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We present a new method to register a pair of images captured in different image modalities. Unlike most
of existing systems that register images by aligning single type of visual features, e.g., interest point or
contour, we try to align hybrid visual features, including straight lines and interest points. The entire
algorithm is carried out in two stages: line-based global transform approximation and point-based local
transform adaptation. In the first stage, straight lines derived from edge pixels are employed to find cor-
respondences between two images in order to estimate a global perspective transformation. In the sec-
ond stage, we divide the entire image into non-overlapping cells with fixed size. The point having the
strongest corner response within each cell is selected as the interest point. These points are transformed
to other image based on the global transform, and then used to bootstrap a local correspondence search.
Experimental evidence shows this method achieves better accuracy for registering visible and long wave-
length infrared images/videos as compared to state-of-the-art approaches.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Recent advances in imaging, networking, data processing and
storage technology have resulted in an explosion in the use of mul-
timodality images in a variety of fields, including video surveil-
lance, urban monitoring, cultural heritage area protection and
many others. The integration of images from multiple channels
can provide complementary information and therefore increase
the accuracy of the overall decision making process. A fundamental
problem in multimodality image integration is that of aligning
images of the same scene observed from different positions and/
or in different sensor modalities. This problem is known as image
registration and the objective is to recover the correspondences be-
tween the images. Once such correspondences have been found, all
images can be transformed into the same reference, enabling on
augmenting of the information in one image with the information
from the others.

1.1. Prior work on image registration

Several related survey papers for image registration have ap-
peared over the years. Brown (1992), Zitova and Flusser (2003)
and Xiong and Zhang (2010) have provided a broad overview of
over two hundred papers for registering different types of sensors.
ll rights reserved.
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Before embarking on a more in-depth discussion of some of the re-
lated prior work, we point out that in accordance with most of the
literature, we also divide existing techniques into two categories:
pixel-based methods and feature-based methods. Pixel-based
methods first define a metric, such as the sum of squared differ-
ences or mutual information (Zitova and Flusser, 2003), which
measures the distance of two pixels from different images. The reg-
istration problem is then recast as the total distance minimization
between all pixels in one image and the corresponding pixels in the
other image. In feature-based methods, interest points like Harris
corners, scale invariant feature transform (SIFT), speed-up robust
feature (SURF), etc., are first extracted from images. Subsequently,
these features are matched based on metrics, such as cross
correlation or mutual information. Once more than four feature
correspondences are obtained, the projective transform can be
computed. In principle, a pixel-based method is better than a
feature-based method, because the former takes all pixels into ac-
count when minimizing the cost function, while the latter mini-
mizes the cost function based on a part of pixels only. In practice
however, feature-based method performs well in many applica-
tions, because interest points are supposed to be distinctive, thus
leading to better matching. Moreover, pixel-based methods are
much more expensive than feature-based algorithms in the sense
that every pixel needs to be involved in the computation. Consid-
ering both accuracy and efficiency of the algorithm, we adopt the
feature-based method in this paper. Therefore, we limit our review
to feature-based registration methods, and pay special attention to
visible (ViS) and infrared (IR) image registration.
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Many approaches have been proposed for automatically regis-
tering IR and ViS images. In (Hrkac et al., 2007), an approach devel-
oped for aligning IR and ViS images is presented, in which the
corner points are used. The similarity between the ViS corners
and corners from IR image is measured by directed partial Haus-
dorff distance. Firmenich et al. (2011) employ the multispectral cor-
ner detector which aims to improve the quality of interest point
extraction. The new method generalizes the Harris detector by
summing autocorrelation matrices per band. In (Jarc et al., 2007),
the image is first processed by using laws texture coefficient,
which combines four one-dimensional filters. Each filtered image
is then converted to a sort of texture-like energy image. The image
alignment is conducted based on measuring/optimizing mutual
information of two quantized texture energy images. Edge/gradi-
ent information is a popular feature as their magnitudes (Lee
et al., 2010) and orientations (Firmenich et al., 2011; Kim et al.,
2008) may match between infrared and visible images. In (Coiras
et al., 2000), authors first extract edge segments, which are then
grouped to form triangles. The transform can be computed by
matching triangles from source to destination images. Huang and
Chen (2002) proposes a contour-based registration algorithm,
which integrates the invariant moments with the orientation func-
tion of the contours to establish the correspondences of the con-
tours in the two images. Normally it is difficult to obtain
accurate registration by using contour-based method, because pre-
cisely matching all contours detected from two images is challeng-
ing. Moreover, this method drastically increases computation time
compared to interest point-based registration. To improve this
work, Han and Bhanu (2007) propose to find correspondences on
moving contours. They extract silhouettes of moving humans from
both images. Matching only the contours of human bodies signifi-
cantly improves both the performance and the efficiency of the
algorithm. An alternative (Caspi et al., 2006) is to make use of
the object motion paths generated by object tracking algorithm.
Finding correspondences between trajectories helps to align
images. This type of algorithm works very well when moving ob-
jects can be precisely tracked from both channels. Unfortunately,
the current tracking algorithm is not satisfactory in many
applications.

1.2. Problem statement

Most publications in this area focus on solving three problems:
(1) feature extraction that guarantees that the majority of features
in both images are identical; (2) feature descriptors that ensure
accurate feature matching across different images; (3) transforma-
tion model that considers both global consistency and local defor-
mation. The first two problems are more challenging when dealing
with images captured by different types of cameras. When match-
ing images from the visible and infrared part of the spectrum, the
properties of cameras are completely different due to the differ-
ence in the electromagnetic wavelengths. The pixel brightness in
IR images is determined by the temperature and emissivity prop-
erty of the objects in the scene. However, in the visible spectrum,
the brightness of image pixels is mainly influenced by light re-
flected on the object. Therefore, the pixel intensities in IR and ViS
images have in general no direct relationship, increasing the diffi-
culty of extracting and matching identical feature points in the two
images. To illustrate this statement, in Fig. 1(a), we extract equiv-
alent number of interest points from both IR and ViS images
exploring two popular algorithms, where SURF method enables a
scale- and rotation-invariant interest point detection but Harris
method focuses on detecting corner points on the single scale. As
apparent from the results, the majority of extracted interest points
is unfortunately shared among the two images. To explain this fea-
ture matching failure, we show statistics (see Fig. 1(b)) of image
patches (15 � 15) surrounding two corresponding points. We com-
pute the distribution (normalized histogram) of three image char-
acteristics within the image patch, viz. intensity value, gradient
magnitude and gradient orientation. They are all feature descrip-
tors widely used for IR and ViS image registration in the literature.
To obtain a good feature matching result, we expect the feature
distributions around two corresponding points to be similar.
Unfortunately, none of them is capable of highlighting the corre-
spondence between the two points in this case, although the gra-
dient orientation clearly outperforms the others. This example
illustrates that comparing image patches may not be a reliable
way to extract correspondences between long wavelength IR and
ViS images.
1.3. Our contributions

In order to address the three problems mentioned above, we
propose a new algorithm here, which differs from existing work
in two aspects. Basically, we use a two-stage procedure in which
we first use line features to establish a global but approximate
transformation between the two images. This global transforma-
tion is then used to bootstrap a more accurate, locally adaptive
transformation that is based on a windowed optimization of fea-
ture point matching. More precisely, straight lines derived from
boundaries of objects can easily be extracted and matched as the
orientations of corresponding lines in two images are more or less
the same. Therefore, an initial global (projective) transformation
based on aligning a small number of lines (P4) can be quickly esti-
mated. We then build on that to find more accurate feature corre-
spondences, we extract interest points from one image, and
transform them to another image using the initial transformation.
Searching around the initial corresponding point enables to find
accurate correspondence effectively. Hence, although we start from
a global transformation estimation, we end up with a local trans-
formation computation.

This approach has two advantages. On one hand, we can par-
tially solve the problem that the global transformation cannot
model the local deformation between images. On the other hand,
local adaption initialized by a global optimization is more robust
as it will avoid the risk of settling for a local minimum, a fate that
often befalls local transformation starting from the scratch.

Like many approaches using a strong assumption, our approach
also has its own limitation. We always assume that there are more
than four corresponding straight lines extracted from both images,
so that the approximation of an initial transformation can be ob-
tained. However, this may be invalid when we deal with the natu-
ral scenes, such as forest, in which we probably cannot extract a
sufficient number of lines. Therefore, we focus on images captured
in man-made environments, in which line-like structures are usu-
ally plentiful.

In Section 2, we first outline our methodology and mathemati-
cal model. In Section 3, we present the implementation of our
line-based global transformation computation, where several key
algorithms, such as line reorganization, line initial matching and
line-configuration computing are introduced. In Section 4, we de-
scribe the interest point-based local transformation estimation.
The experimental results are provided in Section 5. Finally, Section
6 draws conclusions and addresses our future research.
2. Overview of our methodology

The goal of image registration is to match two or more images
so that identical coordinate points in these images correspond to
the same physical region of the scene being imaged. To make our
explanation simple, we assume that there are only two images



Fig. 1. Image statistics that imply problems for IR and ViS image registration. (a) Interest point detection for IR and ViS images. Two different methods: SURF and Harris
corner detection are used. (b) Left: original images and manually labeled corresponding points (white dot and black dot). Right: from the top to the bottom, the distribution
(normalized histogram) of Intensity (I) values, the distribution of Gradient Magnitudes (GM), and the distributions of Gradient Orientations (GO), respectively.
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involved in the registration. In fact, the registration is to find a
mathematical transformation model between the two image
planes which minimizes the energy function of image matching.
This optimization procedure can be described mathematically

eH ¼ argmin
H

P
i

E pi;Hp0i
� �

: ð1Þ

Here, pi is the ith pixel in the image I and p0i is its corresponding
pixel in the image I0. The energy function is to measure the distance
between I and the transformed version of I0 based on H. This trans-
formation helps to establish a mapping between the two image
planes, transforming a position p in one plane to the coordinate
p0 on another plane. In this paper, we assume a 2D projective trans-
formation. Writing positions as homogeneous coordinates, the
transformation p = Hp0 equals
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Homogeneous coordinates are scaling invariant, reducing the
degrees of freedom for the matrix H to eight. In order to determine
the eight parameters, at least four point-correspondences between
the two images have to be found. In the literature, most publica-
tions rely on interest (corner) points for establishing point-
correspondences.

If all detected interest points are involved in the computation of
(1), there will be only one transformation between images, which
is called global transformation. Alternatively, the image can also
treated as a composition of patches, where each patch is matched
to the corresponding patch in another image. The transformation H
between two corresponding patches can also be estimated using
(1), for which the involved interest points are restricted to lie with-
in the patch. Hence, the overall transformation between the images
is composed of many local transformations, each with different
parameters. The global transformation has the advantage of having
a relatively small number of parameters to be estimated, and the
global nature of the model ensures a consistent transformation
across the entire image, while the disadvantage is that one global
mapping cannot properly handle images deformed locally. On the
contrary, the local transformation is able to handle local deforma-
tion. However, its computational load is heavy due to the larger
number of parameters that need to be estimated. Additionally, it
is not easy to guarantee global consistency.

To own the benefits from both transformations, we try to com-
bine them in our framework. The algorithm is carried out in two
stages, as depicted in Fig. 2. In the first stage, we estimate a global
perspective transformation by aligning straight lines derived from
edges of the images. These lines strongly relate to boundaries of
objects, which often appear in both images though IR sensor and
ViS sensor have significantly different properties. We have chosen
a perspective (projective) model for the transformation between
the two images as this is the appropriate exact transformation
whenever the cameras are observing a planar scene from different
viewpoints and viewing angles. It is also an excellent approxima-
tion whenever the cameras are observing a 3D scene in which
the depth difference between the objects is small compared to
the distance to the cameras. Fortunately, this assumption usually
holds in our application. In the second stage, we divide the entire
image into cells of fixed size. The most salient interest point is ex-
tracted from each cell, and is transformed to another image based
on the global transformation matrix. We allow the interest point to
find a better correspondence within a window surrounding its ini-
tial corresponding point. By doing so, we can cope with the local
geometric differences between images. Since the size of the search-
ing window is limited, the estimated local transformation will not
be significantly different from the global one, thus guaranteeing a
global consistency.

3. The implementation of line-based global transformation

3.1. The mathematical model

As we mentioned before, the first stage of our work aims to ob-
tain a global projective (perspective) transformation by aligning
straight lines between two images. Theoretically, the objective is
to compute a point-to-point transform matrix H explained by (2).
Fig. 2. Framework of our system, which composes of line-based global transform
However, due to the well-known principle of duality in projective
geometry, it follows that the transformation can also be deter-
mined by specifying a sufficient number of line correspondences.

Let us now denote two corresponding lines (l and l0) on both im-
age coordinates as:

auþ bv þw ¼ 0 and a0u0 þ b0v 0 þw0 ¼ 0: ð3Þ

The above two lines can be expressed by their homogenous coordi-
nates which are recorded by a linear transform A : (a,b,1)T and A0 :
(a0,b0,1)T, respectively. Based on (2), we can describe the relation be-
tween these two lines by a transformation bH , which is specified by:

A ¼ bHA0: ð4Þ

To clarify the relationship between bH and H in (2), we rewrite the
line equation to
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If we substitute (4) into (5), it will become
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Comparing (6) and (2), we can deduce that H ¼ bH�T . Obviously, it is
possible to compute a point-to-point transformation H given a
line-to-line mapping bH . Eq. (6) also confirms that four line-
correspondences suffice to compute bH (as expected from duality).

3.2. Algorithm implementation

Our line-based perspective transformation estimation consists
of two modules, addressing line generation and line matching,
respectively. The line generation module consists of line detection,
line labeling and sorting. The line matching module includes initial
matching and geometric matching of line composition. All steps
are designed with an eye on efficiency.

3.2.1. Line generation
The input of our line detection algorithm is the edge pixel ex-

tracted by the Canny operator. Prior to the edge extraction step,
we have a contrast enhancement step based on the histogram
equalization, which helps to detect the blurred edge pixels. We uti-
lize a RANSAC-like algorithm (Han et al., 2008, 2011) discussed in
our previous work to detect the dominant line given the data-set.
RANSAC is a randomized algorithm that hypothesizes a set of mod-
el parameters and evaluates the quality of the parameters. After
several hypotheses have been evaluated, the best one is chosen.
Specifically, we hypothesize a line by randomly selecting two edge
pixels, from which we compute line parameter g. For this line
hypothesis, we compute a score s(g) as

sðgÞ ¼
P
ðx;yÞ2X

maxðs� dðg; x; yÞ;0Þ; ð7Þ

where X is the set of edge pixels and d(g,x,y) denotes the distance
between (x,y) and the line g. This score effectively computes the
ation estimation and interest point-based local transformation computation.
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support of a line hypothesis as the number of edge pixels close (as
determined by s) to the line, weighted with their distance to the
line. The score and the line parameters are stored and the process
is repeated until about 25 hypotheses are generated randomly. At
the end, the hypothesis with the highest score is selected. The
output of this detection algorithm also includes the start- and
end-point of each line. More precisely, it returns a line segment.
We filter out some shorter line segments, and extend the line
segments to the image borders. The reason for the step is that line
segments extracted from both images vary dramatically, but most
major segments with sufficient length are appeared in both images.

Next, lines are labeled as either ‘‘lying’’ or ‘‘standing’’. This label
is determined by the parameter:

Lls ¼ jxend � xstartj=Dstart!end; ð8Þ

where xstart and xend refer to x coordinates of start point and end
point of a line, respectively. Dstart ? end denotes the distance be-
tween these two points. If Lls is larger than 0.7, the line is labeled
as a lying line. Otherwise, the line is considered to be a standing
line. Note that the value of this threshold is not that important in
the sense that it may only influence the initial matching of one or
two line, whose Lls is very close to the threshold. For this extreme
case, one line might be labeled as a ‘‘lying’’ line in one image but
is labeled as a ‘‘standing’’ line in another image, resulting in a wrong
initial line matching. However, this mistake of the individual line
matching is not critical, because our algorithm is attempting to find
the best line-configuration matching between images, which is a
sort of optimization procedure based on many lines. After labeling
lines, the set of standing lines are ordered left to right, the set of ly-
ing lines from top to bottom. Later, when we will search for corre-
spondences between images, we will put the constraint on the
assignment that the order must be preserved. This constraint is
likely valid in case that our transform is either affine transform or
perspective transform.

Finally, the line is modeled by three parameters, which are Lls, sp
and os. If the line is a lying line, sp is defined as the angle of the line
to the x-axis, and os means the offset of the line on the y-axis. The
roles of the x- and y-axis are reversed in case of a ‘‘standing’’ line.
The definitions for sp and os are just inverse if line is a standing
line. Fig. 3 shows the samples processed by our line generation
algorithm.

3.2.2. Line matching
As we can see from the problem statement part, feature initial

matching schemes used by existing systems are in general not
accurate enough. The main reason is that two images captured
by different modalities are quite different at the pixel level. To
solve this problem, our system enables a sort of one-to-many fea-
ture matching, which allows a line in one image to have several
Fig. 3. Line generation results for two samples. Lying lines and standing lines are marked
interpretation of the references to colour in this figure legend, the reader is referred to
correspondences on another image. By doing so, we can increase
the likelihood that several matching candidates must include the
correct one. The basic idea for this initial matching is to check
and compare three parameters of two lines located in two images.
The first parameter is Lls, where we assume that two corresponding
lines should have similar Lls. The assumption is valid for most
applications, where modalities are mounted on the same platform.
The second parameter is sp, where we assume that corresponding
lines have similar slope to the axis. The last parameter is to com-
pare distributions of the edge pixel surrounding the line. The sur-
rounding area is the zone between two border lines, which have
the same slope with the candidate line but with ±� offset shift,
respectively. The distribution of the edge pixel within this area
can be simply specified by the edge pixel percentage pecedge of that
area, equaling to Nedge/Ntotal. Here, Nedge refers to the number of
edge pixels within that area, while Ntotal means the total number
of pixels within that area. If we denote the parameters of two can-
didate lines as (Lls,sp,pecedge) and ðeLls;fsp;gpecedgeÞ, our matching
score S can thus be formulated as:

S ¼ K
Lls � eLls

rLls

 !
� K sp�fsp

rsp

� �
� K

pecedge �gpecedge

rpec

 !
: ð9Þ

The three terms in the equation implement the same logic: K(�) is
the Epanechnikov kernel function and r indicates the width of
the kernel, which can be set manually. We compute the matching
scores between a given line and all candidate lines. Instead of
selecting the best one, we allow one line to have three candidate
correspondences in terms of the ranking of the matching score.

After this initial line matching stage, we proceed by process-
ing the alignment of geometric configurations comprising four
lines. Earlier we pointed out that the matching result between
two individual lines may not be reliable. However, the geometric
configuration (layout) of different lines is much more consistent
between images. This observation motivated us to align images
by minimizing the discrepancy between two geometric configu-
rations formed by lines. The basic idea is that we randomly
choose four lines from the first image, thus creating a so-called
mini-configuration. Depending on the initial matching result, we
will have several corresponding mini-configurations in the sec-
ond image. Each configuration-correspondence allows us to com-
pute the parameters of a projective transformation by solving
the system of linear Eq. (4). Using the transformation thus ob-
tained, we project one image onto the other image. The match
between two images is evaluated by computing the total dis-
tance between each line and its closest projected line. We itera-
tively search all possible configuration-correspondences and
settle for the one that minimizes the total distance as the best
configuration-correspondence. The transformation can thus be
with different colors. The original edge pixels are labeled with the white color.(For
the web version of this article).



Fig. 4. Basic steps for the local transformation estimation.

1 For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.
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estimated based on the best correspondence. From the mathe-
matical perspective, finding the best configuration match can
be recast as minimizing the matching error Me,

Me ¼
P
l2U

minðkl0;Hlk2; emÞ; ð10Þ

where U the collection of lines in the image 1 and l0 is the closest
line of the projected line Hl in the image 2. The metric k,k2 denotes
the Euclidean distance between the two lines, and the error for a
line is bounded by a maximum value em. More details about this
procedure can be found in (Han et al., 2012).

4. Interest point-based local transformation estimation

In the preceding section we explained how we used line config-
urations to determine the initial global projective transformation
between two images. In this section we will detail how we refine
this first approximation by a local search for interest points. More
precisely, we start by extracting interest point in one image. Sub-
sequently, those interest points are transformed into the other im-
age based on the initial global transformation. In the second step,
we allow those projected interest points to find better correspon-
dences within a window surrounding their initial estimates. In
the last step, we use a Delaunay triangular mesh with an appropri-
ate data structure to construct the local adaptation. Indeed, three
neighboring points form a triangle, and its corresponding triangle
in the other image can be found by connecting the corresponding
points. For a pair of triangles, an affine model is employed to
approximate the spatial relation between these two local areas.
Fig. 4 illustrates the basic algorithmic steps for our local transfor-
mation estimation.

4.1. Interest point extraction

As already mentioned in the problem statement section, the
majority of interest points extracted from both images by using
conventional algorithms is not reproducible. The main reason is
that conventional algorithms check the response value of a detec-
tor at each pixel position of an image. The pixel is labeled as an
interest point if the response value at this position is larger than
a pre-defined threshold. In fact, this procedure is to select the
top n pixels according to the ranking of response values, where
the number n can be controllable parameter. Since the IR image
has noticeably less texture in some areas than the ViS image, it is
very unlikely that the n interest points extracted from ViS image
are identical to the n interest points extracted from an IR image.
However, we have noticed that the pixels having maximal corner
response within a local neighbourhood, do indeed match in both
ViS and IR images. The reason is that those pixels are usually on
the boundaries of objects, which are clearly visible in both images.
Therefore, an interest point is found at the location ~u if the re-
sponse function returns the maximum value within a local neigh-
borhood B, which is described by:

~u ¼ argmax
u
ðRðuÞÞ; u 2 B: ð11Þ

Here, R(u) returns the corner response in the pixel u within a small
window B in the image. In our algorithm, we use the Harris corner
detector to compute R(�). For more details about the Harris corner
response function, we refer to the original paper (Harris and
Stephens, 1988). One common phenomenon in a relatively flat re-
gion is that the maximum value of R(�) might be very close to zero.
For this case, we discard the detected interest point in this local
area, because it is difficult to match it with other interest points
in the next step. In our implementation, we divide the entire image
into non-overlapping cells of 32 � 32 pixels, and apply our interest
point extraction for each cell.
4.2. Correspondence local adaptation and Delaunay Triangulation

We transform the interest points detected in the first image
to the second image based on the global transformation (deter-
mined earlier). These transformed points are used as an initial
estimate for the corresponding points. We then establish a
search window surrounding each of these initial estimates and
proceed by searching for better correspondences within this lo-
cal window. The pixel in this search window exhibiting the
strongest corner response is labeled as the searched-for corre-
spondence. Fig. 5 shows an example, where we extract interest
points from the ViS image on the left and locally adapt their cor-
respondences on the IR image. The white dot refers to the initial
correspondence computed by the transformation, while the black
dot represents the position of the interest point after the local
adaptation. Clearly, most interest points highlighted by red
circles1 are re-assigned to a better match.

Following this adaptive local correspondence search we pro-
ceed by carving up the entire image into patches to which we
can apply local transformations. Here, we have opted to describe
the image as a set of adjacent triangles by using Delaunay Trian-
gulation (DT) applied to the first image. The use of DT is partic-
ularly suited when we do not want to force any constraints on
the set of points to be connected. For our case, detected interest
points are connected by DT algorithm and three neighboring
points form a triangle. Its corresponding triangle in another im-
age can be easily constructed by using corresponding points of
three vertices. Once we have obtained a pair of corresponding
triangle (patch), the relation between them can be described



Fig. 5. Local adaptation of the interest point correspondence. White dots on the left image are extracted interest points. White dots on the right image are point
correspondences using the initial transformation. Black dots represent the position of the point correspondences after adaptation.

Fig. 6. Registration and intermediate results. For each subfigure, the top row shows the original IR image, and the middle row displays the original ViS image. The bottom row
provides a warped image (from IR to ViS). We extract interest points from the ViS image (white dots), and initial correspondences on IR image are also marked by white dots.
The final correspondence after the local adaption is marked as a black dot.
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Fig. 7. (a) Image pair for which our algorithm fails. Top: original images. Bottom: the results for edge and line detection. (b) The registration results obtained by using
gradient orientation based descriptor.

Table 1
The measurement for transform errors, in which the unit is pixel.

‘‘Home’’ ‘‘Office 1’’ ‘‘Shop’’ ‘‘Bridge’’

Initial transform (l;r) 1.78; 1.82 6.40; 2.76 2.92; 2.73 5.28; 3.22
Local transform (l;r) 0.76; 1.11 4.63; 2.43 1.50; 1.58 4.28; 4.01
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by an affine model:

x

y

� �
¼

a11 a12

a21 a22

� �
x0

y0

� �
þ

b1

b2

� �
; ð12Þ

where (x,y) and (x0,y0) are coordinates of two corresponding points.
There are six parameters in the affine model, which can be
estimated by using coordinates of three vertices and their
correspondences.
5. Experimental results

Our proposed system is implemented in C++ on a Laptop PC
platform (Dual core 2.53 GHz, 4 GB RAM) with a 64-bits operation
system. We have tested our algorithm with nine pairs of IR and ViS
images/videos, where six of them are outdoor scenarios and three
of them are depicting indoor scenarios.2 There are two video se-
quences in the testing dataset, called ‘‘Bridge’’ and ‘‘Factory’’, which
contain 50 and 30 frames, respectively.

We have registered these images by using our algorithm. A key
parameter is the minimum length of the accepted line, which we
set to 40 pixels. In general, our algorithm can register all pairs of
images except the last pair. The visual results of our registration
are shown in Fig. 6, where the first two rows of each subfigure
illustrate original IR and ViS images, and the last one shows a
warped image from IR to ViS based on estimated transformation.
To highlight the benefit of our local adaption for feature points
matching, we also show the intermediate results on the original
images. More specifically, we extract interest points from the ViS
image that are indicated by white dots on the image, and then
transform them to the IR image using the initial global transforma-
tion. The transformed points are also marked by white dots on the
IR image. Afterwards, feature points are allowed to find the better
2 Videos and images are provided by XenICs NV (Belgium) and authors of paper
Morris et al. (2007).
correspondences within a local window, and the final correspon-
dences are marked by black dots.

As can be observed from the results, most feature points have
zero shift (white and black dot coincide) after the local adaption,
which implies that our initial transformation is sufficiently accu-
rate. However, it is also apparent that some feature points do in-
deed find better correspondences after the adaptation procedure,
e.g., in home, office1, shop and bridge images. For this last pair
of images, we only apply the initial global transformation and
dispense with the adaptive local matching, as the result of the
initial transformation is not sufficiently accurate. The reason is
that this sequence is too challenging in the sense that two cam-
eras have significantly different focal lengthes. Our algorithm
fails to register one image pair depicted in Fig. 7(a), which were
captured during the night. Seen from the edge maps, it is possi-
ble to extract enough straight lines from the IR image, but line
detection does not work properly on the ViS image due to low
level of illumination.

To evaluate our registration algorithm, we measure and report
the transform errors in Table 1. The transform error is measured
by the distance between one point and its transformed corre-
sponding point. More specifically, we randomly choose eight sali-
ent points in the IR image, and transform them to ViS image
using the estimated transformation models. We manually label
the correspondences of those eight points, and use this as ground
truth. The distance between the ground truth and the transformed
point is proportional to the transform error. We calculate the aver-
age and the standard deviation of transform errors caused by initial
global transformations as well as the local transformation. It can be
revealed that our local adaptation indeed helps to reduce the trans-
form error. All image pairs used for this experiment are with reso-
lution of 384 � 288.

We also compared our algorithm with existing algorithms
relying on point matching. Since gradient magnitude (Lee et al.,
2010) and orientation (Kim et al., 2008) are widely used for IR
and ViS image registration, our implementation explores statis-
tics of gradient magnitude and orientation to describe the fea-
ture point extracted by SURF algorithm, where the gradient
orientation is actually the main feature used by SIFT descriptor.
Afterwards, nearest neighbor approach is applied for feature
matching. Next, RANSAC is used for rejecting outliers. Finally,
perspective transform matrix is computed based on a number
of point correspondences between two images. We have tested
these two feature descriptors for the same dataset. The gradient



Fig. 8. (a) Statistics by using two existing descriptors, where GM and GO refer to gradient magnitude and gradient orientation, respectively. (b) An example showing the
initial correspondences obtained by the GO descriptor.

Fig. 9. The relationship between algorithm execution-time and scene complexity.
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magnitude-based descriptor failed for all the pairs, and gradient
orientation-based descriptor only succeeded in registering ‘‘office
1’’ and ‘‘office 2’’ image pairs. We show the warped images in
Fig. 7(b), where we warp the IR image to ViS image based on
computed transformation. Although the registration results are
obtained, the accuracy is far from satisfactory. Additionally, we
try to investigate the failure of this algorithm by means of ana-
lyzing the point matching results. In Fig. 8(a), we calculate the
number of matched interest points for image pair ‘‘Bridge’’, given
a number of interest points detected on both images. For exam-
ple, the algorithm found 14 correspondences after the initial
matching, among which four correspondences remained after
RANSAC check. However, only one of four correspondences is
correct after manually examining. It can be concluded that the
gradient orientation-based descriptor (GO) is slightly better than
the gradient magnitude-based descriptor (GM) in terms of the
correct number of correspondences. Unfortunately, the majority
of detected correspondences using both descriptors is not cor-
rect. In Fig. 8(b), we give an example, where the initial matching
result of the GO descriptor is provided. Obviously, most corre-
spondences were already wrong at this stage.

Our algorithm is designed for an industrial project, so that the
real-time capability of the algorithm is desired. In Fig. 9, we report
the computational cost of the algorithm, and show the relationship
between the algorithm execution time and the scene complexity.
The scene complexity is defined to be proportional to the number
of straight lines extracted from two images. Three image pairs used
for the experiment are ‘‘Home’’, ‘‘Office 1’’ and ‘‘Building’’, where
the resolutions of IR and ViS images are 384 � 288 and
656 � 490, respectively. For these three pairs, the average numbers
of lines involved in finding the feature correspondence between
two images are 6, 9, and 16, respectively. From the result, we can
see that the algorithm can process 4–10 image pairs per second
when the scene is not extremely complex.
6. Conclusion

In this paper, we have examined the combination of line feature
and interest point feature for registering IR (long wavelength) and
ViS images. Alignment of straight lines between two images pro-
vides an initial estimation for a global transformation. Further-
more, we divide the entire image into cells, and extract interest
point from each cell. We transform detected interest points to
the other image based on the initial transformation, and allow
them to find better correspondences locally, thus leading to a lo-
cally adaptive transformation model. The key element of our ap-
proach is the line-based perspective transformation estimation.
In comparison to existing work that aligns feature points, lines de-
rived from edge pixels delineate object boundaries and have a good
reproducibility on images captured by different modalities. Our
new algorithm provides significant advantages over state-of-the-
art approaches. Future work will focus further on improving the
quality of line detection algorithm. Such an improved line detec-
tion algorithm should be capable of handling noisy images, such
as the ones in Fig. 7(a).
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