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Abstract. We describe a method that performs automated recognition
of individual laetherback turtles within a large nesting population. With
only minimal preprocessing required of the user, we prove able to pro-
duce unsupervised matching results. The matching is based on the Scale-
Invariant Feature Transform by Lowe. A strict condition posed by biol-
ogists reads that matches should not be missed (no false negatives). A
robust criterion is defined to meet this requirement. Results are reported
for a considerable sample of leatherbacks.

1 Introduction

The ability to individually identify sea turtles in the field has been one of the
most valuable tools in advancing our understanding of these animals. Marked or
identified turtles allow for the measurement of a wide variety of biological and
population variables (e.g. reproductive output, longevity, and survival rates).
Traditional marking methods have included flipper, transponder, and mutilation
tagging. In leatherbacks the pink spot, overlying the pineal gland on the dorsal
surface of the head, has been reported as a unique identifier (McDonald and
Dutton [6]). Leatherback nesting colonies of Trinidad offer the ideal research
location for collecting photos of these spots as it annually supports nesting by
10,000 turtles. The Matura Beach/Fishing Pond nesting colony, located on the
east coast of the island accounts for approximately half of all nesting on the island
with over 150 turtles nesting per night. The beach is patrolled continuously by a
local conservation organization, The Nature Seekers, which enabled most turtles
to be detected. Photos are taken only during the laying stage of nesting to
preclude disturbance of the turtle.

Identification of leatherbacks by humans involves laborious and tedious brows-
ing through a (growing) photo database. Therefore, we seek to determine whether
identification can be automated using image recognition algorithms. The time
that can be put in watching colonies is limited, already for this reason the al-
gorithm needs to avoid false negatives at all costs. The latter is an important
issue for biologists, the presence of the same leatherback at a different place and
different time should not be overlooked. The Scale Invariant Feature Transform
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(SIFT, Lowe [4]) appears capable to provide us with automated matches robust
to changes in 3D viewpoint and illumination, noise and occlusion.

Biologists are waking up to the possibilities of computer-assisted photo-
identification and a number of stand-alone systems are under development (cf.
[2,5,7,8]). The method demonstrated in this paper allows for a web based service
by which one can query and contribute to a database of images. See [1] for a similar
service under development also within the field of biodiversity.

The paper is organized as follows. In Section 2 we decribe the necessary pre-
processing of images and the use of Lowe’s SIFT features. Section 3 describes
how to decide whether we can presume that images of pineal spots are matching
or not. In Section 4 we provide statistics derived from a comparison with the
groundtruth. There is the option of providing a future webservice, see Section 5.

2 Preprocessing and Feature Transform

2.1 Preprocessing

Cropping. An individual leatherback can uniquely be identified by its pineal
spot [6], see the top row of Figure 1. We benefit from the fact that the pineal
spot stands out in pink on the dorsal surface of the animal. We search and
isolate the ”pink spot” by human intervention, i.e. a rectangular region around
the spot is selected. An additional advantage of the cropping is the reduction
of dimensions which speeds up the subsequent processing. Clearly, the selection
procedure introduces some arbitrariness as it is not always obvious to what
extent “satellite” spots and marks should be included. However, as long as the
main salient parts are retained, the resulting classification appears quite robust,
see Section 4. The cropping is the only manual intervention required at this stage
and typically takes 5 secs per image.

Contrast enhancing. The cropped colour image is turned into a gray-value image,
where the gray-value is computed in such a way that it enhances the contrast
between the pink spot and the dark background. This can be done adaptively
(i.e. data-driven) by selecting the colour combination that corresponds to the
first PCA (principal component analysis) factor. In the current implementation
we simply convert a colour image into a gray-scale image by defining the gray
value K at each pixel as

K = R − 0.5(G + B)

where R, G and B are the intensity-values of the red (R), green (G) and blue
(B) component.

2.2 Recapitulation on SIFT

To recognize (gray-value) images we use the features produced by the Scale
Invariant Feature Transform (SIFT, Lowe [4]). This method selects so-called
keypoints in an image. These are local points of interest, furnished with loca-
tion, best fitting scale, and orientation with respect to the gradient. Along with
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Fig. 1. Top: pineal spots of leatherbacks photographed on different days with different
cameras. Bottom: matching keypoints found by SIFT.

each keypoint comes a keypoint descriptor, which is a feature vector summa-
rizing local gradient information. The keypoints are selected in a strict manner
through a cascade filtering approach. The features are defined such that they
appear both invariant to image scaling plus rotation and, to a considerable ex-
tent, invariant to change in illumination and 3D camera viewpoint. Moreover,
they are well localized in both the spatial and frequency domains, reducing the
probability of disruption by occlusion, clutter, or noise. The descriptors prove
highly distinctive, which allows a single feature to find its correct match with
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good probability in a large database of features. Below we describe major stages
within the intricate transform, and omit lots of (important) details.

1. Extrema detection in scale-space. The image I(x, y) is convolved with a
difference-of-Gaussian function which computes the difference of two nearby
scales (separated by a constant factor k)

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y) (1)

where
G(x, y, σ) =

1
2πσ2

e−(x2+y2)/2σ2
.

This can be computed efficiently and closely approximates the result as if a
scale-normalized Laplacian of Gaussian σ2ΔG were applied (Lindeberg [3]).

In order to detect the local maxima and minima of image D(x, y, σ), each
sample point is compared not just to its eight direct neighbors but also to
its nine direct neighbors in a scale above and below. It is selected only if it
is larger than all of these neighbors or smaller than all of them. Still, the
scale-space difference-of-Gaussian function has a large number of extrema,
all candidate keypoints. Fortunately, a coarse sampling of scales suffices.

2. Keypoint localization in scale-space. A Taylor expansion (up to
quadratic terms) of D(x, y, σ) is used to determine an accurate location of
the extremum in the coordinates (x, y, σ)T . An expansion around the newly
found extremum helps to detect low contrast, upon which the candidate
keypoint is rejected as it is deemed unstable. Edges occurring in the original
I(x, y) provide another source of extrema with poorly defined locations. This
situation is detected when the ratio of principal curvatures at an extremum
rises above a certain threshold, upon which, again, the candidate keypoint
is rejected as it is deemed unstable.

3. Orientation assignment. We proceed with the keypoints that have re-
mained. In order to achieve rotation invariance for our keypoint descriptor
to be (next stage, stage 4), we want to determine the keypoint orientation.
The convolved version of I(x, y) with scale closest to the one of the keypoint
is selected for doing so. Magnitude and direction of the gradient are com-
puted pixelwise using simple differences. A histogram is formed from the
orientations of sample points within a certain Gaussian-weighted circular
window around the keypoint. Obviously, peaks in the histograms correspond
to dominant directions. At most two of such directions are taken into account
(two directions leading to two different keypoints).

4. Descriptor assignment. This stage is similar to the previous one in that
orientation histograms are computed. Again the scale of the keypoint deter-
mines the level of Gaussian blur for the image. To achieve rotational feature
invariance, coordinates are rotated relative to the keypoint orientation as
determined in the previous stage. The feature descriptor is computed as a
set of orientation histograms over 4 × 4 sampling regions. Only 8 different
orientations are considered, leading to 8 bins in each histogram. This leads
to a feature vector / descriptor of 4 × 4 × 8 = 128 elements per keypoint.
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Keypoint descriptor matching. Comparing two images I and I ′ now boils
down to comparing their respective sets of keypoints and descriptors. To decide
whether an individual keypoint with descriptor in one image matches with a
counterpart in the other image is not trivial. A uniform treshold on distance
between descriptors is not wise as some descriptors discriminate more easily than
others. For a positive match it is not good enough for mutual descriptors to be
at close range. Far too many descriptors may apply, hereby invoking lots of false
matches. Instead, a match of descriptors is required to excel. This is expressed
by the criterion explained below. For keypoint pi in image I one looks for the
best matching keypoint p′j in image I ′ by searching for the smallest distance
d(δi, δ

′
j) between their 128-sized descriptors δi and δ′j . This point match will

only be retained if it excels: the (minimum) distance of the first choice should
be smaller than a predefined fraction of the second best choice. More formally,
pi in image I is matched to p′j in I ′ only if

d(δi, δ
′
j) = min

k
d(δi, δ

′
k)

and
d(δi, δ

′
j) < DR min

k �=j
d(δi, δ

′
k).

Otherwise it is rejected which implies that keypoint pi has no match in I ′. The
fraction DR is called the distance ratio by Lowe [4] and is often fixed at a value
of 0.6.

3 Matching of Images

Here we explain on what grounds (criteria) we presume the result of matching
two images to be positive or negative and how reliable (and why) we want
our presumptions to be. We rely on SIFT keypoints and use the accompanying
descriptors. One needs to be aware that the matching of images is not symmetric:
it depends on whether an image is considered a query or a reference image. The
asymmetry is due to the way a match of descriptors has been defined (see the
last paragraph of Section 2.2). A case in point is that one keypoint in the “query”
image may resemble more than one keypoint in the “reference” image. To come
up with a symmetric similarity measure we compute the number of bi-directional
matches (nbi): i.e. matches are only retained if they persist when swapping the
roles of query and reference image. If a point-match is bi-directional the chances
of it being erroneous are slim (see the lower part of Figure 1 for examples).

Deformations between different images that occur are due to the use of dif-
ferent cameras at different times by different people. This involves differences
in resolution or scale, rotations and translations, changes in illumination (in-
cluding glare), viewing angles and pollution (see the upper part of Figure 1 for
examples). SIFT is apt to deal with such variations. However, since we cannot
afford to overlook a genuine match, we relax the value of the distance ratio DR
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to 0.7 (see Section 2.2). The net result of this adjustment is that the number of
matching keypoints between the query and reference image will be higher.

The standard way to decide whether two images are similar could be straight-
forward: compute the number of bi-directional matches nbi and compare it to
a predefined threshold. The images are then declared to be either matching or
non-matching depending on whether or not nbi exceeds this threshold. Again, as
explained before, it is of paramount importance to reduce the risk of overlooking
a genuine match. We therefore thread cautiously and introduce two thresholds:
an upper threshold nhigh

bi and a lower one nlow
bi . If the number of bi-directional

matches (nbi) between two images exceeds nhigh
bi then we presume to have a high

quality match between the images and it is kept in the database. If, on the other
hand, nbi < nlow

bi then the images appear dissimilar and the match is rejected.
For image pairs that achieve a score in between these two thresholds, this is
substantial evidence that the images might be similar but it needs to be backed
up by an additional test (introduced below).

The deformation between different images of the same spot is moderate (see
above). We therefore assume that if keypoints in the query image are correctly
matched to their counterparts in the reference image, the distance between any
pair of keypoints in the query image should be the same (up to a scaling) as
the distance between the corresponding points in the reference image. This can
easily be checked by regressing the distances in the reference images over the
corresponding distances in the query image. Data points due to correct point
matches will trace out a line, the slope of which reflects the afore-mentioned
scaling factor. Mismatches on the other hand, will create outliers.

The proposed additional test can now be summarized as follows: for two im-
ages, find all pairs of points pi (in the query image) and p′i (in the reference
image) which are joined by a bi-directional match. Next, compute the distances
between all such points in each image separately. This results in a set of distance
dij = d(pi, pj) for the points in the query image, and another set d′ij = d(p′i, p

′
j)

for the corresponding points in the reference image. The latter set of values is
regressed on the the former (using the regression model y = ax + ε which cor-
responds to a line that passes through the origin). As argued above, the fit of
regression model reflects the quality of the match. This is quantified by comput-
ing the mean squared error (MSE) for the regression:

MSE =
1

n − 1

n∑

i=1

(yi − ŷi)2

where ŷi is the predicted value based on the regression. If the MSE exceeds a
predefined threshold, the regression fit is low indicating the the point matches
are erroneous. As a result the images are classified as non-matching. If on the
other hand, the regression fit is satisfactory, we conclude that the point matches
— although relatively few in numbers — enjoy a consistency that is indicative
of true underlying similarity. The image pair is therefore tagged as a potential
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match, to be verified by a human expert for final validation or rejection. The ones
that are retained are presented to the user for a final confirmation or rejection
decision.

4 Results

In a first experiment we worked with a database of 613 images that were col-
lected over the period of about six weeks in the Leatherbacks nesting colonies of
Trinidad. During the night, groups of around 150 turtles would emerge from the
sea to lay and bury their eggs on the beach. During this activity the pineal spot
of most animals was photographed twice, usually within the time span of a few
minutes. As a consequence, the database comprises lots of individual animals
for which we have two photos taken in quick succession and labeled to reflect
the fact that they depict the same individual. These pairs are very valuable as
they furnish us with a set of genuine matches that can be used to check min-
imal performance measures (e.g. whether the number of false negatives among
these trivial matches is actually zero). In addition to these trivial matches, there
are the more interesting repeat encounters where the same individual was pho-
tographed on different nights. In the current database 13 such individuals were
discovered by manual inspection. The challenge faced by the matching algorithm
outlined above therefore amounts to identifying all true matches (i.e. both the
trivial and the non-trivial ones) while simultaneously minimizing the number of
images that need to be checked manually.

Recall that the matching decision logic involves two thresholds (nhigh
bi and

nlow
bi , see Section 3) for the number nbi of bi-directional matches. In the current

experimental set-up we use the values nhigh
bi = 10 and nlow

bi = 3. If the num-
ber of bi-directional matches between two images exceeds 10 then we presume
a high level of similarity and they are automatically accepted as a matching
pair. Conversely, if the number of matches is less than 3 then the image pair
is automatically rejected. Finally, if 3 ≤ nbi ≤ 10 then we compute the square
root of the MSE for the regression model. If

√
MSE exceeds a threshold (which

has been set equal to 7% of the data range), then the regression fit is deemed
unsatisfactory and also this pair is rejected. If however

√
MSE is smaller than

this threshold value, the image pair is presented to a human supervisor for final
approval or rejection.

The algorithm checked 613 · 612/2 = 187, 578 image pairs. The above out-
lined decision strategy succeeded in recovering all true matches while no genuine
matches were overlooked. Notably, the algorithm managed to uncover one ad-
ditional match which happened to be overlooked by human experts. A total of
73 pairs (i.e. less than 0.04% of all pairs) were singled out by the algorithm for
final inspection by a human supervisor. For the biologists involved this algorithm
therefore provided highly reliable and welcome assistance.

Overview algorithm and results. Let pi (i = 1, . . . , nbi) be the keypoints
in the query image (Q) that have been bi-directionally matched (using SIFT
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descriptors) to keypoints p′i in the reference image (R), i.e. if mAB() denotes the
matching function from image A to image B, then ∀i = 1, . . . , nbi : mQR(pi) =
(p′i) AND mRQ(p′i) = (pi). Hence, the number of bi-directional matches be-
tween images Q and R equals nbi.

Algorithm

if nbi > nhigh
bi Accept match between images Q and R;

else if nbi < nlow
bi Reject match between images Q and R;

else Compute distances dij = d(pi, pj) and d′
ij = d(p′

i, p
′
j),

regress d′
ij over dij and compute

√
MSE;

if
√

MSE > q Reject match between images Q and R;

else Present presumed match between Q and R to
human supervisor for final confirmation or rejection.

In the current implementation nlow
bi = 3, nhigh

bi = 10, and q equals 7% of the
d′ij range, i.e. q = 0.07(max{d′ij ; j > i} − min{d′ij ; j > i}). The results for the
current database are summarized in the table below.

Nr. of images 613

Nr. of false positives 0

Nr. of false negatives 0

Nr. of pairs processed 187,578

Nr. of pairs retained 73
for manual inspection (i.e. 0.04%)

5 Discussion and Future Directions

Leatherback turtles migrate over large distances and it would therefore be inter-
esting to collect all data in a readily accessible global database. It seems to us
that a web-based database running the proposed photo-identification algorithm
could be an interesting addition to the current data repositories. Since the only
manual work involved is the initial cropping of the pineal spot and, possibly, the
acceptance or rejection of a small number of ambiguous matches, organizing this
as a web-service would be rather straightforward. This way groups of biologists
could easily share and compare data collected at different times and locations.
At the same time, it would allow large groups of amateurs to significantly con-
tribute to the scientific enterprise by submitting their own pictures. We believe
that this type of web-enabled collective effort will play an increasingly important
role in the near future.
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