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a b s t r a c t 

To accommodate a swift response to fires and other incidents, fire departments have stations spread 

throughout their coverage area, and typically dispatch the closest fire truck(s) available whenever a new 

incident arises. However, it is not obvious that the policy of always dispatching the closest truck(s) min- 

imizes the long-run fraction of late arrivals, since it may leave gaps in the coverage for future incidents. 

Although the research literature on dispatching of emergency vehicles is substantial, the setting with 

multiple trucks has received little attention. This is despite the fact that here careful dispatching is even 

more important, since the potential coverage gap is much larger compared to the single-truck case. More- 

over, when dispatching multiple trucks, the uncertainty in the trucks’ driving time plays an important 

role, in particular due to possible correlation in driving times of the trucks if their routes overlap. 

In this paper we discuss optimal dispatching of fire trucks, based on a particular dispatching problem that 

arises at the Amsterdam Fire Department, where two fire trucks are sent to the same incident location for 

a quick response. We formulate the dispatching problem as a Markov Decision Process, and numerically 

obtain the optimal dispatching decisions using policy iteration. We show that the fraction of late arrivals 

can be significantly reduced by deviating from current practice of dispatching the closest available trucks, 

with a relative improvement of on average about 20%, and over 50% for certain instances. We also show 

that driving-time correlation has a non-negligible impact on decision making, and if ignored may lead to 

performance decrease of over 20% in certain cases. As the optimal policy cannot be computed for prob- 

lems of realistic size due to the computational complexity of the policy iteration algorithm, we propose a 

dispatching heuristic based on a queueing approximation for the state of the network. We show that the 

performance of this heuristic is close to the optimal policy, and requires significantly less computational 

effort. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to the increased use of flammable synthetic materials in

omes and offices, small fires may spread rapidly, potentially en-

ulfing homes in a matter of minutes. In order to minimize prop-

rty damage and save lives, many countries have strict laws that

overn the fire departments’ response time ( leg, 2019 ). To meet

hese requirements, fire departments operate a set of fire sta-

ions carefully located across their coverage area. When a new fire

rises, one or more trucks are dispatched from the fire stations

lose to the fire in order to facilitate a quick response. However,

ending closest trucks may lead to gaps in coverage for the dura-

ion of an incident which may have adverse effect on the response

ime to incidents that happen simultaneously. This is particularly
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rue for large fires that require multiple trucks and take longer to

ut out. In this paper we study how to dispatch fire trucks in or-

er to strike the right balance between responding quickly to the

resent fire, while maintaining good coverage for possible simulta-

eous incidents. 

To illustrate this tradeoff we consider the example of the Fire

epartment Amsterdam-Amstelland (FDAA), which operates 19 fire

tations spread across the city of Amsterdam and surrounding ar-

as. When a small fire occurs in the city center of Amsterdam that

nly requires a single fire truck to address, the FDAA nevertheless

ispatches two trucks from different fire stations. These incidents

re of the highest (of 3) priority level, and constitute about 70% of

ll fires. When the first truck arrives at the fire, the second truck

eturns to its fire station. It is a policy FDAA uses for the city cen-

er where the streets are narrow, and in case there is a traffic jam,

r an obstacle such as a garbage truck, the fire truck would not be

ble to overtake it but rather would have to go back and take an

lternative route. Intuitively, the dispatcher would want to ensure
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Nomenclature 

J = { 1 , . . . , J} set of demand locations 

/ nodes in a graph 

E set of edges in a graph 

I ⊆ J demand locations con- 

taining a fire station 

I = |I| number of fire stations 

C i number of fire trucks 

with the base station i ∈ 

I
λj arrival rate of new fires 

at a location j ∈ J 

1/ μ expected time a truck 

remains busy after being 

dispatched 

ρ = 

∑ 

j∈J λ j 

Iμ load of the system, that 

is, the amount of work 

per fire truck per time 

unit 

f i number of idle trucks at 

a station i ∈ I
e i vector of length I with 

i th element equal to 1, 

and all other elements 

equal to zero 

f = ( f 1 , . . . , f I ) vector representing the 

state of the system 

a ( f , j) = (a 1 ( f , j) , . . . , a I ( f , j)) the dispatch action 

taken if a new fire starts 

at a location j when in 

state f 

0 ≤ a i ( f , j ) ≤ f i number of trucks dis- 

patched from station i ∈ 

I
S = { ( f 1 , . . . , f I ) | 0 ≤ f i ≤ C i ∀ i ∈ I} The system state space 

s ( i, j ) shortest path between 

nodes i and j in a graph 

T i, j = 

∑ 

e ∈ s (i, j) X e traveling time between 

nodes i and j , where 

X e ~ exp(1) 

T 0 traveling time from a 

neighboring region to 

any demand location 

R ( a , j ) response time to a fire at 

a location j given a dis- 

patch decision a 

τ = 

∑ 

j∈J λ j + μ
∑ 

i ∈I C i transition rate out of any 

state 

A ( f ) actions space in state 

f ∈ S
g ∗ average cost incurred 

per time unit 

h ∗( f ) relative cost incurred 

over infinite time hori- 

zon when starting in 

state f ∈ S compared 

to paying g ∗ every time 

unit 

σ j (k ) ∈ I fire station that is the 

base station for the k th 

closest truck to location 
d  
j , assuming that truck is 

idle 

k i , i = 1 , 2 number of the clos- 

est and the second- 

closest idle truck 

in the list σ j ( k ), 

j ∈ J , k ∈ { 1 , . . . , ∑ 

i C i } 
J ( f , t ) expected total cost un- 

der the CF policy during 

the time interval [0, t ] 

starting from state f 

T parameter of the OSIA 

heuristic indicating the 

time it takes for the 

system to get into the 

steady state by assump- 

tion 

D i arrival rate of requests 

for the truck at station i 

ρi = D i /μ load of the M / M /1/1 

queue representing fire 

station i 

p i busy probability of sta- 

tion i 

t ∗ response time threshold 

γ parameter that de- 

fines the response time 

threshold t ∗ for a given 

graph as a fraction of 

the maximum traveling 

time between two nodes 

hat these two trucks are relatively close to the fire, but still suf-

ciently spaced out so that the remaining trucks retain good cov-

rage. Moreover, we would want the trucks to approach the fire

rom different directions, so that when one truck gets stuck in traf-

c, the other can still get to the fire quickly. We refer to the latter

henomenon as driving-time correlation , and observe that this adds

et another layer of complexity to the optimal dispatching prob-

em. 

Although the problem of dispatching a single vehicle to inci-

ents has been studied extensively in the literature on emergency

ervices, to our knowledge very little work has been done on dis-

atching multiple vehicles, and we are the first to consider driving-

ime correlation in this context. Moreover, we are not aware of

ny studies into driving-time correlation in the transportation lit-

rature either. The current practice of the FDAA is to dispatch a

ruck each from the two fire stations closest to the incident. How-

ver, it is unclear whether this leads to the fastest response (given

he correlated driving times), and leaves the best coverage. Natu-

ally, driving-time correlation also plays a role when considering

ncidents that require more than two trucks, but for ease of pre-

entation we limit ourselves to the case with two trucks. While

his problem is motivated by the situation of the FDAA, we believe

ther major cities with busy traffic use similar dispatching meth-

ds. 

In order to study this problem, we model the city as a graph,

here the vertices correspond to demand locations where inci-

ents may occur, and an edge indicates that two locations can be

eached directly. Fire stations are positioned at some of the ver-

ices, and new fires arise at random times and locations. Similar to

he current practice of the FDAA, we assume fires have to be ad-

ressed by sending two fire trucks, the first of which to arrive will
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ngage the fire. 1 The response time of a truck dispatched from a

re station to a fire is the sum of travel times over all edges tra-

ersed on the graph, and the travel time over each edge is some

andom variable. When two trucks dispatched to the same fire use

he same edge they may incur the same travel times, capturing

he driving time correlation. Fires last for some random time, af-

er which the trucks become idle again. In order to determine the

ptimal dispatching policy we model this system as a Markov de-

ision process (MDP). 

We first use policy iteration to numerically determine the op-

imal dispatching policy, and show that significant improvements

an be made over the current practice of sending the two closest

dle trucks. We also use this approach to demonstrate that it is im-

ortant to take into account driving-time correlation in the model,

ince dispatch decision and performance metrics may be incorrect

therwise. For realistic-sized instances such as the coverage area

f FDAA we cannot use policy iteration due to its computational

omplexity, and we develop novel heuristics instead. 

Inspired by the results in Tiemessen et al. (2013) , we de-

elop these heuristics using the idea of one-step improvement.

his approach was developed in Norman (1972) and Ott and Kr-

shnan (1992) , and has for instance been applied to call cen-

ers ( Bhulai, 2009 ), control of traffic lights ( Haijema and van der

al, 2008 ), routing in queueing networks ( Bhulai and Koole, 2003 )

nd loss networks ( Hwang et al., 20 0 0 ). To do this we first obtain

n approximation for the fraction of late arrivals under the pol-

cy of sending the closest trucks, assuming that all fire stations

re independent from each other. We then apply a single policy-

teration step to these results in order to obtain an improved pol-

cy. Although the independence assumption is very rough, we show

hat the resulting policy significantly outperforms closest-first. The

omputational complexity of this approach is much better than

hat of the full policy iteration algorithm needed to obtain the op-

imal dispatching policy, yet its performance is remarkably close to

ptimal. 

To summarize, in this paper we make the following contribu-

ions: 

- We develop the first model for dispatching multiple trucks in

an emergency service network setting, possibly in the pres-

ence of correlated (stochastic) driving times; 

- We show that the current fire department practice of send-

ing the closest trucks is far from optimal, the optimality gap

grows with the number of trucks in the system and can be

as large as 50% for certain problem instances; 

- We show that taking into account driving time correlation

has a significant impact on the response time and the opti-

mal dispatch policy, and ignoring correlation when deriving

a policy may lead to performance loss of more than 20%; 

- To circumvent computational issues for obtaining the opti-

mal dispatch policy, we propose a new heuristic based on

1-step policy improvement that has a small optimality gap,

but only requires a fraction of its computational time. 

In the next section we provide a review of the relevant litera-

ure, and in Section 3 we give a description of the model studied

n the paper, how we account for driving-time correlation, and for-

ulate the MDP. In Section 4 we discuss one-step improvement

olicy and introduce our heuristics. In Section 5 we numerically

nvestigate the impact of correlation, compare the performance of

he optimal policy, closest-first and the heuristics. Conclusions and

uggestions for further research are made in Section 6 . 
1 Note that we limit ourselves to the case of two trucks for simplicity, but we 

xpect that our approach, heuristics and insights hold for larger fires that require 

ore trucks. 

e  

i  

f  

t  

t  
Throughout this paper we will denote vectors by boldfaced let-

ers, e.g., x = (x 1 , . . . , x n ) , and by | x | = 

∑ 

i | x i | its 1-norm. 

. Literature review 

Operations research related to fire departments can be traced

ack to the RAND fire project, which ran from 1968 to 1975 and

ddressed a range of issues related to the New York City fire

epartment. This includes for instance developing a simulation

odel for fire fighting services ( Carter and Ignall, 1970 ), a square

oot law for fire fighting response times ( Kolesar and Blum, 1973 )

nd algorithms for relocations during major incidents ( Kolesar and

alker, 1974 ). See ( Green and Kolesar, 2004 ) for an overview of

his project and its research output. Since then the research litera-

ure on fire department operations has been limited in both scope

nd quantity, focussing mostly on facility location problems. The

oal here is to determine the optimal location of the fire stations

see, e.g., Chevalier et al., 2012; Degel et al., 2014; Ines et al., 2010;

arianov and ReVelle, 1992 ). 

To our knowledge the only papers that deal specifi-

ally with dispatching of fire trucks are Swersey (1982) and

gnall et al. (1982) , both originating from the RAND fire project.

n Swersey (1982) the authors consider whether to dispatch one

r two fire trucks to incidents of unknown severity, and show

hat the optimal policy has a threshold structure, where one

nly dispatches two trucks if there are sufficient trucks available.

owever, this paper ignores spatial components and does not

etermine which trucks to dispatch. The work closest to ours is

erhaps ( Ignall et al., 1982 ), where the authors propose an algo-

ithm for how many (one or two) and which trucks to dispatch.

he objective of the algorithm is to minimize response time to

erious incidents, those requiring at least two ladder trucks. The

lgorithm performs a grid search, where the first truck is picked

or dispatching based on a certain loss approximation, assuming

hat only that truck is dispatched. Then, given the choice of the

rst truck, the second truck is decided on based on another loss

unction. Finally, the decision is made whether to send only the

rst truck or both of them based on the corresponding estimated

osts. In contrast to our work, ( Ignall et al., 1982 ) relies on

euristic arguments for determining the future costs of current

ispatching decisions, and ignores driving-time correlation. More-

ver, the used loss functions do not seem to have an intuitive

nterpretation, and dispatching of the first truck is done indepen-

ently of whether the second truck will be dispatched or not.

n contrast, our approach is to jointly pick the two trucks to be

ispatched such that the fraction of late arrivals is minimized,

llowing to incorporate driving-time correlation. 

An area that is closely related to fire truck dispatching is that

f dispatching ambulances to accidents and other emergencies.

e will discuss the most relevant literature below, but empha-

ize that to our knowledge most of this work only considers dis-

atching a single vehicle to incidents, and does not take into ac-

ount driving-time correlation. While results on the optimal dis-

atching of a single ambulance are not directly applicable to our

etting, we now provide a brief discussion of some recent develop-

ents in this area. See for instance ( Bélanger et al., 2019; Enayati

t al., 2018b; Ingolfsson, 2013 ) for a more complete overview of

his field. In Andersson and Värbrand (2007) a dispatching heuris-

ic was proposed based on the notion of preparedness, measuring

he ability of the system to respond quickly to future incidents. The

euristic suggests to dispatch an ambulance resulting in the small-

st decrease in preparedness. The algorithm was further studied

n Lee (2011) . It was shown that the preparedness algorithm per-

orms significantly worse than sending the closest ambulance in

erms of average response time. The authors noted, however, that

he poor performance of the preparedness algorithm is due to the



4 D. Usanov, P.M.v. de Ven and R.D.v. der Mei / Computers and Operations Research 114 (2020) 104829 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

r  

h  

n

3

 

g  

s  

c  

m  

s  

F  

s

a  

r  

i  

a  

b  

a  

g  

i  

t  

t  

f  

t  

a  

s  

u  

m  

T  

b  

s  

d  

t  

t  

t  

t

 

i  

Fig. 1. Graph representation of a region served by a fire department 
fact that it ignores the current response time when making a dis-

patching decision. They introduced a modified version of the algo-

rithm that balances between the decrease in preparedness and the

response time to the current incident. In their experiments, the ex-

tended algorithm outperformed the closest-first dispatching policy.

In Lim et al. (2011) the authors consider a setting with

multiple incident priority levels, and compare a range of dis-

patching policies based on the closest-first policy. Modifications

include possibilities to reroute busy ambulances to more ur-

gent incidents and to reassign incidents to ambulances that

become idle. The authors conclude that the relative perfor-

mance of each policy depends on the parameters and avail-

able infrastructure. In Jagtenberg et al. (2017) the authors for-

mulate the problem of ambulance dispatching as an MDP,

and then present a heuristic which is shown to perform

close to optimal, and in certain cases outperforms closest-first.

In Bandara et al. (2012) and Bandara et al. (2014) patient surviv-

ability is used as an objective for the problem with different inci-

dent priority levels. The authors formulate the problem as an MDP,

and observe that dispatching closest vehicle is only optimal for the

most urgent incidents. They also indicate that the optimal policy is

most beneficial when the spacial distribution of incidents is un-

balanced, which is the case in most real-life applications. Using

the insights obtained from the optimal policy, the authors intro-

duce a heuristic that outperforms the closest-first policy. The au-

thors of McLay and Mayorga (2013a,b) provide an MDP formula-

tion of the ambulance dispatching problem under certain fairness

constraints, and numerically compute the optimal policy for small

instances. The problem of possibly sending two different types of

emergency vehicles is considered in Sudtachat et al. (2014) , where

the authors propose a heuristic for this purpose. 

In addition to dispatching, substantial work in recent years has

focused on relocation as well as joint dispatching and relocation

of ambulances, in order to create better coverage. The relocation

decisions imply proactive repositioning of idle vehicles within the

region with the aim to reduce response time to future incidents.

In Maxwell et al. (2010) , Schmid (2012) , Maxwell et al. (2013) and

Nasrollahzadeh et al. (2018) the joint problem was addressed using

approximate dynamic programming. In Enayati et al. (2018b) the

authors use stochastic programming to solve this problem, while

ensuring that the workload due to relocations remains limited.

The optimization method in Enayati et al. (2018a) is designed to

make relocations that maximize coverage under personnel’s work-

load limitations. Low computational costs of the approach allow to

make decisions in real time, in contrast to the earlier methods de-

scribed, which require offline computations. 

As mentioned earlier, the research on ambulance dispatching

is mostly focused on the setting where exactly one vehicle is re-

quired to serve an incident. To understand why results for the

single-vehicle case cannot easily be applied in our multiple-vehicle

setting, consider the following. First, any dispatching action is a

trade-off between a quick response, and ensuring that the remain-

ing coverage is sufficient, should another incident arise while the

first incident is still ongoing. Decomposing a multiple-vehicle dis-

patching formulation into a sequence of independent single-vehicle

problems, one may not be able to carefully strike this balance,

since every dispatching decision is made in a greedy way (assum-

ing it is the only such decision). To illustrate this, consider the eas-

ier problem having to remove k trucks: which set of k trucks would

result in the best coverage? It is easy to see that solving the prob-

lem sequentially would likely result in a substantially different so-

lution with a worse coverage compared with solving the problem

jointly for all trucks. 

The second reason why algorithms for dispatching a single ve-

hicle cannot be easily applied in our setting is due to the driving-

time correlation. If applying single-vehicle policies for dispatching
ultiple trucks, one would be unable to take into account this cor-

elation. As we shall show in this paper, driving-time correlation

as a significant impact on the optimal dispatching policy, and ig-

oring it substantially reduces performance. 

. Model outline 

We consider a city represented by a connected, undirected

raph (J , E) , see Fig. 1 . The set of vertices J = { 1 , ..., J} repre-

ents the neighborhoods, or demand locations . Two vertices are

onnected if it is possible to travel directly between these two de-

and locations. A subset I ⊆ J of demand locations contain a fire

tation (marked with triangles in Fig. 1 ), and we denote I = |I| .
ire station i ∈ I houses C i fire trucks, and all fire trucks are as-

umed to be identical. 

We assume that new fires arise at each demand location j ∈ J 

ccording to a Poisson process with rate λj , justified by the memo-

ylessness of the time between new fires. Fire trucks can be either

dle (i.e., waiting at a fire station) or busy (i.e., travelling or fighting

 fire), and whenever a new fire starts, two idle fire trucks have to

e dispatched. If a fire starts and fewer than two idle trucks are

vailable, we request the missing truck(s) from a neighboring re-

ion. We assume that the neighboring regions have ample capac-

ty, so there are always trucks available. For tractability, we assume

hat when a truck is dispatched it remains busy for an exponential

ime with rate μ, independent from the other truck dispatched and

rom the location of the fire and fire station. Independence from

he location of the fire and fire station is a reasonable assumption

s in practice the traveling time is negligible compared to the on-

cene service time. Note that the independence assumption allows

s to consider any travel time distribution, although we shall focus

ostly on Erlang-distributed travel times, for ease of presentation.

he assumption that both trucks have the same busy-time distri-

ution will result in an upper bound on the real-life busy fraction,

ince only the first truck to arrive will stay to resolve the inci-

ent. However, given the relatively low busy fraction for the fire

ruck application domain, we expect our model to be accurate. Re-

urning trucks can be dispatched once they reach their station. Al-

hough an idealization, this assumption has negligible impact given

he relatively low busy fraction of fire trucks seen in practice. 

The state of the system can be represented by a vector f =
( f 1 , . . . , f I ) , where f denotes the number of idle trucks at station
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 . Let a ( f , j) = (a 1 ( f , j) , ..., a I ( f , j)) represent the dispatch action

aken if a new fire starts at a location j when in state f . Here

 ≤ a i ( f , j ) ≤ f i denotes the number of trucks dispatched from sta-

ion i ∈ I . Given that exactly two trucks are dispatched to every

re we have that | a ( f , j )| ≤ 2, where the remaining 2 − | a | trucks

re sent from neighboring regions. 

We denote by F a ( t ) the state of the system at time t under de-

ision rule a . Observe that, due to the exponentiality assumptions,

he process { F a ( t )} t ≥ 0 is a continuous-time Markov process, with

tate space S = { ( f 1 , ..., f I ) | 0 ≤ f i ≤ C i ∀ i ∈ I} , since each station i

an hold at most C i trucks. Let e i denote a vector of length I with

 th element equal to 1, and all other elements equal to zero. The

ransition rates q of this process are given by 

 ( f , f − a ( f , j)) = λ j , j ∈ J , f ∈ S, 

q ( f , f + e i ) = (C i − f i ) μ, i ∈ I, f ∈ S. 

he first transition corresponds to trucks being dispatched upon

he start of a new fire at location j , where the number of trucks at

ach location i is reduced from f i to f i − a i ( f , j) . These transitions

ccur at rate λj , the rate at which new incidents start at demand

ocation j . The second transition corresponds to a truck returning

o its fire station and becoming idle. This happens at rate μ for

ach individual truck not at its station, so the rate of trucks return-

ng to station i is equal to (C i − f i ) μ. This model resembles the hy-

ercube model from Larson (1974) . The hypercube model consists

f a multiserver queueing model with distinguishable servers, cor-

esponding to fire trucks in our setting. In Jarvis (1981) the authors

umerically compute the optimal assignment policy of servers to

equests in the hypercube model, and show that assigning the

owest-cost (closest in our setting) server is only optimal for small

oads. The model is of relatively limited use in our setting, how-

ver, in that it cannot fully take into account the spatial com-

onent of our problem, and is only concerned with allocating a

ingle server (dispatching a single truck). In Iannoni and Mora-

ito (2007) a hypercube model was proposed used to analyze a

ystem with particular dispatching policies including multiple dis-

atch and partial backup. This model was further embedded into

 genetic algorithm in Iannoni et al. (2008) to optimize the service

reas of ambulance bases. 

.1. Traveling and response time 

When a truck is dispatched from fire station i ∈ I to demand

ocation j ∈ J , it travels along a shortest path on the graph, de-

oted by s ( i, j ). Since we assume that the graph is connected, such

 path always exists. In case multiple shortest paths exist, we se-

ect one at random. The travel time along edge e ∈ E is denoted

y X e ~ exp(1), and follows an independent exponential random

ariable with unit mean. So the marginal traveling time of a fire

ruck dispatched from i to j is given by T i, j = 

∑ 

e ∈ s (i, j) X e , an Erlang-

istributed random variable with | s ( i, j )| phases of unit mean. 

For fire trucks dispatched from neighboring regions we assume

 traveling time T 0 independent of the demand location of the fire,

s typically those trucks are located relatively far and the driv-

ng time is dominated by the time it takes to reach the city in

he first place. We assume that T 0 has an Erlang distribution with

 max i ∈I, j∈J | s (i, j) | phases of unit mean. That is, the expected

raveling time for a truck from a neighboring region is twice

he maximum expected traveling time between any fire station-

emand location pair on the graph, to reflect the fact that these

rucks have to travel further. 

The performance of a fire department is measured based on the

esponse time to incidents, i.e., the time between the moment a

re reported and when the first truck arrives on scene. We con-

ider two cases for computing the response time: uncorrelated and

orrelated . In the first case we use the simplifying assumption that
he driving time on the same edge is independent between the

wo fire trucks. In the correlated case we assume that both trucks

ncur the same driving time realization for each shared edge. We

ow discuss each of these in more detail. 

Uncorrelated driving times. In order to model the fact that in

he uncorrelated case the response times of the two trucks that

re dispatched are completely independent, we introduce two in-

ependent copies of the driving time random variable over each

dge. To do this we introduce an index v = 1 , 2 , which is used to

istinguish between the two trucks that are dispatched, and is dis-

inct from the index i ∈ I we use to index over all trucks. We de-

ote by X (v ) e the driving time of truck v over edge e ∈ E , for v = 1 , 2 ,

nd we assume that X (1) 
e and X (2) 

e are independent. We first treat

he case where no trucks are sent from outside, and truck v is dis-

atched from location i v , v = 1 , 2 . In this case the total traveling

ime of the v -th truck to j can be written as T (v ) 
i v , j 

= 

∑ 

e ∈ s (i v , j) X 
(v ) 
e ,

 = 1 , 2 . These T (v ) 
i v , j 

are mutually independent because the X (v ) e are,

ven when i 1 = i 2 . The T (v ) 
i v , j 

follow an Erlang distribution with | s ( i v ,

 )| phases of unit mean. 

In case one truck is dispatched from outside, we assume its

raveling time is independent from the truck dispatched from in-

ide the system; if two trucks are dispatched from outside their

raveling times are assumed to be mutually independent. We de-

ote by T (1) 
0 

and T (2) 
0 

two i.i.d. copies of the Erlang distributed ran-

om variable T 0 . 

Summarizing, in the uncorrelated case, given a dispatch deci-

ion a for a fire at location j , the response time can be expressed

s 

 ( a , j) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

min { T (1) 
i, j 

, T (2) 
i, j 

} if a i = 2 , 

min { T (1) 
i 1 , j 

, T (2) 
i 2 , j 

} if a i 1 = a i 2 = 1 , i 1 � = i 2 , 

min { T (1) 
i, j 

, T (1) 
0 

} if a i = 1 , | a | = 1 , 

min { T (1) 
0 

, T (2) 
0 

} if | a | = 0 . 

(1) 

he first two entries correspond to the case where two trucks are

ispatched from inside the network with the first covering the case

here both trucks are sent from the same location, and the second

he case with different locations. Note that if the trucks are dis-

atched from the same station, they follow the same shortest path

n a graph. This is a reasonable assumption as it is unlikely that

n reality there are two independent shortest paths. Moreover, an

lternative solution of sending the trucks via two different paths

s hard to sell at the fire department as it is counterintuitive to

he goal of getting to the incident as quickly as possible. The third

nd fourth entry in (1) correspond to the case where one and two

rucks are dispatched from outside, respectively. 

Correlated driving times. In the correlated case the traveling

imes are no longer independent from each other, and we denote

y X e the shared random traveling time over edge e ∈ E for both

rucks. In contrast to the uncorrelated case, we need not distin-

uish between both trucks to compute the traveling time, and we

enote T i, j = 

∑ 

e ∈ s (i, j) X e as the traveling time from i to j over s ( i, j ),

hich is an Erlang-distributed random variable with s ( i, j ) phases.

he traveling time of trucks dispatched from outside the network

re still assumed to be independent from traveling times inside the

etwork and from each other. Thus, in the correlated case the re-

ponse time is given as follows: 

 ( a , j) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

T i, j if a i = 2 , 

min { T i 1 , j , T i 2 , j } if a i 1 = a i 2 = 1 , i 1 � = i 2 , 

min { T i, j , T 
(1) 

0 
} if a i = 1 , | a | = 1 , 

min { T (1) 
0 

, T (2) 
0 

} if | a | = 0 . 

(2) 

he entries correspond to the same decisions as in (1) (re-

pectively: two trucks from the same location, two trucks from
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different locations, one truck from outside the network, both

trucks from outside the network). Note that in comparison to (1) ,

the first entry no longer contains a minimum operator, since both

trucks will have the same driving time realization as they are dis-

patched from the same location and there is correlation. The sec-

ond entry is no longer necessarily a minimum between two inde-

pendent Erlang distributed random variables, as the routes of the

two trucks may share one or more edges on the graph, for which

they will see the same driving time realization. 

Our approach described above for modeling driving-time cor-

relation is certainly not the only possibility, and this work should

be seen as the first attempt in taking this phenomenon into ac-

count when making dispatching decisions. For instance, note that

we assume complete correlation between the driving time on each

shared edge, whereas a smaller but still positive correlation coef-

ficient may be more realistic. We briefly discuss this extension in

Section 6 . 

For each incident we are interested in whether the response

time is within some time limit t ∗, and we say a late arrival oc-

curred otherwise. Our goal is to minimize the fraction of late ar-

rivals. This is one of the most widely used performance metrics in

emergency services, and is for instance used by the FDAA and the

Dutch government to measure FDAA performance. 

3.2. MDP formulation 

We are interested in finding the dispatch decisions a ( f , j ) that

minimize the fraction of late arrivals. In order to determine these

we describe the system as an infinite-horizon average-cost Markov

decision process (MDP). To do this we first uniformize our Markov

process { F a ( t )} t ≥ 0 b y adding the following dummy transitions:

q ( f , f ) = μ
∑ 

i ∈I f i . This ensures that transitions out of any state

happen at rate τ = 

∑ 

j∈J λ j + 

∑ 

i ∈I C i , without altering the dynam-

ics of the network. 

We are now in position to formulate our infinite-horizon

average-cost MDP. Note that when a new fire starts and the net-

work is in state f , we can make any of the following decisions a : 

A ( f ) = { a ∈ N 

I 
0 | 0 ≤ a i ≤ f i , min { 2 , | f |} ≤

I ∑ 

i =1 

a i ≤ 2 } , 

i.e., we dispatch at most two trucks from inside the region, and

we only dispatch outside trucks if fewer than two idle trucks are

available. This description also states that we cannot dispatch more

trucks from each station than available. Let h ∗( f ) denote the rela-

tive cost incurred over an infinite time horizon when starting in

state f ∈ S, compared to paying the average cost g ∗ every time

unit. Since our process is unichain and has a finite state space and

action space, we know from (Puterman, 2014, Theorem 8.4.3) that

there exists an optimal deterministic policy that satisfies the Bell-

man equations: 

h 

∗( f ) τ = −g ∗ + μ
∑ 

i ∈I 
(C i − f i ) h 

∗( f + e i ) + μ
∑ 

i ∈I 
f i h 

∗( f ) 

+ 

∑ 

j∈J 
λ j min 

a ∈A ( f ) 
{ P (R ( a , j) > t ∗) + h 

∗( f − a ) } , f ∈ S. 

(3)

The first summation on the right-hand side of (3) corresponds

to fire trucks returning to their fire station, and the second to

dummy transitions needed for uniformization. In neither case do

we incur a cost or have to make a decision. The third summa-

tion corresponds to new fires that occur, in which case we have to

make a dispatch decision a , and incur some costs P (R ( a , j) > t ∗)
equal to the probability of exceeding the response time threshold

t ∗, given the dispatch decision and location of the fire. The value
unction g ∗ has an interpretation of the rate of late arrivals, that is,

he average number of arrivals per time unit that were later than

he time threshold t ∗. To measure the performance of the dispatch-

ng policies we use the fraction of late arrivals, which is equal to
g ∗∑ 

j∈J λ j 
. 

To compute the immediate costs P (R ( a , j) > t ∗) , we must take

 closer look at the distribution of the response time R ( a , j ), pre-

ented in (1) and (2) for uncorrelated and correlated driving times,

espectively. For uncorrelated driving times, in all four cases of (1) ,

he response time is the minimum of two independent Erlang dis-

ributed random variables. The same holds for cases 3 and 4 of (2) ,

or correlated driving times. 

The most challenging setting to compute is case 2 of (2) , where

wo trucks are dispatched from different locations under correlated

riving times. This may be rewritten as the sum of an independent

rlang distributed random variable and the minimum of two oth-

rs, i.e., 

 ( a , j) = 

∑ 

e ∈ s (i 1 , j) ∩ (i 2 , j) 

X e + min { ∑ 

e ∈ s (i 1 , j) \ s (i 2 , j) 

X e , 
∑ 

e ∈ s (i 2 , j) \ s (i 1 , j) 

X e } , 

a i 1 = a i 2 = 1 , i 1 � = i 2 . (4)

his kind of driving time correlation captures the fact that two

re trucks that take the same route may be delayed by the same

ncident or traffic, and encourages dispatching trucks over non-

verlapping routes. 

Thus, in order to compute the immediate costs P (R ( a , j) > t ∗) ,
e require the following result. 

roposition 1. Let Y 0 ~ Er (1, w 0 ), Y 1 ~ Er (1, w 1 ) and Y 2 ~ Er (1, w 2 ) be

ndependent Erlang-distributed random variables with phases of unit

ean, w i > 0, i = 1 , 2 , 3 . Then 

 ( min { Y 1 , Y 2 } > t ∗) = e −2 t ∗
w 1 −1 ∑ 

n =0 

w 2 −1 ∑ 

m =0 

t ∗n + m 

n ! m ! 

nd 

 (Y 0 + min { Y 1 , Y 2 } > t ∗) = 

w 1 −1 ∑ 

n =0 

w 2 −1 ∑ 

m =0 

n + m ∑ 

l=0 

e −2 t ∗t ∗l (−1) n + m −l 

n ! m !(w 0 − 1)! 

(
n + m 

l 

)∫ t ∗

y 0 =0 

y n + m −l+ w 0 −1 
0 

e y 0 d y 0 + 

w 0 −1 ∑ 

n =0 

t ∗n 

n ! 
e −t ∗ . 

The proof of Proposition 1 can be found in Appendix A . 

.3. Closest-first dispatching 

The main benchmark throughout the paper is the current prac-

ice of FDAA, which is to always send the two closest (in terms

f expected travel time) fire trucks, which we refer to as closest-

rst (CF) policy. We consider this as part of a larger class of static

ispatching policies, where fire trucks are dispatched according to

 fixed order per demand location. It can be represented by a list

j ( k ), j ∈ J , k ∈ { 1 , . . . , ∑ 

i C i } , where σ j (k ) ∈ I represents the fire

tation from which to send the k th truck for an incident at loca-

ion j . Let a 

CF ( f , j ) denote the action taken in state f given a new

ncident at location j , then 

 

CF ( f , j) = e σ j (k 1 ) + e σ j (k 2 ) , 

here 

 1 = min { k : f σ j (k ) ≥ 1 } , k 2 = min { k : f σ j (k ) − I { k = k 1 } ≥ 1 } , 
enote the number of the first and second truck dispatched, re-

pectively. That is, truck k 1 is the closest fire truck to demand loca-

ion j that is currently present, and k 2 the second-closest. If C i = 1

or all i , then σ j reduces to a permutation over all fire stations. In



D. Usanov, P.M.v. de Ven and R.D.v. der Mei / Computers and Operations Research 114 (2020) 104829 7 

c  

a  

e

 

t  

j

h

 

 

H  

u  

e  

c  

r

4

 

m  

i  

t  

f  

p

4

 

s  

a  

d  

t  

s  

t  

c  

a  

w  

p  

o  

i  

o

 

r  

a  

E  

d

a

4

 

p  

t  

p  

w  

p  

s  

o  

s

 

h  

c  

s  

t

 

d  

t

h

w

 

s  

i  

m

h

 

p

a

H

 

T  

f  

d  

w  

p  

c  

i  

c

 

b  

t  

o  

a  

n  

t  

0  

t  

l

 

T

�  

T  

t  

a  

w  

μ  

o

 

�  

s  

q  

s  

h  
ase k i , i = 1 , 2 do not exist (because there are insufficient trucks

vailable) we set σ j (k i ) = 0 and define e 0 as the all-zero vector, to

nsure trucks are sent from outside. 

The long-term average costs under this CF policy can be ob-

ained by limiting the Bellman Eq. (3) to only those actions a 

CF ( f ,

 ), i.e., 

 

CF ( f ) τ = −g CF + μ
∑ 

i ∈I 
(C i − f i ) h 

CF ( f + e i ) + μ
∑ 

i ∈I 
f i h 

CF ( f ) 

+ 

∑ 

j∈J 
λ j 

(
P (R ( a 

CF ( f , j) , j) > t ∗) + h 

CF ( f − a 

CF ( f , j)) 
)
,

f ∈ S. (5)

ere g CF and h CF ( f ) denote the long-term average and relative costs

nder the CF policy, respectively. Thus (5) is a system of | S | linear

quations, with | S| + 1 unknowns g CF and h CF ( f ), f ∈ S . The costs

an be obtained by fixing h CF ( f ) for one state f , and solving the

emaining system of equations. 

. Dispatching heuristics 

As we shall see from the experiments in Section 5.2 , the opti-

al dispatching policy significantly outperforms closest-first, both

n the correlated and uncorrelated cases. However, it is well-known

hat solving the Bellman Eq. (3) can be computationally infeasible

or large instances. In this section, we present two heuristics to ap-

roximate the optimal dispatching policy. 

.1. The OSI heuristic 

The first heuristic we consider is based on the idea of one-

tep improvement, and we refer to the policy obtained this way

s to the one-step improvement (OSI) policy. This approach was

eveloped in Norman (1972) and Ott and Krishnan (1992) , and

he key idea is to first determine the (relative) costs ˜ h ( y ) for

ome sub-optimal policy, and then applying a single policy itera-

ion step to find improved actions. That is, we replace the future

osts h ∗( y ) in (3) by some ˜ h ( y ) . The maximizing action for this

pproximation of the Bellman equations can then be determined

ithout iteration, significantly reducing the computational com-

lexity compared to the full policy iteration algorithm. As pointed

ut in Norman (1972) and Ott and Krishnan (1992) , the first policy

teration step typically yields the biggest gains, so the result from

ne-step improvement is often close to optimal. 

Here we use the CF policy to approximate the future optimal

elative costs. We first compute the relative costs h CF ( f ) from (5) ,

nd then substitute these into the right-hand side of the Bellman

q. (3) . Ignoring the part that does not depend on the actions, the

ecision made by the OSI policy can be found as: 

 

OSI ( f , j) ∈ arg min 

a ∈ A ( f ) 

(
P (R ( a , j) > t ∗) + h 

CF ( f − a ) 
)
, f ∈ S. 

(6) 

.2. The OSIA heuristic 

To derive the OSI policy from (6) , we first need to solve the CF

olicy’s Bellman Eq. (5) to determine the h CF ( f ). This is computa-

ionally expensive for large problem instances. In this section we

resent an algorithm that approximates the CF policy costs h CF ( f ),

hich can then in turn be used as a basis for the one-step im-

rovement in (6) . We will refer to the policy obtained using one

tep improvement with the CF policy cost approximation as the

ne-step improvement approximation (OSIA). This constitutes our

econd heuristic. 

In order to approximate h CF ( f ), we assume that each fire station

as exactly one truck. This assumption does not limit the appli-

ability of the algorithm, as we can always treat each truck as a
eparate station in the same location, and adjust the states and ac-

ions accordingly. 

Let J ( f , t ) denote the expected total cost under the CF policy

uring the time interval [0, t ] starting from state f . Then the rela-

ive cost h CF ( f ) can be defined as 

 

CF ( f ) = lim 

t→∞ 

(
J( f , t) − g CF t 

)
, 

here g CF denotes the cost per time unit under CF from (5) . 

Assume that after some time T > 0 the system is in steady state,

o the difference between the relative costs and the average costs

s incurred in the interval [0, T ] only. In this case we can approxi-

ate h CF ( f ) as 

 

CF ( f ) = lim 

t→∞ 

J( f , t) − g CF t = J( f , T ) − g CF T + lim 

t→∞ 

(J( f , t) 

−J( f , T )) − (g CF t − g CF T ) 

≈ J( f , T ) − g CF T . (7) 

Substituting (7) into (6) we obtain the equations for the OSIA

olicy: 

 

OSIA ( f , j) ∈ arg min 

a ∈ A ( f ) 
P (R ( a , j) > t ∗) + J( f − a , T ) − g CF T 

= arg min 

a ∈ A ( f ) 
P (R ( a , j) > t ∗) + J( f − a , T ) , 

f ∈ S, j ∈ J . 

ere we can omit the g CF T term because it appears for all actions. 

So in order to derive the OSIA policy we need to estimate J ( f ,

 ), ∀ f ∈ S , the total costs incurred in the interval [0, T ], starting

rom state f . Following an idea from Tiemessen et al. (2013) , we

ecompose the network into individual M / M /1/1 queues associated

ith individual fire stations. By doing this, we essentially decou-

le the network into individual fire stations, for each we can now

ompute an approximation for the probability of the correspond-

ng fire truck to be busy (the so-called busy probability). These we

ombine to obtain an approximation for J ( f , T ). 

Let us first consider a fire station i in isolation, and compute its

usy probability. Denote by D i the given demand arrival rate for

he truck at station i . Recall that the steady-state busy probability

f an M / M /1/1 queue with load ρ i is given by B (ρi ) = ρi / (1 + ρi ) ,

nd thus the steady-state rate of rejected requests is D i B ( ρ i ). De-

ote by N ( ρ i , f i , t ) the expected number of rejected requests in

he M / M /1/1 queue during [0, t ] starting with f i trucks at time

. Finally, let �( ρ i , f i ) be the difference in rejected requests be-

ween starting from steady state and starting from f i : �(ρi , f i ) =
im t→∞ 

(
N(ρi , f i , t) − D i tB (ρi ) 

)
. 

Assuming as above that the system is in steady state after time

 , we have that 

(ρi , f i ) ≈
(
N(ρi , f i , T ) − D i T B (ρi ) 

)
. (8)

he busy probability p i can be obtained by dividing the expected

otal number of rejections N ( ρ i , f i , T ) by the expected number of

rrivals D i T . Observe that in our case ρi = D i /μ, since each request

ill occupy the server (i.e., fire truck) for an expected duration
−1 . Using the identity in (8) and bounding between 0 and 1 to

btain a probability (since we are using approximations), we get 

p i = 

N(ρi , f i , T ) 

D i T 
= max 

{
0 , min 

{
1 , B (D i /μ) + 

�(D i /μ, f i ) 

D i T 

}}
. 

(9) 

Observe that in order to evaluate (9) we need to approximate

( D i / μ, f i ), the difference in total number of rejected calls between

teady-state and starting from state f i . To do this, we formulate the

ueue representing station i as an average-cost MDP, where the

tate is the number of idle trucks at the fire station. Transitions

appen when either a request for a truck arrives or an idle truck
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returns from an incident. If there is an idle truck, it is always dis-

patched. The cost for a rejection is 1, and 0 for an accepted job.

This results in the following system of two Bellman equations and

a normalizing equation: 

h 0 = 

D i 

D i + μ
−

D i B ( D i μ ) 

D i + μ
+ 

D i 

D i + μ
h 0 + 

μ

D i + μ
h 1 , (10)

h 1 = −
D i B ( D i μ ) 

D i 

+ h 0 , (11)

1 

1 + 

D i 
μ

h 0 + 

D i 
μ

1 + 

D i 
μ

h 1 = 0 . (12)

Solving (10) –(12) , we obtain h = (h 0 , h 1 ) , the relative costs starting

from state f i = 0 or f i = 1 , respectively. We use �(D i /μ, f i ) = h f i ,

and compute p i using (9) . 

Having determined the busy probability p i for a given arrival

rate D i , our next step is to update the values of D i using the

busy probabilities obtained. Here we again consider all fire sta-

tions jointly. According to the CF policy, the closest two idle trucks

are dispatched to an incident. Recall that the lists σ j ( k ), j ∈ J , k ∈
{ 1 , . . . , I} represent the dispatching order corresponding to the CF

policy. So as each station has exactly one truck, σ−1 
j 

(i ) denotes the

position held by station i in the dispatching order of demand loca-

tion j . For instance, σ−1 
j 

(i ) = 1 means that station i is the closest

to demand location j . 

Let p 0 correspond to the probability of an outside truck being

unavailable, and set p 0 = 0 . After p i is computed for each station

i according to (9) , we calculate the probability p 
j 
{ i 1 ,i 2 } of a newly

arrived incident at demand location j requests trucks at i 1 and i 2 .

Note that a single incident can generate requests at multiple pairs

of fire stations, since some of them might be occupied. By condi-

tioning on the availability of the fire trucks we obtain: 

For j = 1 , . . . , J, i 1 = 2 , . . . , I, i 2 = 1 , . . . , (i 1 − 1) (both trucks are

from inside): 

p j { i 1 ,i 2 } = 

⎧ ⎨ 

⎩ 

1 , if σ j (i 1 ) = 1 , σ j (i 2 ) = 2 , 

or σ j (i 1 ) = 2 , σ j (i 2 ) = 1 , ∏ 

i � = i 1 ,i 2 , σ j (i ) <max { σ j (i 1 ) ,σ j (i 2 ) } p i , otherwise. 

(13)

For j = 1 , . . . , J, i 1 = 1 , . . . , I, i 2 = 0 (one truck is from outside): 

p j { i 1 ,i 2 } = 

∏ 

i � = i 1 
p i . (14)

For j = 1 , . . . , J, i 1 = 0 , i 2 = 0 (both trucks are from outside): 

p j { i 1 ,i 2 } = 

I ∏ 

i =1 

p i . (15)

The probability p 
j 
{ i 1 ,i 2 } is equal to 1 if trucks at i 1 and i 2 are the

closest to j . Otherwise, it is a product of the busy probabilities of

those trucks that are closer than either i 1 or i 2 . Trucks from inside

of the region are always closer than those from outside. 

Denote D { i 1 ,i 2 } the demand arriving for trucks from stations i 1 

and i 2 . Given the probabilities p 
j 
{ i 1 ,i 2 } , we compute D { i 1 ,i 2 } for i 1 =

2 , . . . , I, i 2 = 1 , . . . , (i 1 − 1) : 

D { i 1 ,i 2 } = 

∑ 

j∈J 
λ j p 

j 

{ i 1 ,i 2 } . (16)

Finally, by summing over all pairs { i, k }, k � = i , we can obtain the

arrival rate of incidents at station i as D i = 

∑ 

k � = i D { i,k } . 
Let C 

j 
i 1 i 2 

indicate the expected penalty related to sending trucks

i and i to location j . It is equivalent to the cost P (R ( a , j) > t ∗)
1 2 
here the action a corresponds to sending the trucks from sta-

ions i 1 and i 2 to location j , given that those are idle. Costs compu-

ation is discussed earlier in Section 3.2 . We now summarize the

lgorithm that approximates J ( f , T ) for a given state f ∈ S in pseu-

ocode Algorithm 1 . 

lgorithm 1 CF cost approximation 

Initialization 

p 
j 
{ i 1 ,i 2 } = 

{
1 , if σ j (i 1 ) = 1 , σ j (i 2 ) = 2 or σ j (i 1 ) = 2 , σ j (i 2 ) = 1 

0 , otherwise 

D { i 1 ,i 2 } = 

∑ 

j∈J λ j p 
j 
{ i 1 ,i 2 } ∀ i 1 , i 2 ∈ { 0 , 1 , . . . , I} 

D i = 

∑ 

k � = i D { i,k } ∀ i ∈ I 
while true do 

Compute �(D i , μ, f i ) = h f i using (10)-(12) 

Compute p i using (9) 

Compute p 
j 

{ i 1 ,i 2 } using (13)-(14) 

Compute D { i 1 ,i 2 } using (16) 

ˆ D i = 

∑ 

k � = i D { i,k } ∀ i ∈ I 
if | D i − ˆ D i | /D i < ε ∀ i ∈ I then 

D i = 

ˆ D i ∀ i ∈ I 
break 

end if 

D i = 

ˆ D i ∀ i ∈ I 
end while 

J( f , T ) = T 
∑ 

j∈J λ j 

∑ I 
i 1 =0 

∑ max { 0 ,i 1 −1 } 
i 2 =0 

p 
j 
i 1 i 2 

C 
j 
i 1 i 2 

(1 − p i 1 )(1 − p i 2 ) 

. Numerical results 

We now present the results of our numerical experiments. In

ection 5.1 we describe the setup of our numerical experiments.

he results are separated into two parts: in Section 5.2 we com-

are the CF and OPT policies, and use this to understand how

uch improvement over CF can be obtained, and what is the im-

act of driving-time correlation on the policies and their perfor-

ance. In Section 5.3 we then evaluate the performance of our

euristics OSI and OSIA relative to CF and OPT, both in terms of

raction of late arrivals and computational time. 

.1. Setup of the numerical experiments 

All experiments were run in MATLAB R2017b on a computer

ith an Intel Core i5-5250U 1.6 GHz processor, 8 GB RAM, run-

ing Linux Fedora 26. In order to evaluate the performance of a

olicy for a given network and set of parameters, we numerically

olve the Bellman Eq. (3) for OPT policy and the restricted Bellman

q. (5) for CF policy. This way we obtain g OPT and g CF , the long-

erm expected number of late arrivals per time unit for OPT and

F, respectively. The dispatching order σ j ( k ) for CF is determined

y ordering for each demand location j the fire stations k based on

he length of their shortest path to j . Ties are broken arbitrarily. 

In order to compute the performance of OSI we first deter-

ine the relative costs for closest first h CF ( f ) from (5) , and sub-

titute these into (6) to determine the actions a 

OSI . These are

hen substituted into the Bellman Eq. (3) , which we solve numer-

cally to obtain the rate of late arrivals for OSI g OSI . For OSIA we

epeat this procedure, except that instead of computing the ex-

ct relative costs for closest first h CF ( f ), we compute J ( f , T ) from

lgorithm 1 and use the approximation for h CF ( f ) from (7) . This

ay we obtain g OSIA , the rate of late arrivals under OSIA. In order

o compute the fraction of late arrivals (FLAR) for any of these poli-

ies, we divide the long-term expected number of late arrivals per

ime unit g by the total arrival rate, i.e., g/ 
∑ 

j∈J λ j . 
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Fig. 2. Random graph construction. 
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For our experiments we randomly generate grid-like graphs, as

utlined below. For some parameter d ∈ N , we generate a grid of

 × d vertices (see Fig. 2 a), placed at unit distance. We then con-

ect each pair of vertices within unit distance from each other, so

 vertex away from the boundary is connected to its four imme-

iate neighbors (see Fig. 2 b) and we obtain a graph with |J | = d 2 

odes and | E| = 2 d(d − 1) edges. We then remove edges uniformly

t random until the number of removed edges is below 2 d(d − 1) s

see Fig. 2 c), where s ∈ (0, 1) is some desired level of sparseness.

he s parameter is drawn from a uniform distribution U(0 . 4 , 1) .

hile removing the edges, we check if the graph remains con-

ected. In case the graph becomes disconnected, a new random

dge is selected for removal. If after a certain number of attempts

o edge is found that can be removed without disconnecting the

raph, the procedure stops, and the obtained graph is used. 

In our experiments we assume each station has exactly one

ruck. This does not affect methodology, but makes it easier to vi-

ualise and understand the difference in actions taken by different

olicies. We allocate stations (or trucks) to vertices sequentially in

 randomized manner. Each of the I trucks is positioned on a ver-

ex not yet occupied by other trucks uniformly at random. 

.2. Comparison of closest-first and optimal dispatching 

In this section we are interested in studying OPT and its per-

ormance relative to the CF heuristic. Recall that OPT is com-

uted from the Bellman Eq. (3) through policy iteration, and it

s here that we run into the infamous curse of dimensionality,

hich states that the state space and action space of the MDP

ecome too big to solve in an efficient manner. Specifically, our

ction space grows as O(I 2 ) since each action consists of sending

wo trucks. The state space grows as O(2 I × d 2 ) , since there are

 

I possible combinations of available trucks, and the next fire can

ccur on any of the J = d 2 demand locations. Although the com-

lexity of each step of policy iteration is polynomial in the size

f the state space and action space, there is no universal polyno-

ial bound on the complexity of the algorithm, due to the uncer-

ainty in the number of steps required ( Littman et al., 1995 ). In

ractical terms, this means that we can only compute the optimal

olicy for instances of small-to-moderate size. In Section 5.3 we

estrict ourselves to suboptimal policies, and consider instances of

eal-life size (in the case of FDAA there are roughly I = 13 trucks

nd J ≈ 400 demand locations). Due to the relatively low load seen

n the FDAA practice ( ρ = 0 . 02 ) and used in our experiments, the

umber of incidents that requires trucks from outside is negligible.

Relative improvement of the optimal policy over closest-first. We

re interested in assessing the current practice of dispatching the

wo closest trucks, and to see whether there is any room for im-

rovement (i.e., reducing the fraction of late arrivals) by dispatch-
ng in a smarter way. To do this, we consider the relative improve-

ent of OPT over CF, which is computed as 

OPT = 

g CF − g OPT 

g CF 
× 100% . 

n Fig. 3 we plot the relative improvement against the load of

he system ρ = 

∑ 

j∈J λ j 

Iμ , which represents the amount of work per

ruck arriving each time unit. We do this for four different ran-

omly generated graphs, and show the improvement both in un-

orrelated and correlated cases. We define the time threshold for

ate arrivals as t ∗ = γ max i ∈I, j∈J | s (i, j) | , to ensure that it scales

ith the graph size, and set γ = 0 . 6 . 

We see that in both cases the relative improvement depends

n the graph, and ranges from 0% − 50% , depending on the load

nd on this graph. This is significant, and suggests that in the right

ircumstances, significant gains can be found by dispatching in a

lever way. In the uncorrelated case the relative difference is small

hen ρ is small or large. This is because if the load is close to 0,

he system is almost always in the state with all the trucks being

dle, and when ρ is close to 1, there is no room for improvement

ndependent of whether there is correlation or not, because the

ystem is almost always in the state with no idle trucks. 

When correlation is introduced however, we see from

ig. 3 that sending two closest trucks does not necessarily mini-

ize response time, even for small loads. Hence, in this case the

PT policy may improve upon the CF policy even for very small

alues of ρ , as illustrated in Fig. 3 c and 3 d. However, we see in all

ases in Fig. 3 that as ρ grows, the improvement curve for corre-

ated driving times converges to the one corresponding to uncor-

elated case. 

The influence of the time threshold t ∗ (through the parameter

) is studied in Fig. 4 . Four arbitrary random graphs are chosen,

nd for each the relative improvement is plotted against γ , with

= 0 . 1 . We again observe that significant gains can be made com-

ared to the closest-first policy, and that the scope of this improve-

ent depends on the parameters. Here we can see that the be-

aviour is similar in both the correlated and uncorrelated cases. If

is close to zero (and hence t ∗ is too), the OPT policy cannot im-

rove upon the CF policy. The time threshold is too low to meet

nless the location of a fire coincides with the location of one of

he idle trucks. As a result, the fraction of late arrivals is close to

 independent of which trucks are sent. As γ grows, there is more

oom for improvement. However, when γ approaches 1, the rela-

ive improvement of OPT drops to zero again. The reason is that

n this case the time threshold t ∗ is so large it can always be met,

ven if the dispatching is far from optimal. 

For a more thorough review of the relative improvement of OPT

ver CF we turn to Table 1 . This shows the relative improvements
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Fig. 3. δOPT as a function of ρ for four random graphs ( I = 5 , d = 7 , γ = 0 . 6 ). 

Table 1 

Minimum, maximum and mean δOPT evaluated over 150 random graphs ( ρ = 0 . 1 , 

γ = 0 . 6 ) . 

Uncorrelated Correlated 

I d min% mean% max% min% mean% max% 

3 4 0.00% 5.50% 20.49% 0.00% 5.77% 19.69% 

5 0.00% 7.41% 25.08% 0.00% 7.46% 25.16% 

6 0.01% 6.70% 24.79% 0.00% 6.60% 26.56% 

7 0.03% 7.09% 32.43% 0.00% 7.06% 34.51% 

4 4 0.15% 9.61% 25.66% 0.04% 11.36% 37.27% 

5 0.99% 10.28% 34.56% 0.92% 11.39% 42.50% 

6 1.10% 11.02% 31.16% 1.18% 12.32% 37.11% 

7 1.38% 11.32% 39.17% 1.15% 12.19% 42.49% 

5 4 2.24% 16.03% 46.65% 2.53% 18.58% 50.59% 

5 2.25% 16.62% 40.96% 2.29% 17.91% 43.17% 

6 2.36% 16.84% 37.36% 3.49% 17.94% 39.77% 

7 2.68% 19.72% 52.42% 1.63% 20.22% 54.95% 

6 4 4.94% 20.70% 46.21% 5.13% 23.35% 51.01% 

5 7.12% 21.79% 43.17% 6.10% 24.08% 48.80% 

6 4.03% 22.75% 49.18% 4.68% 24.63% 52.34% 

7 6.04% 24.84% 53.57% 5.40% 26.48% 54.60% 
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a function of the graph size parameter d and the number of trucks

I , for ρ = 0 . 1 and γ = 0 . 6 . For every combination of I and d , we

generate 150 random graphs. The values in Table 1 represent the

minimum, mean and maximum over these 150 random graphs for
ach parameter set. We can see a modest increase in relative im-

rovement in d , and a significant improvement in I , reaching an

verage improvement of over 20% with I = 6 trucks, and over 50%

or certain instances with driving time correlation. 

In Fig. 5 we show the fraction of late arrivals for OPT for the

ame set of experiments discussed above. That is, for different

alues of d and I we plot the confidence interval over all 150

raphs considered. Although we observed from Table 1 that the

verage relative improvement of OPT over CF is not significantly

ffected by whether we consider driving-time correlation, we see

rom Fig. 5 that the fraction of late arrivals increases when corre-

ation is taken into account. This indicates that in this case it is

ore important to deviate from the CF policy in order to limit the

raction of late arrivals. Since in practice there is always some de-

ree of driving-time correlation, these results suggest that when

ispatching multiple trucks it is valuable to deviate from CF dis-

atching. This is in contrast to the case with a single truck, when

F is close to optimal ( Jagtenberg et al., 2017 ). 

Impact of correlation on the optimal policy. To illustrate the dif-

erence between the optimal policies without correlation ( a 

OPT 
uc )

nd with correlation ( a 

OPT 
c ) we select a random graph with d = 6

 J = 36 demand locations) and I = 4 trucks, see Fig. 6 . The demand

ocations are coloured according to the arrival rates of new inci-

ents, with green corresponding to low rates. We are looking at

he state f = C with all four trucks available. The background of

ach location j is colored according to the corresponding policy
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Fig. 4. δOPT as a function of γ for four random graphs ( I = 5 , d = 7 , ρ = 0 . 1 ). 
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Table 2 

Relative increase in fraction of late arrivals when ignoring 

correlation ( d = 6 , ρ = 0 . 1 , γ = 0 . 6 ). 

I min% mean% max% 

3 0.0% 1.3% 7.4% 

4 0.2% 2.8% 12.2% 

5 0.3% 4.8% 16.3% 

6 1.1% 7.1% 21.3% 

c  
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o  

l  

g  
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t  

t  
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t

 

m  
 

OPT ( C , j ). For example, if a new incident happens at a demand

ocation with green background, then trucks 1 and 2 will be dis-

atched. 

While for this particular choice of graph and parameters the

mpact of correlation is relatively small, it is useful for illustrating

ow the optimal policy changes when correlation is introduced.

or instance, to the demand location highlighted in black in the

iddle of the graph the policy a 

OPT 
uc dispatches trucks 1 and 3 that

hare one edge on their way to that location. The policy a 

OPT 
c in-

tead dispatches trucks 2 and 4 that share no edges in their short-

st paths, as shared edges imply higher probability of being late in

he presence of driving-time correlation. 

The other two changes in this example, as well as those in other

nstances we evaluated, follow a similar pattern: the optimal pol-

cy with correlation may be different from the optimal policy with-

ut correlation for those demand locations where a 

OPT 
uc dispatches

wo trucks with overlapping routes. However, this need not be

he case, and the example in Fig. 6 also includes such demand

ocations where a 

OPT 
c remains unchanged compared to a 

OPT 
uc , be-

ause in these cases the decrease in expected response time when

hanging actions does not outweigh the coverage reduction result-

ng from this change. This illustrates the complexity of finding the

ptimal policy for this model, and the difficulties one would en-

ounter when trying to generalize the observations obtained from

ig. 6 into some kind of heuristic. One main reason for this is

he complex interactions encountered in this model. For instance,
hanging the arrival rate in one part of the network may affect the

ptimal policy elsewhere. 

To see the extent to which driving-time correlation affects the

ptimal policy for a broader range of instances we conduct the fol-

owing experiment. We generate 150 random graphs, and for every

raph we compute a 

OPT 
c and a 

OPT 
uc . In order to study the impact of

gnoring driving-time correlation, we look at what happens with

he system performance if we use a 

OPT 
uc in a setting with driving-

ime correlation. To do this we plug the policy a 

OPT 
uc into the Bell-

an Eq. (5) for a fixed policy with the costs corresponding to the

orrelated case, and measure the relative increase in value function

ompared to the policy a 

OPT 
c ( f , j) . Note that the relative increase

n value function is equivalent to the relative increase in the frac-

ion of late arrivals. 

Table 2 shows the aggregate results of this experiment with

inimum, maximum and mean relative increase in fraction of late
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Fig. 5. Confidence intervals for performance of the OPT policy for different values of d ( ρ = 0 . 1 , γ = 0 . 6 ). 

Fig. 6. Example of difference between a OPT 
uc ( f , j) and a OPT 

c ( f , j) on a random graph. 
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arrivals computed over 150 random graphs. We observe that the

importance of taking driving-time correlation into account grows

with the number of trucks in the system. With more vehicles avail-

able there are more options for making a dispatching decision to

avoid potential traffic jams for the current and upcoming incidents.

The average decrease in performance when using the policy de-

rived under the assumption of uncorrelated driving times in a set-

ting with driving-time correlation reached 7.1% for 6 trucks, and

for some instances was over 20%. 
.3. Performance of the heuristics 

Improvement over closest-first. In this section we compare the

erformance of the two heuristics OSI and OSIA to the optimal pol-

cy OPT, both in terms of fraction of late arrivals and computational

ime. 

Table 3 shows the relative difference of OSI and OSIA with CF,

n addition to that of OPT. The values of δOSI and δOSIA are com-

uted the same way as δOPT . The numbers presented in the table
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Table 3 

Aggregate performance evaluated over multiple random graphs ( d = 6 , γ = 0 . 6 ) . 

Uncorrelated Correlated 

I ρ FLAR CF % δOPT % δOSI % δOSIA % FLAR CF % δOPT % δOSI % δOSIA % 

3 0.02 0.39% 4.83% 4.83% 2.81% 0.51% 5.54% 5.54% 4.12% 

0.04 0.48% 6.36% 6.36% 4.88% 0.60% 6.52% 6.52% 5.43% 

0.1 0.77% 6.70% 6.70% 6.36% 0.89% 6.60% 6.60% 6.33% 

0.4 2.12% 2.57% 2.57% 2.51% 2.19% 2.59% 2.59% 2.52% 

0.6 2.74% 1.48% 1.48% 1.45% 2.79% 1.50% 1.50% 1.47% 

4 0.02 0.20% 9.49% 9.49% 5.10% 0.31% 12.24% 12.24% 9.53% 

0.04 0.25% 11.55% 11.54% 8.51% 0.37% 13.53% 13.52% 11.43% 

0.1 0.47% 11.02% 10.99% 10.45% 0.59% 12.32% 12.29% 11.87% 

0.4 1.82% 3.77% 3.75% 3.28% 1.90% 4.13% 4.12% 3.50% 

0.6 2.50% 2.14% 2.14% 1.94% 2.56% 2.33% 2.32% 2.05% 

5 0.02 0.10% 15.71% 15.62% 8.56% 0.18% 17.38% 17.30% 13.50% 

0.04 0.14% 18.57% 18.35% 13.60% 0.21% 19.56% 19.32% 16.22% 

0.1 0.29% 16.84% 16.49% 14.35% 0.38% 17.94% 17.58% 16.00% 

0.4 1.60% 4.76% 4.68% 3.90% 1.68% 5.22% 5.12% 4.06% 

0.6 2.34% 2.56% 2.53% 2.21% 2.40% 2.79% 2.75% 2.32% 

6 0.02 0.05% 20.45% 20.15% 11.73% 0.11% 22.00% 21.70% 17.33% 

0.04 0.07% 24.90% 24.37% 17.89% 0.13% 25.91% 25.30% 21.64% 

0.1 0.18% 22.75% 22.05% 18.44% 0.25% 24.63% 23.75% 21.57% 

0.4 1.43% 5.99% 5.84% 4.92% 1.50% 6.67% 6.49% 5.17% 

0.6 2.20% 3.16% 3.10% 2.70% 2.26% 3.47% 3.40% 2.87% 
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Table 4 

Average optimality gap of OSI and OSIA ( d = 6 , γ = 0 . 6 ). 

Uncorrelated Correlated 

I ρ OSI % OSIA % OSI % OSIA % 

3 0.02 0.00% 2.36% 0.00% 1.68% 

0.04 0.00% 1.72% 0.00% 1.24% 

0.1 0.00% 0.37% 0.00% 0.29% 

0.4 0.00% 0.06% 0.00% 0.07% 

0.6 0.00% 0.03% 0.00% 0.03% 

4 0.02 0.00% 6.01% 0.01% 3.57% 

0.04 0.01% 3.91% 0.01% 2.70% 

0.1 0.03% 0.66% 0.04% 0.52% 

0.4 0.01% 0.51% 0.02% 0.66% 

0.6 0.01% 0.21% 0.01% 0.28% 

5 0.02 0.18% 11.67% 0.16% 5.98% 

0.04 0.36% 7.24% 0.40% 4.79% 

0.1 0.47% 3.05% 0.49% 2.41% 

0.4 0.09% 0.90% 0.11% 1.22% 

0.6 0.04% 0.36% 0.04% 0.49% 

6 0.02 0.67% 16.26% 0.58% 8.13% 

0.04 1.04% 11.72% 1.12% 7.04% 

0.1 1.01% 5.73% 1.33% 4.18% 

0.4 0.16% 1.13% 0.20% 1.60% 

0.6 0.06% 0.47% 0.07% 0.63% 
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re the mean values of the corresponding metrics evaluated over

50 randomly generated graphs. The values of d and γ are fixed,

nd we vary the load ρ in the range {0.02, 0.04, 0.1, 0.4, 0.6} and

he number of trucks I in the range 3–6. For every combination

f I and ρ the minimum, mean and maximum over 150 randomly

enerated graphs is presented. The improvement over CF for all

hree policies first increases with ρ followed by a decrease for high

oads. Both OSI and OSIA policies show significant improvement

ver the CF policy for lower values of ρ , and are relatively close

o the performance of OPT. The improvement over CF grows with

 and is larger in the presence of driving-time correlation, similar

o what we observed in Table 1 . As it can be seen from the more

etailed Tables 5–7 in Appendix B , the heuristics performance also

mproves as d increases, suggesting that their performance is bet-

er for larger networks. Appendix B also includes Table 8 , which

hows the relative improvement of OSIA over CF for ρ = 0 . 02 and

 = 7 for larger values of d . Here we see that as I and d grow larger,

he gap with CF increases as well. 

Note that, in our setting, the fraction of late arrivals under the

F policy FLAR CF is relatively low. This would mean that the im-

rovement over CF in the number of late arrivals is low com-

ared to the total number of incidents. However, this improvement

hould not be understated. From the emergency services perspec-

ive, any improvement in late arrivals is considered significant. In

he case of FDAA, for example, the original idea of dispatching two

rucks instead of one is targeted at reducing the risk of a possi-

le delay, despite additional operational costs. This shows the im-

ortance of any decrease in response time. The further gains that

an be achieved by changing the dispatching strategy are particu-

arly valuable, given that it does not involve any extra operational

osts. 

Given the value functions g OPT and g OSIA of the OPT and OSIA

olicies, respectively, we compute the OSIA optimality gap as
g OSIA −g OPT 

g OPT × 100% . We compute the optimality gap for OSI in a sim-

lar way. Table 4 shows the average optimality gap of the OSI and

SIA policies computed over 150 random graphs for each combina-

ion of I and ρ . The performance of both OSI and OSIA stays within

 few percent of OPT. The optimality gap grows with I . The OSI pol-

cy performs slightly better in a setting without correlation, while

he opposite is true for OSIA. The optimality gap of both OSI and
SIA decreases in ρ , suggesting that these approximations perform

est in the high load regime. Note that while the optimality gap

f these heuristics grows in the network size, we have seen from

ables 3,5–8 that the improvement over CF also does. So while nei-

her OSI nor OSIA is asymptotically optimal, their performance in

act improves as the network grows larger. 

Computational time. Next, we take a look at the computational

ime of the various policies. If computational time would not be

n issue, then using the OPT policy is an obvious choice. How-

ver, solving MDP exactly quickly becomes problematic when the

nstance size grows, as the size of the state space grows exponen-

ially in I . In our experiments, the main issue with solving the MDP

xactly for larger instances was not the running time of policy it-

ration, but the size of the array with transition probabilities (i.e.,
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Fig. 7. Change in computational time as I grows ( J = 625 ). 

Fig. 8. Change in computational time as J grows ( I = 7 ). 
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|S| × |S| × |A| ). As a result, computing the OPT policy breaks down

for even moderate-sized networks (e.g., I = 7 , d = 6 ). 

To compare the computational performance of OSI and OSIA,

we plot the computational time for determining these policies

against I ( Fig. 7 ) and the number of demand locations J = d 2 

( Fig. 8 ). Here we use a single randomly generated graph for each

data point. The OSI policy is computed faster then the optimal, but

still requires solving a set of |S + 1 | Bellman equations. Storing a

|S + 1 | × |S + 1 | matrix of coefficients for the system of Bellman

equations becomes infeasible, which is why we can only determine
he OSI policy for small values of I and J . The computational time

f the OSIA policy shows significantly slower growth in I and J than

hat of OSI. Moreover, it does not require storing large data struc-

ures, and makes it feasible to obtain a good policy for problem

nstances of realistic size. 

The computational time of the OSIA heuristic is reasonable for

he systems used in our numerical experiments. The algorithm

s meant to be used in the offline regime, only once for a given

ystem, and produces look-up tables indicating the dispatching

ecision to be made for each state of the system. Moreover,
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n our experiments we ran approximation Algorithm 1 sequen-

ially for each state. In real-life applications the OSIA com-

utational time can be significantly decreased by means of

arallelization. 

. Conclusion 

In the present work we studied a dispatching problem in a fire

epartment where two trucks have to be dispatched to an inci-

ent location, and the decision is to be made on which idle trucks

o send. We modelled the region served by a fire department as

 connected graph and formulated the dispatching problem as an

DP. The optimal policy was obtained by solving the MDP exactly

sing policy iteration. 

Using small problem instances, we showed that the current

ractice of sending the two closest trucks can be far from opti-

al, with optimality gap reaching 50% in certain cases. As obtain-

ng the optimal policy for large problem instances is computation-

lly infeasible, we also derived a one-step-improvement OSI policy,

hat can be obtained faster and for larger problem instances than

PT. In our experiments, however, OSI still remained computation-

lly infeasible for problem instances of realistic sizes. Therefore,

e introduced the OSIA policy that incorporates an approximation

cheme into the OSI policy computation procedure. The OSIA pol-

cy performed close to the optimal performance with optimality

ap of about 2%, and significantly lower computational time that

llows for solving real-life sized problem instances. 

We considered two types of stochastic behaviour in driving

ime when two trucks are dispatched to the same incident loca-

ion. If two trucks traverse the same edge in a graph we assume

heir travelling times to be either independent of each other (un-

orrelated), or the same (correlated). Our experiments show that

ntroducing correlation makes a difference compared to sending

wo closest trucks, even if the load is small. Since performance is

easured based on response time, sending two closest is not nec-

ssarily optimal anymore. 

As discussed in Section 5.2 , analytically characterizing the op-

imal policy for general networks seems untractable, due to the

omplex network dynamics that may propagate even small pertur-

ations throughout the network. However, we are optimistic that

or small network instances or specific network structures (such as

inear networks), one may be able to obtain structural results on

he optimal policy. Doing this for both the case with and without

orrelation may lead to interesting insights into where and how

hese two optimal policies differ. 

This work can be extended in several interesting ways. For in-

tance, the model and results could be modified to accommodate

he following: 

- Instead of only considering perfect or no correlation between

the driving time, we could allow for intermediate levels of

correlation by assuming that the driving time on a single

edge is hyperexponential instead of exponential. By coupling

only one of the branches of this distribution we can accom-

modate any correlation coefficient. 

- Note that changing the driving time distribution does not af-

fect the MDP formulation, but rather the immediate costs. So

in order to allow for driving time distributions beyond expo-

nential we would have to generalize Proposition 1 . Note that

if we use a heavy-tailed distribution, the results can poten-

tially show a more significant advantage of using the OPT

policy instead of CF. We expect a larger optimality gap for

CF in the case of heavy-tailed driving time distribution since

the larger variance in response time necessitates more care-

ful dispatching. 
- The MDP formulation itself can be enhanced by allowing more

than two trucks to be dispatched to an incident, and we can

generalize the definition of the response time accordingly.

This would entail changing the action space from all actions

that dispatch at most 2 trucks to those that dispatch at most

k trucks. The main difficulty in making this extension lies in

computing the immediate cost P (R ( a ( f , j) , j) > t ∗) for those

actions a that dispatch more than two trucks. If only the

first truck to arrive is relevant, the costs can be computed

along the lines of Proposition 1 , by conditioning on the real-

izations of the driving times of all trucks. If the performance

metric depends on more than just the first truck to arrive,

generalizing the results obtained here may be more com-

plex. 

- When two trucks are dispatched from the same station, we

may assume that each takes a different path in order to

avoid driving-time correlation. Including this in the model

may result in the optimal policy and heuristics to dispatch

trucks from the same station more often. 
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ppendix A. Proof of Proposition 1 

roof. The first statement can be readily proven by using the in-

ependence of Y 1 and Y 2 : 

 ( min { Y 1 , Y 2 } > t ∗) = P (Y 1 ≥ t ∗) P (Y 2 ≥ t ∗) . 

ubstituting in the distribution of Y 1 and Y 2 we obtain the desired

esult. 

For the second statement we condition on the value of Y 0 to

btain the following expression: 

 (Y 0 + min { Y 1 , Y 2 } > t ∗) = 

∫ ∞ 

y 0 =0 

f Y 0 (y 0 ) P ( min { Y 1 , Y 2 } > t ∗−y 0 )d y 0 

= 

∫ t ∗

y 0 =0 

f Y 0 (y 0 ) P (Y 1 > t ∗ − y 0 ) 

P (Y 2 > t ∗ − y 0 )d y 0 + 

∫ ∞ 

y 0 = t ∗
f Y 0 (y 0 )d y 0 . 

y substituting the distribution function of Y 0 , Y 1 and Y 2 , and ex-

hanging the order of integration and summation we obtain 

 (R ( a , j) > t ∗) = 

∫ t ∗

y 0 =0 

f Y 0 (y 0 ) 

w 1 −1 ∑ 

n =0 

(t ∗ − y 0 ) 
n 

n ! 
e −t ∗+ y 0 

w 2 −1 ∑ 

m =0 

(t ∗ − y 0 ) 
m 

m ! 
e −t ∗+ y 0 d y 0 + 

w 0 −1 ∑ 

n =0 

t ∗n 

n ! 
e −t ∗

= 

w 1 −1 ∑ 

n =0 

w 2 −1 ∑ 

m =0 

∫ t ∗

y 0 =0 

f Y 0 (y 0 ) 
(t ∗ − y 0 ) 

n + m 

n ! m ! 
e −2 t ∗+2 y 0 d y 0 

+ 

w 0 −1 ∑ 

n =0 

t ∗n 

n ! 
e −t ∗ . 

xpanding (t ∗ − y ) n + m yields 
0 
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c

A

 

r  

T  

t  

t  

h  

i  

m  
P (R ( a , j) > t ∗) 

= 

w 1 −1 ∑ 

n =0 

w 2 −1 ∑ 

m =0 

∫ t ∗

y 0 =0 

y w 0 −1 
0 

(w 0 − 1)! 
e −y 0 

1 

n ! m ! 

n + m ∑ 

l=0 

(
n + m 

l 

)
t ∗l (−y 0 ) 

n + m −l e −2 t ∗+2 y 0 d y 0 + 

w 0 −1 ∑ 

n =0 

t ∗n 

n ! 
e −t ∗

= 

w 1 −1 ∑ 

n =0 

w 2 −1 ∑ 

m =0 

n + m ∑ 

l=0 

e −2 t ∗t ∗l (−1) n + m −l 

n ! m !(w 0 − 1)! 

(
n + m 

l 

)

∫ t ∗

y 0 =0 

y n + m −l+ w 0 −1 
0 

e y 0 d y 0 + 

w 0 −1 ∑ 

n =0 

t ∗n 

n ! 
e −t ∗ , 
Table 5 

Aggregate performance evaluated over 150 random graphs ( ρ = 0 . 02 , γ = 0 . 6 ) . 

Uncorrelated Correlated 

I d Policy min mean max min mean max 

3 4 OPT 0.0% 3.4% 27.8% 0.0% 4.8% 25.6% 

OSI 0.0% 3.4% 27.8% 0.0% 4.8% 25.6% 

OSIA −2.5% 1.9% 20.5% −2.9% 4.0% 20.3% 

5 OPT 0.0% 5.7% 36.5% 0.0% 6.8% 34.3% 

OSI 0.0% 5.7% 36.5% 0.0% 6.8% 34.3% 

OSIA −0.2% 2.9% 26.3% −0.8% 5.2% 31.7% 

6 OPT 0.0% 4.8% 32.8% 0.0% 5.5% 37.4% 

OSI 0.0% 4.8% 32.8% 0.0% 5.5% 37.4% 

OSIA −4.0% 2.8% 20.6% −5.4% 4.1% 31.6% 

7 OPT 0.0% 5.7% 49.2% 0.0% 6.0% 45.0% 

OSI 0.0% 5.7% 49.2% 0.0% 6.0% 45.0% 

OSIA −1.4% 3.6% 36.4% −2.1% 4.8% 35.4% 

4 4 OPT 0.1% 8.4% 54.5% 0.0% 11.1% 62.5% 

OSI 0.1% 8.4% 54.5% 0.0% 11.1% 62.5% 

OSIA −3.4% 4.6% 25.5% −3.9% 8.7% 62.4% 

5 OPT 0.3% 9.0% 63.4% 0.4% 11.3% 67.9% 

OSI 0.3% 9.0% 63.3% 0.4% 11.3% 67.9% 

OSIA −0.7% 4.5% 44.1% −2.0% 8.7% 58.8% 

6 OPT 0.2% 9.5% 56.9% 0.3% 12.2% 60.7% 

OSI 0.2% 9.5% 56.9% 0.3% 12.2% 60.7% 

OSIA 0.1% 5.1% 41.6% −2.6% 9.5% 59.1% 

7 OPT 0.4% 10.3% 74.7% 0.6% 12.0% 77.3% 

OSI 0.4% 10.3% 74.6% 0.6% 12.0% 77.3% 

OSIA −0.5% 6.0% 55.3% −0.6% 9.1% 71.4% 

5 4 OPT 0.3% 13.6% 72.1% 1.1% 17.6% 78.2% 

OSI 0.3% 13.6% 72.0% 1.1% 17.4% 78.0% 

OSIA −0.8% 8.1% 33.1% −1.5% 14.7% 76.5% 

5 OPT 0.3% 14.4% 58.7% 1.3% 15.8% 63.7% 

OSI 0.3% 14.4% 58.6% 1.3% 15.7% 63.0% 

OSIA 0.1% 7.5% 37.3% −3.3% 11.9% 59.9% 

6 OPT 0.5% 15.7% 69.2% 1.0% 17.4% 73.4% 

OSI 0.5% 15.6% 68.4% 1.0% 17.3% 73.1% 

OSIA 0.2% 8.6% 57.7% -3.7% 13.5% 66.5% 

7 OPT 0.7% 17.7% 81.3% 0.7% 18.0% 81.3% 

OSI 0.7% 17.6% 80.5% 0.7% 17.9% 80.6% 

OSIA 0.3% 11.2% 59.3% -9.1% 14.0% 79.1% 

6 4 OPT 1.3% 18.0% 66.7% 1.4% 20.0% 76.7% 

OSI 1.3% 17.9% 65.2% 1.4% 19.8% 75.7% 

OSIA 0.5% 11.5% 42.9% -1.2% 16.7% 69.8% 

5 OPT 1.3% 19.1% 72.9% 1.2% 20.9% 75.0% 

OSI 1.3% 19.0% 69.4% 1.2% 20.7% 74.8% 

OSIA 0.7% 11.2% 51.8% 0.8% 17.2% 67.3% 

6 OPT 0.6% 20.5% 74.4% 1.0% 22.0% 73.2% 

OSI 0.6% 20.2% 73.5% 1.0% 21.7% 72.6% 

OSIA -0.3% 11.7% 61.6% -14.3% 17.3% 64.5% 

7 OPT 1.2% 22.8% 81.0% 1.8% 24.1% 82.3% 

OSI 1.2% 22.5% 79.5% 1.8% 23.9% 81.4% 

OSIA 0.7% 14.2% 62.9% 1.5% 19.3% 73.6% 

T

A

ompleting the proof. �

ppendix B. Additional numerical results 

In this section we provide computational results for a wider

ange of parameters, supporting the findings in the main text.

ables 5–7 show relative improvement of OPT, OSI and OSIA over

he CF policy in terms of fraction of late arrivals, depending on

he number of fire trucks I and the size of the network d . The

euristics performance improves as both I and d increase, suggest-

ng that their performance is better for larger networks and with

ore trucks. Table 8 shows the relative improvement of OSIA over
able 6 

ggregate performance evaluated over 150 random graphs ( ρ = 0 . 04 , γ = 0 . 6 ) . 

Uncorrelated Correlated 

I d Policy min mean max min mean max 

3 4 OPT 0.0% 4.9% 27.9% 0.0% 5.7% 25.9% 

OSI 0.0% 4.9% 27.9% 0.0% 5.7% 25.9% 

OSIA −3.0% 3.4% 21.6% −3.8% 4.8% 23.0% 

5 OPT 0.0% 7.3% 34.6% 0.0% 7.7% 33.7% 

OSI 0.0% 7.3% 34.6% 0.0% 7.7% 33.7% 

OSIA −0.3% 5.4% 32.6% −1.3% 6.5% 33.6% 

6 OPT 0.0% 6.4% 32.0% 0.0% 6.5% 35.5% 

OSI 0.0% 6.4% 32.0% 0.0% 6.5% 35.5% 

OSIA −3.9% 4.9% 24.3% −5.4% 5.4% 32.8% 

7 OPT 0.0% 7.2% 45.7% 0.0% 7.3% 43.7% 

OSI 0.0% 7.2% 45.7% 0.0% 7.3% 43.7% 

OSIA −1.7% 5.6% 38.6% −0.7% 6.2% 38.6% 

4 4 OPT 0.1% 10.2% 44.2% 0.0% 12.5% 57.4% 

OSI 0.1% 10.2% 44.2% 0.0% 12.5% 57.4% 

OSIA −3.3% 6.8% 36.9% −7.6% 10.1% 57.0% 

5 OPT 0.6% 10.8% 52.7% 0.7% 12.4% 59.0% 

OSI 0.6% 10.8% 52.5% 0.7% 12.4% 58.9% 

OSIA −0.9% 7.8% 45.4% −0.3% 10.4% 58.5% 

6 OPT 0.4% 11.5% 51.1% 0.6% 13.5% 57.4% 

OSI 0.4% 11.5% 51.1% 0.6% 13.5% 57.4% 

OSIA 0.3% 8.5% 41.8% −0.9% 11.4% 52.9% 

7 OPT 0.8% 12.2% 63.3% 1.0% 13.4% 66.7% 

OSI 0.8% 12.2% 63.2% 1.0% 13.4% 66.7% 

OSIA 0.5% 9.3% 56.9% −1.2% 11.1% 65.4% 

5 4 OPT 0.8% 16.8% 65.9% 1.7% 19.9% 70.6% 

OSI 0.8% 16.7% 65.5% 1.7% 19.7% 69.6% 

OSIA −0.7% 11.8% 57.6% −1.0% 17.2% 68.0% 

5 OPT 0.9% 17.8% 56.5% 1.2% 18.8% 61.9% 

OSI 0.9% 17.6% 56.3% 1.2% 18.6% 61.4% 

OSIA 0.4% 11.9% 39.8% −2.0% 15.1% 56.0% 

6 OPT 1.1% 18.6% 57.7% 1.9% 19.6% 59.5% 

OSI 1.1% 18.4% 57.6% 1.9% 19.3% 59.4% 

OSIA 0.9% 13.6% 52.6% −0.9% 16.2% 58.2% 

7 OPT 1.4% 21.2% 75.1% 0.9% 21.0% 76.5% 

OSI 1.4% 20.9% 74.2% 0.9% 20.8% 75.5% 

OSIA 1.1% 16.5% 68.1% 0.4% 18.1% 74.4% 

6 4 OPT 2.5% 22.4% 62.8% 2.7% 24.1% 69.3% 

OSI 2.5% 22.0% 62.0% 2.7% 23.6% 69.1% 

OSIA 1.3% 15.2% 42.7% −1.8% 20.1% 67.3% 

5 OPT 3.1% 23.7% 65.1% 2.8% 24.9% 69.4% 

OSI 3.0% 23.3% 63.0% 2.8% 24.5% 67.3% 

OSIA 2.4% 16.5% 50.3% 1.9% 20.8% 62.5% 

6 OPT 1.5% 24.9% 68.4% 2.1% 25.9% 70.3% 

OSI 1.5% 24.4% 65.0% 2.1% 25.3% 68.9% 

OSIA 0.8% 17.9% 56.0% −15.0% 21.6% 63.8% 

7 OPT 2.9% 27.3% 73.1% 3.7% 28.1% 73.6% 

OSI 2.9% 26.9% 72.2% 3.7% 27.5% 72.0% 

OSIA 1.4% 20.5% 66.3% 3.4% 23.7% 67.7% 
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Table 7 

Aggregate performance evaluated over multiple random graphs ( ρ = 0 . 1 , γ = 0 . 6 ) . 

Uncorrelated Correlated 

I d Policy min% mean% max min% mean max% 

3 4 OPT 0.0% 5.5% 20.5% 0.0% 5.8% 19.7% 

OSI 0.0% 5.5% 20.5% 0.0% 5.8% 19.7% 

OSIA −2.6% 5.2% 20.5% −3.5% 5.5% 19.7% 

5 OPT 0.0% 7.4% 25.1% 0.0% 7.5% 25.2% 

OSI 0.0% 7.4% 25.1% 0.0% 7.5% 25.2% 

OSIA −0.6% 7.1% 24.8% −1.4% 7.2% 25.0% 

6 OPT 0.0% 6.7% 24.8% 0.0% 6.6% 26.6% 

OSI 0.0% 6.7% 24.8% 0.0% 6.6% 26.6% 

OSIA −2.6% 6.4% 24.0% −3.7% 6.3% 26.6% 

7 OPT 0.0% 7.1% 32.4% 0.0% 7.1% 34.5% 

OSI 0.0% 7.1% 32.4% 0.0% 7.1% 34.5% 

OSIA −1.9% 6.8% 31.9% −2.3% 6.9% 34.4% 

4 4 OPT 0.1% 9.6% 25.7% 0.0% 11.4% 37.3% 

OSI 0.1% 9.6% 25.7% 0.0% 11.3% 37.3% 

OSIA −0.1% 8.9% 24.8% −0.2% 10.8% 37.2% 

5 OPT 1.0% 10.3% 34.6% 0.9% 11.4% 42.5% 

OSI 1.0% 10.2% 34.3% 0.9% 11.3% 42.4% 

OSIA −0.5% 9.7% 34.4% −0.7% 10.9% 42.4% 

6 OPT 1.1% 11.0% 31.2% 1.2% 12.3% 37.1% 

OSI 1.1% 11.0% 31.2% 1.2% 12.3% 37.1% 

OSIA 1.1% 10.4% 31.0% 1.1% 11.9% 37.0% 

7 OPT 1.4% 11.3% 39.2% 1.2% 12.2% 42.5% 

OSI 1.4% 11.3% 39.0% 1.2% 12.1% 42.4% 

OSIA 1.1% 10.8% 38.9% 0.3% 11.7% 42.4% 

5 4 OPT 2.2% 16.0% 46.6% 2.5% 18.6% 50.6% 

OSI 2.2% 15.8% 46.1% 2.5% 18.2% 49.8% 

OSIA −3.0% 13.2% 45.6% −2.5% 16.6% 49.7% 

5 OPT 2.3% 16.6% 41.0% 2.3% 17.9% 43.2% 

OSI 2.3% 16.3% 40.7% 2.3% 17.6% 42.8% 

OSIA −0.2% 13.9% 38.8% −0.3% 15.9% 40.9% 

6 OPT 2.4% 16.8% 37.4% 3.5% 17.9% 39.8% 

OSI 2.3% 16.5% 37.1% 3.5% 17.6% 39.5% 

OSIA 0.8% 14.4% 35.6% −1.0% 16.0% 37.5% 

7 OPT 2.7% 19.7% 52.4% 1.6% 20.2% 54.9% 

OSI 2.7% 19.3% 51.6% 1.6% 19.8% 54.4% 

OSIA 0.9% 17.4% 49.5% −0.4% 18.5% 54.2% 

6 4 OPT 4.9% 20.7% 46.2% 5.1% 23.4% 51.0% 

OSI 4.9% 20.2% 45.7% 5.1% 22.6% 50.3% 

OSIA 1.0% 15.8% 43.0% −0.5% 20.3% 49.2% 

5 OPT 7.1% 21.8% 43.2% 6.1% 24.1% 48.8% 

OSI 7.0% 21.3% 41.9% 6.0% 23.4% 47.1% 

OSIA 2.2% 17.3% 40.2% 2.8% 20.9% 44.7% 

6 OPT 4.0% 22.7% 49.2% 4.7% 24.6% 52.3% 

OSI 4.0% 22.0% 47.5% 4.7% 23.7% 50.9% 

OSIA 1.4% 18.4% 45.2% 2.3% 21.6% 50.8% 

7 OPT 6.0% 24.8% 53.6% 5.4% 26.5% 54.6% 

OSI 6.0% 24.1% 52.4% 5.3% 25.7% 53.2% 

OSIA 2.8% 20.7% 48.8% 2.3% 23.4% 49.8% 

Table 8 

Aggregate performance of OSIA over 50 random graphs ( ρ = 0 . 02 , γ = 0 . 6 , I = 7 ) . 

Uncorrelated Correlated 

d min% mean% max% min% mean% max% 

7 0.5% 18.8% 81.4% 1.9% 24.1% 76.1% 

8 1.2% 16.0% 59.0% 0.9% 19.9% 57.6% 

9 0.5% 20.3% 88.4% 2.0% 28.5% 81.4% 

10 1.0% 22.3% 89.0% 2.0% 26.2% 83.7% 
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F for ρ = 0 . 02 and I = 7 for larger values of d . We see that as I

nd d grow larger, the gap with CF continues to increase as well. 
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