 

Hence, with respect to the basis (1,0), (O,I) of ~2 , we can realize TS3 as 

follows: 

TS3(e) = 
(1 0\ 

TS3(s) = C 
1\ TS3(r) = 

rw 0 \ 

\o /' /' \o 2}' 1 I a, w 

rw2 0\ (0 
2 

(0 
TS3(r2) = T83(sr) = 

w \ 
T83(rs) = :). \o )' \w I' \ 2 w 0 I 'w 

This unitary representation is clearly equivalent to the one we presented 

in example 1.11, which we had called T3 • 

1.5. Finite systems of imprimitivity 

We start this section with some preliminary remarks on so-called G­

spaces. Suppose that we are given a (not necessarily finite) group G, and 

a set r on which G acts in the following way. Each x € G defines a bijec­

tion y-+ x(y) of r such that (i) e(y) = y for ally Er and (ii) x(y(y)) = 
(xy)(y) for all x,y E G. Then r is said to be a G-space. Furthermore, r is 

said to be a trivial G-space if each mapping y-+ x(y) is the identity on r. 
It is called a transitive G-space if for any pair y,y' Er there exists an 

x E G with x(y) = y'. An example of this situation is provided by taking 

r = G/H, where His a subgroup of G. For, let the G-action be defined by y: 

xH-+ y(xH) := (yx)H. Obviously, G/H is a transitive G-space; On the other 

hand, any transitive G-space can be written as G/H for some subgroup H. In­

deed, fix y0 Er and let H be the stabilizer in G of y0 , that is, 
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Then f: xH + x(y0) is a well-defined bijection from G/H onto r, such that 

for all x and yin G f(y(xH)) = y(f(xH)). 

From now on we assume again that G is a finite group. Let V = V(-r) be 

the representation space of a representation -r of G. Suppose that there 

exist a G-space r, and a family of linear subspaces of V, indexed by r, say 

{V} r• with 
Y YE 

(i) (as a vector space direct sum), and 

(ii) (Vx E G, Vy Er) 

(i.e. the spaces V are permuted by the action of -r in V). Then we will call 
y . 

this family {V } r a system of irrrprimitivity (s.o.i.) for -r. In that case, 
Y YE 

we say that -r admits a s.o.i. Moreover, we will call the system trivial or 

transitive according tor being a trivial or transitive G-space. It will 

turn out that we can obtain a lot of information about -r by means of the 

systems of imprimitivity admitted by T, 

For instance, it is clear that if T admits no s.o.i. except the obvious 

one in which r has only one element, then -r is irreducible. Indeed, any 

direct sum decomposition of Vin .-invariant subspaces forms a (trivial) 

s.o.i. Such representations are often called primitive. It is in general 

not true that irreducibility implies primitivity. 

EXAMPLE 1.13. Consider the left regular representation A in l 2 (G). Define 

subspaces of l 2 (G) by 

XE G: l 2 (G) := {f E l 2(G); f(y) = 0 if y Ix}. 
X 

Clearly we have l 2 (G) 

= l 2 (G) 
yx (Vy,x E G). 

Hence we have. a s. o. i. for A with r = G, and the action of G on itself is 

defined by left multiplication with a fixed element. Obviously, this system 

is transitive. 
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The next theorem is the so-called imprimitivity theorem, stated here 

for finite groups. 

THEOREM 1.14. Let T be a representation of G. The following statements are 

equivalent. 

(i) T admits a transitive system of irrrprimitivity. 

(ii) There exist a subgroup H c G and a representation a of H suah that T 

G is equivalent to a. 

PROOF. (ii)=> (i). Suppose that T = 
G cr • Let r = G/H, and denote the elements 

of r by x := xH. Consider for each x Er the subspaces Fx of F0 defined by 

f(y) = a if y, x}. 

As mentioned above, r is a transitive G-space, under the action yx := 
-] - -yx. Furthermore, it is clear that y z ix iff z i yx, for all x, y and z 

in G. Hence, 

T (y) F-
x 

G 
= cr (y)F- = 

X 
f_, 
yx 

(i) => (ii). Let T be a representation of G, admitting a transitive s.o.i., 

say {V} r· Then r can be identified with G/H, where His a subgroup of 
Y YE 

G, stabilizing some 

{x1 = e,x2 , ••• ,xd}, 

tives. The identity 

fixed point yO Er. Accordingly, we may writer= 

if {x.}~ 1 is a fixed set of left H-coset representa-
1 1= 

y(y) = y' reduces to y(x.) = x., where y = x.yO and 
1 J 1 

y' = xjyO. Thus, y(xi) = 

Since every T(x) is 

x. if and only if x:1yx. EH. 
J J 1 

an isomorphism of V(T) we can conclude from the 

transitivity of the system that all spaces VXi have the same dimension, say 

n. Hence, T(y) may be written as a dxd-array of n-dimensionat linear map­

pings 

T .. (y) := T(y)lvx. V ➔ V 
1J x. x. 

1 J 1 

Obviously, T .. (y) is the zero mapping if y(x.) 'f x.' or, equivalently, if 
1J 1 J 
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x: 1yx. i H. Therefore, in order to compute the trace of T(y), we only have 
J 1. 1 

to take into account •.. (y) for those values of i for which x: yx. EH. 
1.1. -1 1. 1. 

Furthermore, clearly Tii(y) and • 11 (xi yxi) have the same trace. 

Let a representation cr of H be defined by cr(y) := <•IH(y))IVx, y EH 

(so V(cr) = V ). Using the preceding paragraph we can make the fol!owing 
• XI 

computation. 

d 
trace (.(y)) = 2 

i=l 
trace ( •.. (y)) = 

1.1. 

= 

= 

I 
-1 

x. yx.EH 
1. 1. 

d 
I trace 

i=l 

• -I 
(cr(x. yx.)) = 

1. 1. 

1 t • -1 
= l trace (cr(z yz)) = 

TiIT ZEG 

1 t • -1 
= l1ff l x(z yz), 

Z€G 

G where xis the character of a. Hence a •• □ 

COROLLARY 1.25. AZZ irreducible representations of Gare induced by primi­

tive representations. 

PROOF. A s.o.i. admitted by an irreducible representation is necessarily 

transitive. Therefore, the result follows via complete induction from the 

imprimitivity theorem 1.24, the' stages theorem 1.18 and corollary 1.17. 0 

REMARK. The imprimitivity theorem gives rise to an alternative definition 

of induced representations, which is, however, less constructive than the 

one we used. In order to deepen the insight into the inducing process, we 

will make a few remarks on this different approach. 

Let T be a representation of Gin a space V = V(.). Suppose that we 

are given a subgroup H c G and a linear subspace W c V, such that 

(i) T(x)W = W, (Vx EH), 

and 
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d 
d 

(ii) V = I ~ T (x, ) OJ, where G/H = {x .H}. l 
i=l 

l l 1= 

Then we shall say that T is induced by cr := (TjH)lw (cf. SERRE [ 19, chapter 

7]). The lack of constructiveness is easily repaired. 

Indeed, let cr be a representation of H c G, in a space W = W(cr). Con-
2 . 

sider the tensor product l (G) ~ W, of the space of all complex-valued 

functions on G, and W. For fin l 2(G) we define two new functions on l 2(G), 

f and f , by y y 

f(x) 
y 

-1 := f(y x) and f (x) := f(xy). 
y 

In t 2 (G) ® W we define the equivalence relation~ as follows. 

f ® V ~ g ® W if for some y EH: 
Jg= fy 

Lw = cr(y)v. 

The space of equivalence classes is denoted usually by l 2 (G) ®H W(cr). Wri­

ting f ® v for the equivalence class containing this element, a representa­

tion T of G can be defined in this space by 

T(y)(f©v) := f ® v, 
y 

f © V E,l2 (G) ®H W(cr). 

It is readily verified that Tis equivalent to G 
(J • 

II INDUCED REPRESENTATIONS OF LOCALLY COMPACT SECOND COUNTABLE*) GROUPS 

2.1. Introduction 

In this chapter and the subsequent ones, we will be concerned with 

unitary representations of locally compact groups, satisfying the second 

axiom of countability. First we recall some facts from general representa­

tion theory. Let G be a lcsc. group, fixed throughout this subsection. 

We will abbreviate the cumbersome expression "locally compact second 
countable" by lcsc. throughout these notes. 
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A unitary representation T of G on a Hilbert space H (which will always 

be assumed to be separable) is a continuous homomorphism from G into the 

unitary group U(H) of H. Here continuity means strong continuity, i.e. the 

mapping x ~ T(x) son G must be continuous for alls in H. At once we state 

a useful lemma. 

LEMMA 2.1. Let T be a homomorphism from G into the unitary group of a Hilbert 

space H. Then the following statements are equivalent: 

(i) Tis strongly continuous; 

(ii) Tis weakly continuous (i.e. the function x~ (T(X)s,n) on G is 

continuous for alls and n in HJ; 

(iii) the function x ~ (T (x)s, s) is continuous for aU s in H. 

PROOF. Obviously (i):;,. (ii):;,. (iii). We show (iii):;,. (i). For all x,y in G 

ands in H, we have 

HT(x)s - T(y)sll 2 = (T(x)~,T(x)s) + (T(y)s,T(y)s) -

- 2Re(T(x)s,T(y)s) 

:,; 21 (s,s) - (T(x)s,T(y)s) I 

21 Cs,s) - (T(y- 1x)s,s),. 

Hence, by virtue of (iii), h(x)s-T(y)sll-+ 0 if y + x. □ 

REMARK. By virtue of lemma 8.28·in VARADARAJAN [21], lemma 2.1 can be sharp­

ened as follows: A homomorphism T: G ➔ U(H) is continuous if and only if 

the function x-+ (T(x)s,O on G 1.s measurable for each s (with respect to 

the natural Borel structures on G and t). 

Let T be a unitary representation of G on H = H(T). Then Tis said to 

be irreducible if there exists no closed linear subspace H' of H with T(x) 

H' c H' for all x in G, except for the trivial ones H' = {0} and H itself. 

Let Tl and Tz be unitary representations of G on H1 and H2, respectively. 

A bounded linear operator T: H1 >+ H2 which satisfies 

Vx E G, 
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is called an interi;u)ining operator for • 1 and • 2 • The linear space of all 

such operators is denoted by I(. 1,.2), and, if • 1 = • 2 = T, by I(T). In this 

case I(T) can be shown to be a weakly closed *-algebra in the space of all 

bounded operators on H(T), and it is called the connnuting algebra of T, It 

can be shown that Twill be irreducible if and only if I(T) contains only 

scalar multiples of the identity in H(T), i.e. I(T) = {AI;A Et}. This is 

a generalization of the well-known and easy to prove Schur lennna for finite­

dimensional representations. The proof in the case of infinite dimensional 

unitary representations is based on the spectral theorem. 

Two unitary representations • 1 and • 2 of Gare called equivalent if 

I(. 1,.2) contains an isometrical isomorphism. 

2.2. Homogeneous spaces 

Let r be a locally compact second countable (lcsc.) topological space 

satisfying the Hausdorff separation axiom, and let G be a lcsc. group. Then 

r is called a continuous G-space if (i) r is a G-space (as defined in §1.5) 

and (ii) the mapping (x,y) + x(y) from G x r onto r is continuous. Note that 

this implies that each mapping y + x(y) is a homeomorphism from r onto it­

self. We shall say that G acts continuously on r. If the G-action is both 

continuous and transitive then r is called a homogeneous space of G. Two 

continuous G-spaces rand tare said to be G-homeomorphic if there exists a 

homeomorphism~ from r onto t which respects the G-action, that is, 

~(x(y)) = x(~(y)) for all x in G and ally in r. 

Let H be a closed subgroup of G, and consider the left coset space 

G/H. We write x := xH for its elements. We endow G/H with a topology, the 

so-called quotient topology, by calling a subset O c G/H open if its in­

verse image under the natural projE?ction TI: x +xis open. Then TI is con­

tinuous by definition, and, since TI-l(TI(S)) = SH for any subset Sc G, TI 

is also cpen. This implies that G/H, being the continuous, open image of 

a locally compact group, is itself locally compact. It is easily verified 

that G/H is second countable and Hausdorff. Finally, the natural action of 

G on G/H, defined by xy := xy, is continuous (since TI is open) and transitive. 

Hence, G/H is a homogeneous space of G. In fact, each homogeneous space of 

G is G-homeomorphic with a coset space G/H for some closed subgroup Hof G. 
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Indeed, let r be a homogeneous space of G, fix a point y0 of r, and 

set 

Then His a closed subgroup of~, the so-called stabilizeP (or little gPoup) 

of y0 • Consider the mapping 

Obviously, Sis continuous and bijective, and S(yx) = yS(x) for all x in 

G/H and ally in G. By means of the Baire category theorem (RUDIN [18, 2.2]) 

we show that Sis open. Since the natural mapping n: G ➔ G/H is continuous, 

it suffices to show that S O n: x E G + x(y0 ) is open. For this purpose, we 

prove that S O TI maps any neighbourhood of the identity e E G onto a neigh­

bourhood of y0 • Let V be any neighbourhood of e, and choose another open 

neighbourhood W of e such that (i) W = W-l, (ii) w2 c V and (iii) the closure 

of Wis compact (one readily checks that this is possible). Since G is second 

countable, there exists a countable sequence x 1,x2 , ••• of elements of G such 

that 

G = U 
i=I 

x. w. 
1 

Hence, r is the union of the countable sequence of compact subsets 
- 00 

{xiW(y0)}i=t· Since r is locally compact and Hausdorff, we can apply the 

Baire theorem, which asserts that in such a space the countable union of 

nowhere dense subsets is again nowhere dense, and conclude that for some 

Xio the set XioW(yo) has a nonvoid interior. Let Xiow(yo) be an interior 

point of xi0W(y0). Then we have 

Consequently, Yo is interior to V(y0) = (S 0 n)(V), which ends our demonstration 

(this proof is taken from BOURBAKI [3]). 

~• n EXAMPLE 2.2. Consider the unit sphere S in lR. The special orthogonal 

group SO(n) acts continuously and transitively on Sn-I by rotations. The 
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b ·1· f h 1 (1 0 O) Sn-l . f 11 . sta i izer o t e po e , , •.• , E consists o a matrices 

(i O -~-. °) 
with RE SO(n-1), 

n-1 and is therefore naturally isomorphic with SO(n-1). Hence, S is homeomor-

phic with SO(n)/SO(n-1). 

We proceed to state two lemmata which will be used in the next sub­

section. 

LEMMA 2.3. (Urysohn) Let X be a locally compact Hausdorff space, and let 

Kand O be subsets of X, with K compact and O open, such that Kc O. Then 

there exists a continuous function f on X with compact support, such that 

(i) 0 ~ f(x) ~ 1, 

(ii) f(x) = l 

(iii) f(x) = 0 

Vx EX; 

Vx EK; 

Vx E X\0. 

For a proof we refer to RUDIN [17, 2.12]. 

LEMMA 2.4. Let Kc G/H be a compact subset. Then there exists a compact sub­

set K' c G such that K' is mapped onto K by the natural mapping TI: G ➔ G/H. 

PROOF. Choose an open neighbourhood U of the identity e E G, such that the 

closure of u·is compact. Then we have 

n 
Kc U TI(x.U), 

i=I i 

for certain elements x 1, ••• ,xn in G. If we set 

n - ) -I 
K' : = (. u (x. U) n TI (K) ' 

i=I i 

then K' is compact and TI(K') = K. D 

Finally, we state without proof an interesting result, due to Mackey. 
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By a Borel c-:t•oss-section we will mean a Borel mapping s: G/H + G which 

satisfies 

n· o s = idG/H. 

LEMMA 2. 5. (Mackey) If G is a lcsc. group and H a closed subgroup of G, 

then there aZways exists a Borel cross-sections: G/H + G. 

In fact a more general result is true. The proof is based on a classical 

theorem of Morse and Federer, and can be found in MACKEY [14], or VARADARAJAN 

[21, thm. 8.11]. 

It is important to observe that the projection TI generally does not 

admit a continuous cross-section. For instance, set G = JR and H = ?l. Then 

G/H = :r, the circle group, and TI(x) = e2Tiix_ It can be shown easily that no 

mappings: T + JR exists which is continuous and satisfies TI o s = idT. 

2.3. Quasi-invariant measures on coset spaces 

Throughout this subsection, all measures will be assumed to be positive 

nonzero Borel measures. Let G be a locally compact second countable (lcsc.) 

group, Ha closed subgroup of G, and consider the homogeneous space G/H. 

Elements of this space are denoted by x, where TI: x-+ TI(x) = i is the nat­

ural projection of G onto G/H. For S c G/H and x E G we write x[S J = {xy;y E S}-. 

A measureµ on G/H is said to be G-invariant (shortly: invariant) if 

µ = µ for all x in G. Hereµ denotes the translated measure, defined by 
X X 

µ (B) := µ(x[B]), for Borel sets Bin G/H. Thus,µ is invariant if and only 
X 

if 

(2. 1) p(B) = µ(x[B]), Vx E G, VB E B(G/H). 

(We write B(X) for the collection of all Borel subsets of a Borel space X). 

For instance, if His invariant in G, then the space G/H becomes a lcsc. 

group in its own right, with respect to the quotient topology, if we define 

a product by xy := xy. Since xy = xy for all x,y in G, we see that the left 

Haar measure on G/H satisfies (2.1). Hence, in this case an invariant measure 

always exists, and, moreover, it is unique up to constant factor. 
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Returning to the general case, let v be a left Haar measure on G, and 

set 

JJ (B) 
-I : = v ( 1T (B)) • BE B(G/H). 

Thenµ is a positive a-additive function on B(G/H), and µ(0) = 0. Hence,µ 

is a measure in the ordinary sense on the Borel subsets of G/H, and, since 

1r -I (x[B]) = x1r -I (B) for all x in G and all B in B (G/H), it satisfies (2. I). 

However, if C is a compact subset of G/H, then 1r- 1(C) is not necessarily 

compact in G, and v(1r- 1(C)) can be infinite (and it will be, in certain 

cases). Hence, JJ fails in general to be finite on compact sets, which is a 

requirement for Borel measures. Notice that if His compact, 1r- 1(C) is com­

pact for each compact subset C of G/H. Consequently, JJ is a G-invariant 

measure in this case. The intention of this discussion is to make plausible 

that what would seem a natural way to obtain invariant measures on coset 

spaces does not work in general. As we will show later on in this subsection, 

there are homogeneous spaces on which no invariant measure exists at all. 

Therefore, we will focus on measures with a weaker invariance property than 

(2.1). Recall that a measure lJ is said to be absolutely continuous with 

respect to another measure v on the same space, if each null-set for vis 

also a null-set forµ; notation: JJ << v. Two measures JJ and v on the same 

space are called equivalent (notationµ~ v) if JJ << v and v << µ. 

DEFINITION 2.6. A measure JJ on the coset space G/H is called quasi-invariant 

if it is equivalent to each of its translates, i.e. JJ ~ µx for all x in G. 

The classes of measures corresponding to the equivalence relation~, 

are called measure classes, and such a class is denoted by[µ], where JJ is 

a representative. A measure class[µ] on G/H is called invariant if 

µ' E [µ] => ]J 1 E [p], 
X 

'vx E G. 

We can now restate the above definition as follows: A measureµ on G/H is 

called quasi-invariant if it belongs to an invariant measure class (notice 

that JJ _~ µ' - JJ ~ µ'). ~ X - X 

We may give still another characterization of quasi-invariant measures, 

by utilizing the well-known Radon-Nykodym theorem, which gives a necessary 
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and sufficient condition for two measures to be equivalent. Indeed, call a 

measureµ on G/H quasi-invariant if and only if for each yin G there exists 

a strictly positive Borel function X + R(x,y) on G/H such that 

(2.2) I 
G/H 

-]- -
f(y x)dµ(x) = _ J f(x)R<x,y)dµ(x), 

G/H 

for all fin K (G/H), the space of continuous complex-valued functions on 

G/H with compact support. 

In this subsection we will prove that there always exists a unique 

invariant measure class on G/H. Moreover, we will show that this class al­

ways contains a measureµ for which the function R occuring in (2.2) can 

be taken to be continuous in both variables (considered as a function on 

G/H x G). ~s a corollary of a certain stage_of the existence proof we will 

obtain a necessary and sufficient condition for the existence of an invari­

ant measure on G/H. 

We start with the discussion of a very useful relationship between the 

spaces K(G) and K(G/H). We fix Haar measures VG and vH on G and H, respective­

ly. If f belongs to K(G), then consider the expression 

J f (xh) dvH (h), 

H 

XE G. 

The value of this integral remains constant if we let x run through a left 

H-coset. Hence, if we set 

f(x) := J f(xh)dvH(h), 

H 

then we obtain a function f on the coset space G/H. 

LEMMA 2.7. The assignment f + f maps K(G) onto K(G/H). Furthermore, f ~ 0 

implies f ~ O. 

~ PROOF. Let f e: K(G). Clearly, the support off is contained in n(supp(f)). 

Continuity off can be verified by simple standard arguments, exploring the 

fact that f is uniformly continuous. Hence, f e: K(G/H). 
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Next, let g 1 € K(G/H), and set K = supp(g1). Then we can choose a compact 

subset K' of G such that TI(K') = K (lennna 2.4). There exists a positive func-
-I 

tion g2 € K(G) with g2 (x) = I for all x € K' (lennna 2.3). If x € TI (K), 

then there exists an element h € H with xh € K'. Hence, g2 (i) > 0 for all 

i € K. Define a function f on G_ by 

f (x) := 

gl(x)g2(x) 

g2(x) 

0 

-I 
if X € TI (K), 

otherwise. 

Clearly f is compactly supported, and from the fact that K = supp(g 1) and 

the continuity of g1, g2 and g2 it follows that f is continuous. Further­

more, 

1<x) = 
r 
J g2 (xh) dvH (h) 

H 

~ so f = g. The second assertion of the lennna is obvious. D 

Letµ be a measure on G/H. Then, for each f € K(G), we define 
~ # ~ µ (f) := µ(f). From the preceding lennna and the obvious linearity off+ f 

# 
it follows thatµ defines a measure on G, uniquely determined byµ. Hence, 

# 
we have obtained a mappingµ+µ from the set of measures on G/H into the 

set of measures on G. [This mapping can be considered as the dual off+ f]. 
Before we state the properties of this important mapping, we render the 

following useful extension of lennna 2.7. 

~ LEMMA 2.8. The mapping f + f on K(G) extends to the space of Borel functions 

f on G which satisfy 

J jf(xh)jdvH(h) < oo, 
H 

Moreover, for such functions one has 

Vx E G. 
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(i) f is a Borel function on G/H; 

(ii) f ~ 0 implies f ~ 0 and µ#(f) =µ(£)for any measureµ on G/H. 

PROOF. By virtue of the Tonelli theorem, the function 

x + I f(xh)dvH(h) 

H 

(x e: G) 

is a Borel function on G. Being invariant on left cosets, it defines a 

unique Borel function f on G/H. Clearly, f ~ 0 implies f ~ O. The second 

implication in (ii) is verified by applying some standard arguments from 

elementary measure theory to lemma 2.7 (cf. VARADARAJAN [21], lemma 8.15]). 

Note that, since f is compactly supported and bounded, it follows that f 
also has these properties (ibidem). D 

COROLLARY 2.9. For any measureµ on G/H one has for eaoh Borel set Bin 
# -1 

G/H: µ(B) = 0 iff µ (TI (B)) = 0. 

PROOF. Let B be a Borel set in G/H. First, suppose µ(B) = O, and let K be 

a compact subset of G with Kc TI- 1(B). Then, by lelllllla 1.8, 

µ#(K) = J xK(i)dµ(i). 

G/H 

Since xK vanishes outside B, this yields µ#{K) = O. But then, by virtue of 
# -1 # -1 

regularity,µ (TI (B)) = O. Conversely, supposeµ (TI (B)) = O, and let K 

be a compact subset of G/H contained in B. There exists an increasing se-
-1 (X'l 

quence of compact subsets K1,K2 , ••• of G with TI (K) = n~l Kn. From the 

preceding lemma it follows that xK = 0 a.e. [µ] for all n. Now, suppose 
n ~ -

µ(K) > 0. Then, for some x e: G/H, we must have xKn (x) = 0 for all n. Since 

= I 
H 

the sets x- 1K n H must be vH - null sets. This contradicts the obvious 
-In 

fact that X K n H t H. □. n 
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COROLLARY 2.10. Let µ 1 and µ2 be measures on G/H. Then µ 1 << µ2 if and only 

ifµ~ <~ µ2#. Furthermore, if µ 1 << µ2, then 

# 
dµl 

= ---r <x), XE G. 
dµ2 

PROOF. The "if" part of the first statement immediately follows from corol­

lary 2.9. As to the other assertions, let µ 1 and µ2 be measures on G/H with 

µ 1 << µ2• By virtue of the Radon-Nikodym theorem there exists a positive 

Borel function~ on G/H such that 

r 
µ 1(f) = j f(x)~<x)dµ 2(x), 

G/H 

for all Borel functions f on G/H. If g E K(G) then one readily verifies that 

(g(~oTI))~ = g~. But then, by lemma 2.8, it follows that 

I - # 

J g(x)~<x)dµ 2(x) g(xH(x)dµ 2(x) = 

G G/H 

= J i<x)dµ 1(x). 

G/H 

I # 
= g(x)dµ 1(x). 

G 

# # 
in the Radon-Nikodym derivative 

# # 
Hence µ1 << µ2' and, particu,lar, dµl /dµ2 

equals~ o TI• □ 

THEOREM 2.11. Letµ, µ 1, µ2 be measures on G/H. Then (i) µ 1 ~ µ2 if and only 

if µ1 ~µ~,and (ii)µ is (quasi-)invariant if and only ifµ# ~s (quasi-) 

invariant. 

(Note that definition 2.6 also defines quasi-invariant measures on G.) 

PROOF. The first statement follows immediately from corollary 2.10. The 

second one follows from the first one and from the obvious observation 

# 
= (µ )x, Vx E G. □ 
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The following lennna, in combination with the statements of theorem 

2.11, establishes the uniqueness of an invariant measure class on G/H (if 

it exists). 

LEMMA 2.12. Each quasi-invariant measure on G is equivalent to the Haar 

measures on G. 

PROOF. Letµ be a quasi-invariant measure on G, and let BE B(G). Then we 

have 

r r 
J j XB_ 1(x)dvG(x)dµ(y) = 

G G r r _1 
= J ·J XB_ 1 (y x)dvG(x)dµ (y) 

G G 

= I J 
-1 

X _1(y x)dµ(y)dvG(x) 
B 

G G 

= j f Xx[B](y)dµ(y)dvG(x) 

G G 

r 
= J µ(x[B])dvG(x). 

G 

Elementary considerations show that these steps are all legitimate. Now, 
-1 -1 

if µ(B) = O, then µ(x[B]) = O, and hence vG(B ) = 0. But B has Haar 

measure zero if and only if B has Haar measure zero. Hence, vG(B) = O. 

Clearly this argument can be reversed; so,µ E [vG]. D 

# 
If we can show that the image of the mappingµ+µ contains a quasi-

invariant ~easure, then the existence of an invariant measure class on G/H 

follows at once from theorem 2.11 (ii). For this purpose, we first deter­

mine this image. 

Let 6H and 6G denote the Haar moduli of Hand G respectively. 

LEMMA 2.13. Let v be a measure on G. Then there exists a measureµ on G/H 
·th # • d ., . wi- v = µ 1,f an on1,y i-f 



r 
t.H(h-1) f (2.3) I f(xh)dv(x) = f(x)dv(x), Vf E K(G), Vh EH. 

G G 

is 
# 

PROOF. Suppose that v equal to µ , for a certain measureµ on G/H. Then 

v(f) = µ(f) for all fin K(G), which yields for hO fixed in H: 

= I fb (x)dv(x) 
G 0 

= I J fh (xh)dvH(h)dµ(i) 
G/H H O 

r r _1 _ 
= j j t.H(hO )f(xh)dvH(h)dµ(x) 

G/H H 

-1 r 
= t.H(hO ) J f(x)dv(x). 

G 

(Here we use fh to denote the function x ➔ f(xh)). 
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Next, let v be a measure on Gwhich satisfies (2.3). Then, for f E 

K(G/H), we set µ(f) :=v(f). We first show that this definition is legitimate, 

by proving that £1 = £2 implies v(f 1) = v(f2). This property of v follows 

primarily from (2.3). 

Let f belong to K(G). By virtue of the lennnata 2.3 and 2.7, we can 

choose a function gin K(G) such that g(i) = 1 for all i in n(supp(f)). 

Utilizing formula (2.3) and applying the Fubini theorem, we can make the 

following computation: 

I f(x)dv(x) = I f(x) ( I g(xh)dvH(h))dv(x) \ 
G G H 

= I I f(x)g(xh)dv(x)dvH(h) 

HG 

r 
t.H (h _;1) ( I -1 \ 

= J f(xh )g(x)dv(x) )dvH(h) 

H G 
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I g(x) I r -1 -1 \ = \ J t.H(h )f(xh )dvH(h) 1dv(x) 
/ 

G H 

= I g(x) 
I r 
\ J f(xh)dvH(h))dv(x) 

G H 

= f g(x)f (i)dv(x). 

G 

But then, if f(i) = 0 for all x in G/H, we have v(f) = O. By linearity of 

the mapping f ➔ f it follows that the number µ(f) = v(f) is well-defined. 

Clearly:,µ is a linear functional. Furthermore, by means of the proof 

of lennna 2.7:, it can be easily verified that for each g E K(G/H) with g ~ O, 

a function f E K(G) can be chosen such that f ~ 0 and f = g. This shows 

thatµ is positive. Now it follows from the Riesz representation theorem 
# 

(RUDIN [17J) thatµ is a measure. This finishes our proof, sinceµ = v by 

definition. D 

If we set v = VG' the Haar measure on G, then the identity (2.3) reduces 

to 

Vh EH. 

Clearly, this will only be true if 6G restricted to His equal to t.H. From 

theorem 2.11 (ii) it follows that G/H admits an invariant measure if and 
# 

only if the Haar measure on G lies in the image of the mappingµ ➔ µ . Hence, 

lennna 2.13 yields the following criterion for the existence of an invariant 

measure on G/H: 

COROLLARY 2.ll4. The coset space G/H admits an invariant measure if and only 

if 

Vh EH. □ 

Next we turn to the problem of proving the existence of quasi-invariant 

measures on G/H. This problem is reduced by lennna 2.13 to the problem of 

finding quasi-invariant measures on G which satisfy (2.3). As we will demon­

strate belowi, this problem is solved in a very nice way by the following 
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crucial lemma: 

LEMMA 2. 15. '.I'here exist continuous., strictly positive solutions of the func­

tional equat-ion 

(2.4) 
t-G (h) 

p(x) = t-H(h) p(xh), Vx E G,Vh EH. 

The proof of this lemma is rather technical, and we will give it in an 

appendix (page 50). Define a measure v on G by 

(2.5) X E: G, 

where p is a continuous, strictly positive solution of (2.4). Then 

J f(xh)dv(x) t-G(h -1) f 
-I 

= f(x)p(xh )dvG(x) 

G G 

t-H(h -1) r 
f(x)dv(x), fEK(G), = j 

G 

so there exists a measure µ on G/H with 
# 

µ v. Furthermore, we have 

J 
-1 

J f(x)p(yx)dvG(x) f(y )dv(x) = 
G G 

I f(x) P (yx) dv(x), f E K(G). 
P (x) 

G 

Comparing this to the characterization of quasi-invariant measures we gave 

by means of the Radon-Nikodym theorem, we can conclude that vis quasi­

invariant, which solves our p1.oblem. 

Furthermore, note that the Radon-Nikodym derivative dv (x)/dv(x) is 
y 

given by p(yx)/p(x). By virtue of lemma 2.10, we have 

if µ 1 and µ2 are equivalent measures on G/H. Hence, forµ#=µ, we have 
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so 

(2. 2) 

with 

dv dµ 
_.J_ (x) = 
dµ dJ (x) = 

p(yx) 
p (x) ' 

J 
G/H 

-1- -
f(y x)dµ(x) 

R(x,y) = P (yx) 
P (x) 

=f f(i)R(i,y)dµ(i), 

G/H 

f E: K(G/H), 

From the last identity we infer the fact that R(-,-), considered as a 

function on G/H x G is continuous in both variables. We emphasize that in 

this case R(-,-) is uniquely determined byµ. 

For future reference we state some useful properties of continuous 

R-functions corresponding to quasi-invariant measures on G/H by formula 

(2.2). They can be verified by direct computation. 

(2.6) (i) R(i,yz) = R(zi,y)R(i,z), X E: G/H, y, z E: G· 
' 

(2. 6) (ii) R(i, e) = 1 X E: G'H; 

(2. 6) (iii) 
- -I - -I C/ H,y (R(x,y)) = R(yx,y ) X E: E: G. 

(2.6) (iv) R(e,h) 
L'.H(h) 

h E: H. = 
L'.G(h) 

Suppose that we are given a continuous strictly positive function 
>o 

R: G/H x G ➔ 1R , which satisfies (2.6)(i) and (2.6)(iv). Then, if we 

set 

p(y) = R(e,y), y E: G, 

we find 

- -
p(yh) R(e,yh) R(e,y).R(e,h) 

y E: G, h E: H. 
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In this way we obtain a quasi-invariant measure corresponding to R. 

REMARK. Let p 1 and p 2 be two continuous strictly positive solutions of 

(2.4), and letµ andµ be the two corresponding quasi-invariant measures 
1 2 

on G/H. Then, by virtue of corollary 2.10 and formula (2.5), we have 

PI (x) 
= ---,-.,-

p 2 (x) • 

EXAMPLE 2.16. In example 2.2 we showed that the homogeneous space 

0 ( ) / ( ) h h . . h h . h n-I f d' ' S n SO n-1 is omeomorp ic wit t e unit sp ere S o imension n-1. 

Since SO(n-1) is a compact subgroup of SO(n) for all n = 1,2, ••• , there 
' ' ' n-l h' ' h 11 k . ' exists an invariant measure on S • Tis is t ewe - nown rotation in-

variant measure. 

EXAMPLE 2.17. Consider the subgroup Hof Gl(2,1R) consisting of all real 

matrices 

~) with a> O. 

The group Gl(2, 1R) can be identified in a natural way with a subset of JR.4 • 

Let >.. 4 be the Lebesgue measure on lR.4 and set 

d>..4 (x) 
dvGl(2,lR)(x) := 2' 

ldet(x)I 
x E: Gl(2,lR). 

Then one readily verifies that vis a left and right invariant measure on 

Gl(2,1R), and therefore this group is unimodular. However, if we let>.. de­

note the Lebesgue measure on lR, and if we set 

d ((a b)\ ·= d>..(a)d>..(b) 
VH ) • 2 ' 

0 I , a 

then vH defines a left Haar measure on H, which is obviously not right in­

variant. The modular function on H can be found by solving the equation 

x,y E: H. 

This yields 
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-1 
a 

((a 
= det \\o 

Define a function p on Gi(2,1R) by 

-I 
p(x) := jdet(x)j . 

-1 
b\ \ 

1 ' ' 

Then pis a strictly positive continuous solution of equation (2.4). Hence, 

the measure v on Gf (2, 1R) defined by 

dv(x) := p(x)dvGi( 2 ,1R)(x) 

is quasi-invariant on Gi(2,1R) and lies in the image ofµ-+-µ#. The 

quasi-invariant measureµ on Gl(2,1R)/H withµ#= v can now be expressed 1.n 

. terms of vGi (2 , 1R) and p. The corresponding R-function on Gf (2, 1R) /H x 

x Gi(2,1R) is given by 

R(x,y) = P (yx) = 
P (x) 

-I 
jdet (y)j 

Notice that this function 1.s independent of x. This means that the Radon­

Nikodym derivative dµ /dµ 1.s constant for all y in Gi(2,1R). Quasi-invariant 
y 

measures with this property are called relatively invariant. One easily 

proofs the following criterion for the existence of relatively invariant 

measures on a coset space G/H: 

THEOREM 2.18. There exist relatively invariant measures on G/H if and only 

if the function p of lemma 2. 15 can be chosen such that p (x)p (y) = p (xy) 

for all x,y in G. 

EXAMPLE 2.19. Consider the case where G is the product of two closed sub­

groups Kand H, with Kn H = {e}. We will derive a rather simple way to 

find an explicit expression for a quasi-invariant measure on G/H, in this 

case, under the additional assumption that the mapping kh ~ (k,h) from G 

onto K x H be continuous. Then G and K x Hare homeomorphic. This implies 

G/H ~ (KxH)/H ~ K, 
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where the homeomorphism from G/H onto K is given by sending x = xH to the 

projection of x on K. We denote the projection of G on Kand H by 1r 1 and 1r2 , 

respectively, that is, 

1r l (kh) := k, 1r2 (kh) := h, k E K, h E H. 

Define a function p on G by 

P (x) 

Then pis single-valued, continuous and strictly positive. Moreover, it 

satisfies (2.4). Denote byµ the corresponding quasi-invariant measure on 

G/H. For the R-function we find 

R(x,y) = 

If we identify the homeomorphic spaces G/H and K, this expression reduces 

to 

R(k,y) = 

In particular 

L'IH ( 1r 2 (yk)) 

L'IG(1r/yk)) 

R(k,y) = l, y E K. 

Therefore,µ is invariant for the G-action on G/H restricted to K, soµ is, 

under the above identification, equal to the left Haar measure on K. (For, 

the K-action on G/H reduces to left multiplication under this identification). 

For instance, the situation sketched above 1.s encountered in the case 

of semi-simple Lie groups which are non-compact and connected. Indeed, these 

groups admit a so-called Iwasawa decomposition G = KAN, where K is compact, 

A is abelian and closed, and N is nilpotent and closed. Moreover, it is 

known that the mapping (k,a,n) - kan from K x Ax N onto G is an analytic 

diffeomorphism (see HELGASON [7,thm. VI 5.1]). If we set H 

the situation above. 

AN, we obtain 
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Consider for example the case G = Gl(2,JR), the group of real 2 x 2 

matrices with determinant 1. Then K = S0(2), the special orthogonal group 

in two dimensions, and 

CE JR}. 

Hence 

- {fa 
H - \ 

C 

It is rather tedious to compute explicit expressions for ~1 and ~2 in this 

case, and therefore we use another method. The group Sl(2,JR) acts on the 

one-dimensional real projective space ]P 1 (JR). This space can be obtained 

by identifying points~ 0 of 1R2 which are scalar multiples of each other. 

By choosing so-called inhomogeneous coordinates, we can identify F 1 (JR) 

with the extended real line JR u {~}. Indeed, let [x,y] denote an equivalence 

class in JR2 , and set [x,y] + t = x, y > 0 and [x,O] + { 00 }. The correspond-
y 

ing action of Sl(2,JR) on lR u { 00 } reads 

( ac b) at+b d (t) = ct+d. 

The expression on the right-hand side becomes~ if t = {00}, and {00 } if 
C 

d. The stabilizer oft= 0 consists of all real matrices t = 
C 

a~ O, 

and is thus equal to H x 7l2 • One verifies easily that 

dµ(t) = dA(t) ' t ~ {oo}, µ({oo}) = O, 
l+t2 

defines an S0(2)-invariant measure on lR u { 00}. Hence,µ is quasi-invariant 

for the action of Sl(2,JR). We can compute the corresponding R-function 

directly: 

( ·a 
dµ / 

\\c 
bd\/ .t) = 1 dA {at+b\ 

l+(at+b) 2 (ct+d)-z \ct+d) 

= _a __ ( c_t_+_d ___ )_d_A ..... ( t--')_-_c--'( __ a_t+_b"""')_d_A--'(_t~) = --'-( a_d_-_c_b __ )_d_A ...:..( t-'-)_ 

(at+b) 2+(ct+d) 2 (at+b) 2+(ct+d) 2 
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dA(t) 
= --------'-----=- = 

(at+b/+(ct+d) 2 
l+t2 
2 2 dµ(t) 

(at+b) +(ct+d) 

2.4. Induction for lcsc. groups 

Let G be a lcsc. group, and let T be a unitary representation of a 

closed subgroup Hof G. Define a linear space F (G,H(T)) to consist of all 
T 

H(T) - valued functions f on G, which satisfy 

(2. 7) 
-1 f(xh) = T(h )f(x), Vx E G,Vh EH. 

Analogous to the finite case (§1.4) we define for each x in Ga linear 

mapping T(x) from F onto itself, by 
T 

(r(x)f) (y) 
-I := f(x y), f E F • 

T 

Then Tis a homomorphism from G into the space of linear operators on F. 
T 

In general, the space F is "too big" for T to be a representation of Gin 
T 

the sense of §2.1. Therefore, the obvious thing to do, will be to search 

for a :'f-invariant linear subspace, on which an inner product can be defined, 

which is respected by T. Then Twill be a proper unitary representation of 

G if it is extended to the completion of this subspace and if we can prove 

continuity of T. 
Consider first the case where the coset space G/H admits an invariant 

measure, sayµ. Let K be the linear subspace of F consisting of all func-
T T 

tions f in F 
T 

which are continuous and have compact support "modulo H", 

i.e. supp(f) c K.H for some compact subset K of G. It is clear at once that 

this is a T-invariant subspace. For f 1, f 2 E KT, the complex~valued function 

x--+ (f 1(x},f 2 (x)) on G (inner product in H(T)), is continuous and has 

compact support modulo H. Moreover, by virtue of (2.7) and the fact that T 

is unitary, it is also constant on left H-cosets in G. Consequently, we ob­

tain a well-defined continuous function on G/H by setting x --r (f 1(x),f 2 (x)), 

which is readily seen to be compactly supported in G/H. Led by these 
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considerations, we define a positive definite bilinear form on K by 
1" 

(2.8) (f 1,f2) := f (f 1(x),f2 (x))dµ{i). 

G/H 

Sinceµ is G-invariant, it follows from the definition of T that this inner 

product is T-invariant. Let y, y0 E G, then 

~ f 
G/H 

~ f 
G/H 

By an elementary computation one verifies that for each fin K, the func-
1" 

tion x-+ llf(x)II on G is uniformly continuous. Hence, we can choose a 

compact neighbourhood K of the identity e in G with 
e 

which implies 

where C is a constant, independent of K. This proves weak continuity of 
e 

T restricted to K, and since Tis unitary on this space, strong continuity 
T 

follows at once (lennna 2.1). Hence we have demonstrated that T can be ex-

tended to a unitary representacion of G on the completion K of K. We shall 
G T T 

call this representation induced by,, and denote it by T • Furthermore, 
- . G 

we write K =: H(T ). 
T 

Next, consider the case where G/H only admits a quasi-invariant measure. 

Letµ be a quasi-invariant measure on G/H, such that the corresponding R­

function is continuous. (Recall that Risa strictly positive function on 

G/H x G defined by R(x,y) = (dµ /dµ)(x).) If we consider again the space 
y 
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K c F, with the inner product defined by (2.8), this time for the quasi-
T T 

invariant measureµ, then 

IIT(y)fll 2 f 
-I 2 -= II f (y x) II dµ (x) 

G/H 

= f llf(x)ll 2 R(i,y)dµ(i). 

G/H 

Hence, T need not be unitary. However, this identity suggests the following 

alternative to (2.7): 

(2.9) (T(y)f)(x) 
-I - -I 1 

:= f(y x)(R(x,y )) 2 , f E F • 
T 

Formula (2.6)(i) ensures that Tis still a homomorphism when defined in 

this way. Furthermore, K is again an invariant subspace, and Tacts on 
T 

this space by unitary operators. Weak continuity of T can be verified in 

the same way as above. Hence T can be regarded as a unitary representation 

of G on the Hilbert space K, induced by T, and we will denote it by TG. 
T 

After this definition, two questions innnediately arise: 

(i) Are there nonzero functions in K? 
TG 

(ii) Does the induced representation T depend on the particular choice of 

a quasi-invariant measure? 

We will answer those questions in the next two lennnata. Let K(G,H(T)) de­

note the space of continuous functions on G with range in H(T) and compact 

support. Let f be such a function and consider a new function f on G, de­

fined by 

f(x) := f T(h)f(xh)dvH(h). 

H 

Notice that this definition is legitimate, thanks to the continuity proper­

ties of T as an operator-valued function on H. 

LEMMA 2.20. The mapping f--+ f is a surjection from K(G,H(T)) onto K. 
T 
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PROOF. Let f belong to K(G,H(T)). Then f is uniformly continuous, and 

llf(x)-f(xO)11 ~ f ll£(xh)-f(xOh)lldvH(h). 

H 

Hence, continuity off can be proved easily. Furthermore, we have 

supp(£) c supp(f).H, 

so f has compact support modulo H. Finally, 

= I T(h)f(xhoh)dvH(h) 

H 

-1 -
= T(ho )f(x), 

= f 
H 

by virtue of a well-known property of vector-valued integrals. Consequently, 

f belongs to K • We now show surjectivity. Let p be an element of K • By 
T T 

virtue of the lennnata 2.3 and 2.7, we may choose a function £1 E K(G) such 

that f 1 (i) = 1 for all i in ,r(supp(p)). (Recall that f 1 E K(G/H) was de­

fined by 

f 1(i) = f £1(xh)dvH(h).) 

H 

f(x) = f T(h)£ 1(xh)p(xh)dvH(h) = f £1(xh)p(x)dvH(h) 

H H 

= f 1 (i)p (x) = p (x) • D 

COROLLARY 2.21. For each x in G the subspace 

{f(x): f EK} 
T 

of H(T) lies dense in H(.). 



PROOF. Suppose that for some x in G and some nonzero~ in H(T) we have 

(f(x),~) = O, Vf EK. 
T 

By virtue of lennna 2.20 this amounts to 

f (T(h)g(xh),~)dvH(h) = O, 

H 

Vg E K(G,H(T)). 

Setting g(x) = p(x)~, with p E K(G), we get 

f (T(h)~,~)p(xh)dvH(h) = O. 

H 
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If we make a convenient choice for p, this yields~= O, a contradiction. 

(For instance, let p be non-negative with supp(p) c xU, where U is a neigh­

bourhood of the identity in G which satisfies: 

h Eun H => Re(T(h)~,~) ~ O.) □ 

Next, let µ 1 and µ 2 be two quasi-invariant measures on G/H with con­

tinuous R-functions R1 and R2 • Suppose that T~ and T~ are defined as above, 

with the use of µ 1 and µ 2 respectively. Denote the corresponding representa-
1 2 

tion spaces by H1 = KT and H2 = KT. 

h . G d G • -, LEMMA 2.22. Te representat~ons T 1 an T2 are equ~va~ent. 

PROOF. Let pl and p 2 be the strictly positive continuous functions on G 

with 

i = 1,2. 

For each f in K1 define a function Tf on G by 
T' 

( p](x))~ 
(Tf) (x) := ( ) f(x). 

P2 x , 

Then Tf is compactly supported and continuous, and 
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(Tf)(xh) ( PI (xh))½ 
= P2(xh) f(xh) 

= T(h-l)(Tf)(x), Vh EH. 

In the second step we used formula (2.4). Finally, 

I 2 - f 
2 PI (x) 

dµ 2(i) II (Tf) (x) II dµ 2 (x) = II f (x) II ( ) P2 X 

G/H G/H 

f 2 
= II f (x) II dµ I (x) • 

G/H 

Hence we may consider T as an isometric operator from K1 into K2• Clearly, 
T T 

Tis surjective and injective. Furthermore, 

G -1 
((TT 1(y)T )(f))(x) ( ~ I (x))½ G -1 

= ,P 2 (x), (T 1(x)T f)(x) 

(~l(x))½ - -1 l -I -1 
= \p 2 (x) (R1(x,y )) 2 (T f)(y x) 

-] • I 

( pl(x)p2(y x))2 - -1 l -1 
= _1 (R 1(x,y )) 2 f(y x). 

'p 2 (x)p 1 (y x),. 

- -1 l -J 
= (R2(x,y )) 2 f(y x) 

I f E K • 
T 

Since K~ lies dense in Hi (i = 1,2), T belongs to l(T~,T~). D 

We will now discuss a slightly different construction of the induced 

representation space, which sometimes turns out to be more convenient than 

the one discussed above (e.g. in the next subsection). 

Consinder a subspace I2 of F consisting of the elements f of F which T T T 
satisfy 



(2.IO)(i) x ➔ (f(x),~) is measurable for all~ in H(T) (i.e. f is weak­

ly measurable); 

(2.IO)(ii) llfll 2 := I 
G/H 

2 -
II f(x)IIH(T)dµ(x) < 00. 
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00 

The second condition requires some explanation. Let{~.}. 1 be an orthonor-
1. 1.= 

mal basis for H(T). Then 

2 
llf(x)IIH(T) = 

00 

I 
i=l 

I (f(x) ,~.) 12, 
l. 

XE G. 

Hence, the function x--+ llf(x)ll~(T) is measurable, by virtue of 2.IO(i). 

Moreover, it is constant on left H-cosets by unitarity of T, so it defines 

a unique function i--+ llf(x)ll~(T) on G/H. Note that for f,g EFT one has 

00 

(f(x),g(x)) = I 
i=l 

(f(x),~.)(~.,g(x)), 
l. l. 

X E G. 

~T 
Hence, the same argument allows us to define a bilinear form in L2 by 

(2.11) (f,g) := I (f(x),g(x))dµ(i), 
~T 

f,g E L • 

G/H 

Identifying functions in S which differ only on a null set, we obtain a 

new space L;, in which (2.11) defines a positive definite inner product. 

It can be shown straightforwardly that L; is a Hilbert space and that it 

is isometrically isomorphic with K. Moreover, L2 is invariant for T (see 
T T 2 

(2.9)), and hence T can be made. into a unitary representation of G on L, 
G G T 

which is equivalent to T • We will denote this representation by T as well. 

2.5. A realization of TG on L2 (G/H,H(T)) 

Let the situation be as in the preceding subsection, and consider again 

the space L2 • We shall take the elements of this soace to be. functions on T • 

G. Let L 2 (G/H, H ( T)) denote the Hilbert space of square µ-integrable functions 

on G/H with values in H(T). Furthermore, choose a Borel cross-section 
2 

s: G/H ➔ G (see lennna 2.5). For each fin LT we define a function gf on G/H 

by 
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(?.. 12) x E G/H. 

Obviously, this formula defines an isometric isomorphism from L2 onto 
T 

L2(G/H,H(-r)). [Hence, it follows that L2 is a Hilbert space]. This iso­
T 

morphism can be extended to the corresponding algebras of bounded operators, 

by setting 

2 for any Tin L(L ). Next we ask ourselves what the induced representation 
T 

.G will look like, when lifted to L2(G/H,H(-r)). We have 

g G (x) 
T (y)f 

-1 - -1 
The element y s(x) belongs to the left H-coset (y x)H, so there is a unique 

element h of H such that 

-1 - -1-
y s(x) = s(y x)h. 

Hence the expression above can be rewritten as 

by (2.7). We define an operator-valued function A: G/H x G-+ U(H(-r)) by 

(2.13) A(x,y) := -r(s(yx)-lys(x)). 

This function satisfies 

(2.14)(i) A(x,e) = I, Vx EX; 

(2.14)(ii) A(x,yz) = A(zx,y)A(x,z), Vx EX, Vy,z E G. 
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(cf. (2.6)(i)). Clearly, A is weakly measurable. The representation of G on 

L2 (G/H,H(T)) which is equivalent to TG by the isomorphism (2.12), is thus 

given by 

(2.15) -~G - --::Y-- - -1- - -1 ! 
(T (y)g)(x) = A(y x,y)g(y x)(R(x,y )) 2 • 

These considerations lead to an alternative approach to induction. In­

deed, let X be a homogeneous space of G and letµ be a quasi-invariant 
. >O • • • 

measure on X, with R: Xx G-+ JR denoting the corresponding continuous 

R-function. Furthermore, suppose we are given a weakly measurable operator­

valued function 

A: XX G - U(H), 

where His a certain separable Hilbert space. Then we can define operators 

T(y) on L2 (x,H,µ) for each yin G by 

(2. I 6) (T(y)f)(x) 
- -1 ! --::y-- -I-

:= (R(x,y )) 2A(y x,y)f(y x). 

Clearly these operators are well-defined, and, moreover, unitary. Finally, 

if A satisfies (2.14), then y-+ T(y) is a homomorphism. In this case, it 

can be shown that A is of the form (2.13) for a certain Borel cross section 

s: X ➔ G and a certain unitary representation T of a closed subgroup Hof 

G with G/H 1=::1 X. As a matter of fact, this assertion forms an important stage 

in the proof of the infinite version of the imprimitivity theorem (§3.1), 

a sketch of which will be given in §3.2 (cf. also VARADARAJAN [21, thm.9.7]). 

Another important observation in this context is the following. Let A1 and 

A2 be weakly measurable opera~or-valued functions from Xx G into U(H) 

which satisfy (2.14), and let T1,T2 be the representations defined by A1 
and A2 through (2.16). Then the original representations T1· and T2 with 

T~ ~ T., i = 1,2, are equivalent if and only if an operator-valued function 
i i 

C: X ➔ U(H) exists with 

(2. I 7) A1 (x,y) 
--1 - -= C(yx) A2(x,y)C(x), Vx,y E G. 
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This, again, is part of the proof of the infinite imprimitivity theorem. 

REMARK. Note that because of the absence in general of continuous cross­

sections from G/H into G, we can not use the space K. in this set-up. 

Appendix to §2.3. 

Proof of lemma 2.15. Let f be a function in K(G) with f ~ O, and set 

XE G. 

Then pf defines a positive function on G, which is continuous since f is 

uniformly continuous. Moreover, 

so pf satisfies (2.4). However, pf will fail in general to be nonzero. If 

we admit for f functions which are not in K(G), pf will be well-defined, 

continuous and strictly positive if 

(A.l)(i) f is continuous and f ~ O; 

(A.l)(ii) for each x in G there is a compact neighbourhood U of x such that 

KH n supp(£) is compact; 

(A.l)(iii) for all x in G there exists an element h of H such that f(xh) > O. 

We will construct such a function by means of an ancillary lemma. 

LEMMA. Let S be an open syrrmetric neighboUPhood of the identity in G, with 

corrrpact closUPe. Then there exists a subset X(S) of G such that 

(i) each H-coset intersects with at least one set Sy for y ~ X(S); 

(ii) for each corrrpact subset K of G, there are only finitely many y E X(S) 

such that KH n Sy I 0. 

PROOF. Consider the family of subsets X of G which satisfy the following 

symmetric condition: 

x,y EX, 

J => xi SyH. 
X I y 



Note that such a subset always exists. This family is partially ordered by 

inclusion with each chain having an upper bound. Hence, we can apply the 

Zorn lennna and choose a maximal set, say X(S). We contend that X(S) meets 

the qualifications stated in the lemma. First, suppose xH n Sy= 0 for a 

certain x in G and ally in X(S). Clearly this contradicts the maximality 

of X(S). As to (ii), suppose 

KH n Sy. f 0, 
l. 

for a certain compact subset K of G. Then there are elements h 1 ,h2 , ••• in 

H with y.h. E SK for all i. Since the closure of SK is compact, this se-1. l. 

quence has a cluster point. The set Syihi is an open neighbourhood of Yihi 

for all i. Thus, for m,n large enough, we must have y h E Sy h. But then mm nn 
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ym E SynH' which implies that the sequence y 1 ,y2 , ••• contains only finitely 

many different elements. D 

We now finish the proof of lemma 2.15. Let g be a positive function in 

K(G), with g(e) f 0, and such that the set S := {x E G; g(x) > O} is sym­

metric. This is always possible, since we may replace x-+ g(x) by 
-1 

x-+ g(x) + g(x ), if need be. Let X(S) be the maximal set corresponding 

with S, as described in the lermna above, and set g (x) := g(:xy -l), for yin 
y 

G. Define a function f on G by 

f ex) := I 
yEX(S) 

g (x). 
y 

By virtue of our auxillary lemma, only finitely many functions g can be 
y 

nonzero on a strip KH, for any compact subset K of G. Hence f, being local-

ly the sum of finitely many g, is itself continuous. As to (A.l)(ii), we 
y 

have, for any compact subset K of G: 

KH n ( u 
X(S) 

s ) = u 
y X(S) 

n 
(KHnS ) = U 

y i=l 
(KHnS ), 

y. 
l. 

for certain elements y 1, .•. ,yn 1.n X(S) depending on K. Hence 

n 
KH n supp(f) = U 

i=l 
(KHnS ) , 

y. 
l. 
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which is compact. This is even a stronger result then (A.l)(ii). Finally, 

for any x in G, we have x E SyH for a certain yin X(S), so g (xh) > 0 for y 
some h in H. Hence f is nonzero somewhere on each H-coset, which proves 

(A.l)(iii). 0 

III. INFINITE IMPRIMITIVITY AND LOCALIZABILITY IN QUANTUM MECHANICS 

3.1. The imprimitivity theorem for Iese. groups 

In this subsection we will state the analogue of theorem 1.14 for Iese. 

groups. This generalization, which is due to Mackey, will play an essential 

role in the next chapter, together with theorem 3.4 below. 

Let T be a representation of a finite group G. Recall that a system of 

imprimitivity (s.o.i.) for Twas defined (in §1.5) to be a family of sub­

spaces {V} r of the representation space V(T), indexed by a G-space r, 
Y YE 

such that 

(i) 

(ii) 

V(T) = l~ V as a vector space direct sum; 
yEf y 

.(x)V = V ( )' Vx E G,Vy Er. y X y 

We will adjust this definition such as to enable a canonical extension to 

general topological groups with possibly infinite-dimensional representa­

tions. 

Consider a family of projections {P} r in V(T) such that 
Y YE 

p (V(T)) = V' y y Vy Er. 

Note that r as a finite set has a trivial Borel structure, generated by its 

discrete topology. In other words, the Borel sets of rare just its subsets. 

If we define a projection PE in V(T) for each subset E of r by 

p ' y 

(in particular P{y} = PY) then it is clear that the mapping P: E + PE satis­

fies 



pr= I 

PEnF = pE.pF' 

p E , u . 1. 
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VE,F c r 

(ll for i :/: J. 

Hence, Pis a so-called projection-valued (or spectral) measure on r, act-

1.ng 1.n V(T). Lets= l rs be the decomposition of an elements of V(T) 
YE Y 

into V -components. Then, by virtue of property (ii) above, we have 
y 

-] 
T(x)P T(x H 

Yo 

By linearity, this implies 

(3. 1) 
-] 

T(x)PE T(X ) = px[E] , 

= P ( )s. 
x Yo 

for all x in G and all (Borel) subsets E of r, where x[E] := {x(y);y EE}. 

Conversely, if we are given a finite group G with a representation T, 

a G-space rand a projection-valued measure P, based on rand acting in V(T), 

such that T and Pare related by (3.1), then it is clear that the collection 

{P{y}(V(T))}yEf forms a s.o.i. for T. 

These considerations lead us to the following definition. 

DEFINITION 3.1. Let G be a topoiogical group. A system of irrrprimitivity 

(s.o.i.) for G acting in a Hilbert space H, is a triple (f,T,P), where 

(i) r is a continuous G-space; 

(ii) Tis a unitary representation of G on H; 
(iii) Pis a projection-valued measure on r, acting in H, such that for all 

Borel subsets E of rand all x in G: 

As in the finite case, the system is said to be transitive (triviaZ) accord­

ins tor being a transitive (triviaZ) G-space. 
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Many properties of representations may be formulated in terms of impri­

mitivity systems as well. Instead of the intertwining space I(T,a) of two 

representations T and a of G, we can consider the intertwining space of two 

s.o.i. based on G-homeomorphic G-spaces, say (f,T,P) and (~,a,Q), denoted 

by I((T,P),(cr,Q)). This space is defined to consist of all operators T: 

H(T) + H(a), which satisfy 

(3.2)(i) TT(x) = a(x)T, Vx E G; 

(3. 2) (ii) TP E = Q~ (E >1, for all Borel sets E in r. 

Here~: r ➔ LI denotes the G-homeomorphism of r onto~- Thus, if we denote by 

I(P,Q) the space of operators T which satisfy (3.2)(ii), we have 

I((T,P),(a,Q)) := I(T,a) n I(P,Q). 

Two systems (f,T,P) and (~,a,Q) for Gare said to be equivalent if 

(i) rand~ are G-homeomorphic; 

(ii) I((T,P) ,, (a,Q)) contains an isometrical isomorphism. 

Finally we shall say that a s.o.i. (f,T,P) is irreducible if the sets of 

operators {T(x); x E G} and {PE; Ea Borel set in r} have no connnon non­

trivial invariant subspaces. This is equivalent to the condition: 

(3. 3) I(T,P) (:= I((T,P),(T,P))) = {\I; A Et}. 

EXAMPLE 3.2. Let A be the regular representation of a lcsc. group 
2 

G, on L (G). Define a projection PE for each Borel set E in G by 

(3 .4) 
2 

f EL (G), 

where XE denotes as usual the characteristic function of E. Obviously, re­

lation (3.1) holds with T replaced by A. Therefore (G,\,P) is a (transitive) 

s.o.i. for G,. where G is considered as a continuous G-space by left trans­

lation (cf. E~xample I. 13). 



55 

EXAMPLE 3.3. Suppose that Tis a unitary representation of a locally com­

pact second countable group G, which is induced on G by a unitary represen­

tation cr of a certain closed subgroup Hof G. Thus, the space H(a) consists 

of H(cr)-valued functions on G (cf. §2.4). We define a projection-valued 

measure P, based on the coset space G/H, and acting in H(.), by 

(3.5) E Borel set in G/H. 

Using the definition of an induced representation (formula (2.9)) one finds: 

-1 -1 - -1 1 
= (PET(x) f)(x y)(R(y,x ))2 

--=t -1 -1 - -1 1 
= xE(x y)(T(x) f)(x y)(R(y,x )) 2 

- -1- - -1 1 
= xx[E](y)f(y)(R(x y,x)R(y,x )) 2 

= Xx[EJ(y)f(y) = (Px[E]f)(y). 

Consequently, (G/H,T,P) is a (transitive) s.o.i. admitted by T. We shall 

call this system canonically associated with the induced representation 
G G 

cr = T, or, shortly, the canonical system of cr . 

There exists an interesting relationship between an induced represen­

tation and its canonical system. Using the notation of example 3.3, let T 

be a bounded operator on H(a), which is a member of the cormnuting algebra 
.... G 

I(cr). By means of T we can define an operator T .ort H(cr ), by 

(3.6) (ff)(x) := Tf(x), G f E H(a ). 

If x and y are elements of G and H respectively, we have 

.... -1 .... 
(Tf)(xy ) = Tcr(y)f(x) = cr(y)Tf(x) = cr(y)(Tf)(x), 

since T belongs to I(cr). Furthermore, from the definition of the inner prod­

uct in H(crG), it follows at once that 
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ii Tfll :,; Ii TII .11 fil , 

A -
(Obviously, Tf is weakly measurable). Hence, T 1.s a bounded operator on 

H(aG). Concerning the mapping T ➔ T we can state the following important 

theorem: 

THEOREM 3.4. The mapping T ➔ T, defined by formula (3.6) maps the comrrruting 

algebra I(a) isomorphically onto the comrrruting algebra l(aG,P) of the can­
G onical system of a. 

.... G 
PROOF. We show successively that the image of T ➔ T lies in l(a ,P), that 

the mapping is injective and that it is surjective. (Linearity is clear). 

Let T belong to I(a). Then, for each Borel set E 1.n G, we have 

.... 
= xE(x)(Tf)(x), 

G 
f E H(a ). 

Since xF(x) = XF•H(x), if Fis a Borel set in G/H, the operator T commutes 

with the projection-valued measure occurring in the canonical system of aG, 

which is given by formula (3.5). Moreover, we have 

.... G -1 - -1 ! 
(Ta (y)f)(x) = T(f(y x)(R(x,y )) 2 ) 

- -1 1 -1 - -1 1 .... -1 = (R(x,y )) 2 Tf(y x) = (R(x,y )) 2 (Tf)(y x) 

= (aG(y)Tf)(x), G 
f E H(a ), 

,,.., G 
since Risa real-valued function. Therefore, T belongs to I(a) as well, 

which proves our first assertion. 

As to injectivity, this follows at once from corollary 2.21, which 

stated that for any x in G, the subset {f(x); f EK} lies dense in H(a). 
a 

Indeed, if Tf(x) = Sf(x) for two bounded operators T and Son H(a), and 

all fin K, then T = S. Since K can be considered as a (dense) subspace 
G a a .... 

of H(a ), this proves injectivity of T ➔ T. 



The proof of surjectivity onto I(crG,P) is somewhat more complicated, 

and for the sake of continuity it will be given in an appendix to this 

chapter. (0) 
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COROLLARY 3.5. The canonical system of an induced representation aG of a 

lase. group is irreducible if and only if the original representation a is 

irreducible. 

PROOF. Clear. 0 

Next, we state the general imprimitivity theorem. 

THEOREM 3.6. (MACKEY). Let T be a unitary representation of a lase. group 

G, and let H be an arbitrary closed subgroup of G. Then the existence of a 

transitive system of irrrprimitivity (G/H,T,P) implies the existence of a 

unitary representation a of H such that (G/H,T,P) is equivalent to the system 

canonically associated with aG. In particular, Tis equivalent to aG. More­

over, the equivalence class of a is completely determined by the system 

(G/H,T,P). 

The proof of this theorem is rather complicated. There exist several 

variants, of which the most recent ones (BARUT & Rl\CZKA [2], KIRILLOV [9]) 

are based purely on functional analysis. The original proofs of MACKEY (see 

[11], [13], or [14] for a sketch) are maybe not very accessible, in that 

they leave a lot to the imagination. However, they are based on some essen­

tial ideas, which play a fundamental (though not very perceptible) role in 

the work of Mackay on induction· for locally compact groups. The ideas are 

connected with the "classical" cohomology theory of grGups (EILENBERG/ 

MACLANE). 

In the next subsection we will try and sketch these ideas, following 

VARADARAJAN [21], and show how the imprimitivity theorem can be derived 

from them. 

The theorem has proved to be amenable to generalizations in many direc­

tions. One has to start with extending the concept of induction to larger 

classes of groups on the one hand, and larger classes of representations on 

the other hand. For instance, second countability of G and separability of 

the representation space (which we use as a convention) can be omitted from 
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the theorem. Furthermore, after a suitable reformulation, the theorem keeps 

its validity for so-called projection or multiplier representations (see 

MACKEY [ 13]). 

3.2 On a proof of the imprimitivity theorem 

Let G be a lcsc. group, and let H c G be a closed subgroup, throughout 

this subsection. We set X := G/H. M will denote a second countable Hausdorff 

group, until further specifications. 

DEFINITION 3.7. A Borel map f: Xx G ➔ Mis called a (X,G,M)-cocycle if it 

satisfies 

(3.7)(i) f(x,e) = I, Vx E G; 

(3.6)(ii) f(x,yz) f Czx, y) f c x , z ) , Vx,y,z E G. 

(Here I denotes the identity in M). 

DEFINITION 3.8. Two (X,G,M)-cocycles f 1 and f 2 are said to be cohomologous 

(f 1~f 2) if there exists a Borel map b: X ➔ M such that 

(3. 8) f I (x,y) 
- -I - -= b(yx) f 2(x,y)b(x), Vx,y E G. 

Obviously, (3.8) defines an equivalence relation in the set of all (X,G,M)­

cocycles. Equivalence classes are called (X,G,M)-cohomology classes. 

REMARK. In VARADARAJAN [21, p.27], the functions of definition 3. 7 are 

called strict cocycles, and th2 relation between f 1 and f 2 given by (3.8) 

is called strict cohomologous. His definitions of cocycles and cohomologous 

admit deviations on null-sets in the identities (3. 7) (i), (ii) and (3.8) 

(that is, null-sets in X, Xx G x G and Xx G, respectively, w.r.t. Haar 

measure on G and quasi-invariant measure on X). In view of lemma 8.26 and 

part of theorem 8.27 in [21], which state respectively: 



each cocycie (in the sense of [21]) is a.e. (on Xx G) equal to a 

strict cocycle, which is unique up to strict cohomology; 

each cohomology class (sic) contains a unique, nonvoid, strict coho­

mology class; 
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we feel justified to circumvent measure theoretical details and use defini­

nitions 3.7 and 3.8. (However, in a certain part of the proof of the impri­

mitivity theorem, the use of cocycles in the sense of [21] can not be avoi­

ded. We will omit this part.) 

Let f be a (X,G,M)-cocycle. Then the map.: H ➔ M, defined by 

.(h) := f(e,h), is clearly a Borel homomorphism. We will call T the homomor­

phism associated with f. Two homomorphisms •. : H ➔ M (i = 1,2) are called . 1 

equivalent (. 1 :::::. • 2) if there exists an element T of M with 

Vh EH. 

By virtue of lemma 8.28 in [21] (mentioned before in our §2.1), any Borel 

homomorphism from a lcsc. group into a second countable Hausdorff group is 

automatically continuous. The reader should keep this in mind, since we are 

going to use this fact later on, when we take M to be the unitary group of 

a separable Hilbert space and call Ta representation of H. 

The following theorem relates (X,G,M)-cohomology classes to equivalence 

classes of Borel homomorphisms from H into M, and constitutes the first im­

portant step towards the proof of the imprimitivity theorem. If y is a 

(X,G,M)-cohomology class, we let y denote the set of continuous homomorphisms 

associated with the elements of y. 

THEOREM 3.9. The assignment y ➔ y establishes a one-to-one correspondence 

between the set of all (X,G,M)-cohomology classes and the set of all equi­

valence classes of continuous homomorphisms from H into M. 

PROOF. We can split the proof into two parts: 

(i) Let f 1 and £2 be (X,G,M)-cocycles and let • 1 and • 2 be the associated 

homomorphisms. Then f 1 ::. £2 iff • 1 .::::: • 2 • 

(ii) Each continuous homomorphism.: H ➔ Mis associated with a certain 

(X,G,M)-cocycle. 
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Let f 1 and f 2 be two (X,G,M)-cocycles and let Tl and Tz be the associated 

homomorphisms. We define two Borel maps b.: G + M by 
1. 

b.(y) := f.(e,y), 
1. 1. 

y E G. 

From this definition, we have 

(3. 9) b. (xh) = b. (x)T. (h), Vx E G, h E H, 
1. 1. 1. 

and 

(3.10) f i (i,y) 
-1 = b.(yx)b"(x) , 

1. 1. 
Vx,y E G, 

as can be easily checked. 

Now, suppose that for some TE M, we have 

TT 1 (h) = Tz(h)T, Vh EH. 

Then, from (3.9) it follows that 

-] -1 
b2 (x)Tb l (x) = b2 (xh)Tb l (xh) , Vx E G, h E H. 

Hence, a unique Borel map b: X + M exists, with 

b(x) XE G. 

Using the properties of cocycles and identity (3.10), an easy calculation 

yields 

(3.11) 
- - - -1 = b(yx)f 1 (x,y)b(x) , Vx,y E G. 

Thus, f 1 ~ f 2 • 

Convers1ely, suppose f 1 ::::.. f 2 , and let this equivalence be established 

by a Borel map b: X + M. Then (3.8) yields 

- -1 - - -1 
£ 1(e,h) = b(e) f 2 (e,h)b(e) , Vh E H. 
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Thus, setting T := b(e), we obtain 

\>'h EH. 

This finishes the first part of the proof. As to surjectivity of y + y, 

let T be a continuous homomorphism from H into M. We choose a Borel cross­

section s: X + G, with s(e) = e (this is legal, since for any Borel cross­

section s we may define a new Borel cross-section s' by setting s' (i) = s (i). 

s(e)-1). Next, we define a Borel map f: Xx G ➔ M, by 

A brief calculation shows that f is a well-defined (X,G,M)-cocycle, and, 

moreover, since s(e) = e, we have 

f(e,h) = .(h). 0 

The next theorem implies the imprimitivity theorem, and explains at 

the same time the idea behind the discussion in this subsection. First we 

introduce a few notations, which will be sustained till the end of this 

subsection. H will denote a fixed Hilbert space of dimension n = 00 ,1,2, ••• , n 
and M will denote its unitary group, provided with the weak topology. Further-

n 2 
more, we fix a quasi-invariant measureµ on X, and set Kn:= L (X,Hn,µ). In 

n K we define a projection-valued measure P, based on X, by 
n 

EE B(X). 

Note that the equivalence claes of Pn is independent of our choice of a quasi­

invariant measure on X. The proof of this assertion is similar to the one of 

lemma 2.22. LRecall that two projection-valued measures P and Q acting in 

Hilbert spaces Hand H', respectively, and based on a Borel space B, are 

said to be equivalent if there exists an isometric isomorphism T: H + H' 
such that TPE = QET, VE e: B(B).] 
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THEOREM 3.10. 

(i) Any system of irrrprimitivity (X,.,P) for G is equivalent to a system 

of the form (X,.',Pn), for a unique n E {oo,1,2, ••• }. 

( ii) Th . ere ex1;sts a one-to-one map y ➔ I: (y) from the set of (X,G,Mn)-cocycles 

onto the set of equivalence classes of systems of irrrprimitivity of the 
n form (X,.,P ). 

(iii) The map y + E(y) enjoys the following property: Let • be the homomorphism 

determined by an element of y. Then any system in E(y) is equivalent to 

the canonical system associated with the induced representation .G. 

Before giving the proof of this theorem, we will state an important 

result from spectral multiplicity theory, and deduce a lemma from it which 

applies to our situation. This is done in order to obtain part (i) of the 

above theorem. The first mentioned result can be found in e.g. HALMOS [6, 

chapter III, particularly §67 and 68.J. 

Let Y be a second countable Hausdorff space. For any finite Borel 
2 n v measure v on Y we set K := L (Y,H ,v). Furthermore, let P' denote the n,v n 

projection-valued measure based on Y and acting in K by n," 

Pn,vf f 
E =XE' E E,B(Y). 

n " It will turn out that the measures P' are the canonical building blocks 

for arbitrary projection-valued measures on Y. Indeed, let v00 ,v 1,v2, ••• 

be a sequence of mutually singular finite Borel measures on Y (recall that 

two measures µ and v on Y are cal.led mutually singular, notation µ 1. v, if 

µ(B) = v(Y-B) = 0 for some Borel set Bin Y.). We set 

K = tB K , 
n n,vn 

and define a projection-valued measure P 

based on Y, by 

= P({H },{v }) acting in Kand 
n n 

EE B(Y). 



THEOREM 3.11. Any projection-valued measure Pon Y determines a unique se­

quence [µ 00 ], [µ 1], [µ 2J, ••• of mutually singular measure classes on Y such 

that 

v E [µ ], n = 00 ,1,2, ••• ~P:::, P({H },{v }). n n n n 
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Now, we consider the consequences of this theorem in the present situa­

tion, that is, with Y = X, and P being part of a system of imprimitivity 

(x, T ,P) for G. We call a projection-valued measure homogeneous if all but 

one of the measure classes it determines are zero. 

LEMMA 3.12. Let (X,-r,P) be a system of irrrprimitivity for G acting in a 

Hilbert space H. Then Pis homogeneous. Moreover, the only nonzero measure 

class associated with Pis the class of quasi-invariant measures on x. 

PROOF. Suppose P:::, P({Hn},{vn}) for some sequence v00 ,v1,v2 , ••• of mutually 

singular Borel measures on X. Let x be any element of G, and set 

QE := Px[E]' EE B(X). Then Q: E ➔ QE is a projection-valued measure on 

X, which is equivalent to P, since 

\t'E € B(X). 

On the other hand, we have 

where (v) n X 
denotes the translated measure (v) (E) := v (x[E]), E € B(X). 

n x n 
(Note that V ~ V, n m n Im, implies (v) ~ (v) ). This can be seen as nx mx 
follows. Define a linear map 

by 

u := al K 
n n,v n 

((f) ,(f1) , ••• ), 
00 X X 
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where (f) (y) := f (xy). Obviously, U establishes an isometric isomorphism. 
n x n 

Write p* := P({H },{v }) and p*,x := P({H },{(v) }). There exists an iso-
n n n n x 

metric isomorphism 

T: H-+ e K 
n n,vn 

with 

VEE B(X). 

We have 

VEE B(X), 

as can be readily verified. By virtue of the preceding theorem, vn:::::. (vn)x, 

n = oo,1,2, ••• , which implies, x being arbitrary, that all measure classes 

determined by Pare invariant. But then P must be homogeneous, since quasi­

invariant measures can not be mutually singular. 0 

We now proceed to the proof of Theorem 3.10. Let (X,T,P) be a system of 
n imprimitivity for G acting in H. Then P:::::. P, for a certain n E { 00 ,1,2, ••• }, 

on account of the preceding lemma. Thus, there exists an isometric iso­

morphism T: H ➔ K such that n 

VEE B(X). 

Define a new representation T' of G, on K, by 
n 

T 1 (x) 
-1 := TT(x)T , XE G. 

Then (X,T',Pn) is a system of imprimitivity, and equivalent to (X,T,P). 

This proves part (i) of Theorem 3.10. 

Next, let~ be a (X,G,M)-cocycle and define a representation T of G 

on K by n 

( T (x) f)(y) 
- -1 l --=T -=T = (R(y,x )) 2 ~(x y,x)f(x y), 

where Risa continuous R-function corresponding toµ. It can be easily 
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verified that, is a well-defined unitary representation of G. Furthermore 

- -1 1 -1 n -1 -1 = (R(y,x )) 2 ¢(x y,x)(PET(x )f)(x y) 

-1 - -1 l -1 -1 -1 = xE(x y)(R(y,x ) 2 ¢(x y,x)(,(x )f)(x y) 

-1 - -1 -1 1 -1 - -1 -
xE(x y)(R(y,x )R(x y,x)) 2 ¢(x y,x)¢(y,x )f(y) 

= xx[EJ(y)¢(y,e)f(y) 

n -
= (Px[El)(y). 

Hence, (X,,,Pn) is a system of imprimitivity for G. The equivalence class of 

this system does not depend on our choice ofµ, as can be proved along the 

same lines as lemma 2.22. It is also not affected if we choose another co­

cycle in the cohomology class of¢. Indeed suppose ¢ 1 .::: ¢, and let b: X ➔ M 
n 

be a Borel map with 

4,(i,y) - -I - -= b(yx) ¢ 1 (x,y)b(x), 

If we set 

(Bf) (i) : = b (i) f (i), f E: K , 
n 

Vx,y E: G. 

then it is clear that B defines a unitary operator on K. Moreover, we 
n 

have 

(3. 12) (i) VE E: B(X); 

(3.12)(ii) B,(x) = ,'(x)B, 

where , 1 is the representation on K defined by¢'. (3.12)(i) is trivial, n 
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and (3. 12) (ii) follows from the following easy computation: 

- -1 ! - =T -=-r =1 
(R(y,x )) 2 b(y)¢(x y,x)b(x y)f(x y) 

- -I ! =T =T 
= (R(y,x ))2¢' (x y,x)f(x y) 

. n) ( 1 n) ( ) Consequently, (X,,,P :::::.. X,, ,P • Thus, we have constructed a map y ➔ I y 

from the set of (X,G,M )-cohomology classes into the set of equivalence 
n 

classes of systems of imprimitivity of the form (X,,,Pn). Proving surjecti-

vity of this map requires some technicalities which have no direct relation­

ship to our subject matter, and are therefore omitted. We refer the reader 

to [ 21 , thm. 9. 11]. 

As to part (iii) of theorem 3.10, let y be a (G,X,M )-cohomology class, 
n 

and let¢ belong toy. The representation T of Hon H associated with¢ is 
n 

given by ,(h) = ¢(;,h), he H. Lets: X ➔ G be a Borel cross-section with 

s(;) = e, and set 

¢' (i, y) 
- -1 -= ,(s(yx) ys(x)), x,y e G. 

Then¢' is a. (G,X,M )-cocycle which is cohomologous to¢ (theorem 3.9). n 
In §2.5 we have seen that the formula 

~G - - - 1 1 =T . =T 
(, (x)f)(y) = (R(y,x )) 2 ¢'(x y,x)f(x y) 

defines a realization ;G of the induced representation ,G on L2(x,H ,µ). 
n 

Let (X,,G,P) be the canonical system associated with ,G. Then the isometric 

isomorphism f ➔ gf from H(,G) onto L2 (X,Hn,µ) given by 

is easily seen to establish equivalence between (X, ,G ,P) and (X/i'G ,Pn). 

Indeed, we have 
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~G 
g G = -r gf' 

-r (x) f 
X E G, 

by definition of ~G, and 

XE G, EE B(X), 

by definition of the projection-valued measure in the canonical system. 
~G n n 

On the other hand, since~::::'..~', we have also (X,-r ,P)::::. (X,a,P ), where 

(X,cr,Pn) denotes the system defined by ~ •• This finishes the proof of theorem 

3. 10. 

3.3 Localizability in quantum mechanics 

It was discovered independently by Mackey and the physicist Wightman 

that the notion of imprimitivity can be employed in giving a mathematically 

rigorous description of the difficult physical concept of localizability. 

The physical background of this result can be traced back to a paper written 

by NEWTON & WIGNER [24], in which the localizability concept was approached 

from a rather heuristic point of view. By coincidence this paper was publish­

ed in the same year (1949) as was the first paper of MACKEY's [11] on im­

primitivity, which provided the tools to repair the mathematical shortcomings 

of [24]. We will try to sketch the relationship between imprimitivity and 

localizability, and in doing so we will more or less follow the exposition 

of WIGHTMAN [22]. 

It has to be understood that the concept of localizability as we will 

develop it, is of a rather academical nature, and can serve only as a basis 

for a physically consistent theory of "measurement of position". 

Consider a relativistic system in the Minkowski space-time M. We de­

note this system by S. There is associated with Sa unitary representation 

of the continuous Poincare group P: on the space of states of s. This re­

presentation is possibly a projective representation with phase-factor -1. 
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~t t 
This can be remedied by considering the covering group P of P, but we will 

+ + t 
assume that we are dealing with a proper unitary representation of P+, and 

at the end of our discussion we will make a remark on the projective case. 

Denote this representation by U: x ➔ U(x), and let H = H(U) be the space 

of states of S. 
3 We assume that the system Sis localizable somewhere in the space lR c 

Mat a fixed time. That is, there exist well-defined observables correspond­

ing with the measurement of the position of Sin any state in the various 

parts of JR.3 • If B is a Borel subset of JR.3 , we denote the self-adjoint 

operator corresponding to the observable measuring the position of Sin B 

by E(B). Then E(B)$ =$if S, being in the state$, is localized inside B, 

and E(S)$ = 0 if it is not. Clearly, the only eigenvalues of E(B) are zero 

and one. Together with its self-adjointness this implies that E(B) is a 

projection in H. We now give a set of axioms for the family 

{E(B); B E B(JR.3 )}, 

where B (JR.3 ) denotes the a-algebra of Borel subsets of JR.3 • These axioms 

express just the reasonable expectations one would have from a well-grounded 

notion of localization. That we choose the family of Borel sets as our point 

of departure is not as strange as it maybe seems to be; this is explained 

in appendix I of WIGHTMAN [22]. 

Axioms 

I For each B in B(JR.3 ), the operator E(B) on H is well-defined. 

II If B1 and B2 are disjoint Borel sets, then the system can be localized 

only in one of B 1 and B2 , i.e. 

III The set of states in which the system is localized in a union U. B. of 
1 1 

Borel sets is the linear span cf the states in which the system is local-

ized in one of the sets B .. Together with II this means 
1 
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00 00 

B . n B . = 0 => E ( U .B.) = I E (B . ) • 
1 J i=l 1 i=l 1 

IV In each state the system can be localized in JR.3 , i.e. 

E(JR.3) = I. 

V The measurement of position is in a sense invariant (or, rather, covar­

iant) under Euclidean transformations of JR.3 • We explain this below. 

Notice that II and III imply 

In this set-up the number p(B), defined by 

p(B) = IIE(B)ijJll 2 

111/JII 2 

3 
VBI ,B2 E B(JR ) • 

is equal to the probability of finding S inside B, if it is in the state 1/J. 

The first four axioms imply that the mapping E: B + E(B) from B(JR.3 ) 
3 into L(H) is a projection valued measure on JR • The fifth one provides us 

with a relationship between this measure and the representation U of P!, 

associated with S. Indeed, let E(3) denote the group of Euclidean motions 

of JR.3 , then E(3) is a subgroup of P!, which is to be interpreted as the 

pointwise stabilizing subgroup of the time-axis in M. By V: x + V(x) we 

denote the unitary representatipn of E(3) obtained by restricting U to E(3). 

Thus, the operators V(x) give the symmetries of H corresponding to the 

Euclidean transformation of JR.3 . Now axiom V expresses that if 1/J is a state 

in which Sis localized inside a Borel set B, then the state V(x)i/J in which 

Sis after transformation of the space by x, is a state for which Sis local­

ized in the transformed set x[B]. In formula, this means 

E(B)i/J = 1/J <=> E(x[B])V(x)i/J = V(x)i/J. 

Since this equivalence is valid for all states, we infer the identity 



70 

V(x)E(B)V(x)-l = E(x[B]), Vx e: E(3), VB E B(lR.3 ). 

But this expression implies exactly that the triple (lR.3 ,V,E) is a system 

of imprimitivity for E(3). Moreover, this system is transitive, since JR.3 

is a homogeneous space of E(3). Notice that the stabilizer in E(3) at any 

point of JR.3 is isomorphic with SO (3) • 

Application of the imprimitivity theorem yields the following results: 

(i) Vis induced on E(3) by a certain representation T of SO(3); 

(ii) The space H can be identified with a space 1 2 (JR3 ,H(T)), such that V 

acts in this space by 

(V((y,R))f(x) = T(R)f(R- 1(x-y)), 3 x,y E lR , RE S0(3). 

(iii) Eis equivalent to the projection-valued measure in 12 (JR3 ,H(T)) de­

fined by multiplication with characteristic functions. 

From these facts, the first one is perhaps the most striking. Indeed, 

the restriction of U to E(3) being induced from SO(3) is a stringent condi­

tion on U. Since the only assumption we have made, is localizability of the 

system S, we can derive from. (i) a criterion of localizabili ty: 

CRITERION. A relativistic system in the Minkowski space-time is localizable 

in JR.3 if and only if the corresponding unitary representation of the con­

tinuous Poincq:r-e group on the space of states, restricted to the Euclidean 

group E(3), is induced on E(3) 'from its subgroup SO(3). 

The problem now arises of determining which representations of Pt 
+ 

enjoy the property described in the criterion. The solution to this problem 

is highly nontrivial. If S consists only of one particle, the representation 

associated with it has to be irreducible. In this case we know that it can 

be interpreted as being induced on P: from a certain proper subgroup. There 

is a theorem of Mackey's which gives the decomposition of the restriction 

of an induced representation to a subgroup, the so-called subgroup theorem 

(cf. MACKEY [14], BARUT & R{\CZKA [2]). Applying this theorem one arrives at 

the following result: A relativistic particle is localizable in JR.3 if and 



only if it has real nonzero mass, or if its mass and spin are both zero. 

Among other things, it follows from this observation that a single photon 

will not be localizable (at least not in lR.3 ). For a proof, see WIGHTMAN 

[22] or BARUT & RACZKA [2, prop. 20.l], 
' 
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It is possible to change axiom Vin such a way as to enable localiza-

tion of massless particles with nonzero spin and of particles of imaginary 
3 mass, in other homogeneous spaces of E(3) then lR . (Cf. BARUT & Rs\CZKA 

[2, ch.20]). 

The above described method can also be applied to nonrelativistic 

systems in space-time. Then the Poincare group has to be replaced by the 

Galilei group. For details, see WIGHTMAN [22]. 

Next we will show how to derive a set of position operators for the 

system S, from the projection-valued measure E. For each~ in the space of 

states H, we define a finite, positive Borel measureµ~ on lR.3 , by 

µ~(B) := (~,E(B)~), 3 B E B (lR ) . 

By means of these measures, we can define three generally unbounded opera­

tors Q., i = 1,2,3, on H, by 
l. 

It can be verified straightforwardly, that these definitions are legitimate, 

and, moreover, that the Q. are self-adjoint. By virtue of the axioms II and 
l. ' 

III, we have 

(3.13) [Q.,Q.J=O, 
l. J 

:::; i,j :::; 3, 

i.e., the operators Q. connnute with each other. We denote them symbolically 
l. 

by 

Q. = J x.dE(x). 
l. 3 l. 

JR 
3 Let (y,R) denote an element of E(3), with y E JR and RE S0(3), such that 
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(y,R)[x] = R(x) + y, 3 
X E lR 

-1 -1 
and set R = (r .. ), R = (r .. ). Then we have 

l.J l.J 

-1 
V(y,R)Q.V(y,R) 

l. 
. -1 

x.d(V(y,R)E(x)V(y,R) ) 
l. 

f -1 
x.dE((y,R)[x]) = ((y,R) [xJ).dE(x) 

l. 3 l. 
lR 

-1 -1 ((-R (y),R )[x]).dE(x) . l. 

= J l r:~cx. - y.)dE(x) 
3 . l.J J J 

lR J 

1ff . = l r:.L x.dE(x) 
j l.J ]R.3 J 

- J y.dE(x) l 
]R.3 J -

\ -1 =Lr .. (Q. - y.I). 
j l.J J J 

This identity expresses the transformation property of the "position vector" 

(Q 1,Q2 ,Q3) under symmetries implied by E(3). It comes up to the expectations 

one would have from a rightly defined set of position operators. Moreover, 

from this identity we can derive the Heisenberg conn:nutation relations. In­

deed, by a theorem of Stone there exist three cormnuting selfadjoint opera­

tors Pk' k = 1,2,3, on H such that 

3 
Vy E lR • 

These operators are called the momentum operators of S; they are the genera­

tors of the three-parameter translation group 

3 
{V (y, I) ; y E lR } • 

From the transformation rule given above for the three vector (Q 1,Q2,Q3) 

one derives readily (for instance, by formal differentiation) the following 

relations: 
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:,; j,k:,; 3. 

Together with (3.13) 

:,;j,k:,;3, 

we have the Heisenberg connnutation relations, which therefore fit perfect­

ly in our model. 

Here we arrive at the more general problem of finding the representa­

tions of an algebra generated by 2n formal elements Q1, .•• ,~, P1, ••. ,Pn, 

which satisfy 

[Pj,Pk] = [Qj,Qk] = 1 i :,; j ,.k :,; n. 

[Qj,Pk] = -iojkr 

This problem can be solved in a very rigorous (and nice) way by applica­

tion of the imprimitivity theorem (or, rather, a corollary of the imprimi­

tivity theorem). Indeed, it can be shown that the well-known Schrodinger 

representation on 12 (:IR.n), defined by 

(Q.f)(x) = 
J 

(P.f)(x) = 
J 

x.f(x) 
J 

elf 
-1. ax. 

J 1J 
is in a sense unique. This can be found in, for instance, MACKEY [14]; 

JAUCH [8]; BARUT & RAfZKA [2]. 

REMARK. After the proof of theorem 3.6 we mentioned that the notions of 

induction and imprimitivity can be generalized to projective representations 

such as to enable an extension of the imprimitivity theoren to these repre­

sentations. This can be used in the case that the repreresentation U is pro­

jective, and the procedure described above can be followed without any sub­

stantial modification. 
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Appendix to §3.1. 

In this appendix we intend to finish the proof of theorem 3.4. For 

this purpose, it is convenient to introduce a certain dense subspace of 

the representation space of a unitary representation of a lcsc. group, the 

so-called Girding space of a representation. 

Let, be a unitary representation of a lcsc. group G. Then, defines 

a nondegenerate representation T of the convolution algebra 1 1(G), by 

(A. 1) 1(a) := f a(x),(x)dx, 

G 

1 a EL (G), 

(cf. KIRILLOV [9, 10.2]). We define a subspace V of the representation T 
space H(,), by 

V := linear span of {Ta(~), a E K(G), ~ E H(,)}. 
T 

(Note that H(,) = H(Z).) By virtue of (A. 1 ) , we have 

(A. 2) (i) ,(x)V c V, 
T T 

Vx E G; 

(A. 2)(ii) TV CV' T T 
VTEI(,). 

From the fact that Tis nondegenerate (i.e. "T(L 1(G)) has trivial null space), 

together with the fact that K(G) lies dense in 1 1(G), it follows that 

(A.2)(iii) V, lies dense in H(,). 

We will call V, the G&rding space of the representation,. 

Next, suppose that Tis induced by a representation a of a closed sub­

group Hof G. Then the corresponding representation of 1 1(G) is given by 

(Z(a)f)(y) 
( -1 -1 I 

= J a(x)f(x y)RG,x ) 2dx, 
1 

y E G,a EL (G),f EH(,), 

G 

where Risa continuous strictly positive R-function corresponding to a 

quasi-invariant measure on G/H. It can be shown that in this case we have 



(A.2)(iv) 

(A.2)(v) 

each function in V 1.s continuous; 
'( 

{f(e); f e V,} lies dense in H(cr). 

(cf. BARUT & RiczKA [2, ch.16].) 
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Proof of theorem 3.4 (continued). Let cr be a unitary representation of a 

closed subgroup Hof a lcsc. group G, write T = crG, and let (G/H,,,P) denote 

the canonical system associated with,. We had defined a mapping T ➔ T from 

I(cr) into L(H(,)) by 

-~ 
(Tf) (x) : = Tf (x), f E H(,), 

cf. formula (3.6). In the first part of the proof of theorem 3.4 we showed 

that this mapping is injective and that its range lies in I(,,P), the com­

muting algebra of the canonical system. We will now prove surjectivity on­

to I(,,P). 

Let S belong to I(,,P) and let V be the Gftrding space of,. By (A.2)(ii), 
'( 

we have 

(A. 3) sv CV. 
'( '( 

For each fin H(,) and each Borel set B 1.n G/H, we have 

f II (Sf) (x)II 2dµ(i) = 

B 

For f 1.n V, this means 
'( 

r 
J 

G/H 

2 -llxB(x)(Sf)(x)II dµ(x) 

II (SPB)fll 2 s llsll 2 . IIPBfll 2 

llsll 2 I llf(x)ll 2dµ(i). 

B 

(A. 4) :l(Sf)(x)II s llsll•llf(x)II, Vx e G, 

since (i) x -➔ II (Sf) (x)ll 2 and x ➔ II f(x)II 2 are both continuous, by (A.2) (iv) 
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and (A.3), and (ii) nonvoid open subsets of G/H have positive µ--measure. 

Consider the dense subspace {f(e); f EV} of H(cr) ((A.2)(v)). We define an • 
operator s0 on this space by 

s0 : f(e) + (Sf)(e), 

By virtue of (A.4), this definition is legitimate, and s0 is bounded. There­

fore, there exists a unique extension to H(cr), which we denote by s0 as weli. 

Since SE I(,), we have 

Furthermore, 

Vf EV, Vx E G. • 

Hence s0 connnutes with the operators cr(h) on a dense subspace of H(cr), and 

by continuity we conclude s0 E I(cr), which proves our theorem, since 
A 

so= s. □ 

IV THE REPRESENTATIONS OF SEMIDIRECT PRODUCTS 

4.1. Semidirect products 

Let G be a lcsc. group, and suppose that we are given two closed sub­

groups N and Hof G, such that 

(i) N is invariant; 

(ii) G = N.H and G ~ NxH; 

(iii) N n H = {e}. 

Then we shall call G the semidirect product of N and H. Note that each 

element h of H defines an automorphism of N, by 

(4.1) 
-1 

h:n + h nh =: ah(n), n EN. 
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Since the group operations in Gare continuous the mapping (h,n) ➔ ah(n) is 

continuous on HxN. The multiplication in G may be written as 

nhmk = nhmh-I hk = nah(m)_ hk, n,m € N,h,k € H. 

Conversely, if we are given two groups N and H, such that there exists 

a one-to-one homomorphism a: h ➔ ah from H into the automorphism group of 

N, then we can provide the Cartesian product NxH with a group structure 

by defining 

(n,h)(m,k) := (nah(m),hk), n,m € N,h,k € H. 

Note that the homomorphism property of-h ➔ ah is needed in order to ensure 

associativity of this structure. The group obtained in this manner is called 

the semidirect product of N and H relative to a, and usually denoted by 

N@ H. 

It will be a lcsc. group in the product topology if N and Hare lcsc. gr?ups 

and if the mapping (h,n) ➔ ah(n) is continuous~ 

Throughout the remainder of this subsection we will assume that G is a 

lcsc. group, and that G = N@H, and, moreover, we will take N to be abelian. 

Let N be the family of all irreducible characters of N, that is, N 

consists of all continuous homomorphism~: N ➔ T. If~ EN, then we define 

a new element h[~J of N for each h in H, by 

(4.2) (h[~J)(n) := ~(ah-I)(n)). 

... 
It is easily verified that h[~J is indeed a member of N. The character 

h[~J is said to be conjugate to~. Recalling the definition of a G-space 

(§1.5), one sees that the action of Hon N defined by h:~-+h[~J, makes N 
into a H-space. Indeed, we have 
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This property of the H-action is, of course, the reason of introducing 

inversion into the definition given by formula (4.2). 

It is well-known that the dual of a lcsc. group can be made into a 

lcsc. group in its own right, by taking multiplication of characters as 

composition, and providing it with the so-called topology of uniform con­

vergence on compacta (cf. KIRILLOV [9, 7.3J). A basis for the open sets of 
A 

this topology is formed by the family of sets U(C,E,~0) c N, defined by 

where C is a c~mpact subset of N, Ea positive nonzero real number, and ~O 

an element of N. The continuity of the mappings (h,n) + ah(n) and n + ~(n) 

(VhEH, nEN, ~EN) leads via the inequality 

and some simple standard arguments, to the conclusion that the mapping 

(h,~) + h[~J 

A A 

from HxN into N is continuous. Hence, N is a continuous H-space. The orbit 
A 

structure in N will play an important role in subsection 4.3. Let w c N be 

an H-orbit, and let H0 be the stabilizer in Hof a fixed point ~OE w. Then 

H0 is a closed subgroup of H, and we consider the mapping 

from the homogeneous space H/H0 onto w. This mapping is clearly one-to-one. 

Furthermore, if we consider the Borel structure on w generated by the 

relative topology which w inherits from N, and the Borel structure on H/H0 

generated by the quotient topology, then it can be shown that the mappings 

Sand S-l are both Borel mappings, which is expressed by calling Sa Borel 

isomorphism (see VARADARAJAN [21, thm.8.11]). It can also be verified, by 



-a simple argument, that w is a Borel subset of N (ibidem, p.12). Notice 

that these observations enable us to identify the Borel measures (or pro­

jection-valued measures) on N, restricted tow, with those on H/H0 • 
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Since N is a continuous H-space, the mapping Sis continuous. However, 

the inverse mapping s-1:w + H/H0 need·not be continuous, so Sis generally 

not a homeomorphism. It is known that a sufficient condition for S to be a 

homeomorphism is that w is a lcsc. space with respect to its relative topol­

ogy (cf. VARADARAJAN [21, thm.8.11]). One verifies readily that this condi­

tion is satisfied if, for instance, H0 is compact. 

The discussion of examples is postponed to the end of the treatment 

of the representation theory. 

4.2. The representation of finite semidirect products 

The author thinks that a good understanding of the representation 

theory of general locally compact second countable semidirect products 

benefits from a preliminary discussion of the finite case. For, the argu­

ments which we will use to derive a classification of the representations 

of finite semidirect products can be extended to infinite groups with only 

standard adjustments of a measure theoretical kind. This will be shown in 

the next subsection. 

We are aware of the fact that our treatment of the finite case is 

amenable to substantial simplifications and generalizations, but our strategy 

is attuned to the infinite case. 

Thus, let G denote the finite semidirect product of an abelian invariant 

subgroup Nanda subgroup H. Consider a representation• of N (or any finite 

abelian group). It can be decomposed into a linear combination of characters • 

• = l~ ncp<f>, 
<f>e:N 

where {n<l>}<f>e:N is a set of natural numbers, uniquely determined by •• This 

decomposition corresponds to a decomposition of the representation space 

H(.), which is also unique: 

\~ H(.) = l_ 
<f>e:N 
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Let P¢ be the projection operator of H(.) which has H¢ as its range. Then 

(4.3) ,(n) = LA ¢(n) P¢, n EN. 
¢EN 

(Note that this decomposition is the finite counterpart of the spectral de­

composition of representations of locally compact abelian groups, provided 

by the SNAG-theorem (§4.3)). As explained in the preceding section we can 

view upon P :¢ + P¢ as a projection valued measure (based on N) by setting 

PE := I P¢, 
¢EE 

for any subset E of N. 
If a is a representation of G, then• := crlN is a representation of N. 

For any representation. of N we will denote the corresponding projection 
A L L 

valued measure on N by P :E +PE.We can now state the following l~mmata 

on the relationship between a and pcrlN. 

LEMMA 4.1. Let. and p be representations of N and Hon the same Hilbert 

space. Then the following assertions are equivalent: 

(i) There exists a representation a of G such that alN =•and alH = p. 

(ii) The triple (N,p,p') is a system of irrrprimitivity for H. 

PROOF. (i) ~ (ii). Condition (i) implies (and is implied by) the following 

identity: 

(4.4) p(h) ,(n) p(h)-l = .(hnh-1), VnEN,VhEH. 

Using the decomposition (4.3) of., we obtain 

p (h)( L ¢(n)P;) p(h)-1 lA ¢(hnh-l) • = P¢. 
¢EN ¢EN 

The right hand side can be rewritten as: 

L ¢(hnh -l) p• lA (h -l [¢])(n) p• l- ¢(n) • = = Ph[cp]" 
</JEN ¢ </JEN <P </JEN 
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Hence, we have 

(4.5) I-
T -1 L Hn) T ¢(n)(p(h)P¢p(h) ) = p h[ ¢ J. 

,~E:N ¢E:N 

By uniqueness of decomposition it follows that 

(4.6) T -1 T 
p(h) P¢ p(h) = Ph[¢]' 

-Vh E: H, V¢ E: N. 

But this implies (by linearity) that condition (ii) is satisfied, so we are 

through. 

(ii)~ (i). Obviously the above argument van be reversed, that is, (4.6) 

implies (4.4). But then 0(nh) := T(n) p(h) is a representation of G. D 

LEMMA 4.2. Let 0 1 and 0 2 be representations.of G. 

space 1~0 1,02) is equal to the intertwining space 

( 0 2 I H, P 21 N ) ) of the corresponding (by lemma 4 • 1 ) 

for H. In pm,:,ticular, one has 

Then the intertwining 
0 1 IN 

1((01 IH'P ) ' 
imprimitivity systems 

(i) 0 1 ::::.. 0 2 if and only if the corresponding systems are equivalent; 

(ii) a representation of G is irreducible if and only if the corresponding 

system is irreducible. 

PROOF. It is clear that 

Furthermore we have TE: 1(0 1 IN'021 N) iff 

Ta 1 (n) = 0 2(n)T, Vn E: N 
iff 

Vn E: N, 

iff, for all i; E: H(cr 1) and n E: H(02): 

Vn E: N. 



82 

.... 
Since the elements of N form an orthonormal basis for the space of all 

complex-valued functions on N (cf. §1.2), the last identity is equivalent 

to 

But this is true if and only if 

a a I TP llN = p 2 NT 
E E ' 

.... 
YE C N. 

Therefore, we have 

which implies 

This proves the first statement of the lemma. (i) and (ii) are immediate 

consequences. D 

Next we show how to construct a number of irreducible representations of G. 

Fix a point $0 in N, and let w0 denote the orbit of $0 in N under the 

action of H, i.e., 

Then w0 is H-homeomorphic with H/H0 , where 

denotes the stabilizer in Hat $0 • 

Now, let p be an irreducible representation of H0 , and, for each ele­

ment nh of G, define an operator a(nh) in the induced representation space 

H(pH) by 

(a(nh)f)(x) H := (x[$0J)(n)(p (h)f)(x) 
-1 

= (x[$o])(n)f(h x), XE H. 



It is obvious that cr(nh)f does belong to H(pH). We show that cr is a repre­

sentation of G: 

( cr (nh) cr (mk)f) (x) 
-1 = (x[¢0J)(n)(cr(mk)f)(h x) = 

· -I -I 
(x[¢0 J)(n)(h x[¢0J)(m)f((hk) x) = 

-1 -I -J -I = ¢0 (x nx)¢0 (x hmh x)f((hk) x) = 
-I -I -J = ¢0 (x nhmh x)f((hk) x) = 

= (x[¢0 ])(nhmh-I)f((hk)-lx) = 

(cr(nhmh-Jhk)f)(x) = 

= (cr(nhmk)f)(x). 
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Let T := crlN" By virtue of lemma 4.1, (N,0IH'p) is a s.o.i. for H, and 

lemma 4.2(i) implies that cr is determined up to equivalence by this system. 

We now determine P': 

(T(n)f)(x) = (x[¢0J)(n)f(x) = (_ L (y[¢0 J)(n) x{ H} •f)(x). 
yEH/H0 y 0 

The second step is legitimate since x EH belongs to exactly one H0-coset, 

say y0H0 , and then y0[¢0] = x[¢0], since H0 stabilizes ¢0 . Next we define 

a projection-valued measure based on N and acting in H(ph), by 

where 

(4. 7) 

l P¢, EC N, 
¢EE 

-if¢ E N\wo 

if¢ y[¢0 J, y EH. 

Then we may write 

(,(n)f)(x) = ( l- ¢(n)P¢(f))(x), 
¢EN 

H 
f E H (p ) ' 

so Pis the projection-valued measure associated with,. Moreover, Pis 

based on w0 , actually, since it vanishes on N\w0 . We express this fact by 

saying that Pis concentrated in one orbit (w0). Besides, we know that w0 
is H-homeomorphic with H/H0 , and that the homeomorphism is given by 
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Consequently, we may consider Pas a projection-valued measure on H/H0 , by 

defining: 

p E : = p q/ (E) ' 

Then we find (by (4.7)): 

(4. 8) H E c H/H0 , f E H(p ). 

But formula (4.8) defines a projection-valued measure equal to the one 
H occuring in the canonical imprimitivity system of p (cf. example 3.3). 

Hence, by corollary 3.5, the irreducibility _of p implies irreducibility 
T H H 

of the system (N,crlH'P) = (H/H0 ,p ,P) (note that crlH = p by definition), 

which in its turn results in irreducibility of cr, by virtue of lemma 4.2(ii). 

Finally, lemma 4.2(i) together with the imprimitivity theorem yields that 

cr is determined up to equivalence by p. 

In the construction of cr we have chosen a fixed point ~O in w0 , but it 

will turn out in the next theorem that the collection of representations, 

obtained by letting p run through H0 is independent (up to equivalence) of 

the choice of ~O in w0 • This fact can also easily be verified straight­

forwardly. 

We shall call the above constructed representation cr of G associated 

with the orbit w0 and the representation p E H0 , and denote it by /wo,P). 

The following theorem concludes the discussion of representations of finite 

semi-direct products. 

... 
THEOREM 4.3. (Mackey) Let {w} n be the collection of H-orbits in N and let 

WE~6 

H be the stabilizer in Hat a fixed point of w. Then: 
w 

(i) cr(w,p) is an irreducible representation of G for all pairs (w,p), in 

which pis an irreducible representation of H; 
(ii) cr(w,p) ~ cr(w',p') if and only if w = w' and pw=::. p'; 

(iii)Each member of G is of the form cr(w,p), for some w E 
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PROOF. (i) was already proved above. There we also showed that o(w,p)::::::. 

cr(w,p') if and only if p::::. p 1 • As to the role of the orbit win determining 

the equivalence class of o(w,p), it suffices to make the obvious observation 

that the restrictions to N of o(w,p) and o(w',p') will not be equivalent if 

w f w'. This proves (ii). 

(iii): Let 0 be an irreducible representation of G, and consider the pro­

jection-valued measure P := Po!N. We contend that Pis concentrated on one 

orbit. Indeed, let w be an orbit, then by virtue of the identity 

'v'h E H, 

it follows that P commutes with 
w 

p 
w 

commutes with a!N as well, so 

all operators a!H(h), h EH. Furthermore, 

P = 0 or I, by the irreducibility of a. 
w 

Suppose that P = 0 for all 
w 

]. = P- = - N I 
WErl 

p = O; 
w 

orbits w. Then we would have 

a contradiction. On the other hand, it is obvious that 

is not allowed, unless w1 = w2 . Hence, there is exactly one orbit, say w0 , 

with P = I and P- = 0. (*). 
w0 N\wO 

But then we may view Pas a projection-valued measure on H/H 
crlN 

and therefore we see that (H/H ,a IH'P ) is a transitive s.O.1.. 
wo 

(lemma 4. I) .. By the imprimitivity theorem it follows that: 

(i) 01 11_ is induced on H by a certain representation p of H and 
HWO 

(ii) the system is equivalent to the canonical system of p . 

wo ~ WO' 

for H 

Since 0 is irreducible, pis also irreducible, by lemma 4.2(ii) and corollary 

3.5, and this fact together with lemma 4.2(i) yields that cr is equivalent to 
0 (wo, p) . [] 
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(*): This paragraph marks the main difference between the representation 

theories of finite and general lcsc. semi-direct products. In fact, let P 

be a projection-valued measure based on a continuous G-space, where G is 

a lcsc. group. Then P = 0 for each orbit w does not necessarily imply that 
w 

l P - 0, since this "sum" may be ·continuous. By laying a condition of 
WEQ W -

a measure theoretical kind on the orbit structure of the G-space, this 

defect can be repaired. This will be shown in the next subsection. 

EXAMPLE 2.4. In §1.2 we discussed the permutation group s3 . Let N = A3 , the 

alternating subgroup and H = {(1),(12)}, a cyclic subgroup of order 2. Then 

it is readily verified that s3 is the semi-direct product of N and H. The 

characters of A3 were denoted by ¢ 1, ¢2 , ¢3 in example I.II. The group H 

acts on A3 by 

(l)[ijJ.] = ijJ., 
i i 

Hence there are two orbits: 

WI= {ijJI}, 

w2 = {i/Jz,¢3}, 

i = 1,2,3, and 

stabilizer: H1 = H; 

stabilizer: H2 = {(I)}. 

Note that the character table of His 

(I) (12) 

Pz -1 
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By some elementary computations we find: 

where we use the notation of example-1.11. 

In SERRE [19] the reader can find a shorter proof of theorem 4.3. In 

REYES [ 16] an analogous apnroach to finite semi-direct products G = N@ H 

with N not abelian, is given, which proceeds by admitting irreducible pro­

jective representations of the little groups in constructing the irreducible 

representations of G. 

4.3. The representations of lcsc. semi-direct products 

Throughout this subsection G denotes a·lcsc. group, which is the semi­

direct product of two of its subgroups N and H, with N abelian and invariant. 

First we recall the statements of the SNAG theorem (cf. BARUT & RA;CZKA 

[2, 6.2]). 

(i) If. is a unitary representation of a Zcsc. abeZian group A, then 

there exists a unique projection-vaZued measure P: Er-+ PE, based on 

A and acting in the representation space oft, such that 

r 
(,(a),,n) = J ~(a)dµ,,n<~), v,,n EH(,), Va EA, 

A 
... 

where the compZex BoreZ measure µ,,non A is defined by 

E Borel set in A. 

We write as usual: 

(4.9) ,(a)= i ~(a)dP$, 

A 

a EA. 

... 
(ii) ConverseZy, if P: E ➔ PE is a projection-vaZued measure on A, acting 

in a certain separabZe HiZbert space H, then (4.9) define a unitary 

representation of A on H. 
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If T is a representation of N, then we denote by PT the projection-valued 

measure which corresponds to T by virtue of this theorem. 

Let T and p be unitary representations of N and H respectively, 

the srune representation space. Suppose that they satisfy 

-1 · -I 
p(h)T(n)p(h) = T(hnh ), 'vn EN, 'vh EH. 

By decomposing Ton both sides as in (4.9), we obtain 

This yields 

p(h)(J ¢(n)dP;)p(h)-l 

N 

J T -1 
¢(n)d(p(h)P¢p(h) ) 

= I -1 T 
¢ (hnh )d P ¢. 

N 

= l (h- 1[¢J)(n)dP; = l ¢(n)dP~[¢]' 

N N 

with 

This formula is obviously the infinite counterpart of formula (4.5). By 

the uniqueness granted in statement (i) above, we conclude that 

T -1 T 
p(h)PEp(h) = ph[E]' 

for all h in Hand all Borel subsets E of N. This proves lennna 4.1 in the 

case of lcsc. groups. 

Next, let 0 1 and 0 2 be unitary representations of G, and set Tl = 0 1 !N 

and T2 = 0 2 !N. For Tin I(T 1,T 2), we have 

Hence 

(4. 10) J Tl 
A ¢(n)dµ~,T*n(¢) 'vn EN. 

N 

The following result can be proved (see appendix): 

- Ifµ is a finite complex-valued measure on the dual A of a lcsc. abelian 

group A, such that 



J Ha)dµ(<P) = o, Va E: A, 
A 

A 

then µ ·is equaZ to zero. 

Renee, we have 

This implies 

TI * 
(P t;;, T n) 

T2 
= (P Tt;,n), 

Consequently TE: I(PTJ ,PT2), which proves lemma 4.2 in the case of lcsc. 

groups. For, it is obvious that the argument above can be reversed, whence 

I(PTI ,PT2) = I(Tl,T2). 
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We will now repeat the construction of representations of G. Fix an 

orbit w0 in i~, a point <Po in w0 , and denote by H0 the stabilizer in Hat 

<Po· Let p be an irreducible unitary representation of H0 , and let f be a 

function in the induced representation space H(pH), considered as a space 

of L2-functions. For each element nh E: G we define a new function cr(nh)f on 

H by 

(cr(nh)f)(x) 
H := (x[<t> 0 J)(n)(p (h)f)(x). 

We have 

(i) 

(ii) 

(iii) 

-I . 
(cr(nh):E)(xh0) = p(h0 )(cr(nh)f)(x), h0 E H0 ; 

H x >-+ ((cr(nh)f)(x),t;;) = (x[<t> 0 J)(n)((p (h)f)(x),t;;) 

is a Borel function for each t;; E: H(p), since it is the product of 

two Borel functions. 

H 2 -11 (x[ <t> 0J) (n) (p (h)f) (x) II dµ (x) 

H 2 -II (p (h) f) (x) II dµ (x) 
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These properties imply that cr(nh)f belongs to H(pH) (cf. §2.4), and (iii) 

implies also llcr(nh)fll = llfll. Furthermore, we have 

(cr(nh)cr(mk)f)(x) 
-1 - -1 1 

= (x[~0 J)(n)(cr(mk)f)(h x)(R(x,h )) 2 = 

-1 . -1 - -1 --::Y- -1 1 
= (x[~0J)(n)(h x[~0J)(m)f((hk) x)(R(x,h )(R(h x,k )) 2 

-1 
(cr(nhmh hk)f)(x) 

= (cr(nhmk)f)(x), n,m EN, h,k EH. 

Here Risa continuous real function on H/H0 x H corresponding to the quasi­

invariant measureµ on H/H0 • 

Putting the pieces together, we see that cr is a homomorphism from G 

into the algebra of unitary operators on H(pH). For proving weak continuity 

of cr, it is sufficient to do so on the dense subspace K of H(pH). If 
p 

f,g EK, then the function 
p 

nh -+ H -
(x[~0 J)(n)((p (h)f)(x),g(x))dµ(x), 

can be easily showed to be continuous, by standard arguments. 

We conclude that cr is a unitary representation of G. It will be called 

associated with the orbit w0 and the representation p, and denoted by 
/wo,P). 

If we set T = crJN' then 

(T(n)f)(x) = (x[~0J)(n)f(x), 
H 

f E H (p ) • 

We contend that this identity implies that the projection-valued measure 

PT on N, associated with T, is concentrated on the orbit w0 • To prove this, 

we define a projection-valued measure P: E-+ PE on N, which acts in H(pH), 

by 

Ea Borel set in N. 



For each f,g E H(pH), P yields a complex Borel measure on N: 

µf,g(E) = (PEf,g) = J xE(x[¢0J)(f(x),g(x))dµ(i). 

H/H0 

This can be rewritten as (by abuse of notation) 

Hence we find 

(,(n)f,g) 

= f O if </> E N\wo 

l (f(x),g(x))dµ(i) 

r 
J (x[¢0 J)(n)(f(x),g(x))dµ(i) 

H/H0 

i </>(n)dµf,g(</>), 

N 
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which proves our assertion, by virtue of the uniqueness of the projection­

valued measure associated with,. 

The set of representations 0 obtained by letting p run through 

(stab(¢0))is independent (up to equivalence) of the choice of ¢0 . 

Verification of this assertion can be done by straightforward manipulation 

of the definition of induced representations. 

Before we state the analogue of theorem 4.3, we have to consider what 

happens to the third statement of this theorem. As we have pointed out after 

the proof of this theorem, one of the arguments used in proving the third 

statement does not apply to general lcsc. semi-direct products. Besides, 

it is possible to give counterexamples of lcsc. semi-direct products having 

a lot of irr,educible unitary representations which can not be constructed 

in the above described manner. Hence we must look for a more restricted class 

of groups, such that theorem 4.3 carries over completely. 

DEFINITION 4.5. A continuous G-space X for a lcsc. group G is said to be 

countably separated (or to have a smooth orbit structure) if there exists 

a countable :sequence B1 ,B2 , ... of Borel subsets of X, such that 
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(4.11) 
r (i) 

l (ii) 

each B. is a union of G-orbits; 
i 

each orbit in Xis the intersection of those B. that 
i 

contain it. 

If G is a lcsc. semi-direct product of N and H such that the H-orbit struc­

ture in N is countably separated, then we shall call Ga regular semi-direct 

product. 

DEFINITION 4.6. Let P be a projection valued measure on a continuous G-space 

X for a lcsc. group G. Then we say that Pis almost transitive if 

P = 0 or I, 
w 

for each orbit w. 

Note that th:i.s definition implies two possibilities: P = 0 for all orbits; 
w 

or Pw = I and PX\w = O, for a certain orbit. In the last case we call P 

transitive, or concentrated in one orbit. 

LEMMA 4.7. Let P be a projection valued measure on a continuous G-space 

with countably separated orbit structure. If Pis almost transitive~ then 

it is concentrated on one orbit. 

00 

PROOF. Let {Bi}i=l be a sequence of Borel subsets of X, satisfying (4.11). 

Suppose P 
w 

= 0, for all orbits win X. For a fixed orbit w0 there exists a 

subsequence 
• 00 

lBn.} i=l 
i 

uJO = 
00 

n 
i=l 

00 

of {B.}. 1 such that ii= 

B ' n. 
i 

for i = 1 , 2, • • • • 

00 

(Where we assume, without dam&ging generality, that {Bi}i=l is closed under 

finite intersection). But then we have 

p 
00 

n 
i=l 

= lim 
B i-+oo 
n. 

i 



93 

Since each B. is a union of orbits, PB = 0 
1 i 

above identity impl~es that PBn_. = 0 for at 
1 

or I, for all i. Hence, the 

least one Bni" Consequently, 

each orbit in Xis contained in a Borel set B. of P-measure zero, which in 
1 

turn implies that X can be covered with a countable family of P-null-sets. 

Thus P = O• a contradiction. 0 X , 

For the sake of completeness we will show by means of an example that 

the condition of countable separateness can not be omitted in lennna 4.7. 

EXAMPLE 4.8. Let T be the circle group, consisting of all complex numbers 

of modulus one, and let 2Z be the additive group of integers. 

We make T into a continuous 2Z-space by defining a 2Z-action on r by 

n(z) 
in = e z, n E 2Z, z ET. 

Consider the projection valued measure Pon T, which is canonically asso-
2 ciated with the regular representation of r on L (I,a), where a is the nor-

malized rotation invaraint measure on r. That is, for each Borel subset E 

of T, we have 

2 f EL (T,a). 

The 2Z-orbits in Tare countable, whence they have a-measure zero. If w is 

an orbit, it follows that x is a-almost everywhere zero on T. Hence P = O w w 
for all orbits w. 

REMARK. In §4.l we mentioned that the H-orbits in N can be provided with 

two topologies, the quotient topology from H/H and the relative topology 
- w 

from N. The one-to-one mapping xH ➔ x[$] (where H stabilizes$ E w) is a w w 
homeomorphism with respect to the quotient topology, and continuous with 

respect to the relative topology. The following highly nontrivial fact can 

be proved (GLIMM [4]): G is regular if and only if the mapping xH ➔ x[$] 
w 

is a homeomorphism with respect to the relative topology on w from N, for 

each orbit w. We emphasize that in general this equivalence is only valid 

if G is second countable. By simple standard methods one verifies that the 

necessary condition is satisfied if His compact. But, for instance the 
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Poincare group is a regular semi-direct product as will be shown in sub­

section 4.6, and in this case His equal to the orthochronous Lorentz group, 

which is not compact. 

Let us assume that our semi-direct product G is regular. Then let a 

be an irreducible unitary representation of G, and set L = ajN. For each 

orbit win N, we see that PL commutes with any operator belonging to one 
w 

of the sets {a(h); h EH} and {L(n) = a(n); n EN}. Hence, since a is ir-

reducible, 

4.7, PL is 

PL is either zero or the identity. But then, by virtue of lemma 
w 

concentrated on one orbit, say w0 • Therefore, we may view 
... L 

(N,alH'P ) as a transitive system, based on H/H0 , where H0 is the stabilizer 

at a fixed point of w0 • This implies 

(i) alH is induced by a certain unitary representation p of H0 ; 

(ii) (H/H0 , alH, PL) is equivalent to the canonical system of pH; 

By virtue of lemma 4.2(ii) for lcsc. semi-direct products and corollary 

3.5, we conclude that pis irreducible. Finally, from lemma 4.2(i) it fol­

lows that a is equivalent to a<wo,P). 

THEOREM 4. 9. (MACKEY) Let G be a lase. semi-direct product of N and H, with 

N abelian, let {w} ~ be the collection of H-orbits in N, and let H denote 
WE•6 W 

the stabilizer in Hat a fixed point of w En. Then, one has 

(i) 

(ii) 

a(w,p) is irreducible for all win Q and all pin H · 
w' 

a(w,p) .:::.a(w',p') if and only ifw = w' and P !::::.p'. 

If G is regular, then: 

(iii) The representations a(w,p), w En, p EH, exhaust the set of all 
w 

unitary irreducible representations of G, up to equivalence, □ 

REMARK 4.10. Several authors use a somewhat different construction of the 

representations a(w,p) (MACKEY, LIPSMAN). They proceed as follows. Choose 

an element~ of w, let p be an irreducible unitary representation of H, 
w 

and set 

L(nh) = ~(n)p(h), n EN, h EH. 
w 
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It is readily verified that, defines a unitary representation of the sub­

group N@ H of G. The next step is induction of, on G, and it can be shown w 
h G' ' d 'bl tat, is irre uci e. 

We suggest that the reader thinks out for himself how equivalence of 

,G and o(w,p) can be proved. 

REMARK 4.11. For convenience we wish to mention two special cases of the 

constructions of o(w,p) which do often occur. 
' 

First, consider the trivial character of N, which sends all elements 

of N to the identity oft. If ~O denotes this character, then its orbit is 

WO = {~o}, and its little group comprises all of H. Hence, we get 

o(wo,,)(n,h)x = ,(h)x, T E H, XE H(.). 

Thus, the irreducible unitary representations associated with w0 are just 

the trivial extensions to G of the irreducible unitary representations of 

H. We shall call w0 the trivial orbit. 

Another extreme case is the one in which the little group is trivial. 

Suppose that w is an orbit with H = {e}. Then, for a fixed point~ of w w 
we obtain 

(o(w,l)(n,h)f(x) = (x[~J)(n)(A(h)f)(x) = 

= (x[~J)(n)f(h- 1x), 2 f EL (H), 

where I denotes the unique irreducible character of H, and A the regular 
2 H w 

representation of Hon L (H). Indeed, obviously l is equivalent to A. 

We conclude this subsection with giving an idea of the large amount of 

literature dealing with various generalizations of theorem 2.10. In particu­

lar, one is concerned about what happens if N is no longer abelian. We give 

an example of the results in this state. 

Let N be a closed invariant subgroup of a lcsc. group G. Then, if, 

is a unitary representation of N, and if xis an element of G, the mapping 

x[,J from N into L(H(,)) given by 

x[,J 
-) 

n ➔ ,(x nx), n EN, 
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still defines a unitary representation of N, which will be irreducible if 

Tis irreducible. Hence, N can be made into a G-space. Moreover, if N is 

type I (cf. MACKEY [14, p.42]), then it can be shown that N is a standard 
A *) Borel space (i.e. N has a Borel structure with a nice property) , and 

that the mapping 

(x,T) ➔ x[T] 

is a Borel mapping from G x N onto N. Such a G-space is called a Borel 

G-space instead of a continuous G-space. Clearly, the definition of count­

able separateness extends to these spaces without alterations. If the orbit 

structure in N is countably separated then we say that N is regularly em­

bedded in G. 

We have the following theorem (MACKEY [14], LIPSMAN [10]): 

THEOREM 4.12. Let N be a type I, regularly embedded closed invariant sub­

group of a lcsc. group G and denote by G the stabilizer in Gata fixed w 
point of w3 where {w} ~ is the collection of G-orbits in N. Then 

W€~G 

where3 denoting by ~w the element of w stabilized by Gw3 the set Gw is 

defined by 

Gw := {p € ew; PIN is equivalent to a direct sum of n copies of 

~ 3 with n = 00 ,1,2, ••• }. 
w 

4.4. The "ax+b"-group 

Consider the semi-direct product G of N = lR and H = lR+ , the multi­

plicative group of positive nonzero real numbers, relative to 

See for instance VARADARAJAN [11, p.10]. 



h E ]R+ ' n E :JR. 

Then G = { (n,h); n E :JR, h E :JR+}, and 

(n,h)(m,k) = (n+hm,hk) • 

... 
We have N = :JR, and the irreducible characters of N are given by 

q> (n) 
a 

H acts on N by 

= e 
ian a E :JR. 

(h[q> J)(n) = q> (-hn) = 
a a 

q> (n) • 
a . 
ii 

Hence, the orbits in N are: 

WO = {4>0}, stabilizer: 

w+ = {q> ;a>O} stabilizer: 
a 

w = {qi ;a<O}, stabilizer: - a 

HO = H· , 

H = { 1}; + 

H = { 1}. 
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Consequently, there are no proper little groups, and we find the following 

irreducible unitary representations of G: 

Ad w0 : This orbit is the trivial orbit (cf. remark 4.11); the representa­

tions associated with it are just the trivial extensions to G of the irre­

ducible representations of H. These are given by 

1jJ (h) 
a 

a E ]R. 

Hence, we find 

Z E (C. 

Ad w+: The little group in this case is the trivial subgroup {l} of H. Hence, 

choosing 4> 1 as a fixed point in w+, we obtain one irreducible unitary re­

presentation of G on L2 (:JR.+): 
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(w+' I) 
(cr (n,h)f)(x) = 

-1 
<l>x-l (n)f(h x) = e 

.n 
1-

x -1 
f(h x). 

Ad w : This case is analogous tow+. We choose <J>_ 1 as a fixed point, and 

get 

(cr(w_,l)(n,h)f)(x) = <j> 
' -1 

_ 1 (n) f (h x) 
-x 

Thus, we found a continuous family of irreducible characters, and two 

infinite-dimensional representations. Since the number of orbits in N is 

finite, G is regular and hence the above representations exhaust the set 

of all irreducible unitary representations of G. 

The group G is usually called the "ax+b-group" (it can be interpreted 

as being the identity component in the group of all linear transformations 

of a straight line in a plane), and it is of historical interest, since it 

was one of the first noncompact groups to have all of its irreducible uni­

tary representations classified (see GEL'FAND & NAIMARK [5]). Moreover, this 

was done before Mackey introduced his general theory. 

This remark applies also to three other examples; the Euclidean groups 

E(2) and E(3) (§4.5) and the continuous Poincare group P! (§4.6). The historic­

al references for these examples are WIGNER [23] and BARGMANN [l]. 

4.5. The Euclidean groups 

Let G be a lcsc. group, which is the semi-direct product of two of its 

subgroups N and H with N abelian and invariant. We say that G is a motion 

group if His compact. Notice that this implies that G is regular (see the 

remark befon~ theorem 4.9). Well-known examples of such groups are the 

Euclidean motion groups E(n). 
n n Let N = JR and H = SO(n) (the rotation group of JR ) , and let G be 

the semi-dir1~ct product of N and H relative to 

1::t.R (x) = R(x), 
n 

R E SO (n) , X E JR , 

Then G can bie viewed as being the group of all rotations and translations 

of ]Rn, and it is called the Euclidean motion group of ]Rn, denoted by E(n). 

The character group of N is isomorphic with ]Rn , and the characters 

are given by 



<p (x) = 
y 

i(x,y) 
e ' 

n 
y E lR , 
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where (x,y) denotes the Euclidean inner product on lRn. For all RE SO(n), 

we have 

(Rx,y) 
-1 

= (x,R y), -

.... 
Hence, SO(n) acts on N by 

A 

n 
Vx,y E lR . 

Consequently, the orbits in N are (n-1)-dimensional spheres, i.e. 

r ~ O. 

Regularity of E(n) can be verified directly. Indeed, for each ordered pair 

~r 1,r2) of rational numbers with O < r 1 < r 2 , let a Borel set B(r 1,r2) in 

N be defined by 

u 
_r 1 <s<r2 

and set 

Then {B0} u {B(r 1,r2); 0 < r 1 < r 2 ; (r 1,r2) E ~2} is a countable family of 

Borel subsets of N, which satisfies (4.11). 

The stabilizers of the fixed points <p are given by (r,o,o, ••• ,o) 

H0 := stab(<p(O, ••• ,O)) = SO(n), and 

Hr:= stab(<p(r,O, ••• ,O)) = SO(n-1), r < O. 

Here we consider SO(n-1) as a subgroup of SO(n) by the embedding 

R E SO(n-1) -+ (b o\ R) E SO(n). 

In the case n = 2, H0 is isomorphic with the circle group T = {ei<p;<p E 

[0,2~)}, and H = {I}, r > O. Hence, the set of irreducible unitary re­
r 

presentations of E(2) consists of 
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(i) a countable family of characters, parametrized by n = O, ±I,± 2, ... , 

which are the extensions to E(2) of the characters of T; 

(ii) a continuous family of infinite-dimensional representations, para­

metrized by r > O, which have the form 

(w , I) 
(CT r (y,R)f)(S) 

-] 
ir(S y) I _ 1 

= e f(R S), 

where S belongs to S0(2), and f belongs to L2 (S0(2),a) with a being 

the rotation invariant measure on S0(2). 

For n = 3, Hr'.::'.. T, r > O, and H0 = S0(3). It is well-known that the set of 

irreducible unitary representations of S0(3) consists of a countable family 

of representations, usually denoted by D(s), s = 0,1,2, .•. , where the di­

mension of D(s) equals 2s+l. Note that the unitary irreducible representa-
. (s) 

tions of the special unitary group SU (2) are usually denoted by D as 

wel 1, for s = 0, ½ , 1 , • • • • 

This is explained as follows: The group SU(2) is the two-fold covP.ring 

group of S0(3), and therefore its irreducible unitary representations give 

rise to irreducible unitary representations of S0(3), which are possibly 

projective with phase-factor -1. It can be shown that D(s) yields a proper 

representation of S0(3) for s integer, which is also denoted by D(s), and 
I 3 a projective representation of S0(3) for s = 2 ,2, ... 

(i) 

representations of E(3) is given by The set of irreducible unitary 

(w D(s)) 
(s) 0' s = 0,1,2, ... , with dim (CT(s)) = 2s+l; a series CT := CT 

(ii) a continuous family of infinite-dimensional representations, para­

metrized by pairs (r,n), r > O, n = 0, ± 1, ± 2, .••• They can be 

realized on the space of square integrable functions on the sphere 

s2 ~ S0(3)/S0(2). 

4.6. The continuous Poincare group 

We start with recollecting some general facts (cf. VARADARAJAN [2, XII]). 

Let M = JR.4 be the Minkowski space-time. Elements of M will be denoted 

by~= (x0 
defined by 

ct,xl,x2,x3). The distance (~,z) between two events X and z is 



(4. 12) 2 (x. -y.) • 
1 1 

A nonsingular inhomogeneous transformation of M has the form 

(4.13) x + Tx + y_, X € M, 
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where Tis a nonsingular operator on M, and ya fixed point in M. The 

Poincare· group Pis defined to consist of those transformations (4.13) that 

respect the distance (4.12). Clearly, a nonsingular operator T belongs to 

P if and only if 

(4.14) TtFT = 

where 

F = 

F, 

0 0 

0 -1 0 

0 

0 

0 0 -1 0 

0 0 0 -1 

Notice that (4.14) is equivalent to the condition that T preserves the qua­

dratic form 

X € M. 

This is the so-called Minkowskian norm on M. From (4.14) it follows that if 
. 3 

T = (t .. ) .. 0 belongs to P, then (i) det(T) = ±1 and (ii) !t00 ! ~ 1. The 
1J 1, J = 

subgroup of P consisting of all nonsingular operators T satisfying (4.14) 

is called the Lorentz group (or the homogeneous Poicare group). General 

elements of Pare denoted by (y_,T). Multiplication in Pis given by 

(y,T)(~,U) = (y_+T(_!),TU). 

Notice that Lis a lcsc. group since it is a closed subgroup of Gl(4,JR). 

The mapping (.z,T) + T(y_) is clearly continuous in the product topology of 

JR.4 x L, and therefore P is the semi-direct product of N = JR.4 (considered 

as a translation group) and H = L, relative to 
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We are, however, at this moment merely interested in the connected component 

of the identity (O,I) in P. Since lR4 is already connected it suffices to 

look for the connected component of the identity in L. It can be shown that 

L consists of four connected components (cf. VARADARAJAN [21, thm.12.1 ]) , 

which are given by 

Lt = {T € L· det(T) = ± 1, too ~ 1}; 
+ 

, 

Lt = {T € L• det(T) = -1, too ~ 1 } ; , 

L+ = {T € L· det(T) = +l, too ::;;-1}; + , 

L+ = {T € L· det(T) = -1, too ::;;-1}. , 

Of these sets; L: is the connected component of the identity, and therefore 

a closed invariant subgroup of L. The semi-direct product lR4 @ L: is called 

the continuous Poinaaregroup, and denoted by P:. The group L: is called the 

orthoahronous Lorentz group. For computing the representations of P: it is 

rather convenient to compute those of its two-fold covering group. 

It can be shown that the unimodular Lie group Sl(2,C) is the two-fold 

covering group of L:. Since lR4 and Sl(2,C) are both simply connected, their 

topological product is so, too. If A: Sl(2,~) + L: denotes the two-to-one 

covering homomorphism, we can make the product lR4 ex Sl(2,t) into a semi­

direct product by setting 

(!.,A) (y,B) = (!.+A(A)y_,AB), !.,I. E lR4 , A,B E Sl(2,t). 

t Then the mapping (!.,A)+ C!.,A(A)) provides a two-to-one covering of P+. 

For convenience, we recall how the mapping A: Sl(2,C) + L: is defined. 

Let a0 ,a1,a2 ,a3 denote the four Pauli matrices, defined by 

= (1 
0 o \o 

o\ (o 
l )' al = \ l 

1 \ _ /0 
o/' 0 2 - \i 

-i\ _(1 o\ 
o}' 0 3 - \o -1;-

-With an element x of M we associate an hermitian 2x2-matrix !. by 



(4.15) 
3 

i := I 
i=l 
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... 
It can be readily verified that the assignment x ➔ xis a linear isomorphism 

4 from ]R. onto the space of all hermitian 2x2-matrices. Denote this space by 

H(2). If A E S0 (2,"') and 1."f A*.. h h . . d" . f h ~ ~ 1.s t e erm1.t1.an a Joint o A, ten 

* X + AXA , X E H(2), 

defines a linear one-to-one mapping from H(2) onto itself, which preserves 

determinants. Now we define an operator A(A), A E Sf.(2,t), on M, by 

A (A) (~) = y_, "" ..... * where y_ = AxA. 

We contend that the operator A(A) respects the distance (4.12). Indeed, 

straightforward calculation shows that the distance (~,y) is equal to the 
A 

square root of det(~-y_) ), and 

The character group of :IR.4 is isomorphic with :IR.4 , and the characters are 

~iven by 

~y(x) = ei(x,y_), y E ]R.4' 

where (~,y_) = XoYo + X1Y1 + XzYz + X3Y3· The group Sf.(2,t) acts on Tu.4 by 

Indeed, since det(T) = 1, for Tin 1:, we have 

(A[~ ]) (x) = ~ (A(A)- 1x) 
I.. - I.. -

= ei(~,A(A)y_) = 
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Orbits 

The orbits of Sl(2, «:) in JR4 are characterized in the first place by 

the relation (x/ =constant.That is, each set{~ E JR4 ; (x) 2 = m2}, m E JR, 

must be a union of orbits. There are three types of such sets: 

2 
= m , m > 0: two-sheeted hyperboloid; 

(x)2 = 

cone; 

2 
-m, m > 0: one-sheeted hyperboloid. 

Since sl(2,C) 

Therefore, in 

. d . b" . 4 b is connecte, its or its in JR have to e connected as well. 
2 2 the case(!) = m, m > 0, each sheet of the hyperboloid is 

a union of orbits. Using concrete Lorentz transformations one can readily 

show that the sheets are actually orbits in ·their own right. As to the cone, 

it contains the trivial orbit w0, which splits it in two disconnected parts. 

Using straightforward arguments one proves transitivity of Sl(2,t) on the 

following sets: 

~ := {O}; WO 

w+ := {x JR\ (_!)2 2 
> 0}, m > O; € = m 

' XO m 

w - := {x JR4• (_!/ 2 O}, O; € = m , XO < m > 
m ' 

w. := {x E JR\ (_!)2 2 O· = -m } ' m > 
im 

, 

ut := {x E JR\ 
2 (_!). 

0 
= o, XO > O}; 

~- := {x E JR\ (x)2 o, O}. WO = XO < 

Consequently, these are hhe or~its of Sl(2,«:) in JR4 • Accordingly, the 

orbits in m.4 are given by w+ := {~ ; x E w+}, etc. If we keep x3 fixed, 
m x - m 

then it is possible to make an interesting drawing of the parametrization 

of the orbits, see figure 1. 



Figure I 

(~)2=-m2 

(~) 2=-m2 

(x)2=0 - ' 

l 05 
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Stabilizers 

Ad w0 : HO= Sl(2,~). 

Ad w+: Fix the point~( 0 0 0 )' and consider the stabilizer H+ in Sl(2,~) __ m_ m, , , , . m 
of (m,O,O,O). The corresponding matrix E, in H(2) defined by (4.15) is 

o\ 
I• 

m; 

An element A of Sl(2,~) belongs to H+ if and only if 
m 

(4. 16) X = Ax.A*. 

* This equation is equivalent to M 

unitarian group. 

Ad w: H m m ---
+ = H = SU(2). 
m 

= I, and therefore H+ = SU(2), the special 
m 

Ad w. : Consider the stabilizer H. of (O,O,m,O). It consists of all matri-
im im 

_c_e_s_A-in Sl(2,~) which satisfy cr2 = Acr2A*. Since 

* -1 -1 t t -1 (A) = cr2 Acr2 = -cr2Acr2 =(A) , 

this condition is equivalent to A*= At. This is true if and only if A has 

real entries. Hence, H. = Sl(2,lR.). 
im 

+ Ad w0 : Fix x = (1,0,0,1), then 

Identity (4.16) in this case is readily seen to be equivalent to 

(4. 1 7) ( 
ie \ 

A• : :-ia) , 6 E [0,2~), z Et. 

Hence, the stabilizer H~ is the group of all matrices of the form (4.17). 

We define 



.·-- (eo2i8 (z,8) 
-ie) e z 

e-2i8 

+ Then H0 can be identified with .the set {(z,8); z E €,8 E [0,2~)}, and its 

multiplication is given by 
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Therefore, H; is a semi-direct product of~ and r, the circle group, rela­

tive to 

2i8 = e z. 

The Euclidean group E(2) can also be considered as a semi-direct product of 

C and T, with multiplication given by 

Obviously, the mapping (z,8) i-+ [z,28] from H; onto E(2) is a two-to-one 

homomorphism. Hence, we see that H~ can be considered as a two-fold covering 

group of E(2). This fact leads us to the notation H~ = E(2). 

- - + 
Ad wo: Ho= Ho= ~(2). 

One shows readily that 

(r 1,r2) of rational numbers 

sets of E.4 by 

t . 
P+ is regular. Indeed, for each ordered pair 

such that O < r 1 < r 2 , define three Borel sub-

u w • • 
1m 

r 1<m<r?. 

+ The collections of all such sets, complemented with the Borel sets w0 ,w0 
and w0 , is a countable family, which meets the requirements (4.11). 

Consequently, the representation theory of P! (and hence that of P:) 
is reduced to those of four smaller groups, Sl(2,t), Sl(2,1R), SU(2) and 
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E(2). We proceed to classify the irreducible unitary representation as­

sociated with the orbits. The irreducible unitary representations of Sl(2,¢) 

and Sl(2,lR) are not discussed in these notes, and we will only state the 

results in these cases. For details, see for instance BARUT & RAfZKA [2]. 

Ad w0 : The set of irreducible ~nitary representation of Sl(2,t) consists of 

two series: 

(i) the so-called principal series, parametrized by two numbers (r,j), 

0 . 0 I I 3 
r ~ 'J = 'I' 'I'··· 

(ii) the so-called supplementary series, parametrized by a real number 

r E (-1,1), r IO. 
. ~t (0 r J.) (0 r) . 

The extensions to P+ are denoted by cr ' ' and cr ' , respectively. 

Ad w±: As mentioned before, the set of irreducible unitary representations 
m 

of SU(2) consists of a series D(s), s = o,½~~, ... , with dim(D(s)) = 2s+l. 

Hence, for each m > 0 we get two series of representations of P:, associated 
+ - • • (m,+ s) with the orbits w and w, respectively. We denote these series by cr -, . 
m m 

Ad w. : The group Sl(2,lR) has three series of irreducible unitary represen­im 
tations, which will be discussed in subsequent chapters. They are: 

(i) the principal series, parametrized by two numbers (t,e), t E lR, 

£ = 0 or 1; 

(ii) the discrete series, parametrized by integers, n = 0,±1,±2, ••• 

(iii) the supplementary series, parametrized by a real number r E (-1,1), 

r Io. 
The corresponding representations of Pt are denoted by cr(im,t,e), cr(im,u) 

+ 
and cr(im,r). 

+ + ~ 
Ad wQ: We showed that HQ= E(2) is the semi-direct product of~ and T, rela-

tive to a 0 (z) = e2i 8z. The character group~ is isomorphic with«:, and the 

characters are given by 

~ (z) = eiRe(zw), 
w 

The circle group Tacts on i by 

W E ¢, 

0 E [0,21r). 
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Hence, the orbits are circles in a;, which we denote by w := {cp ; lzl = r}, r z 
r::::: 0. The irreducible unitary representations of E(2~ associated with w0 
are those of T, extended to E(2). We denote them by LJ, j = 0,±1,±2, .... 

The stabilizer in T of cp , r > 0, is {O ,rr}. This cyclic group has two 
r 

irreducible representations on (I;: 

0 
1p:0,rr ➔ l, 1T ➔ -1. 

We denote th,e corresponding representations of E (2) by Lr' E: with E: = 0 or 1. 
,I--

For P ~ we find the following two series of irreducible unitary represen­
+ 

tations, associated with the orbits w;: 

(0,±,j) 
=: (J ' j = 0,±1,±2, ... 

(w± Lr'i::) (0 ) 
er O' : = cr '± 'r • E: , r > 0, E: = 0 or I . 

THEOREM 4.13 .. The set of irreducible unitary representations of the con­

tinuous Poineare group consists (up to equivalence) of the following eight 

series: 

(i) (O,r,j) O 
C5 ;r::::: ,J= 

1 3 
0 '2' 1 '2' ... ; 

(ii) (O,r) 1 1 4 0 e5 , - < r < , r r ; 

(iii) 
(m,±,s) 0 1 1 3 

0 • s = '2' .•1····; 

(iv) 
(im,t,i::) 0 1 er , t E lli., E: = or ; 

(v) 
(im,n) 

er , n = 0,±1,±2, ... ; 

(vi) 
(im, r) 

er ,-l<r<l,r/0; 

(vii) (O,±,j) 0 1 2 er J = ,± ,± , ••• ; 

(viii) 
(0,±,r,E) Q 

C5 ' r > ' E: 0 or l. 
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Forced by lack of space-time we can not discuss the physical interpretations 

and the explicit realizations of those series of representations. A few 

suggestions to the reader for finding information on these aspects, are: 

BARUT & RJ\CZKA [2], SIMMS [20] and VARADARAJAN [21]. 

Appendix to §4.3. 

Let A be a lcsc. abelian group, and suppose that we are given a finite 

corrrplex·-valued Borel measure on the dual group A, such that 

(A. 4) i cj>(a)dµ(<j>) = 0 

A 

Thenµ= 0. 

Va EA. 

1 PROOF. Consider the space L (A), consisting of all Haar-sunnnable complex-

valued functions on A. The Fourier transform f of a function f E L1(A) is 

a function on A, defined by 

f(<j>) := I f(a)<j>(a)da, 

A 

,_ 
<j> E A. 

A 1 A 

It can be shown that f ➔ f maps L (A) onto a dense subalgebra of c0 (A), 

the space of complex-valued continuous functions on A which vanish at in-
A 

finity. (cf. REITER [15, §5.4.2], the topology on c0 (A) is the usual one; 

generated by the sup-nonn). By an application of the Fubini theorem, we find 

i f(<j>)dµ(<j>) = i I f(a)<j>(a)dadµ(<j>) = 

A AA 

I f(a)(i <j>(a)dµ(<j>))da, 1 
= f EL (A). 

A A 

Hence, using (A.4) and a density argument, we find 

l g(<j>)dµ(<j>) = 0 Vg E c0 CA). 

A 

This implies thatµ 1.s equal to zero (cf. RUDIN [17, thm.6.19]). D 
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