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**) 

Abstract 

Three different communication situations are co~sidered for the gen

eral, non-degraded, discrete memoryless broadcast channel with two com

ponents. One of these situations includes the case of sending common, but 

also separate, information to both receivers. For each communication situ

ation a random coding inner bound on the capacity region is derived. An 

example is given showing that in one situation the inner bound contains 

pairs of rate points dominating the time-sharing line. Each capacity re

gion is also described by a limiting expression. 

The relationship with the results of Cover and Bergmans on degraded 

broadcast channels is brought out, and the connection with other multi

way channels, in particular the channel with two senders and two receivers, 

is also shown. 
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I. INTRODUCTION .AND SUMMARY OF RESULTS 

In a basic paper Cover [5] analyzed the so-called broadcast channel, 

the problem being how to send information from a single source simultane

ously to several receivers. As one of his results, Cover obtained a ran

dom coding inner bound on the capacity region of the broadcast channel 

for the special case when this channel factors out into two binary sym

metric channels, one of which is noiseless. 

Subsequently, Bergmans [4] generalized Cover's results to the case of 

the discrete memoryless broadcast channel with degraded components, and 

stated and proved in a rigorous wa;y a random coding theorem for this class 

of channels. 

Recently, Gallager [7] proved a weak converse, showing that the ran- · 

dom coding inner bound obtained by Bergmans is indeed the capacity region 

of the discrete memoryless degraded broadcast channel. 

In the present paper we extend the results of Cover and Bergmans to 

the general case of a discrete memoryless broadcast channel with two com

ponents. In particular, the restriction that the broadcast channel is of 

degraded type is removed. In Section II the definitions and concepts of 

the paper are developed. 

In Section III a random coding theorem.is proved for the situation 

in which different messages are sent to both receivers. Our proof is based 

on existing random coding theorems, which were obtained earlier by Ahls

wede [1] and the author [15] for the channel with two senders and two re

ceivers. An example, originally due to Blackwell, is presented which 

shows that it is possible to transmit in this situation at pairs of rates 



2 

well above the time-sharing line. 

Our approach involves the consideration of cascades of multi-way 

channels. A theorem is proved regarding the use of pure pre-multiplying 

channels. This theorem can be regarded as a first step towards a more gen

eral theory o~ partial ordering of multi-way channels. It is shown that 

there is a close connection between the broadcast channel with tw:o com

ponents, and the channel with two senders and two receivers introduced 

by Shannon [ 1 0 J • 

Also, a comparison is made with the Cover-Bergmans random coding 

scheme. It is shown that there are similarities with, but also dif'ferences 

between our random coding scheme for the present communication situation, 

and their scheme for the degraded broadcast channel. Finally, a limiting 

expression is derived for the capacity region in this situation. 

In Section IV a random coding theorem is proved for the situation in 

which one message is sent to both receivers, and another message is sent 

to only one of them. This situation resembles the degraded broadcast chan

nel, except that we do not assume the channel to be degraded from the 

outset. If the channel is of degraded type, the previous communication 

situation reduces to the present one. A random coding theorem is proved 

which leads to an inner bound on the capacity region. 

Our approach in this case is based on the technique introduced by 

Ahlswede [2], which was further developed by Ulrey [12], for coding for 

a channel withs senders and r receivers, when all senders send messages 

simultaneously to all receivers. This technique admits the use of non

stationary sources. Our proof involves also some aspects of the random 

coding proof given by Bergmans for the degraded broadcast channel. 



3 

A comparison is made with the results obtained by Bergmans for the 

degraded channel. In particular, it is shown that our Theorem 5 incorpor

ates Theorem 1 of [4] as a special result. Also, a limiting expression 

for the capacity region in this case has been found. 

In Section Va random coding theorem is proved for the situation in 

which two different messages are sent to the two receivers, and, in addi

tion, a third common message is sent to both. Our method of proof is a

gain based on the Ahlswede-Ulrey approach for the situation in which all 

senders send messages simultaneously to all receivers, but involves as

pects of other multi-way channels as well. A comparison is made with the 

random coding inner bounds found for the previous communication situations. 

It is shown that these can be obtained from the results of Section Vas 

special cases. Finally, a limiting expression for the capacity region is 

found. 

In this paper we have devoted relatively little attention to con

verses, except when deriving limiting expressions for the various capa

city regions. In this connection we should like to point out that in gen

eral there is not for any multi-way channel with two independent receivers 

a simple outer bound on the capacity region known which coincides with the 

single-digits random coding inner bound. Therefore, it is unlikely to find 

satisfactory outer bounds on the c~p..a,ci:.ty region of the general broadcast 

channel, as long as the precise capacity region of the channel with two 

senders and two receivers, each one located at a different terminal, re

mains unknown. The study of converses and outer bounds on the capacity re

gion of the general broadcast channel might however be the subject of fu

ture investigations. 
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Finally, in this paper we have stated various conjectures. They 

should be regarded as open problems, the solution of which is presently 

unknown to the author. 
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II. DEFINITIONS AND PRELIMINARIES 

A. Broada,as t Channe Zs 

A general broadcast channel with two receivers is depicted in Fig. 1. 

It consists of three terminals, labeled 1, 2, and 3, which are connected 

to a noisy channel K. At terminal 1 there is a sender (also called en

coder) S, and at terminal 2 and 3 there are receivers (also called de-
y 

coders or users) u21 and U22 respectively. It is the task of Sy to com-

municate information over the channel to U 21 and U 22 as effectively as 

possible. The information to be transmitted consists of different mes

sages which are presented to S by different sources. Various communica-
y 

tion situations are possible in this context, since one may wish to send 

separate information and also common information to both receivers. The 

specific communication problems which we consider in this paper shall be 

made precise in Section IIB. 

The operation of the broadcast channel may be described as follows. 

Once each second an input letter y is transmitted to the channel at ter

minal 1, after which output letters z 1 and z2 are received at terminal 2 

and 3, respectively, according to a transition probability p(z 1,z2 jy). We 

restrict ourselves throughout this paper to discrete memoryless (d.m.) 

broadcast channels with two receivers. 

Formally, a discrete broadcast channel with two receivers, denoted 

by ( A,p(z 1 ,z2 jy) ,B 1xB2), or by p(z 1 ,z2 jy), consists of three finite sets 

A,B 1, and B2 , having a~ 2, b1 > 2, and b2 > 2 elements, respectively, 

and a collection of probability distributions p(z 1 ,z2 1y) on B1xB2 , one 

for each y e: A. The set A is called the input alphabet for the sender S y 
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at terminal 1, whereas B1 and B2 are the output alphabets f'or the recei

vers U21 and U22 at terminals 2 and 3, respectively; p(z 1,z2 1y) is inter

preted as the probability of' receiving output letters z 1 and z2 at ter

minals 2 and 3, respectively, given that input letter y was transmitted 

at terminal 1 • 

For any positive integer n and any set A we denote by Aa the set of' 

all n-tuples (y 1, ••• ,y) with each y. €A.A discrete broadcast channel n -z.. 

(A,p(z 1,z2 1y),B1xB2) is said to be memoryless if' 

( 1 ) 

f'or all Y = (y 1, •.. ,yn) € An, z1 = (z 11 , ••• ,z 1n) € B~, 

7 

z2 = (z21 , ••• ,z2n) € B~, and n > 1. P(Z1,z2 1Y) is interpreted as the prob

ability of' receiving then-tuples z1 and z2 at terminals 2 and 3 respec

tively, given that then-tuple Y has been transmitted at terminal 1. 

P(Z1,z2 1Y) is called the memoryless n-extension of' p(z 1,z2 1y). 

Cleary, every d.m. broadcast channel p(z1,z2 1y) f'actors out into two 

marginal d.m. one-way channels def'ined by 

(2) 

and 

( 3) 
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Like Cover [5] and Bergmans [4], we impose a no-collaboration re

striction between U21 and U22 • This implies that when one considers the 

broadcast channel p(21 ,22 1y), one may restrict attention to the marginal 

channel transition probabilities defined by (2) and (3). 

Ahlswede [1] has developed a convenient notation for multi-way chan

nels. According to his terminology, a d.m. broadcast channel with two 

receivers can be denoted by a pair (P,T12 ), where Prefers to the trans

ition probabilities as defined in (1), and T12 indicates that the channel 

has one sender and two receivers, each located at a different terminal. 

We shall either use the notation (P,T12 ) or simply write (1s,2r) to indi

cate that we are dealing with a channel with one sender and two receivers. 

B. Communiaation Situations 

In this paper we consider three communication situations. In order 

to formulate these properly we first introduce two different communica

tion systems. In the communication system shown in Fig. 2 two sources 

s 1 and s2 present two statistically independent messages i and j to the 

sender Sy for transmission over the channel. Here 1 < i < M1 , 1 < j :5..M2 , 

and each message pair (i,j) has the same chance M ~ of being selected. 
1 2 

Sender S maps the message pair (i,j) into an input sequence Y € An by 
y 

means of a mapping f(i,j) = Y. Subsequently, the sequence Y is transmitted 

over the channel, and output sequences z1 and z2 are received by U21 and 

u22 re$pectively, with transition probability P(Z 1,z2 1Y) defined by (1). 

For the present communication system we consider two communication prob

lems. 
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I. 

II. 

Sy sends two different messages to U21 and U22 • 

Thus, given that the message pair (i,j) has been 

presented by the sources to S for transmission, 
y 

U21 must distinguish i, and U22 must distinguish j. 

One source output (message j say) is meant for both 

uz, and U 22 , whereas the other source output (mes-

sage i) is meant for uz, only. In other words, given 

that the message pair (i,j) has been presented for 

transmission, U21 must estimate both i and j, where

as U22 needs to decode only message j correctly. 

Next we consider the communication system shown in Fig. 3. Now three 

sources present three statistically independent messages i, j, and k to 

the encoder Sy for transmission over the channel. In this case 1 < i < M1, 

1 < j < M2 , 1 < k < M0 , and each message triple (i,j,k) has a chance of 

~ M of being selected. Encoder S maps the message triple (i,j,k) into 
1 2 0 y 

an input sequence YE An by means of a mapping g(i,j,k) = Y. This input 

is transmitted over the channel and received as the random sequence z1 by 

U21 and as the random sequence z2 by U22 • For this communication system 

we consider the following communication problem. 

III. The output from source O is meant for U21 and U22 , 

whereas the output from source 1 is meant for U21 only, 

and the output from source 2 is meant for U22 only. 

Thus, given that the message triple (i,j,k) has been 

presented for transmission, U21 must estimate the pair 

(i,k), and u22 must estimate the pair (j,k). 
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We denote the above three communication situations by (P,T12 ,I), 

(P,T12 ,II), and (P,T12 ,III). The problem then is to establish for each 

case the regions of attainable rate pairs (R1,R2) or attainable rate 

triples (R1,R2,R0). In the present paper, though, we will determine mostly 

inner bounds on these regions. 

The three situations just defined are clearly interrelated. Situa

tion (P,T12 ,I) can be regarded as a special case of (P,T12 ,III) by taking 

in the latter one M0 = 1 (R0 = 0). Similarly, situation (P,T12 ,II) can be 

looked upon as a special case of (P,T12 ,III) by taking now M2 = 1 (R2 = 0). 

It therefore would suffice to derive a coding theorem only for (P,T12 ,III) 

and then obtain the corresponding results for (P,T12 ,I) and (P,T12 ,II) by 

setting the rates R0 or R2 equal to zero. However for reasons of clarity 

we have judged it more instructive to derive the results of each situa

tion separately, and then comment on their interrelationship in the end. 

Moreover this approach will enable us to bring out more clearly the rela

tionship with other existing results in the literature. 

We remark that communication situation (P,T12 ,I) is not always feasi

ble as a separate case, since the structure of the channel may not allow 

us to distinguish between (P,T 12 ,I) and (P,T12 ,II). For example, the in

stallation of a noiseless feedback link from terminal 3 to terminal 2 

makes (P,T12 ,I) coincide with (P,T 12 ,II). Actually, all that is needed to 

change (p,T12 ,I) into (P,T12 ,II) is that the channel input-output statis

tics for receiver U22 are available to U21 • This is the case if the mar

ginal channel p(z2 1y) is a degraded version of the marginal channel 

p(z 11y). The degraded broadcast channel was the main channel under consid-
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eration by Cover [5] and Bergmans [4]. Thus, although one generally needs . . . 

to distinguish between attainable rate pairs for (P,T12,r) and (P,T12 ,II) 

these two concepts coincide by a degraded broadcast channel. 

We will derive separate random coding theorems for (P,T12 ,r), 

(P,T12 ,rr), and (P,T12 ,rrr). Since for a degraded broadcast channel the 

first two situations coincide, the coding theorems derived for these sit

uations can both be applied, but the one for (P,T 12 ,rr) will usually yield 

better results. 

We notice that in situation (P,T12 ,rr) the channel is in principle 

not assumed to be degraded. On the contrary, the results obtained for 

(P,T12 ,rr) do not only apply to degraded broadcast channels, but also to 

non-degraded broadcast channels. Our results for the general d.m. broad

cast channel for communication situation (P,T12 ,rr) incorporate as a spe

cial case the random coding theorem obtained by Bergmans [4] for the de

graded broadcast channel with two components. 

We conclude by remarking that even for the two communication systems 

considered, one can conceive of various other communication problems. How

ever, we have chosen to concentrate on the three problems selected above, 

since we believe that these are conceptually the most important and in

teresting ones. We also remark that communication situation (P,T12 ,rrr) 

resembles the problem considered by Slepian and Wolf [11], except that 

these authors assume two encoders and one decoder, whereas we consider 

the reverse situation of one encoder and two decoders. 



C. Cascades Of MuZti-Way Cha:nneZs 

For the development of this paper we shall need the use of other 

multi-way channels. Following Ahlswede [1], we denote by (P,T ) a d.m. sr 

channel withs senders and r receivers, each one located at a different 

13. 

terminal, and with transition probability matrix P. The broadcast channel 

with two components is denoted by (P,T12 ). In addition we shall need the 

channels (P,T21 ), (P,T22 ), (P,T31 ), and (P,T32 ), whi9h will be discussed 

now. 

(P,T21 ) stands for a d.m. channel-with two senders and one receiver. 

Alternatively we may write (2s,1r). This channel was investigated by 

Ahlswede in [1] and [2], and by the author in [15]. The main communication 

situation under consideration for (P,T21 ) is the one in which both senders 

send information simultaneously to the single receiver. Ahlswede ([1] and 

[2]) has found two simple characterizations of the capacity region of this 

channel. 

A d.m. channel with two senders and two receivers each located at a 

different terminal is denoted by (P,T22 ) or by (2s,21'). Various communi

cation situations can be considered for this channel. Communication situ

ation (P,T22 ,I) denotes the case in which each sender sends to a differ

ent receiver. (P,T22 ,II) denotes the case where each sender sends infor

mation simultaneously to both receivers. (P,T22 ,III) stands for the situa

tion where one sender sends to both receivers, and the other sender sends 

to only one receiver. Channel (P,T22 ) was introduced by Shannon [10], 

whose work on the two-way channel suggested inner and outer bounds on the 

capacity region of (P,T22 ,I). These bounds were later made precise inde-
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pendently by Ahlswede [1] and the author [15]. A complete and simple char

acterization of the capacity region of (P,T22 ,II) was given by Ahlswede 

[2]. The case (P,T22 ,III) has bot been studied yet, but will play a role 

in our investigations of situation (P,T12 ,II). 

Consider now the cascade of a channel of type (P,T21 ) followed by a 

channel of type (P,T12 ), as shown in Fig. 4. Here the output of the 

(2s, 1r)-cha.nnel is the input to the broadcast channel. The resulting chan

nel is of type (P,T22 ). 

Mathematically this can be written as follows. Let 

(A,p(z 1,z2 jy),B1xB2) be a d.m. channel of type (P,T12 ), denoted by K. Let 

(A1xA2 ,q(yjx1,x2),A) be a d.m. channel of type (P,T21 ), denoted by Eq. 

Thus the output alphabet of E equals the input alphabet of K. The cascad~ q 

of E followed by K is defined to be the (2s,2r)-channel 
q 

(A1xi\,p(z 1,z2 lx1,x2),B1xB2) whose transition probabilities are given by 

(4) 

We denote this cascaded channel by EK. q 

Since Eq and Kare memoryless, so is EqK. More precisely, since the 

n-extension of K is given by (1), and then-extension of E is defined by 
q 

(5) 

then-extension of EK satisfies q 
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(6) 

Clearly, EK factors out into two marginal d.m. channels of type 
. q 

(P,T21 ) with probability functions p(z 1 lx1 ,x2 ) and p(z2 jx1 ,x2 ) respective-

ly. 

{P,T31 ) denotes a d.m. channel with three senders and one receiver, 

each located at a different terminal. Alternatively we write (3s,1r) to 

denote this channel. Channel (P,T31 ) was first investigated by Ahlswede 

[1], who found a simple characterization of its capacity region for the 

communication situation denoted by (P,T31 ,I) in which all senders send 

messages simultaneously to all receivers. Recently, Ulrey [12] character

ized the capacity region of the general channel (P,T ) for the situation sr 

in which all senders send messages simultaneously to all receivers. His 

results apply in p~ticular to channel (P,T31 ) and yield an alternative 

characterization of the capacity region of (P,T31 ,I). In [17], the author 

has given a canonical approach to finding weak converses for (P,T ). sr 

(P,T32 ) stands for a d.m. channel with three senders and two receiv-

ers, and is also denoted by (3s,2r). We distinguish two communication sit

uations for this channel. Situation (P,T32 ,I) denotes the case in which 

each sender sends information simultaneously to each receiver. Ulrey's 

results on the general channel (P,T8 r) yield as a special case a simple 

characterization of the capacity region of (P,T32 ,I). Communication situ

ation (P,T32 ,II) stands for the case in which two of the three senders 

send separate information to the two receivers, whereas the third sender 



sends common information to both receivers. To our knowledge, situation 

(P,T32 ,II) has not been studied yet, but it resembles situation 

(P,T12 ,III), and as such it plays a role in our investigations. 
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Consider now the cascade of a channel of type (P,T31 ) followed by a 

channel of type (P,T12 ), as shown in Fig. 5. The output of the (3s,1r)

channel is the input to the broadcast channel. The resulting channel is of 

type (P,T32 ). 

More precisely we can describe this cascading process as follows. As 

before, let (A,p(2 1,z2 1y),B1xB2 ) be a d.m. channel of type (P,T12), de

noted by K. Let (A1xA0xA2 ,q(ylx1,x0 ,x2 ),A) be a d.m. channel of type 

(P ,T 31 ) , denoted by F q. Thus the output alphabet of F q equals the given 

input alphabet of K. The cascade of F followed by K is denoted by F K, q q 

and is defined as the (3s,2r)-channel (A 1xA0xA2 ,p(z1,z2 1x1,x0 ,x2),B1xB2 ) 

whose transition probabilities are given by 

(7) 

As before, F K is memoryless, because F and Kare assumed memoryless. q q 

More precisely, then-extension of K is given by (1), and then-extension 

of F is defined by 
q 

( 8) 

Therefore then-extension of F K satisfies q 
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(9) 

n 
= . n p(z1k ' 2 2k lx1k ,xok ,x2k). 

k=1 

The ca.scaded (3s,2P)-channel F K factors out into two marginal d.m. 
q 

channels of' type (P,T31 ) whose probability functions p(z 1 lx1 ,x0 ,x2 ) and 

p(z2 1x1,x0 ,x2 ) are obtained by sU11Illll.ng in (7) over z2 or z 1 , respectively. 

A new notion used here is that of a cascade of two multi-way chan

nels, whereas ordinarily one considers only cascades of one-way channels. 

These cascades turn out to be very useful in proving random coding theorems 

for situations (P,T12 ,r), (P,T12 ,rr), and (P,T12 ,III). The main idea used 

in proving a random coding theorem for situation (P,T12 ,I) is that we have 

placed a "merging" (2s, 11")-channel in front of the broadcast channel, 

rather than a satellizing one-way channel, as was done by Cover [5] and 

Bergmans [4]. For communication situation (P,T12 ,II) the use of a merging 

channel leads to the same results as the use of a satellizing channel. In 

proving a random coding theorem for situation (P,T12 ,III) we consider cas

cades of the type F K. q 

D. Codes And Rates 

We now give the definitions of a code and a capacity region for each 

of the three communication situations considered. 

(i) Communication situation (P,T12 ,r). A code (n,M1,M2) for a channel 

(P,T12 ,I) whose transmission probabilities are defined by (1) is a system 



(10) {(w •• ,B.,D.) I i=1, ••• ,M1 ; j=1, ••• ,M2}, 
1,,J 1,, J . 

where wij E An, Bi c ~, Dj c B~ for all i=1, ••• ,M1; j=1, ••• ,M2 , and 

Bin Bi'=~ for i ~ i', Dj n Dj, =~for j; j'. A code (n,M1,M2) is an 

(n,M1 ,M2 ,A 1 ,A2 )-code for (P,T12 ,I) if 

1 
M1 M2 

( 11 ) I I P(B. lw . • ) > 1-A1 
M1M2 i=1 j=1 

1,, 1,,J - . 

and 

1 
M1 M2 

(12) I I P(D -lw •. ) > 1-A2• 
M1M2 i=1 j=1 J 1,,J = 

19 

A pair of non-negative real numbers (R1,R2 ) is called a pair of 

achievable rates for (P,T12 ,I) if for any (A 1 ,A2), 0 < A1 ,A2 < 1, and any 

1 
e: > O there exists an (n,M1 ,M2 ,A 1 ,A2 )-code such that n:log2 M1 ~ R1-e: and 

::log2 M2 > R2-e: for all sufficiently large n. The capacity region of chan

nel (P,T12 ,I) is the set of all pairs of achievable rates for this channel, 

and is denoted by G(P,T12 ,I). In Section III we derive a random coding in

ner bound on G(P ,T 12 ,I). 

(ii) Communication situation (P,T12 ,II). A code (n,M1,M2 ) for chan-

nel (P,T12 ,II) with transmission probabilities defined by (1) is a system 

(13) {(w •• ,B . . ,D.) I i=1, ••• ,M1; j=1, ••• ,M2}, 
1,,J 1,,J J 

where wij E An, Bij c B~, Dj c B~ for i=1, ••• ,M1; j=1, ••• ,M2 , and 

Bij n Bi'j' =~for (i,j); (i',j'), Dj n Dj, =~for j; j'. A code 
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(n,M1 ,M2) is an (n,M1 ,M2_,A1-,A2 )-code for (P,T12 ,II) if 

1 
M1 M2 

( 14) 
M1M2 I I P(B • • 1w •. ) > 1-A1 

i=1 j=1 1,J 1,J = . 

and 

1 
M1 M2 

(15) I I P(D.lw • • ) > 1-A2• 
M1M2 i=1 j=1 J 1,J = 

A pair of non-negative real numbers (R1,R2) is called a pair of 

achievable rates for (P,T12 ,II) if for any (A 1 ,A2), 0 < A1 ,A2 < 1, and 

1 
any e: > O there exists an (n,M1 ,M2 ,A 1 ,A2 )-code such that nlog2 M1 > R1-e: 

and ¾log2 M2 > R2-e: for all sufficiently large n. The capacity region of 

channel (P,T12 ,II) is denoted by G(P,T12 ,II) and is defined as the set of 

all pairs of achievable rates for this channel. In Section IV we derive 

a random coding inner bound on G(P,T12 ,II). 

(iii) Communication situation (P,T12 ,III). A code (n,M1,M2,M0) for 

channel (P,T12 ,III) with transmission probabilities defined by (1) is a 

system 

where wijk E An, Bik c B~, Djk c B~ for i=1, ••• ,M1; j=1, ••• ,M2; 

k=1, ... ,M0 , and Bik n Bi'k' =~for (i,k) ~ (i',k'), and Djk n Dj'k' = ~ 

for (j,k) ~ (j',k'). A code (n,M1,M2,M0) is an (n,M1,M2 ,M0 ,A 1 ,A2 )-code 

for (P,T12 ,III) if 
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M1 M2 M· 
1 0 

(17) 
M1M2MO I I I P(B ik lwijk) > 1_-A1 

i=1 j=1 k=1 

and 

1 
M1 M2 MO 

( 18) 
M1M2MO I I I P(Djklwijk) > 1-A2• 

i=1 j=1 k=1 

A triple of non-negative real numbers (R1,R2 ,R0 ). is called a triple 

of achievable rates for (P,T12 ,III) if for any (A 1,A2), 0 < A1 ,A2 < 1, 

1 and any e: > 0 there exists an (n,M1 ,M2 ,M0 ,A 1,A2)-code such that niog2 M1 

> R1-e:, ¾1og2 M2 > R2-e:, and ¾1og2 M0 > R0-e: for all sufficiently large n. 

The capacity region of channel (P,T12 ,III) is defined as the set of all 

triples (R1,R2 ,R0) of achievable rates for this channel, and is denoted 

by G(P,T12 ,III). In Section V we shall derive a random coding inner bound 

on the region G(P,T12 ,III). 
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III. RANDOM CODING THEOREM FOR (P,T12 ,I) 

A. Mutual Information Functions 

Let (A,p(z 1,z2 1y),B1xB2 ) be a d.m. channel of type (P,T12 ), whose 

transition probabilities for operating with blocks of length n are defined 

by (1), and which is denoted by K. Let (A1x,A2 ,q(ylx1,x2 ),A) be a d.m. 

channel of type (P,T21 ) denoted by Eq. Let (A1x'\,p(z 1 ,z2 1x1 ,x2 ) ,B1xB2 ) 

be the cascade of E followed by K as defined by (4); and denoted by E K. q q 

E can be regarded as a parameter-channel for the given broadcast channel q 

K, since by varying Eq we can generate a whole class of channels EqK' 

each one being of type (P,T22 ). 

Let again Eq = (A1x'\,q(ylx1,x2 ),A) be fixed, and let p1(x1) be a 

probability distribution on A1, and p2(x2 ) be a probability distribution 

on'\· We define mutual information functions J 13(p 1,p2 ,q) and J 24(p 1,p2 ,q) 

as follows. On A1xB 1 we define the probability distribution 

(19) 

and on ~xB2 we define the probability distribution 

t 

(20) p(z2 I x1 ,x2)p1 (x1 )p2(x2). 

We define the conditional probabilities p(z 11x1) and p(z2 1x2), and the 

marginal probabilities p(z1) and p(z2 ) in the usual wa:y in accordance with 

( 19 ) and ( 20 ) • 

Now let 
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where the expectation E is taken with respect to ( 19). Similarly, let 

where the expectation is taken with respect to (20). Thus J 13 and J 24 are 

f'unctions of the parameters p 1 ,p2 , and q. 

Now, by letting p 1 and p2 vary, we define for each fixed parameter

channel Eq = (A1xA2 ,q(ylx1,x2),A) the collection 

(23) C1 (q) = {(J13(p1,p2,q),J24(P1,P2 ,q)): 

p 1 a p.d. on A1, p2 a p.d. on A2}. 

Next letting q vary we define the set 

where the union is taken over the collection of all d.m. (2s,1r)-channels 

E with given output alphabet A. 
q 

Finally let 

where co(A) means the convex hull of the set A. 
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B. Pure Parameter-Channels 

A discrete channel is said to be deterministic or pure if only zeros 

and ones occur as its transition probabilities (cf [3), p. 51). Thus the 

parameter-channel Eq = (A1xA2,q(yjx1 ,x2 ),A) is pure if and only if 

q(yjx1 ,x2 ) = 0 or 1 for all x1 ,x2 , and y. We now show that the set GI de

fined in (25) remains unchanged if in (24) we take the union only over the 

collection of pure para.meter-channels E which have A as given output al-q 

phabet. 

Let us define 

where Li' denotes the union over all pure (2s,1r)-channels E with given q q 

output alphabet A. 

Then we have 

Theorem 1: It suffices in (24) to take the union over all pure chan

nels E q with out altering GI. Thus 

(27) 

Let 

Proof: Let Eq = (A1xA2 ,q(yix1 ,x2 ) ,A) be any parameter-channel for K. 
a1a2 

a 1 and a~! denote the size of A1 and A2 respectively, and let t=a 

According to the discussion at the bottom of p. 392 of [9], the transi-

tion probability matrix llq(ylx1 ,x2 )11 can be written as a finite weighted 

sum of the transition probability ~atrices oft pure channels. More pre-
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cisely, there exist t pure channels Ea.= (A1xA2 ,qa.(yjx1,x2 ),A); a.=1, ••. ,t; 

and a probability distribution {g :a.=1, ••• ,t} such that . a. 

(28) 

For each such E let 
a 

t 
= l ~a.qa.(yjx1,x2). 

a.=1 

Clearly, from (4) and (28) we have 

(30) 
t 
l gapa.(z1 ,z2lx1 ,x2). 

a.=1 

Now, let p 1(x1) be a probability distribution on A1 and p2 (x2 ) a prob

ability distribution on A2 . Define, for a.=1, ••• ,t, 

Then we have 

p(z.lx,) 
1, 1, 

and 

t 
= I gp (z,lx.) a a 1, 1, 

a.= 1 
i=1,2 

i=1 ,2. 
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Moreover, it follows from ( 21) and ( 22) that 

(32) 

and 

It is well-known that J 13 (p 1 ,p2 ,qa.) and J 24 (p 1 ,p2 ,qa.) are convex 

functions o:f the transition probabilities pa.(2 1!x1) and pa.(22 1x2 ) respec-

tively (see [6], p. 90). Therefore we have 

t 
(34) cl13(P1 ,P2,q) < I g</13(P1 ,P2,qa.) = 

a= 1 

and 

t 
( 35) el24(P1 ,P2,q) < I ga.J 24 (p1 ,P2 ,qa.) • = 

a.=1 

Consequently, 

and hence 
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which completes the proof of the theorem. 

Conjeiatu:t'e 1: We conjecture that (27} remains valid if in (26) the 

union is taken over only those pure channels Eq for which a 1 = min(a,b 1), 

and a2 = m.in(a,b2 ). A proof of this conjecture might possibly be given 

along the lines of Gallager ([6], p. 96) or Gallager ([7], Lemma 1). 

C. The Cod~ng TheoPem 

TheoPem 2: (i) The region GI is a closed convex region in the Eu

clidean plane. 

(ii) The region GI is contained in the capacity region 

G(P,T12 ,I). Thus 

PPoof: (i) This part follows from Theorem 3,10 of Valentine [13, 

p. 40]. (ii) By Theorem 1 it suffices to show that for each pure channel 

Eq = (A1xA2 ,q(ylx1,x2 ),A) every point in CI(q) is a pair of attainable 

rates for (P,T12 ,I). By concatenation it will then follow that each point 

in GI is an attainable pair. 

For each q the channel EK, whose probability function is given by 
q 

(4), is of type (P,T22 ), and therefore one may apply to it known results 

for the d.:m. (2s,2P)-channel. It follows from results of Ahlswede ([1], 

section 2), or alternatively from results of the author ([15], section 6), 

that for each q every point in CI(q) is an attainable pair of rates for 

EqK in communication situation (P,T22 ,I). 



28 

( 39) 

where u. 'l, E 

B. n B., = 'l, 'l, 

(40) 

and 

(41) 

{ u., V • ,B • ,D .1 i= 1 , •.. ,M1 ; j= 1 , ••. ,M2}, 
'l, J 'l, J 

n n n 
B~ for i=1, •.• ,M1; j=1, •.. ,M2 , A1, V • E A2, B. C s,, D j C 

J 'l, 

I~ for i .,,. . , 
D. n D., = ~ for j ":/, j ', such that 'l, , 

J J 

1 
M1 M2 

I l P(B.lu . .,v.) > 1-A 
M1M2 = 1 i=1 j=1 i. i. J 

1 
M1 M2 

I I P(D.lu . .,v.) > 1-A2 • 
1Yl1M2 i=1 j=1 J 'l, J = 

and 

Here the error probabilities are based on P(Z 1,z2 ix1,x2 ) defined in (6). 

If Eq is pure, then any (n,M1 ,M2 ,A 1 ,A2 )-code for EqK in 'Communication 

situation (.P,T22 ,I) can be translated into an (n,M1 ,M2 ,A 1 ,A2 )-code for K 

in communication situation (P,T12 ,I) as follows. Let Eq be pure. Then Q, 

the memoryless n-extension of q, contains only zeros and ones. Let be 

given the code ( 39) • For all pairs ( u . ., V • ) belonging to ( 39) define w •• =Y 
'l, J 'l,J 

if Q(Ylu • .,v.)=1. Then 
'l, J 

P(B,lu . .,v.) = l P(B.IY)Q(Ylu . .,v.) = P(B.lw, .). 
i. i. J 1e:An i. i. J i. i.J 

Similarly 

P(D.lu • .,v.) = P(D.lw .• ). 
J 'l, J J 'l,J 
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Therefore the system 

(42) · {w •• ,B.,D.li=1, ••• ,M1; j=1, ••• ,M2} 
1-J 1, J . 

forms an (n,M1 ,M2 ,A 1,A2 )-code for K for communication situation (P,T12 ,I). 

It follows that every point in CI(q) is a pair of attainable Tates for K 

in situation (P,T12 ,I) whenever Eq is pure. This completes the proof. 

D. Comparison With The Cover-Bergma:ns Saheme 

Cover [5] and Bergmans [4] exhibited a random coding scheme for re

spectively binary symmetric broadcast channels and degraded broadcast chan

nels in communication situation (P,T12 ,II). For the Cover-Bergmans scheme 

the expected value of the average probability of error goes to zero in 

both directions simultaneously as the block length n tends to infinity. 

Motivated by the proof of Theorem 2(ii) we now exhibit a random coding 

scheme for the general d.m. broadcast channel in communication situation 

(P,T12 ,I), which has the same property. Our random coding scheme can be 

regarded as the analogue of the Cover-Bergmans scheme in the case of non

degraded broadcast channels. 

Suppose in (26) we take the union over only those pure (2s,1r)-chan

nels Eq for which a 1=a2=a, i.e. such that Eq is of the form 

(AxA,q(ylx1,x2),A). Then, after taking the convex hull as in (25) we ob

tain a region which is contained in GI and which by Theorem 2 is contained 

1.n G(P,T12 ,I). 

More precisely, denote by q* the transition probability function of 
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any pure parameter-channel E q* = (AxA,q*(y I x 1 ,x2 ) ,A) for which the input 

alphabets are equal to the given output alphabet A. It follows from the 

proof of Theorem 2 (ii) that for every such q* every point in CI ( q*) is a 

pair of attainable rates for Eq*K in communication situation (P,T22 ,I), 

and a fortiori is a pair of attainable rates for K in communication situ

ation (P,T12 ,I). 

Let Eq* = (AxA,q*(ylx1 ,x2 ),A) be given, and let p 1(x1) and p 2 (x2 ) be 

two probability distributions on A. Let£> O, and O < A1 ,A2 < 1. Denote 

the point (,J13(p 1,p2 ,q*),J24 (p 1 ,p2 ,q*)) in CI(q*) by (J1,J2 ). According to 

the proof of Theorem 2(ii) there exists for all sufficiently large nan 

(43) 
n(J1-e) n(J2-e) 

M1 > 2 and M2 > 2 • 

This code is a system which is described by ( 39) except that u. E An 
1,. 

and vj E An .. It can be translated into an (n,M1,M2 ,A 1 ,A2 )-code for Kin 

situation (P ,T 12 ,I) by the rule which des1.gnates Y E An to be the codeword 

w .. if Q*(Yju.,v.)=1, where Q* is the memoryless n-extension of q*. The 
1,.J 1,. J 

resulting code for K is described by the system (42). We are now ready to 

formulate our random coding scheme. 
n(J1-£) 

Choose at random M1 ~ 2 horizontal cloud centers u1, ... ,uM 
1 

1.n An with letters independently drawn according to p 1 (x1). At the same 
n(J2-£) 

time, choose M2 > 2 vertical cloud centers v1, ... ,vM in An with 
2 

letters independently drawn according to p2 (x2 ). The horizontal and ver-

tical cloud centers are depicted in Fig. 6. Their meaning will become ap

parent shortly. 



Centers of M1 
horizontal 

clouds 

Centers of~ 
vertical clouds 

r-------------
1 

I X X 
: wl 1 wlj 
I 
I 
I 
I 
I 
I 
I 
I 
I X X 

wiJ wiJ 

Cloud of 
sate I I i te code 
words relative 
to VJ 

~M 2 
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cloud of satellite 
code words 
relative to ui 

J th sate I I i te 
codeword relative 
to ui 
and 

i th sate I I i te 
codeword relative 
to VJ 

Fig. 6. Clouds, cloud centers, and satellite code words 
of a code for a non-degraded broadcast channel. 
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Suppose the sources s1 and s 2 present the message pair (i,j) to Sy 

for transmission over K according to (P,T12 ,I). Then the pair (ui,vj), 

consisting of one horizontal and one vertical cloud center, is mapped in

to the common satellite codeword w •• determined by Q*(w • • lu.,v.)=1. Sub-
7,J 1,J 1, J 

sequently, the codeword w •• is transmitted over the broadcast channel K. 
1,J 

User U21 must decode index i correctly, while user U22 should decode in-

dex j correctly. 

The set of codewords w • • with saine index i constitutes a horizontal 
1,J 

cloud of points in An, which is represented by the cloud center u.. It is 
1, 

sufficient for U21 to determine to which horizontal cloud the transmitted 

codeword w .• belongs, or, in other words, its representative u.. The dif-
1,J 1, 

ferent w .. in a given horizontal cloud can be regarded as satellite code--
1,J 

words relative to u.. Namely, the codewords w .1 , ... ,w 'M can be thought of 
1, 1, 1, 2 

as obtained by running ui M2 times through an artificial channel with 

transition probability function 

(44) 

Similarly, the set of codewords w • • with same index j forms a verti-
1,J 

cal cloud of points in An, represented by the center v . . It is sufficient 
J 

for U22 to determine the vertical cloud to which the transmitted codeword 

w .. belongs, i.e. its representative v . . The different w • • in a given ver-
1,J J 1,J 

ti cal cloud can be regarded as satellite codewords relative to v .• Namely 
J 

the codewords w1 . , ... ,WM • can be thought of as obtained by running v . 
J 1J J 

M1 times through an artificial channel with transition probability func-

tion 
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(45) 

Thus our random coding scheme has the simultaneous effect of running 

each horizontal cloud center ui M2 times through an artificial channel 

n(ylx1), and running each vertical cloud center vj M1 times through an 

artificial. channel p(ylx2 ). The codeword wij is a common satellite belong

ing to both the horizontal cloud with center u., and the vertical cloud 
1, 

with center v .• 
J 

The results of Ahlswede [1] and the author [15] which are referred 

to in the proof of Theorem 2(ii) are based on a random coding argument for 

(P,T22 ,I). From these proofs it follows that for the random coding scheme 

just described (when supplied with the appropriate maximum likelihood 

decoding sets) the expected value of the average probability of error goes 

to zero for both directions simultaneously as n tends to infinity. From 

this result follows the more precise statement about the existence of an 

(n,M1,M2 ,A 1 ,A2 )-code for Kin situation (P,T12 ,I) for sufficiently large 

n. 

An alternative proof of Theorem 2 (ii) can be given along the lines 

of the proof of Theorem 1 of [4], if one replaces expression (26) of [4] 

by an unconditional decoding set, and modifies the corresponding random 

coding proof accordingly. 

For a comparison of our random coding scheme with the Cover-Berg

mans scheme, suppose that the codeword w .. has been transmitted. In the 
1..J 

Cover-Bergmans scheme U22 should decode the cloud center v. to which w •. 
J 1..J 

belongs, whereas U21 should decode wij conditional on the cloud center vj. 

In our rand.om coding scheme U22 should also decode the cloud center vj to 
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which w .• belongs, but U 1 should decode w .. averaged over all vertical 
~ z ~ 

cloud centers v., or, in other words, U 1 should decode the horizontal 
J z 

cloud center u .. Our procedure is of course symmetric in i and j. This 
1,, 

discussion shows that there are striking similarities but also major dif-

ferences between our random coding scheme and the Cover-Bergmans random 

coding scheme. 

E. An Example By BZaakweZZ 

Blackwell, in 1963, in a course on information theory at Berkeley, 

introduced the broadcast channel through the following example. 

Consid.er the (1s,2P)-channel K = (A,p(z 1,z2 1y),81x82 ) with 

A= {0,1,2}, 81 = 82 = {0,1}, and the transition probabilities defined by 

The margina:1 one-way channels of K, denoted by K1 and K2 , have transition 

probabilities p(z 1!y) and p(.~2 1y) given by Table Ia and Ib respectively. 

0 

2 

TABLE la 

0 

0 

0 

0 

TABLE I b 

0 

0 0 

0 

2 0 
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It is easily verified that there d.oes not exist a post-multiplying 

channel K3 such that K2 can be represented as the cascade of K1 followed 

by K3. In other words, K2 is not a degraded version of K1, and neither is 

K1 a degraded version of K2 . Therefore, the present example of a broadcast 

channel does not fall in the class of degraded broadcast channels consider

ed in [4] and [5]. We observe though, that K1 and K2 can be obtained from 

each other by pre-multiplication by a third channel. Thus, K1 and K2 are 

equivalent one-way channels in the sense defined by Shannon [9], but they 

are not degraded versions of each other. 

Clearly, the capacities of the d.m. one-wa;y channels K1 and K2 are 

both equal to one. Therefore, by time-sharing, all pairs (R 1 ,R2 ) such that 

R1 > O, R2 > O, and R,+R2 < 

ation (P,T12 ,I). 

are pairs of attainable rates for Kin situ~ 

Blackwell proposed as a problem to find the capacity region G(P,T12 ,I) 

of the present channel. He noted that always R 1 +R2 < log2 3, so that the 

point (,793,.793) is outside the capacity region. 

Using Theorem 2 we found that all points within and on the boundary 

of the shaded region shown in Fig. 7 are pairs of attainable rates for K 

in situation (P,T12 ,I). This shaded region is the convex hull of the 

points (R1 ,R2 ) = (H(p) ,C(p)) and of the points (R1 ,R2 ) = (C(p) ,H(p)) as p 

ranges between zero and one, where 

(47) H(p) = -plog2p-(1-p)log2 (1-p) 

and 
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NAIVE 

OUTER BOUND 

C. 793,. 793) 

(H(pl ,C(pl l 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Fig. 7 



if O < p < 1 

(48) C(p) = 

0 i:f' p = 1. 

In applying Theorem 2 we have three para.meters q,p1 , and p2 at our 

disposal. First we 

meter-channel E = 
q 

make a particular choice, E , say, for the pure paraq 

(A1xA2,q(ylx1,x2),A). Let A1 = A2 ~· {0,1} and let the 

transition probabilities q'(ylx1,x2) be given by Table II. 

0 0 

0 1 

1 0 

1 1 

TABLE 11 

0 

1 

1 

0 

0 

1 

0 

0 

1 

0 

2 

0 

0 

0 

1 

Next we form the cascade of Eq' followed by K with channel probability 

function defined by (4). The transition probabilities of the correspond

ing marginal (2s,1r)-cha.nnels p(z 11x1,x2 ) and p(z2 1x1,x2) are .given by 

Table IIIa and IIIb respectively. 

.37 
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0 

0 

1 

1 

and 

0 

1 

0 

1 

TABLE I I la 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 0 

0 1 

1 0 

1 1 

TABLE lllb 

0 

0 

0 

1 

0 

With this choice of q expressions (21) and (22) reduce to 

1 

1 

0 

1 

where p 10=p 1(o) and p20=p2(o). We observe that C(p) is the capacity of 

the binary channel whose transition matrix is 

(See Ash [3], p. 85.) It follows that, for each fixed choice of p 10 , 



It therefore suffices to plot the points (R1,R2) = (H(p),C(p)) for 

0 < p < 1 , together with the point ( 1 ,O) , and to take their envelope, in 

order to obtain the region CI(q'). 

Next we choose a different parameter-channel, denoted by E ,,, whose 
q 

transition probability matrix is obtained by changing the first row of 
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Table II into the assignment (0,1,0) and leaving the ~ther rows the same. 

By symmetry we find that CI(q") is the envelope of the points (R1 ,R2 ) = 

= ( C(p) ,H(p)) as p ranges from zero to one, together with the point ( 0, 1 ) • 

By ta.king the convex hull of all pairs so obtained we get the region 

which is depicted as the shaded region of Fig. 7. Clearly 

G1 c GI c G(P,T12 ,I). In view of conjecture 1 we believe that GI=G1. We 

do not know whether Gi is also the capacity region G(P,T12 ,I) of the 

present channel. 

A brief inspection of the weak converse leads us to believe that the 

following conjecture might be true. 

Conjeatuzae 2: An outer bound on the capacity region G(P,T12 ,I) of the 

present example is provided by the region 
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where % = { (p ,H(p)): 0 < p ~ 1} 

and 

G0 = {(H(p),p): o < p < n. 

The contours of the conjectured outer bound G0 and of the naive outer 

bound R 1+R2 < log2 3 are sketched in Fig. 7. They are seen to have a line 

segment in common. 

F. A Limiting Expression For G(P,T 12 ,I) 

We proceed as Shannon did in section 15 of [10]. Let be given the 

d.m. broadcast channel K = (A,p(z 1,z2 1y),B1xB2), and consider its memory

less n-extension ~ = (An,P(Z 1,z2 !Y),B~xB~) with transmission probabili

ties defined by (1). ~ is also a (1s,2r)-channel, For each n > 1 let 

be a pure para.meter-channel of type (P,T21 ) with input and output alpha-

n bets all equal to the given set A . Thus, the matrix 11Qn(Yjx1,x2 )11 con-

tains only zeros and ones, but is not necessarily a product-channel, Con

sider the cascade 

where 
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Let P 1n(X1 ) and P2n(X2 ) be two probability distributions on An. Define 

way. Let 

(58) 

and 

( 59) 

where the expectations are taken with respect to (57), Define 

(60) C~(Qn) = {(~3(P1n'P2n'Qn)'~4(P1n'P2n'Qn)): 

P1n and P2n are p.d. 'son An}. 

Next define 

( 61) 
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where the union is taken with respect to all pure (2s,1r)-channels ~ of 

the form (54). Let 

Thus,~ is essentially the inner bound of Ifl, as given by Theorem 2, ex

cept that in ( 61 ) we have restricted the union over those Q for which 
n 

the input alphabets are equal to the given set An. In view of conjecture 

this may make no difference. 

Next let 

(63) 
~ 

= -- = n 

and finally define 

(64) 

Then we have 

Theorem 3: (i) The region 
00 

GI is a closed convex region in the 

Euclidean plane. 

(ii) The region Goo 
I is the capacity region G(P,T12 ,I). 

Proof: (i) This part is fairly standard. The convexity is immediate, 

00 

and a precise proof of the fact that GI is closed can be given along the 

lines of the proof of Lemma 2 of [12]. 
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(iia) Let (R1 ,R2 ) e: ~ for some m > 1. Then (mR1 ,mR2 ) e: <I;_. Let 

e: > O, 0 < A1 ,A2 < 1. By Theorem 2 there exists fork sufficiently large a 

(k,M1 ,M2 ,A 1 ,A2 )-code for If in situation (P,T12 ,I) such that 

(65) 
k(mR .-e:) 

'Z, 
M. > 2 

'Z, = i=1 ,2. 

This code is directly translated into a (km,M1 ,M2 ,A 1,A2 )-code for K. It 

follows that, for any e: > O, there exists for n=km sufficiently large an 

(66) 
n(R .-e:) 

M. > 2 -z, 
'Z, 

i= 1 ,2. 

The statement for general n is proven along the lines of Theorem 5.5.1 of 

[18] or Theorem 8.1 of [15], Hence G~ c G(P,T12 ,I). 

(iib) Let (R1,R2 ) e: G(P,T12 ,I). Let e: > O, 0 < A1,A2 < 1. Then there 

exists for n sufficiently large an (n,M1 ,M2 ,A 1 ,A2 )-code for K in situation 

(P,T12 ,I) such that 

(67) 1 -log2 M. > R .-e: n -z, = -z, i=1 ,2. 

We denote a code like this by the system (10). We can find letter-sequen

ces u1, ... ,uM; v1, ... ,vM; all in An, and a pure para.meter-channel 
1 2 

(6 ) ....:n ( n n *( I ) n 8 6Q* = A xA ,Qn Y x1,x2 ,A) 
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such that Q*(Ylu,,v.) = 
n i. J . 

The system 

1 whenever Y = w . .. Consider the cascade ~Q*K". 
1,.J 

(69) { u . , v . ,B • ,D • Ii= 1 , ••• ,M1 ; j= 1 , •.• ,M2} 
1,. J 1,. J 

is a (1,M1 ,M2 ,A 1,A2 )-code for ~*I{'- in situation (P,T22 ,I). Let P;n(X1) = 

= ~1 if x1=ui;i=1, ... ,M1 and let P;n(X2 ) = ~2 if x2=vj;j=1, .•. ,M2• It fol

lows from Fano's Lemma applied to (P,T22 ,I), as is shown in Theorem 7.1 

of [ 15 J, that 

(70) 

and 

(71) 

Hence for all o > 0, (R1-o,R2-o) e G;. Since G; is closed, (R1,R2 ) e G;. 
Therefore, GI(P,T12 ,I) c ct;_ which completes the proof. 

Conjeatu:r>e 3: We conjecture that in (68) the letter-sequences 

. * . u1, ... ,uM; v 1, ... ,vM can be chosen in such a wa:y that Qn is a product-
1 2 

channel, or at least that it suffices to restrict attention to parameter-

channels of this kind. If this is so, one may proceed to derive from in

equalities (70) and (71) an outer bound on GI(P,T12 ,I) in terms of single 

inputs and outputs to the channel only, in the same wa:y as it was done in 

[15] for the case (P,T22 ,I). (See also [1], [2], and [17] in this regard.) 



Such an outer bound will generally differ from the inner bound G1 derived 

in section IIIC, because there is not a simple expression known for the 

capacity region of (P,T22 ,I). 
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IV. RANDOM CODING THEOREM FOR (P,T12 ,II) 

A. Mutual Information Functions 

Let again be given the d.m. broadcast channel K = (A,p(z 1,z2 1y),B1xB2), 

a parameter--channel Eq = (AxA,q(yjx1 ,x2 ) ,A), and the cascade EqK = 

= (AxA,p(z 1 ,z2 1x1,x2 ),B 1xB2 ) whose transmission probabilities are defined 

as in (4). Let p 1(x1) and p2 (x2 ) be two probability distributions on A. 

Define 

in the usual way. Define the following mutual information functions. 

(73) R1 (p1 ,P2,q;B1) = [ P<z1l"'1•"'2l] 
E log2 p(z1lx2) 

(74) R2(P1 ,P2,q;B1) = l p(z1 lx1 •"'2)1 E log I 2 p(z 1 x 1) 

(75) R12(P1 ,p2,q;B1) = E ~ p(z1 lx1 ,x2)J 
log2 p(z1) 

and 

(76) 

as defined in ( 22) . Here, all expectations are taken with respect to ( 72) . 

Let cr = (P,Q) be a finite collection of triples 
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(77) {(p~,p~,qa):a=1, ... ,d} 

where (AxA,qa(ylx1 ,x2 ),A) is a parameter-channel, and p~ and p~ are prob

ability distributions on A. Also, let v = {v(a) :a=1, •.. ,d} be a probabili

ty distribution on a. We associate with every pair (a, v) a triple 

(78) R(a,v) = (R 1(a,v),R2 (a,v),R(a,v)) 

where 

(79) 

(80) 

and 

d 
(81) R(a,v) = I v(a)R12 (p~,p~,qa;B 1 ). 

a=1 

Set 

(83) 
2 

{ (R1 ,R) I l 
s=1 

~ ~ R ~ R, R ~ R for s=1,2}. 
8 B 8 
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Finally define 

(84) 

We remark that GII, like GI, is a closed convex region in the Euclidean 

plane. 

B. Pure Parameter-Channels 

We may specialize the collection a to contain only pure parameter

channels. More precisely, let a*= (P,Q*) be a finite collection of tri

ples {(p~,p~,q:):a=1, ... ,d} as defined in (77), but now such that each 

q * is a pure parameter-channel. Define 
a 

Then we have 

Theorem 4: It suffices to take in (84) the union over all R belong-

( 86) 

Proof: We need to show that every GII(R(cr,v)) is contained in some 

GII(R(cr*,v 1 )). This is indeed so, because there corresponds to every (a,v) 

some pair ( c,*, v') such that R( a, v) ~ R( a*, v'). This follows from the con-



R~ 2 (p 1 ,p2 ,q;B2 ) as functions of their transmission probabilities in the 

same way as: in section IIIB. 

C. The Main TheoPem 

Theoy,em 5: The region G11 is contained in the capacity region 

G(P,T12 ,II). Thus 

(87) G:rr c G(P,T12 ,II). 

Py,oof: Our proof combines aspects of the random coding proof given 

by Ahl swede [ 2] for ( P ,T 22 , II) , and the one given by Ber groans [ 4] for the 

degraded broadcast channel. Ahlswede 's approach is based on the use of 

non-stationary sources ( see also Ulrey [ 12] for generalizations). We shall 

carry this approach over to the non-degraded broadcast channel. Our ran

dom coding proof is really one for (P,T22 ,III). 

such that 

(88) ~ * R ::; R (a ,v) 
s s for s=1 ,2; 

and 

( 89) ~ * ::; R(a ,v). 

Let s > 0, cS = s/4, 0 < 11. 1 ,11.2 < 1. We can find a positive integer 
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n=n0, and a collection of triples 

such that 

~(R(cr*,v),R(cr;,v 1 )) < o 

where v'(t)=1/n;t=1, ... ,n; and~(.,.) denotes the Euclidean distance in 

three-space. This implies that 

(90) 

(91 ) + 0 

and 

n 
t t * (92) R1+R2 < - I R12(P1 ,p2,qt;B1) + 0. 

n t=1 

Choose the integers M1 and M2 such that 

n(R -E) n(R -d 
(93) 2 s ~M ~ 2 s + 1 s s= 1 ,2. 

Define 

(94) 
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(95) 

and 

(96) 

1 n) n 1 n An 1 n n for x1=(x1 , ... ,x1 E A , X2=(x2 , •.. ,x2 ) E , Y=(y , ••• ,y ) E A • 

Define 

where P(Z 1 ,z2 1Y) is defined by (1). From it derive 

(98) 

and 

(99) 

Next define 

(100) 

Also define 
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(101) 

where 

( 102) 

Clearly 

(103) 

Moreover 

( 104) 

1 n t t t 
= - l I (x2;z2) 

n t=1 

t= 1 , .•. ,n; 

Consider now the following random coding scheme. Select M1 cloud cen

ters u1, ••• ,uM (all in An) independently drawn according to P 1n(X1). Also 
1 

select M2 cloud centers 

each other and from the 

v 1, ••• , VM ( all in An) independently drawn ( from 
2 

ui's) according to P2n(X2). If the message pair 

(i,j) is presented for transmission, and the set of cloud centers 

(u1 , ••• ,uM; v 1 , ••• ,vM) is randomly generated, and ~(w •• \u.,v.)=1, then 
1 2 ~J ~ J 

the codeword w .. is transmitted over the channel. 
~J 

The decoding set for user U21 if message pair (i,j) is sent, is de-

noted by B •• , and defined by 
~J 
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(105) 

The probability of error committed by U21 in decoding message pair (i,j) 

is, for the given set of cloud centers, denoted and defined by 

= 1-P(B . . 11.u . . ) = 
1.,J 'l-J 

1-P (B. ,lu.,v.). 
n i-J 1., J 

The expected value, over all sets of cloud centers, of the arithmetic 

average probability of decoding error made by U21 equals the expected 

value of µ 1(1,1), which is denoted by µ 1(1,1). It is an immediate conse

quence of the results of Ahlswede [2], and those of Ulrey [ 12], that 

µ 1 ( 1 , 1) tends to zero as n tends to infinity, whereby n is an integer

multiple of n0 • The result for general n follows easily. 

Next we investigate the probability of error for sending to U22 • Let 

( 106) 

and define 

( 107) 

0 otherwise. 

Define the decoding set 

( 108) 



The probability of error in decoding message j by U22 is for the given set 

of cloud centers denoted by 

( 109) = 1-P(D. lw . . ) 
J 'iJ 

= 1-P (D.ju.,v.). 
n J i, J 

Clearly, µ2(i,j) is bounded above by P( 1)(i,j)+P( 2 )(i,j) where e e 

( 110) p(1)(i,j) = l P(Z2 lw .. )d(v .,z2 ) e Z Bn 1,,J J 
2E 2 

and 

p(2)(i,j) 
M2 

( 111 ) = l P(Z21w,.) I (1-d(vz.,Z2 )). e Z Bn 1,,J Z.'fj 2E 2 
Z.= 1 

The expected value over all sets of cloud centers of the arithmetic 

average probability of decoding error made by U 22 is equal to the expected 

value of µ2 (i,j), which is denoted by µ2 (i,j). Clearly, 

( 112) P( 2) ( . . ) + 1,, ,J . 
e 

Now, proceeding as Bergmans in [4], we obtain that 

( 113) 

The righthand side of ( 113) goes to zero as n tends to infinity, by the 

weak law of large numbers for independent, not necessarily identically 
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distributed, random variables. The variance of It(x2;z2 ) is bounded uni

formly int. This follows from the remark on p. 123 of Wolfowitz [18]. 

Similarly we obtain 

( 114) 

Hence µ2(i,j) tends to zero as n tends to infinity, when n is an in

teger-multiple of n0 • The result for general n follows readily. This shows 

the existence of an (n,M1,M2 ,A 1 ,A2 )-code for (P,T12 ,II) for n sufficiently 

large with M1 and M2 satisfying (93). Hence (R1 ,R2 ) E G(P,T12 ,II) and 

GII c G(P,T12 ,II). This completes the proof. 

Conjecture 4: In defining o (see (77)) we considered triples 

(p1,p2 ,q) such that Eq = (AxA,q(ylx1,x2 ),A) is a para.meter-channel with 

input alphabets equal to the given output alphabet A. We conjecture that 

the region GII does not change if in (84) we take the union over those 

R which arise from pairs (a,v) such that ~ome Eq = (A1xA2 ,q(ylx1,x2),A) 

have general input alphabets A1 and A2 • The fact that it suffices to re

strict to a2=min(a,b 1,b2 ) seems to follow in the same way as in Gallager 

[7]. A possible proof of the conjecture that it also suffices to restrict 

to a 1=min(a,b1) may be given along the same lines. 

D. Comparison With The Degraded Broadcast Channel 

It is interesting to note what happens to expression (86) when the 

broadcast channel K is assumed to be degraded. According to Bergmans [4] 

hereby the following is meant. Let K1 and K2 denote the marginal channels 



whose transition probabilities are defined by (2) and (3) respectively. 

We say that K2 is a degraded version of K1, if there exists a third chan

nel x3 such that K2 can be represented as the cascade of K1 followed by 

x3 , in whieh case K is called a degraded broadcast channel. 

If K2 is a degraded version of K1, expression (80) reduces to 

( 115) 

Namely, in this case we have 

( 116) 

by the cascading process, and 

( 117) 

by convexity. Moreover, one always has 

( 118) 

so that in the case of degradation 

( 119) 

With every pair (a*,v) we now associate the pair 
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(120) +V * ~ * ~V * R ( a , v) = (R 1 ( a , v) ,R2 ( a , v) ) • 

Next we set 

( 121 ) 

( 122) 

Finally we define the region 

(123) 

It follows from ( 115) and ( 119) that in the case of a degraded broad-

V 
cast channel GII reduces to G II. Another w;ay of . . G V . characterizing II is as 

follows. For every pure parameter-channel E * q = (AxA,q*(yjx1 ,x2 ),A), de-

fine 

(124) * { * 1 * CII(q) = (R1(P1,P2,q ;B1),R12(P1,P2,q ;B2)): 

P 1 and p 2 are p. d. ' s on A} . 

Next let 

(125) 
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where the union is taken over all pure parameter-channels E *· Clearly 
q 

(126) 

We claim that the region co(CII) is precisely the region of attain

able rates obtained by Bergmans [4] for the degraded broadcast channel 

* with two components. This can be seen as follows. Every triple (p 1 ,p2 ,q) 

with Eq* = (AxA,q*(ylx1 ,x2 ),A) determines a pair (p2 ,p) whereby pis the 

transition probability of an artificial channel AP= (A,p(yjx2 ),A) with 

p(yix2 ) given by (45). Conversely, every pair (p2 ,p) of this type can be 

written as a triple (p1 ,p2 ,q*) according to the procedure described at 

the bottom of p. 392 of [9], whereby Eq* = (A1xA,q*(ylx1 ,x2 ),A) and 

a 1 = aa. The pair (p2 ,p) can be considered as representing the two para

meters of the Cover-Bergmans random coding scheme, with p being the tran

sition probability of an artificial satellizing channel AP, and p2 being 

a probability distribution on the inputs of A • It follows that every pair 
p 

of rates which is attainable according to.the Cover-Bergmans procedure is 

attainable with our procedure, and conversely, with the proviso that in 

· · · G GV C the defini tJ.on of II, II, and II we allow parameter-channels E q * = 

= (A1xA,q*(ylx1,x2 ),A) such that a1 = aa, However, in view of Conjecture 

4, we believe this makes no difference. 

E. A Lirrriting Expression For G(P,T12 ,II) 

In analogy with the case (P,T12 ,I) we now derive a limiting expres

sion for G(P,T12 ,II). As in section IIIF let If" denote the memoryless 
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n-extension of the broadcast channel K = (A,p(z 1 ,z2 jy) ,B1 xB2 ), and recall 

expressions (54), (55), (56), and (57). We define mutual information func-

tions as follows. Let 

(127) 
n 

E fag2 
r(z 1 lx1 ,x2 ) 

R1(P1n'P2n'Qn;B1) = 
r(z1 lx2) 

( 128) R2(P1n'p2n'Qn;B~) = E log2 
F'(z11x1 ,x2J 
r(z1lx1) 

( 129) 
1 n t F'(Z2IX2) l 

R12(P1n'p2n'Qn;B2) = E log2 
r(z2) 

and 

( 130) 

where the expectations are taken with respect to (57). 

When the underlying broadcast channel is If instead of K, the analo

gues of expressions (77) to (83) are easily derived, and therefore will be 

omitted here. We define cflI as being the inner bound of the capacity re

gion of the d.m. broadcast channel If in situation (P ,T 12 ,II) obtained ac

cording to Theorem 5. 

Let 

( 131 ) 
~I = -- = 

n 

and 
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( 132) 

Then we have 

co 
n 

U KII. 
n=1 

Theorem 6: 
co 

The capacity region G(P,T12 ,II) equals the region GII' 

co 
Proof: (a) The proof of the fact that GII c G(P,T12 ,II) is completely 

similar to part (iia) of the proof of Theorem 3. 

(b) The fact that G(P,T12 ,II) c G~I is proven as follows. Let 

(R 1,R2 ) E G(P,T12 ,II). Let£> O, 0 < \ 1,\2 < 1. Then there exists for n 

sufficiently large an (n,M1 ,M2 ,\ 1 ,\2 )-code for Kin situation (P,T12 ,II) 

such that 

( 133) 
1 -log2 M. > R,-£ n i.= i. 

i= 1 ,2. 

We denote a code like this by the system (13). In the same way as in part 

(iib) of the proof of Theorem 3 we can translate (13) into a system 

( 134) 

by means 

= 1. The 

{ u . , V • ,B .. ,D . / i= 1 , ••• ,M1 ; j= 1 , ••• ,M2} 
. i. J t-J J 

of a pure parameter-channel~* for J<!l 

system (134) is a (1,M1 ,M2 ,\ 1,\2 )-code 

such that Q*(w •• /u.,v.) = 
n t-J i. J 

for the cascade ~*J<!l in 

* * situation (P,T22 ,III). As before, let P 1n and P2n denote the uniform dis-

tributions on the sets {u 1, ... ,uM} and {v 1, ... ,vM} respectively. It fol-
1 2 

lows from standard results on weak converses for multi-way channels (see 

[1], [2], [12], [15], and [17]) that 



(135) 

(136) 

and 

(137) 

It is easily concluded that, for any o > O, and for all n sufficiently 

large, and all E and A sufficiently small, 

(138) 
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00 00 

This implies that (R1-o,R2-o) E G11 for all o > o. Since G11 is closed, it 

00 00 

follows that (R1,R2 ) E G11 . Therefore G(P,T12 ,II) c G11 , which completes 

the proof, 
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V. RANDOM CODING THEOREM FOR (P,T 12 ,III) 

A. · Mutual Information Functions 

Let be given the d.m. broadcast channel K = (A,p(z 1 ,z2 1y),B 1xB2 ), a 

parameter-channel Fq = (A 1xA0 xA2 ,q(yjx1 ,x0 ,x2 ),A) of type (P,T31 ), and the 

cascade FqK = (A1xA0xA2 ,p(z 1 ,z2 jx1,x0 ,x2 ),B 1xB2 ) whose transmission proba

bilities are as defined in (7). Assume A1 = A0 = A2 = A, and let p 1(x1), 

p0 (x0 ), and p2 (x2 ) be three probability distributions on A. Define 

and derive from it p(z 1Jx1,x0 ), p(z2 1x0 ,x2 ), p(z 1 lx1), p(z 1 lx0 ), p(z2 lx0 ), 

p(z2 1x2 ), p(z 1), and p(z2 ) in the usual way. Define the following mutual 

information functions. 

( 140) 

( 141 ) 

( 142) 

( 143) 

( 144) 
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and 

(145) 

Here, all expectations are ta.ken with respect to (139). 

Let cr = ( P ,Q) be a finite collection of quadruples 

( 146) {(p~,p~,p~,qa):a=1, ... ,d} 

where (AxAxA,qa(yjx1 ,x0 ,x2 ),A) is a para.meter-channel of type (P,T31 ), and 

p~, p~, and p~ are probability distributions on A. Also, let v = 

= {v(a):a=1, ... ,d} be a probability distribution on cr. With every pair 

(cr,v) we associate a quintuple 

( 147) 

where 

d 
v(a)R: 1(p~,p~,p~,qa;B1) ( 148) R/cr,v) = I 

a=1 

d 
( 149) .R0(cr,v) = min 

[aI1 
v(a)R~0(p~,p~,p~,qa;B 1), 

d 
v(a)R~ 0(p~,p~,p~,qa;B2 ) ] I 

a=1 

d 
v(a)R~ 2(p~,p~,p~,qa;B2) (150) R2(a,v) = I 

a=1 
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d 
v(a)R~10(p~,p~,p~,qa;B1) ( 151) R10 (a,v) = I 

a=1 

and 

d 
v(a)R~02(p~,p~,p~,qa;B2). (152) R02 (a,v) = I 

a=1 

Set 

( 153) 

1 1 
( 154) = {(R1,R2,Ro)I l Rs::;;1?10' l R2s::;;l?02' Rs::;;Rs for s=0,1,2}. 

s=O s=O 

Finally define 

(155) 

Clearly, G111 is a closed convex region in Euclidean three-space. 

B. Pure Pa.rameter-Cha:nnels 

* * Let cr = (P,Q) be a finite collection of quadruples 

{( a a a *) } ( 46) * p 1 ,p0 ,p2 ,qa : a= 1, ... ,d as defined in 1 , but now such that each qa 

is a pure parameter-channel of type (P,T31 ). Define 



( 156) ={BIR= + * * R(cr ,v) for some (cr ,v)}. 

Then we have 

Theorem ?: 

(157) 

Proof: Follows from convexity as in the proof of Theorem 4. 

C. The Main Theorem 

Theorem 8: 

(158) GIII c G(P,T12 ,III). 

Proof: Our proof is a direct application of the random coding proofs 

given by Ahlswede [2] and Ulrey [12] for (-?,T22 ,II) and (P,T32 ,I), respec

tively. In addition, the proof of this theorem involves some aspects of the 

random coding proofs for (P,T21 ) and (P,T22 ,I) given by Ahlswede [1] and 

[2]. (See also [15] in this regard.) We shall only sketch the proof and o

mit any details, because of its length and the complexity of the notation 

involved. We remark here that our random coding proof can also be viewed 

as one for (P,T32 ,II). 

Let (R 1,R2 ,R0 ) E G111 • Let€> O, and O < o <€.There exists a posi

tive integer n=n0, and a collection of quadruples 
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( 159) * (J = 
cS 

such that 

(160) 

( 162) 

( 163) 

and 

( 164) 

Choose integers M1,M2 , and M0 such tliat 

(165) 

Define 

( 166) 

and 

n(R -s) 
2 s 

n(R -s) 
~ M ~ 2 8 + 1 

s s=O, 1 ,2. 

s=O, 1 ,2; 



(167) 

1 n n 1 n n 
for X = (x , ... ,x) €A; s=0,1,2; and Y = (y , ... ,y) €A. 

8 8 8 

Consider now the following random coding scheme. Select M1 cloud cen-

ters u11 , ••. ,u1M in An, independently drawn according to P1n(X1). At the 
1 

same time, select M0 cloud centers u01 , ••• ,u0M in An, independently drawn 
0 

according to P0n(X0 ). Also, select M2 cloud centers u21 , •.. ,u2M in An in-
2 

dependently drawn according to P2n(X2 ). Moreover, choose the three sets of 

cloud centers independently from each other. If the message triple (i,j,k) 

is presented for transmission; 1 ~ i ~ M1, 1 ~ j ~ M2 , 1 ~ k ~ M0 ; and 

Q~(Yiu1i,uOk'u2j) = 1 for some Y € An, then the codeword wijk = Y is trans

mitted over the channel. (There are various interpretations of this random 

coding scheme possible in terms of a satellization process, depending on 

different choices of the satellizing channel,) The decoding sets correspond

ing to this random coding scheme are defined as follows. 

The decoding set for U81 if message triple (i,j,k) is sent is denoted 

by Bik and defined by 

(168) 

for all ( i ' ,k' ) #- ( i ,k) }. 

Similarly, the decoding set for U82 is denoted and defined by 

( 169) P(Z 1w, 'k)P (u .) > 
2 -iJ 1n 1-i 

for all (j',k') #- (j,k)}. 
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Let 

( 170) = 1-P(B.klw .• k) 1, 1,J 

and 

( 171) = 1-P(D .k lw .• k). 
J 1,J 

Denote byµ (i,j,k) the expected value over all sets of cloud cen
s 

ters ofµ (i,j,k); s=1,2. It is an immediate consequence of the results 
s 

of Ahlswede [2] and Ulrey [12] thatµ (i,j,k) tends to zero as n tends to s 

infinity. This completes the proof. 

D. Comparison With GI And GII. 

We now comment on how Theorem 2 (expression (38)) and Theorem 5 (ex

pression (87)) can be obtained directly from Theorem 8. 

Suppose in communication situation (P,T12 ,III) we set R0 = 0. Then it 

is not possible for U21 and U22 to decode conditionally on the message k 

received. This corresponds to using in the mutual information expressions 

(147) through (152) only those pairs (a,v) such that p0 assigns probabil

ity zero or one to every single input letter x0 • Let cr0 = {P0 ,Q} be a fin

ite collection of quadruples as defined in (146), but now such that pa= 0 
0 

or 1 for a=1 , ... ,d. Let 

( 172) 
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and 

Then it is easily verified that 

Similarly, we can derive the expression for GII from the results of 

the present section. Suppose, in situation (P,T12 ,III) we set R2 = O, and 

put R1 = R1 and R2 = R0 • Let cr2 = {P2 ,Q} be a finite collection of quad

ruples as defined in (146), but now such that p~ = 0 or 1 for a=1, ••. ,d. 

Let 

and 

( 176) 

It is easily verified that 
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E. A Limiting Expression For G(P,T12 ,III). 

We can derive a limiting expression for G(P,T12 ,III) similar to those 

obtained for G(P,T12 ,I) and G(P,T12 ,II). Omitting the definitions of the 

mutual information functions involved, we define directly G~II to be the 

inner bound. of the capacity region of the d.m. broadcast channel i1' in 

situation (P,T12 ,III) obtained according to Theorem 8. Let 

(178) 

and 

( 179) 

Then we have 

Theorem 9: 

~II --= 
n 

00 

n 
U KIII 

n=1 

Proof: The proof of this theorem is omitted, as it is completely 

analogous to the proof of Theorem 6. 
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