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Recently Glover, Klingman and Philips proposed the Partitioning Shortest Path (PSP} algorithm. The PSP algorithm includes 
as variants most of the known algorithms for the shortest path problem. In a subsequent paper, together with Schneider, they 
proposed several variants of the PSP and conducted computational tests. Three of the variants were the first polynomially 
bounded shortest path algorithms to maintain sharp labels as defined by Shier and Witzgall. Two of these variants had 
computational complexity 0( / N / 2 /A/), the other 0( IN/ 3). In this note, we add a new step to the PSP algorithm resulting in 
new variants also scanning from sharp labels and having computational complexity 0( / N 13 ) for two of them and 0( IN 12 ) 

for the other. This new step also provides a test for the early detection of negative length cycles. 

shortest path * computational complexity * negative length cycles detection 

1. Introduction 

Few problems have so many applications as the 
shortest path tree (SPT) problem. It is used in 
distance matrix calculation, vehicle routing, traffic 
equilibrium problems or as a step in the resolution 
of problems as assignment, matching, knapsack, 
generalized assignment. This explains the great 
interest the SPT has generated in the past years; 
see Gallo and Pallottino [4] for a survey covering 
both the single shortest path tree problem and the 
all-pairs shortest path problem. This survey also 
contains a section on reoptirnization procedures. 
In this note we will restrict ourselves to the Parti
tioning Shortest Path (PSP) algorithm. 

2. Notations and background 

Consider a directed network G = (N, A) with 
node set N and arc set A. We denote the cardinal
ity of N and A by INI and IAI. Let l(i, J) 
denote the arc length for arc (i, j) E A. We as-
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sume that the network contains no cycles of nega
tive length. In Section 4, a test to verify this 
assumption will be presented. For a given node 
r E N, which we call the root, we want to de
termine for each v E N, the length of the shortest 
path from r to v, d( v ), and to build a directed 
tree rooted at r such that the unique path from 
the root to any other node is the shortest path 
between these nodes in G. 

All algorithms for the shortest path tree have in 
common that they start from an arbitrary tree T 
and arbitrary labels d(u). Usually the following 
initial labels are chosen: 

d(r) =0, 

d(u)=oo VuEN, u=Fr. 

The algorithm updates the tree T and the labels 
whenever it finds an arc (i, j) EA such that 

d(i) + l(i, J) < d(j). (1) 

The label d(j) is set to d(i) + l(i, j), and the tree 
T is updated by replacing the current arc incident 
to j by the arc (i, j). The process terminates 
when all arcs (i, j) EA satisfy Bellman's optimal
ity conditions, 

d(r)=O, 

d(i) + /(i, j);;;. d(j) V(i, j) EA. 

(2) 

(3) 
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Fig. 1. Examples of sharp and non-sharp labels. 

Gallo and Pallottino [3,4] showed that all pro
posed algorithms are derived from this single pro
totype method. The only difference between al
gorithms is the data structure used to implement 
the search for arcs violating optimality condition 
(3). Usually all arcs going out of a node are 
treated consecutively, i.e., the algorithm scans a 
node. An extensive empirical study by Dial et al. 
[2] has shown that no algorithm could be said to 
dominate all others on all problem instances. 
However, they concluded that, in general, for low 
density networks a label-correcting algorithm 
called C2 and proposed by Pape [8] was the most 
efficient and that for networks of higher density a 
label-setting algorithm called S2 and proposed by 
Dantzig [1] performs best. In an attempt to ex
plain these results Shier and Witzgall [9] studied 
the properties of labelling algorithms. They dis
covered that Pape's algorithm has an exponential 
worst case complexity and that is successful be
havior in practice could be explained by a prop
erty of the labels they called 'sharp'. 

A node v has a sharp label if the length of the 
path from r to v in the current tree is equal to 
d( v ). In Figure 1, there is a five-node network. 
With each node is associated a label in parenthe
ses and with each arc a length in brackets. The 
arcs belonging to the current tree are in bold, 
other arcs are dashed. Presently nodes 1, 2 and 3 
have sharp labels and nodes 4 and 5 do not have 
sharp labels because arc (2, 3) was added to the 
current tree and d(3) was updated. This tree mod
ification causes labels d(4) and d(5) to be non
sharp. Any scanning of a node v with non-sharp 
label will have to be done again when d( v) will be 
updated. It should be noted that for non-negative 
arc length networks label-setting algorithms al
ways scan sharp nodes. 

Glover et al. [6] proposed the general partition
ing shortest path (PSP) scheme. This scheme can 
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be used to produce several polynomially bounded 
shortest path algorithms. In fact most algorithms 
proposed to solve the SPT can be interpreted as 
variants of the PSP. 

The PSP algorithm (Glover et al. [6]) 
Step 0. Initialization. Initialize the predecessor 

p ( i) to define an arbitrary tree, and initialize a 
distance label d ( i) for each node, 

p(i)=O '\liEN, 

d(i)=oo 'ViEN, ief=r, 

d(r)=O. 

Set iteration count k = 0. The set of scan eligi
ble nodes will be partitioned in two lists NOW 
and NEXT. Initially NOW = { r} and NEXT= 8. 

Step 1. Select an element of NOW. If NOW is 
empty, go to Step 3. Select any node u from 
NOW. 

Step 2. Scan selected node u. Delete node u 
from NOW. For each successor of u, i.e., v E 

{vl(u, v)EA}, if d(u)+l(u, v)<d(v) then set 
d(v) = d(u) + l(u, v), update T by setting p(v) 
= u and add v to the NEXT list if v is not already 
in NEXT or NOW. When all successors have been 
examined go to Step 1. 

Step 3. Repartition scan eligible nodes. If NEXT 
is empty, stop. (Bellman's conditions are met by 
all arcs.) Otherwise, set k = k + 1, transfer all 
nodes from NEXT to NOW and return to Step 1. 

In a subsequent paper, Glover et al. [7] pro
posed several variants of the PSP and in an em
pirical study compared them to the C2 and S2 
algorithms. Three of the variants were the first 
polynomially bounded sharp label-correcting al
gorithms for the SPT. However, their computa
tional complexity is an order of magnitude greater 
than their non-sharp equivalent. These variants 
have computational complexity 0( IN I 21 A I) for 
two of them while similar non-sharp algorithms 
have computational complexity 0( IN 11 A I). The 
third sharp algorithm has complexity 0( IN j 3). 
To overcome this disadvantage, they defined two 
near-sharp algorithms for the non-negative arc 
length case. In a near-sharp algorithm, at the 
beginning of each iteration all the nodes in NOW 
have sharp labels. Those near-sharp algorithms 
have computational complexity 0( I N I I A I) and 
one of the two, THRESH-X2, outperforms other 
algorithms in the empirical study. 
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3. A new sharp algorithm for SPT 

In order to scan only sharp nodes, the sharp 
algorithm by Glover et al. [7] maintains sharp 
labels at all the nodes through the whole process. 
This can be viewed as a specialized variant of the 
primal simplex algorithm. Each time the label of a 
node v is updated, the algorithm also updates the 
labels of all the nodes in the current subtree 
rooted at v. This represents a considerable compu
tational burden. 

However, to obtain a sharp algorithm, it is not 
necessary to maintain sharp labels at all the nodes; 
we only need to assure that the label of the node 
scanned is sharp. Checking if the label of a node is 
sharp is simpler than maintaining sharp labels at 
all the nodes. If the label of the node to scan is 
not sharp, we simply have to update this label first 
to have a sharp label. However, one has to be 
careful in updating the label of node u to obtain a 
sharp label. We must preserve primal feasibility 
for all the arcs of the current tree, i.e., d(p(v)) + 
l(p(v), v) ~ d(v), Vu* r. Let 8 be the correction 
label d(u) needs to become sharp, if d(p(u)) + 
l(p(u), u) < d(u)- o then to preserve primal 
feasibility, the algorithm must correct all non-sharp 
labels on the path from u to the root r. The 
following Step la checks if a label is sharp and 
updates it (if necessary). This step can be inserted 
between Steps 1 and 2 in the PSP algorithm. 

Step 1 a. Check if the label of the current node u 
is sharp. 

V = U, 

o = d(u), 
while v * 0 do 

o = 8- l(p(v), v), 
v=p(v), 

end while. 
{If o = 0, the label d(u) is sharp; 
otherwise o is the correction needed to obtain a 
sharp label.} 
d(u) = d(u)- o. 
Ii.d(p(u)) + l(p(u), u) > d(u) 
then {The label of the predecessors of u must 
also be corrected.} 

v = u, 
while d(p(v)) + l(p(v), v) > d(v) do 

d(p(v)) = d(v) - l(p(v), v), 
v=p(v). 
If v is not an element of NOW or NEXT, 
add v to NEXT. 

end while, 
end if. 
Each Step la has computational complexity 

0( IN I) if the access to l(p(v), v) takes constant 
time. As the resulting algorithm is a variant of the 
PSP algorithm, Lemmas 1 and 2 and Theorem 1 
(except the part on computational complexity) of 
Glover et al. [6] hold. Adding Step la modifies the 
computational complexity of the algorithm. By 
Lemmas 1 and 2 there are still at most I N I - 1 
iterations of Step 3. The maximum number of arcs 
treated at each iteration is still I A I· At each of 
the possible I N I - 1 iterations, we have to check 
at most I N I - 1 labels to see if they are sharp. 
Therefore this variant of the PSP has computa
tional complexity 0( IN I 3). 

The implementation of this variant is rather 
simple. We need three IN I length arrays: the 
distance function, d ( u ), the predecessor function, 
p ( u ), and the array lgtprec ( u) containing the 
length of the arc ( p ( u ), u ). This last array enables 
constant time access to l(p(u), u). The imple
mentation of the sharp algorithm of Glover et al. 
[7] uses at least five IN I length arrays: distance 
and predecessor functions as in our implementa
tion and thread, depth and reverse thread func
tions to update the labels of the nodes in the 
subtree efficiently. Our simpler implementation 
and better time bound raise the hope that our 
variant of the PSP algorithm runs quicker than the 
other sharp algorithms. 

4. A test to detect negative length cycles 

The assumption that there are no negative 
length cycles is necessary to guarantee the ex
istence of a shortest path tree. However, except 
for networks with non-negative arc length, the 
only way to detect negative length cycles is to use 
an SPT algorithm, say the PSP algorithm. If the 
algorithm terminates in less than I N I iterations, 
then there is no negative length cycle, otherwise 
there is at least one. It is possible to use a variant 
of Step la to detect negative length cycles earlier. 
If at any Step la, the path from node v to root r 
in the current tree has more than IN I arcs, there 
must be a negative length cycle. As the complete 
tree has exactly I N I - 1 arcs, this is impossible 
and we have detected a negative length cycle. 
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Fig. 2. Current tree before scan of node 5. 

In Figure 2, using the same conventions as in 
Figure 1, we can see the current tree before scan
ning of node 5 and formation of a cycle in this 
tree. As soon as the algorithm tries to scan a node 
belonging to the same subtree as the cycle, i.e., 
nodes 3, 4, 5, 6 in Figure 3, the modified Step 1 b 
detects the cycle. The modified Step 1 b is as 
follows: 

Step 1 b. Check if the label of the current node u 
is sharp and try to detect negative length cycles. 

v=u, 
Ip = 0, {is the # of arcs in the path from u to r 
in the tree;} 
8=d(u), 
while v -:/:- 0 and Ip < I N I do 

8 = 8 - l(p(v), v), 
v = p(v), 
Ip= Ip+ 1, 

end while. 
If Ip= IN I then stop. {Step lb has detected a 
negative length cycle.} 
{If 8 = 0, the label d ( u) is sharp; 
otherwise 8 is the correction needed to obtain a 
sharp label.} 
d(u) = d(u) - 8. 
If d(p(u)) + l(p(u), u) > d(u) 
then {The label of the predecessors of u must 
also be corrected.} 

v = u, 

(2) [3] (3) 
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Fig. 3. Current tree after scan of node 5. 
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while d(p(v)) + /(p(v), v) > d(v) do 
d(p(v)) = d(v)- l(p(v), v), 
v = p(v). 
If v is not an element of NOW or NEXT, 
add v to NEXT. 

end while, 
end if. 
Step lb detects negative length cycles without 

modification to the computational complexity of 
the new algorithm. 

Recently Glover and Klingman [5] suggested a 
modification to the sharp algorithm leading to the 
earliest possible detection of negative length cycle. 
As any negative length cycle introduced while 
scanning node u must include this node, they 
suggest to add a negative length detection step 
after each scanning step. This Step 2a would be as 
follows: 

Step 2a. Try to detect negative length cycles 
introduced during the last scanning step. 

u= u, 
Ip = 0, {is the # of arcs in the path from u to r 
in the tree;} 
while v -:/:- 0 and Ip < I N I do 

v=p(v), 
Ip= Ip+ 1, 

end while. 
If Ip= IN I then stop. {Step 2a has detected a 
negative length cycle.} 
The resulting algorithm would include Step la 

before the scanning step and Step 2a after it. It is 
easy to check that the worst case complexity of 
this algorithm would be 0( I N I 3 ). 

5. Conclusion 

In this note, a sharp PSP algorithm for the 
general case of the SPT was presented. It is possi
ble to modify the two other sharp PSP algorithms 
presented by Glover et al. [7] in the same fashion 
to obtain a sharp threshold algorithm for the 
non-negative arc length case having computational 
complexity 0( IN 13 ) or by limiting the number of 
nodes transferred from NEXT to NOW as in their 
third variant to obtain an algorithm having com
putational complexity 0( I N I 2 ). 

We proved that sharp algorithms having com
putational complexity of the same magnitude as 
non-sharp algorithms exist, and devised a test for 
early detection of negative length cycles. Two 
questions remain open. Is there a sharp label-cor-
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recting algorithm with computational complexity 
0( I N I I A I)? And will the improved sharp al
gorithms be competitive in practice? 

6. Note 

The referee pointed out to the author some new 
work on sharp algorithms for the SPT by Glover 
and Klingman [5]. They refine the concept of 
sharpness and introduce new sharp algorithms 
and new early negative length cycle detection steps. 
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