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We present an algorithm that performs image-based queries within the domain of tree taxonomy. As

such, it serves as an example relevant to many other potential applications within the field of

biodiversity and photo-identification. Unsupervised matching results are produced through a chain of

computer vision and image processing techniques, including segmentation and automatic shape

matching. The matching itself is based on a nearest neighbours search in an appropriate feature space.

Finally, we briefly report on our efforts to set up a webservice to allow the general public to perform

such queries online.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Digital cameras and connectivity have become commonplace.
As a result, the public at large is slowly being transformed from
passive content consumers into active and avid content producers.
Indeed, the likes of Wikipedia, Flickr, and YouTube have demon-
strated beyond any doubt the viability of ‘‘crowd sourcing’’
development projects in which a comprehensive, high quality
product emerges as the result of modest contributions from
literally thousands or even millions of participants. This observa-
tion provided the starting point for this paper: we intend to
explore whether it is possible to set up a webservice that allows
interested lay people to upload an image of a tree leaf and get
instant information on its genus and species. The underlying
architecture is relatively straightforward and essentially based on
case-based reasoning (CBR) (Perner, 2002, 2005): when a query
image is uploaded the database is searched for similar images for
which the genus- and species-information is available. A shortlist
of the most similar are returned for final inspection by the
submitter. At this point the user has the option to pick the most
similar and criticize the outcome (critique mode). The latter
ll rights reserved.
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would make the CBR cycle complete, provided the information is
used in reasoning and learning strategies for improvement of the
retrieval.

However, it is still a challenge to make image retrieval such a
reliable method that it can be presented to the public at large. In
this paper we summarize our efforts to create a sufficiently
expressive feature set that captures most of the salient visual
characteristics used to classify leaf shapes. We will also briefly
touch upon the webservice that aims to open up this facility to the
public.

1.1. Previous and related work

Several biological multimedia databases are already online.
The vast majority of them allow for search by metadata, e.g. see
Hepp and Gurk (2004) which provides excellent pictures and
metadata on leaves. Also a number of stand-alone systems are
under development (cf. Hillman et al., 2003; Mizroch et al., 1990;
Ranguelova and Pauwels, 2005; Van Tienhoven et al., 2007)
relying on computer-assisted photo-identification. However, the
combination of an online biological multimedia database with
search facilities through computer-assisted photo-identification is
rare. The only important example known to us is a whale shark
photo-identification library by Norman and Holmberg (2005). The
search facility uses photographs of the skin patterning behind the
gills of each shark (and scars) to distinguish between individual
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Fig. 1. Definition of the maximal exit distance (denoted by d) for the region

enclosed by a contour of diameter D.
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animals. Such areas are marked by unique spot patterns. An
algorithm originally used to map stars, photographed by the
Hubble telescope, has been adapted to identify the unique
patterns.

A modest example with respect to tree taxonomy has been
reported in de Zeeuw et al. (2007). To the best of our knowledge
the webservice as proposed in this paper is the first one in his kind
to offer online computer-assisted photo-identification in tree
taxonomy.
2. Features

2.1. Introduction

In image retrieval features are used as a way of translating
particular image characteristics into (vectors of) numerical
quantities as the latter are more amenable to mathematical
analysis and classification. From the literature on botanic
taxonomy we learn that experts will use essentially three visual
characteristics to classify leaves: their overall shape, the contour
details of the leaf margins, and the overall structure of their vein
pattern (the so-called venation). However, in this paper we will
restrict ourselves to shape characteristics as they are most
accessible to lay persons. Notice that this also means that we
are not using other visual characteristics such as colouration or
texture as they are too unreliable.

Since the input to our algorithm are digital images of leaves on
a relatively uniform background, we have chosen to start by
(automatically) segmenting the leaf from its background, thus
creating a binary image (called mask), that accurately delineates
the outline of the leaf under scrutiny (for some examples, see
Fig. 3). The segmentation is based on a watershed algorithm and
makes use of the assumption that the leaf itself is positioned
roughly in the centre of the image. It first uses an automatically
generated threshold to obtain a coarse segmentation which is
then fed into a watershed algorithm for fine-tuning. For more
details on the segmentation we refer to de Zeeuw et al. (2007,
Section 3.1).

In the next two sections we discuss in some detail the features
that we draw upon for shape matching. Section 2.2 expounds a
number of features that have a clear geometrical interpretation
and have been introduced to capture specific visual character-
istics. In Section 2.3 we extend the feature set to shape invariants
based on moments as they have proven their usefulness in other
applications. However, their geometric interpretation (in terms of
salient visual characteristics) is less clear and—given this paper’s
space constraints—we will not attempt to elaborate on this issue.

The size of database currently at our disposal contains 209
images, representing 22 different genera.
2.2. Shape features

In this section we introduce and describe the shape features
we have employed. We start from the observation that, at least to
a non-expert, a leaf’s two most important shape characteristics
are its elongation (long or slender versus roundish) and whether
or not it is lobed or indented. To capture these visual character-
istics we have implemented a number of relatively straightfor-
ward features (commonly encountered in the literature) that
quantify these aspects. In addition, we will introduce features
based on Hu’s moment invariants (Hu, 1962). For ease of
reference, we will denote the region defined by the binary
mask as R and its boundary contour as qR. The diameter D of
the region R is the maximal distance between two of its points:
D ¼ maxfdðp;qÞ jp;q 2 Rg (see Fig. 1). We start by introducing
some features that measure the slenderness of leaves.

Eccentricity: This is the eccentricity of the ellipse with identical
second moment as the binary leaf image. Its value ranges from
0 to 1.

Aspect ratio: To compute the aspect ratio we first find two
points p and q on the boundary qR that realize the diameter D, i.e.
dðp;qÞ ¼ D. Next we find the boundary point that realizes the
maximal distance to the line segment pq and denote this by D?.
The aspect ratio is then defined to be the ratio of these two
diameters:

a ¼
D?

D
.

Clearly, a-values close to zero are indicative of a very elongated
structure.

Elongation: From each point inside the region R we measure
the minimal (exit) distance dmin to the boundary contour qR and
we denote by dme its maximal value over the region. More
precisely (see Fig. 1)

dme ¼ max
x2R

dðx; qRÞ.

Elongation ‘ is then defined as

‘ ¼ 1�
2dme

D
,

where D is the diameter of the region. Notice that ‘ varies between
0 and 1 where the lower limit is reached for a circular region.
Notice also that the fraction 2dme=D is the ratio of the diameter of
the largest inscribed circle to the smallest circumscribed circle. In
this sense, elongation ‘‘extends’’ the concept of eccentricity from
ellipses to more general closed curves.

To quantify the amount of indentation we again introduce a
number of related concepts.

Solidity: For a given region R we determine its convex hull HðRÞ

and compare their areas (see Fig. 2 left top panel):

S ¼
areaðRÞ

areaðHðRÞÞ
.

Stochastic convexity: Recall that a region R is called convex when
for every two points p; q 2 R the line segment connecting these
two points (denoted by pq) lies entirely in R. We extend this
notion by giving it a stochastic twist: we define the stochastic

convexity to be equal to the probability that the line-segment pq

spanned by two randomly chosen points p; q 2 R will be contained
in R. Although this parameter might be difficult to compute
analytically, it is quite straightforward to get an accurate estimate
based on sampling. Notice how this feature is subtly different
from the solidity defined above. Both are a function of the
difference HðRÞnR between the region and its convex hull, but for
the stochastic convexity the spatial orientation of this difference is
also important as it will impact on the likelihood of intersection
with pq.

Isoperimetric factor: If the closed contour qR of length LðqRÞ

encloses a region R of area AðRÞ, the isoperimetric factor is defined
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Fig. 2. Top left. Binary image of a leaf (black) with convex hull (grey). Top right. Indentation depth: The distance from the leaf contour to the convex hull as a function

contour arc-length, i.e. the distance covered along the leaf’s perimeter. Bottom: Power spectrum of the indentation depth function. The peak at frequency 5 is quite

dominant reflecting the fivefold symmetry in the leaf.
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as (a.k.a. circularity cf. Jähne, 2005)

4pAðRÞ

LðqRÞ2
.

The maximal value of 1 is attained when R is a circular region,
while a long curvy contour that snakes around a narrow area will
yield a small value.

Maximal indentation depth: For each point on the leaf countour
we determine the distance to the convex hull (see Fig. 2, left). By
expressing this distance as a function of the curve length along the
contour we arrive at the indentation function depicted in the right
panel of Fig. 2. We then define the maximal indentation depth
Dmax as the maximum of this function normalized by the contour
length.

Indentation spectrum: As a next step we compute the Fourier
spectrum of the indentation function depicted in the top
right panel in Fig. 2 and the result (up to frequency 50) is shown
in the bottom panel. Clearly, the peak at frequency 5 (cycles)
corresponds to the fivefold symmetry of the leaf. To quantify the
spread of the spectrum we compute Fp80 which is the smallest
frequency at which the cumulated energy exceeds 80% of the total
energy in the spectrum (of the first 50 frequencies).

Lobedness: Finally, we define a ‘‘lobedness’’ feature L as

L � D2
maxFp80. (1)

This feature was handpicked to show a clear correlation with the
degree to which a leaf is lobed, as is borne out by the examples in
Fig. 3 that visualize the intuitive geometrical interpretation of the
‘‘lobedness’’ feature.

2.3. Moment invariants

We present a short recap of seven moment invariants designed
by Hu (1962) and how they can be improved upon to serve as
elements of a seven-dimensional feature vector (further details
can be found in Oonincx and de Zeeuw, 2003, Section 5, de Zeeuw,
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Feature value = 0.00043018
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Fig. 3. From left to right: leaves of low, medium and high lobedness.
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Fig. 4. Matrix depicting the correlation between the features defined in Section 2.

Reddish signifies a high and bluish a low correlation. Columns from left to right

and rows from top to bottom are ordered as follows: (1) aspect ratio, (2)

eccentricity, (3–9) seven moment invariants, (10) elongation, (11) maximal

indentation depth, (12) solidity, (13) stochastic convexity, (14) lobedness, (15)

isoperimetric factor and (16) Fp80.
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2002 and also de Zeeuw et al., 2007, Section 3.2). An image is
regarded as a density distribution function f. In our case of a
binary segmentation mask f takes on a particularly simple form:

f ðxÞ ¼
1 if x 2 R;

0 otherwise:

(

The ðp; qÞ central moment mpqðf Þ of f is given by

mpqðf Þ ¼

ZZ
R2
ðx� xcÞ

p
ðy� ycÞ

qf ðx; yÞdx dy, (2)

where p and q are non-negative integers and ðxc; ycÞ is the centre
of mass. By their very definition central moments are translation
invariant. However, since shape characteristics should enjoy
additional invariances (viz. rotations, reflections and dilations)
Hu (1962) constructed seven polynomials (the so-called moment

invariants) in the variables mpq that are also invariant under
rotations and reflections (the latter up to a sign). Two polynomials
are built with second-order moments, four polynomials with
third-order moments and one combines second- and third-order
moments. The seven polynomials constitute a feature vector
I 2 R7. In Oonincx and de Zeeuw (2003, Section 5) and de Zeeuw
(2002) it is demonstrated how to normalize these moments to
achieve invariance under dilation too. There also the homogeneity

condition is introduced which requires that a rescaling of the
luminosity f affects the elements in a homogeneous fashion (and
therefore can be compensated for)

f 7�!lf¼)~I 7�!l�1~I, (3)

where ~I denotes the normalized version of I. The invariance
requested above is a natural requirement as the shape of a region
in a binary image remains unaffected by the constant used to
differentiate the region’s interior from its exterior. It turns out that
hereby all elements operate in the same order of magnitude and
that using ~I as a feature vector makes sense.

2.4. Feature robustness and internal consistency

The list of features enumerated in Section 2 clearly harbours a
lot of overlap. This is borne out by the correlation matrix
(computed on a database of 209 images, comprising 22 different
genera) displayed in Fig. 4 where the features have been ordered
to highlight the natural clustering due to similarity. More
precisely, we ordered the features as follows: (1) aspect ratio, (2)
eccentricity, (3–9) seven moment invariants, (10) elongation, (11)
maximal indentation depth, (12) solidity, (13) stochastic convexity,
(14) lobedness, (15) isoperimetric factor and finally (16) Fp80. A
cursory inspection of the correlation matrix shows that the
features naturally cluster in a number of blocks. Features 1–4
measure eccentricity or slenderness of the region (it can be shown
mathematically that the first two moment invariants are in fact
simple functions of the eccentricity). Blocks 3–9 represents the
moment invariants which clearly add independent information
although there is some internal redundancy. Features 10–15 are
all involved in quantifying the amount of indentation. Notice that
on our database the elongation feature (10) which was designed
to quantify eccentricity seems to function primarily as an
indentation measure (although there is also as strong correlation
with the eccentricity block).

The importance of the above observations is twofold. Firstly,
we intentionally introduced redundancy in the feature set to
improve robustness. The idea is that it is often prohibitively costly
to check whether features accurately capture the visual char-
acteristics they have been designed for (i.e whether they have
successfully bridged the so-called numerical gap). We therefore
use the redundancy in the feature set to flush out problem cases.
Indeed, if two features—designed to quantify the same visual
characteristic albeit using complementary methods—yield diver-
gent results, then that image is earmarked for visual inspection by
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a human expert. This way we can quickly search the database for
outliers that might be indicative of aberrant shapes or (perhaps
even more importantly) flaws in the assumptions subsumed by
the features and leading to the acknowledgement of unforeseen
but valid shapes. It is a critique mode by expert users, see also
Perner (2005).

The elucidation of the dependencies among the features
provides the means to reduce the complexity of the classifier.
This is tackled in the next section.
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Fig. 5. Query success rate. The horizontal axis lists the number (k) of nearest

neighbours that are retrieved, while the vertical axis shows the success rate, i.e.

the fraction of such neighbour groups that contained at least one leaf of the same

genus.
3. Recognition based on classification

The scenario envisaged in the proposed application calls
for a query image to be uploaded to the system, whereupon it is
segmented and processed by the feature extractors. The task of
the classifier is to find the k most similar images in the (flat)
database of exemplars and to present them to the query sub-
mitter for inspection and a final decision. In mathematical
parlance, this amounts to searching the feature space for the
k-nearest neighbours (NN) of the query. For the similarity
measure we use the Euclidean distance. We construct a k-NN
classifier as follows:
(1)
 We proclaim the classification of query leaf to be successful if
at least one of the k images (where k is typically 10) that are
returned by the k-NN search has the same genus as the query.
Notice that this deviates from the more common criterion that
uses majority voting; however, given that the final decision is
taken by a human after inspecting the returned results, we
believe the proposed measure to be more appropriate.
(2)
 We first rank the individual features based on their perfor-
mance on the above criterion for k ¼ 1 (i.e. nearest neighbour
search).
(3)
 Next, we increase the list of features involved in the
classification by incrementally adding new features based on
their ranking in the above test, thereby taking care to skip
features that are strongly correlated with the ones already
included.
Fig. 6. Part of a webpage generated by the taxonomy webservice in response to a

submitted query image (top left). The result of the automatic segmentation is

shown top right. The most similar images in the cases-database are displayed on

the second row, together with relevant metadata such as genus and species. The

displayed shortlist of most similar leaves offers the user the possibility to pick—as

a final selection—the leaf that best matches his query image.

1 http://biogrid.project.cwi.nl/projects/leaves_lite/
The above is in line with the approach by Perner (2002)
who uses redundant features and selects the most distinguishing
ones through decision tree learning among the whole set of
features. If the constructed classifier cannot come up with good
accuracy or if the classifier cannot distinguish between two
classes then there is evidence that there must be constructed a
new feature.

By systematically searching the subsets suggested by the above
strategy it turned out that the best performing nearest neighbour
classifier uses only three features (incidently, one from each main
block): (2) eccentricity, (5) a moment invariant and (11) maximal

indentation depth. Fig. 5 shows the resulting performance: the
horizontal axis lists the number (k) of nearest neighbours that
have been retrieved while the vertical axis shows the success rate,
i.e. the fraction of such neighbour groups that contained at least
one leaf of the same genus. In about 70% of the cases, the actual
nearest neighbour is of the same genus, and if we search for the
same genus among the first three neighbours, then we get a
success rate of about 80%, which rises further to almost 90% when
we allow the user to inspect the 10 nearest neighbours. We should
also point out that the success rate is significantly lower if we
use all features in the k-NN search, which clearly indicates that
the redundancy in the feature set—although useful for flushing
out outliers and non-conforming shapes—hampers the actual
classification.
4. Webservice

We have implemented a tentative webservice1 that aspires to
assist users in identifying trees by uploading a photograph of a
leaf. The service is designed as a two-tier system. The front-end
allows the user to upload query images and the back-end server
performs the matching. Hereafter, a web page is created showing
the 10 most similar exemplars along with the names of their

http://biogrid.project.cwi.nl/projects/leaves_lite/
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genus and species, see Fig. 6. The system comprises the following
main components.
�
 Database at back-end: Obviously we need a database of leaf
images (cases or exemplars in CBR terminology) that is
supposed to encapsulate the domain knowledge. The database
contains for each leaf information regarding the genus and
species specified by the Linnaeus binomial nomenclature (e.g.
Quercus alba), the common name (e.g. white oak) as well as one
or more relevant photographs. Associated with each photo-
graph is a set of automatically computed (numerical) shape
features (see Section 2.2).

�
 Query (image) upload facility at front-end: The front-end

provides a webpage that allows the user to upload an image
of his leaf of interest. To improve performance it is advised
either to photoscan or to photograph the leaf against a
relatively homogeneous, contrasting background.

�
 Matching at back-end: Uploading a query image triggers

a sequence of algorithms. Firstly, the leaf needs to be
segmented from the background. Secondly, we compute a
range of numerical shape features (see Section 2.2) on the
(binary) segmented image. Thirdly, the query features are
matched against the features from leaves in the database
(see Section 3).

�
 User feedback facility: The 10 most similar leaves are shortlisted

on a webpage with additional information like name of genus,
species, etc. allowing the submitter to conduct a final visual
inspection. It is a critique mode by non-expert users, see also
Perner (2005). It helps to point out deficiencies in the
automated recognition.

5. Conclusions

In this paper we have outlined the architecture and algorithms
underlying a webservice that allows a user to upload a leaf image
for image-based identification, see Fig. 6. The submitted image is
automatically segmented to segregate the leaf from the back-
ground, whereupon the leaf shape is characterized using a
number of numerical features. Classification is based on nearest
neighbours matching against a database of exemplars to create a
shortlist which is presented to the submitter for double checking.
The current exemplars database is still incomplete and patchy but
we plan on expanding the database of (visual) domain knowledge
by allowing the public at large to contribute additional exemplars
(i.e. image and appropriate metadata). Other future work involves
CBR enhancements for image related systems, like learning
new features, similarity learning, case refinement and case
generalization.

Our web-based image recognition provides an example, albeit
specialized, of how to find and browse images using their content
rather than just by metadata. As such and within the context of
the semantic web, it might contribute to search-engines of the
future.
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