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Abstract. Many ambulance providers operate both advanced life support (ALS) and basic

life support (BLS) ambulances. Typically, only an ALS ambulance can respond to an emer-

gency call, whereas non-urgent patient transportation requests can be served by either an

ALS or a BLS ambulance. The total capacity of BLS ambulances is usually not enough to

fulfill all non-urgent transportation requests. The remaining transportation requests then

have to be performed by ALS ambulances, which reduces the coverage for emergency

calls. We present a model that determines the routes for BLS ambulances while maximiz-

ing the remaining coverage by ALS ambulances. Different from the classical dial-a-ride

problem, only one patient can be transported at a time, and not all requests are known

in advance. Throughout the day, new requests arrive, and we present an online model to

deal with these requests.
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1. Introduction
Apart from using ambulances to serve emergency

calls, ambulances are also used to transport patients

between hospitals and between the patients’ (nursing)

homes and hospitals. In the Netherlands, a distinction

is made between advanced life support (ALS) ambu-

lances and basic life support (BLS) ambulances. The

ALS ambulances are normally used in emergency sit-

uations that can either be life-threatening or non–life-

threatening, and BLS ambulances are used for patient

transportation, which is always non-urgent. This non-

urgent patient transportation includes only transporta-

tion requests that can be scheduled and that involve

transporting a patient from one location to another.

Even though this distinction is made between ALS and

BLS ambulances, an ALS ambulance can be used to ful-

fill a non-urgent patient transportation request when

the number of available BLS ambulances is insufficient

to fulfill all non-urgent transportation requests and the

current ALS coverage in the region allows this.

The scheduling of non-urgent transportation

requests is related to the dial-a-ride problem (DARP),

which is a special case of the vehicle routing prob-

lem with pickup and delivery. The DARP consists

of designing vehicle routes to fulfill pickup and

delivery requests between origins and destinations.

The scheduling of BLS ambulances is a special case of

the DARP, as the capacity of BLS ambulances is lim-

ited to one patient. For the DARP, Cordeau and Laporte

(2007) make a distinction between the static DARP and

the dynamic DARP. In the static case, all transporta-

tion requests are known in advance, and the schedule

can thus be made with all necessary input. However,

in the dynamic case, the transportation requests arrive

throughout the day, and thus the schedule must be

updated every time such a request arrives. For the con-

sidered situation of scheduling BLS ambulances, we

have a combination of the two cases. Some of the trans-

portation requests are known in advance, but most

requests arrive throughout the day.

Chen and Xu (2006) make a distinction between two

classes of methods for dealing with the dynamic as-

pect. The first class uses local approaches, whichmeans

that the routes are based solely on the currently known

information without considering the future. The sec-

ond class uses look-ahead approaches, which try to

incorporate probabilistic features of future events or

forecasted future information. For our case, we use a

local approach, as it is hard to predict when and where

future transportation requests will occur.

There are several papers that apply the DARP in

the context of patient transportation. Most of them
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consider either an efficiency-based objective function

(such as transportation cost or travel distance) or an

objective function based on patients’ inconvenience

(such as lateness or excess driving time). Ritzinger,

Puchinger, and Hartl (2016) consider the static DARP

with travel time minimization as the objective func-

tion and constraints on patients’ inconvenience. Multi-

ple dynamic programming (DP)-based algorithms are

used to provide heuristic solutions.

Different from Ritzinger, Puchinger, and Hartl

(2016), Melachrinoudis, Ilhan, and Min (2007) and

Parragh, Doerner, and Hartl (2009) include patients’

inconvenience in the objective function, which results

in a static multiobjective DARP. Melachrinoudis, Ilhan,

and Min (2007) solve the problem as an integer lin-

ear programming (ILP) problem and compare this to a

tabu search (TS) heuristic for solving larger instances.

Parragh, Doerner, and Hartl (2009) use variable neigh-

borhood search to obtain an initial set of solutions,

which is used to generate additional efficient solutions

by a path relinkingmodule. Efficient solutions are solu-

tions that are Pareto optimal with respect to the trade-

off between efficiency and patients’ inconvenience.

As opposed to the static DARP, Beaudry et al.

(2010) allow requests to arrive throughout the day.

They focus on the efficient and timely transport of

patients between several locations on a hospital cam-

pus. This means that only short distances are con-

sidered. To find solutions to this problem, they use

an insertion approach followed by a TS heuristic.

Ritzinger et al. (2012) also consider the dynamic DARP

where the objective is to balance the total travel time

and patients’ inconvenience. An heuristic DP algo-

rithm is used to find an initial solution for requests that

are known in advance. Requests that arrive throughout

the day are included by an insertion heuristic. For the

special case where vehicle capacity is limited to one

patient, Kergosien et al. (2011) introduce a TS heuristic

to obtain solutions. In case the number of vehicles is

not enough, they have the possibility of subcontracting

a private company.

These three dynamic models all use a local approach

where no information about future requests is used.

Schilde, Doerner, and Hartl (2011), on the other hand,

explicitly use the stochastic information about future

requests to find better solutions. Many of the patients

that are transported from home to a hospital require

transportation back home the same day. Using this

information in the optimization leads to a significant

improvement. This method can be considered a look-

ahead approach.

The main difference between the described papers

and our paper is that in those papers the non-urgent

transportation requests can be fulfilled only by BLS

ambulances, whereas in our situation ALS ambulances

can also be used if needed. Lubicz and Mielczarek

(1987) were among the first to consider serving emer-

gency calls and non-urgent transportation requests

simultaneously. They developed a simple simulation

model and allowed both types of requests to arrive

dynamically during the day. In their model, both

types of requests are served by a dedicated fleet of

ambulances, and for each request, the nearest avail-

able ambulance is assigned. When no ambulance is

available, a lower priority request can be preempted.

A similar situation is considered by Kiechle et al.

(2009). They consider the situation where emergency

calls arrive dynamically and non-urgent transporta-

tion requests are known at the beginning of the day.

Both types of requests can be served by the same

ambulance fleet. Whenever the scheduled route of

an ambulance is disrupted by an emergency call, the

remainder of the route is reoptimized. During this opti-

mization step, performed by a constructive heuristic

approach, the routing costs and response time for serv-

ing emergency patients are minimized. Kergosien et al.

(2014, 2015) developed a discrete event simulation-

based analysis tool that incorporates both emergency

requests and non-urgent transportation requests that

arrive dynamically during the day. Kergosien et al.

(2014) consider three strategies for dealing with these

requests. In the first strategy, both types of requests

are served by a dedicated ambulance fleet. The routes

of the ambulances serving the non-urgent transporta-

tion requests are determined and updated by means

of a tabu search approach. In addition, a reactive strat-

egy and a proactive strategy are implemented, where

both types of requests are served by the same ambu-

lance fleet. In the reactive strategy, the number of

ambulances simultaneously responding to non-urgent

transportation requests is restricted. In the proactive

strategy, the number of ambulances responding to non-

urgent transportation requests simultaneously is mini-

mized. Both strategies indirectly aim atmaximizing the

remaining coverage of the ambulances for emergency

calls. Kergosien et al. (2015) consider similar strategies;

however, when using the same ambulance fleet for both

types of requests, the number of ambulances simulta-

neously serving non-urgent transportation requests is

not restricted or minimized.

None of the mentioned papers discusses the situa-

tion considered in this paper, where the fleet of ALS

ambulances can be used for both types of requests,

and the BLS ambulance fleet can be used only for non-

urgent transportation requests. Even though Kiechle

et al. (2009) and Kergosien et al. (2014, 2015) aim

at maximizing the remaining coverage for emergency

calls, no decision has to be made regarding the fleet

that will serve a non-urgent transportation request.

However, this decision is crucial in maximizing the

remaining coverage for emergency calls, and thus the
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assignment of non-urgent transportation requests to

ALS ambulances should be done with great care.

In the literature, there exist several measures for

the coverage of emergency calls. For example, Church

and Revelle (1974) aim at maximizing the weighted

number of demand locations within a given travel time

from a base location. Daskin (1983) uses the weighted

expected coverage as a measure of coverage, which

takes into account the probability that at least one

ambulance is available within a given time limit. The

maximum availability location problem of ReVelle and

Hogan (1989) views coverage as the weighted number

of demand locations that can be reachedwithin a given

time limit by a predefined number of ambulances. The

model developed in this paper is set up such that these

and other coverage measures can be used.

This paper is structured as follows. In Section 2, we

give a formal description of the problem at hand and

present an integer linear programming formulation for

the problem in case all information is known at the start

of the day. As finding solutions for this formulation

might be computationally intensive, Section 3 provides

an alternative formulation where the execution times

of the requests are discretized. Section 4 describes how

the offline formulation can be used to solve the more

realistic problemwhere calls arrive throughout the day

and the schedule must be updated. Section 5 presents

the computational results. We evaluate both the impact

of some of the modeling choices we made and the

potential improvement compared to the current execu-

tion. Finally, Section 6 gives an overview of the main

conclusions and describes some potential applications

of the presented model.

2. Problem Description
As stated in the introduction, we consider the situa-

tion where some transportation requests are known

beforehand, but most requests arrive throughout the

day. In this section, we describe the problem that arises

when all the information of all requests is available.

In addition, we give an ILP formulation for this prob-

lem. Clearly, this formulation cannot be used in prac-

tice as most requests arrive throughout the day, which

means that not all information is available beforehand.

However, the solution to this ILP problem yields an

upper bound on the performance that can be obtained

in practice. We call the situation where the informa-

tion of all requests is available beforehand the offline

case, andwe call the casewhere the information arrives

throughout the day the online case.

2.1. Description
One of our contributions is to include the coverage

for emergency calls by ALS ambulances in scheduling

BLS ambulances. Since ALS ambulances are used to

serve non-urgent patient transportation requests when

the capacity of the BLS ambulances is not sufficient,

inadequate planning of BLS ambulances decreases the

coverage for emergency calls. Therefore, we present a

model that determines routes for the BLS ambulances

such that the remaining coverage for emergency calls

by ALS ambulances is maximized. To determine the

remaining coverage, we assign patient transportation

requests that are not executed by a BLS ambulance to

a base station where one or more ALS ambulances are

stationed. The number of available ambulances at that

station is then reduced for a given amount of time. By

doing so, we reserve capacity for the execution of the

non-urgent transportation requests. We do not deter-

mine the routes for ALS ambulances, because the call

center operator will decide which available ALS ambu-

lance will fulfill a request depending on the situation

in practice. The coverage is thus calculated based on

the remaining capacity at the ambulance bases.

Note that we consider the number of ALS ambu-

lances assigned to each base as input; that is, we do

not optimize the number of ALS ambulances assigned

to each base, nor do we relocate the remaining ALS

ambulances to improve coverage, as that is not in the

scope of this paper.

The following main sets are considered as input to

the model:

I Set of non-urgent transportation requests

J Set of base locations

K Set of BLS shifts

T Set of time periods

L Set of demand points for emergency calls

The availability of BLS ambulances is given by their

working shifts in set K. Each shift has a start and end

time between which the assigned ambulance is avail-

able for non-urgent patient transportation. For each

working shift k ∈ K, the start and end locations of this

shift are denoted by ok and dk , respectively. Note that

each shift is associated with one BLS ambulance and

that shifts and BLS ambulances are interchangeable

terms in this study. The sets J, L, and T are specifically

used to determine the coverage given a schedule for the

BLS ambulances. From set J, we derive a related set Jl ,

which is the set of all bases that can cover demand

point l ∈ L within a given response time threshold.

The set T of time periods is used solely to indicate the

(remaining) availability of ALS ambulances (per time

period), which is needed to determine the resulting

coverage for emergency calls.

Figure 1 gives a graphical representation of a sim-

plified network with only two requests and two BLS

shifts.

2.2. Formulation
We formulate the problem as an ILP problem. To that

end, we define the following variables:

Xi j Binary variable that takes the value 1 when

request i ∈ I is assigned to an ALS ambulance

stationed at base j ∈ J and 0 otherwise

van den Berg and van Essen: Scheduling Non-Urgent Patient Transportation
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Figure 1. Example of a Network

o1

o2 2

1 d1

d2

Notes. This figure represents the network of a problemwith two BLS

shifts and two requests. Nodes o
1
and o

2
represent the starts of the

two shifts. Nodes d
1
and d

2
represent the ends of the shifts. Nodes 1

and 2 correspondwith request 1 and 2, respectively. The dashed lines

in the network represent a feasible solution in which both requests

are executed. Shift 1 executes request 1, and shift 2 executes request 2.

Yjt The number of ALS ambulances at base j ∈ J
that remain available for emergency calls during

time period t ∈ T
Zi Binary variable that takes the value 1 when

request i ∈ I is assigned to a BLS ambulance and

0 otherwise

Ti Execution time of a request i ∈ I that is served

by a BLS ambulance

Wihk Binary variable that takes the value 1 when the

BLS ambulance associated with shift k ∈ K vis-

its i ∈ {ok} ∪ I directly before h ∈ I ∪ {dk} and
0 otherwise

Ctl Number of ALS ambulances that can cover de-

mand point l ∈ L during time period t ∈T within

the given time threshold

The objective of the model is to maximize the re-

maining coverage for emergency calls. This coverage

can be calculated based on the remaining capacity of

ALS ambulances, that is,

max

∑
t∈T

∑
l∈L

wtl coverage(Ctl), (1)

where wtl is the demand at demand point l ∈ L dur-

ing time period t ∈ T, and coverage(Ctl) is a function

that gives the coverage given the number of available

ambulances that are stationed within the time thresh-

old. The coverage function to be used depends on the

chosen static ambulance location model; see Brotcorne,

Laporte, and Semet (2003) for an overview. For exam-

ple, if the model for the maximal covering location

problem (MLCP) introduced by Church and Revelle

(1974) is used, coverage(Ctl) is equal to one if and only

if Ctl ≥ 1. Regardless of the chosen model, we need

as input the number of available ambulances at each

base and the time an ambulance from base j ∈ J is

occupied when request i ∈ I is assigned to it. These

inputs are assumed to be known and are denoted by

the following:

a jt Number of available ALS ambulances at base loca-

tion j ∈ J during time period t ∈ T

bĳt Binary parameter that indicates that request I ∈ I
is served in time period t ∈ T if it is assigned to an

ALS ambulance at base location j ∈ J

To compute bĳt, we subtract the travel time from the

base location j ∈ J to the start location of i ∈ I from the

start time of i ∈ I and add the travel time from the end

location back to j ∈ J to the end time of i ∈ I. If this time

interval intersects time period t ∈ T, we set bĳt � 1.

As a straightforward constraint, we have that every

transportation request i ∈ I should be executed, either

by a BLS ambulance or by an ALS ambulance at one of

the bases: ∑
j∈ J

Xi j +Zi � 1 ∀ i ∈ I . (2)

Furthermore, we require that transportation requests

that are assigned to BLS ambulances, that is, Zi � 1, are

assigned to one particular shift k ∈ K:∑
k∈K

∑
h∈ok∪I

Whik � Zi ∀ i ∈ I . (3)

The assignment of requests to ambulances should sat-

isfy some standard routing constraints; see, for exam-

ple, Cordeau and Laporte (2007):∑
h∈I∪{dk }

Wok hk � 1 ∀ k ∈ K; (4)∑
h∈{ok }∪I

Whik −
∑

h∈I∪{dk }
Wihk � 0 ∀ i ∈ I , k ∈ K; (5)∑

h∈{ok }∪I

Whdk k � 1 ∀ k ∈ K. (6)

Recall that ok and dk correspond to the start and end

locations of shift k ∈ K, respectively. Not all combina-

tions of requests can be served by the same ambulance.

Therefore, we have additional restrictions on the W
variables. Whether two requests can be served by the

same ambulance depends on the execution time Ti :

Ti −Th ≥ ph + thi −M(1−Whik) ∀ i , h ∈ I , k ∈ K; (7)

Ti − sk ≥ tok i −M(1−Wok ik) ∀ i ∈ I , k ∈ K; (8)

ek −Ti ≥ pi + tidk
−M(1−Widk k) ∀ i ∈ I , k ∈ K. (9)

Here, pi is the duration of request i ∈ I, sk is the start

time of shift k ∈ K, ek is the end time of shift k ∈ K, and

M is a sufficiently large constant. Finally, tih is the travel

time from the destination location of request i ∈ I to

the origin location of request h ∈ I, tok i is the travel time

from the start location of shift k ∈ K to the origin loca-

tion of request i ∈ I, and tidk
is the travel time from the

destination location of request i ∈ I to the destination

location of shift k ∈ K.

The relation between the variables C, X, and Y is

ensured by the following two constraints:

Yjt +
∑
i∈I

bĳtXi j � a jt ∀ j ∈ J, t ∈ T; (10)∑
j∈ Jl

Yjt ≥ Ctl ∀ l ∈ L, t ∈ T. (11)
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Finally, we have bounds on the variables:

Xi j ,Zi ∈ {0, 1} ∀ i ∈ I , j ∈ J; (12)

Wihk ∈ {0, 1} ∀ k ∈ K, i ∈ ok ∪ I , h ∈ I ∪ dk ; (13)

Yjt ,Ctl ∈ � ∀ j ∈ J, l ∈ L, t ∈ T; (14)

f (i) ≤ Ti ≤ g(i), i ∈ I . (15)

Here, f (i) and g(i) are the earliest and latest start

times of request i ∈ I, respectively.

2.3. Coverage Function
As stated before, we can choose numerous coverage

functions to use in the model. We choose to use an

adapted version of thewell-knownmaximumexpected

covering location problem (MEXCLP) that was intro-

duced by Daskin (1983). In the MEXCLP, the expected

coverage is determined by conditioning on the num-

ber of unavailable ambulances. The unavailability of

the ambulances is denoted by the busy fraction of an

ambulance, which is defined as the average fraction of

time an ambulance is occupied. In the original MEX-

CLP, this busy fraction is the same for every part of the

region. In practice, we typically see that the workload

of ambulances varies over the region. In our model, we

use a different busy fraction for each demand point.

Each busy fraction is given by the busy fraction of the

nearest base location.

Another adaptation of the model compared to the

MEXCLP is that we do not reoptimize the distribution

of the ambulances over the bases. We consider only the

changes in capacity due to non-urgent transportation

requests that are scheduled on ALS ambulances.

Note that the demand, busy fractions, and number

of ambulances at each base change over time. Conse-

quently, we have different input values for the coverage

model for each time period. To incorporate this cover-

age function, we introduce the following variables:

Etlr Binary variable that takes the value 1 when de-

mand point l ∈ L is covered by at least r ambu-

lances within the response time threshold during

time period t ∈ T and 0 otherwise

Let qtl denote the busy fraction of ambulances covering

demand point l ∈ L during time period t ∈ T. Then, the
function coverage(Ctl) is defined as

coverage(Ctl)�
∑

j∈Jl
a jt∑

r�1

(1− qtl)qr−1

tl Etlr . (16)

To ensure that Etlr has the right value, we add the fol-

lowing constraints:

∑
j∈Jl

a jt∑
r�1

Etlr ≤ Ctl ∀ t ∈ T, l ∈ L.

2.4. Remarks
In the model description, we incorporated time flex-

ibility in the execution of transportation requests. As

these requests are non-urgent, and therefore can be

scheduled, there is some flexibility in the pickup time

for these patients. To model this, we have introduced

an earliest and a latest possible execution time for each

transport i ∈ I, given by input parameters fi and gi ,

respectively. From a practical point of view, we can dis-

tinguish between different types of requests in terms

of flexibility. If, for example, a patient has to be picked

up after surgery, fi will correspond with the requested

time, which typically is the earliest possible pickup

time for this kind of request, as otherwise the patient

will not yet be ready for transportation. When a patient

has to be in the hospital for a certain appointment, the

latest possible execution time gi will be set such that

the patient will be on time at the hospital while tak-

ing into account the needed driving time. If we have a

request without flexibility, we have fi � gi .

Even though we assume in the offline case that all

information is known in advance, we cannot schedule

a request before it is requested at the call center. We call

this moment the release date of a request. We prohibit

a request from being scheduled before its release date,

because the potential loss of efficiency as a result of

the late request cannot be avoided by better planning.

In Section 5.3, we do, however, evaluate the case where

we ignore release dates. We do this to quantify the

potential gain that could be obtained if hospitals could

send out requests earlier.

Another comment that should be made is that, up

to now, we have assumed that all transportation re-

quests can be executed by the less equipped BLS am-

bulances. In practice, however, some transportation

requests require an ALS ambulance. We can easily

incorporate this into the model by adding the con-

straint Zi � 0 for those requests. Those requests will be

assigned to an ALS ambulance at a particular base.

3. Alternative Formulation
In Section 2.2, we introduced a continuous-time formu-

lation when considering the scheduling of transporta-

tion requests on BLS ambulances. However, solving

this model in real time for the online case might be

too time consuming. Therefore, we introduce an alter-

native discretized formulation of the problem, which

can potentially be solved faster. In this formulation,

requests can be served only at a fixed set of times. In the

formulation introduced in Section 2.2, a request could

be scheduled every moment between the earliest and

latest possible execution times.

Figure 2 gives a graphical representation for this

formulation of a simplified network with only two

requests and two BLS shifts.
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Figure 2. Example of a Network for the Alternative Formulation

o1

1I

1III

2III

2II
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Notes. This figure represents the network of a problem with two BLS shifts and two requests. Each request can be executed at three different

points in time. Nodes o
1
and o

2
represent the starts of the two shifts. Nodes d

1
and d

2
represent the ends of the shifts. Nodes 1I , 1II , and 1III

and nodes 2I , 2II , and 2III correspond with requests 1 and 2, respectively. Nodes are connected if they can be executed directly after each other.

For example, if an ambulance executes request 1 at its latest possible time, node 1III , then this ambulance can execute request 2 at its latest

possible time, node 2III , only. Another example would be that the ambulance corresponding to shift 2 can execute request 1, but in that case,

request 1 cannot be executed at its earliest time. Arcs that are implied by transitivity are not shown for the sake of simplicity of the figure

but are explicitly included when modeling this network. For example, even though the arc from node o
1
to 2I is not shown in this figure, it

does exist in the actual modeled network. This arc is implied by the arcs from o
1
to 1I and from 1I to 2I , and thus the arc from node o

1
to 2I

is explicitly included in our model. The dashed lines in the network represent a feasible solution in which both requests are executed. Shift 1

executes request 1 at its second possible time, node 1II , and after that returns to its base. Request 2 is executed by shift 2 at its earliest possible

time, and shift 2 returns to base after executing the request.

In the discretized formulation, we restrict the model

to consider only a fixed set of possible execution times

Mi for request i ∈ I. This gives us a set of request han-

dling nodes M :�
⋃

i∈I Mi . By discretizing the execution

times, we no longer need the variable Ti . Instead, the

variable Zi with i ∈ I is replaced by variable Zm with

m ∈ M. This variable takes the value 1 if node m ∈ M
is served by a BLS ambulance. The possible combi-

nations of nodes that can be served by the same BLS

ambulance can now be computed a priori. For this,

we introduce the following sets: N , Bn , and An . The

set N contains all nodes in the network. Nodes can cor-

respond either to the origin or destination of a shift

or to an execution time of a particular request. Thus,

N � O ∪M ∪D, where set O is given by

⋃
k∈K{ok}, and

set D by

⋃
k∈K{dk}. The sets Bn and An contain all nodes

that can be visited directly before or after node n ∈N in

a feasible tour, respectively. Based on the start time, the

end time, the start location, and the end location of a

node n ∈N , we can derive the sets Bn and An . A node n′

is in set Bn if the difference between the end time of

node n′ and the start time of node n is sufficient to

travel from the end location of node n′ to the start loca-

tion of node n. The set An is constructed similarly. For

node n′ corresponding to the start of a shift and node n
corresponding to the end of a shift, we have that n′ ∈ Bn
if and only if n and n′ correspond to the same BLS

shift. In that case, we also have that n ∈ An′ . Because

shifts also have origin and destination locations and

start and end times, we ensure that tours start and end

at the right location, and this implies that we do not

allow for overtime. The latter is a realistic assumption,

as in practice, no new request will be assigned to an

ambulance nearing the end of its shift, to ensure the

shift ends in time. By not allowing overtime, we mimic

this behavior.

With the new Z variables, we replace con-

straints (2)–(3) by the following:∑
j∈ J

Xi j +
∑

m∈Mi

Zm � 1 ∀ i ∈ I; (17)∑
k∈K

∑
m∈Mi

∑
n∈Bm

Wnmk �
∑

m∈Mi

Zm ∀ i ∈ I . (18)
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Additionally, constraints (7)–(9) and (15) are no

longer necessary. These restrictions can now be incor-

porated in an adapted version of constraints (4)–(6):∑
n∈Aok

Wok nk � 1 ∀ k ∈ K; (19)∑
n∈Bh

Wnhk −
∑
n∈Ah

Whnk � 0 ∀ h ∈M, k ∈ K; (20)∑
n∈Bdk

Wndk k � 1 ∀ k ∈ K. (21)

All other parts of the formulation remain the same.

4. Online Scheduling
In the previous sections, we introduced two models to

solve the patient transportation request problem if all

requests are known in advance. In practice, however,

this is often not the case. Typically, a large fraction of

the requests is released on the day of execution. It even

frequently happens that requests are made for imme-

diate transportation. To incorporate this, we model the

online version of the problem as an iterative integer

linear programming problem.

The location and duration of the patient transporta-

tion requests are hard to predict. The number of re-

quests during the day can be predicted from histori-

cal data; however, the locations, except the locations

of hospitals, vary. As the location is crucial in deter-

mining the routes for BLS ambulances, it is hard to

incorporate future requests in scheduling the known

requests. Therefore, we introduce a local approach, in

the terms of Chen and Xu (2006). We iteratively solve

the offline version of the problem with the information

available at that moment. Each time new information

becomes available, that is, a new request is released,

we solve an instance of the offline model. This release

date of a request can be as early as a day before the

requested time or as late as the requested time.

When reoptimizing the schedule, we fix the assign-

ments of ambulances to requests that have already

started. For example, if a BLS ambulance is already

with the patient, we cannot assign it to a different

request. Even stronger, we do not allow for redirecting

an ambulance that is on its way to a patient. The con-

straint that we cannot change the past also applies to

the idle time of an ambulance.

When a request is completed, we remove it from the

list of requests and do not include it in the following

offline instances. The BLS shifts are adjusted accord-

ingly. The new start location of the BLS shift is the

drop-off location of the patient. Since we do not incor-

porate finished requests or requests that are not yet

released, the different offline instances that are solved

in the online case are typically rather small. However,

since for every release date of a request we have to solve

an instance, we have many instances.

The online scheduling approach can be summarized

as follows.

Step 1. Each time a new request is released, set up an

instance of the offline model as follows:

• Exclude all completed requests.

• Exclude all requests that are not yet released.

• For all shifts that started a request that is not yet

finished, fix the assignment. A request is started when

an ambulance is on its way to the patient.

• For all other shifts, set the start location equal to

the drop-off location of the last completed request, and

set the start time of the shift equal to the maximum of

its original starting time and the current time.

Step 2. Solve this instance such that the available re-

quests, that is, the requests that are released but not yet

started, are assigned to an ALS ambulance or inserted

into a route of a BLS ambulance.

In the offline version of the model, we allow some

flexibility in the execution time of a request. We do not

incorporate an incentive to stimulate early execution of

a request. However, in the online case, this means that

BLS ambulances might be left idle even when there are

requests that can be executed. If a new request arises,

it would have been better if we had scheduled the

request earlier. To overcome this undesirable behav-

ior, we implement a small penalty for scheduling a

request later. In the formulation of Section 2.2, this

penalty is implemented by subtracting the execution

time of a call (Ti) multiplied by a very small coefficient

from the objective function. For the alternative formu-

lation of Section 3, we subtract a penalty depending

on the selected node. In both cases, the penalty should

be small enough to work as a tie-breaking rule only.

Hence, the coverage in the offline version will not be

affected by this modification. This might be considered

a look-ahead approach in Chen and Xu’s (2006) classifi-

cation. Section 5.2.2 highlights the impact of this minor

modification of the model.

5. Computational Results
In this section, we discuss our computational results.

First, we introduce the data used in the experiments.

Then, we evaluate the performance of the two solution

methods and, based on these results, define a base case

for further experiments. This base case is then com-

pared with the current execution. Then, we compare

the offline and online cases and perform an extensive

sensitivity analysis. In addition, we compare the effects

of some modifications of the introduced model. All

calculations are performed on a 2.9 GHz Intel Core™
i7-3520M laptop with 8 GB of RAM. The ILP problems

are solved with CPLEX 12.6 in a Java implementation.

5.1. Data Description
We apply the models to one of the ambulance regions

in the Netherlands. As non-urgent transportation

requests, we have the requests from the first three quar-

ters of the year 2014. For all these requests, we know
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the start location, end location, release time, preferred

start time, and realized duration. The average (5th–95th

percentile) realized duration equals 56 (7–125) minutes

and includes picking up the patient at its start loca-

tion, transporting the patient to the end location, and

delivering the patient at the end location. Note that

in practice, the realized duration is not known before-

hand, but for picking up and delivering a patient, good

estimates can be determined from historical data. The

time needed for transporting the patient can be deter-

mined with the use of route planners. In Section 5.5.2,

we investigate the effect of uncertainty in this duration.

In addition, we know for each request whether or not

it can be fulfilled with a BLS ambulance. Some trans-

portation requests are non-urgent but need a higher

level of care than a BLS ambulance can provide, and

thus an ALS ambulance is needed. We incorporate this

into our model by fixing the corresponding Z variable

to 0. An ALS ambulance can also be used when the

capacity of BLS ambulances is not sufficient to fulfill

all transportation requests. In this case, we want to

assign this transportation request to anALS ambulance

such that the remaining coverage for emergency calls

is still as high as possible. To determine this remain-

ing coverage, we need some additional input data.

We need the demand locations for emergency calls,

the demand for each demand location, the number

and locations of the ALS ambulances, the busy frac-

tions, and a time threshold in which the emergency

calls should be served. As demand locations for emer-

gency calls, we take the four-digit postal codes, which

gives us a total of 217 postal codes. The demand is

time dependent and is given by the average number

of calls per demand location and time period of half

an hour based on data of 2008 until 2012 provided

by the ambulance provider. For the base locations, we

take the current 12 base locations, and the number

of available ALS ambulances per time period of half

an hour is obtained from the current shift schedule.

The busy fractions are calculated by dividing the total

workload of emergency calls by the total available ALS

Figure 3. Shift Schedule
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Notes. Shift 1 runs over two days and is therefore split in two parts. The second part is allowed to run in overtime.

capacity at this base at a certain time. This capacity is

obtained from the current shift schedule, and the total

workload is obtained by multiplying the total num-

ber of emergency calls with the average duration of

the calls. As time threshold for determining the cover-

age, we take 15 minutes, which is the standard in the

Netherlands. Since the pretrip delay is assumed to be

equal to 3 minutes, this gives a maximum drive time of

12 minutes.

Our data include all days of the first nine months

of 2014. For each of the 273 days, we apply the model

separately. Since the workload during the night is very

low, we do not see the need to run the model for nine

months consecutively. We use the current BLS shift

schedule as input for the model. The schedule con-

tains 10 shifts on weekdays, 7 shifts on Saturdays, and

5 shifts on Sundays. Since the schedule includes 1 shift

that runs over multiple days, we split this shift in two

parts: one that runs from 12 a.m. to 8 a.m. and one that

runs from 11 p.m. to 12 a.m. For weekdays, this gives

the shift schedule as depicted in Figure 3. As this final

shift does not end at the end of the day, we allow this

shift to run in overtime. All other shifts must end at its

corresponding base before the end of the shift.

We include all non-urgent patient transportation

requests in this study. We distinguish two categories:

B1 and B2, where B1 requests are the non-urgent

patient transportation requests that require an ALS

ambulance, and B2 requests are those that can be exe-

cuted by a BLS ambulance. In the considered period,

we have a total of 20,966 requests, of which 10,336 are

type B2. Figure 4 shows that, on average, twice as many

requests occur on a workday compared to a weekend

day. Figure 5 shows the geographical distribution of the

patients’ pickup and drop-off locations. As expected,

the locations with a very high number of requests cor-

respond with the locations of the hospitals.

For each request, we have a given release date, which

is the moment at which the request is requested at the

call center. For approximately 50% of the B2 requests,

this release date equals the requested execution time.
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Figure 4. Minimum, Average, and Maximum Number of Transportation Requests per Day of the Week
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For B2 requests, we allow for flexibility in schedul-

ing the request by scheduling the request between one

hour before and one hour after the requested time.

However, we do take the release date into consider-

ation. So, if, for example, the release date equals the

requested execution time, we do not allow the request

to be executed before its requested time.

5.2. Model Validation
Before we analyze the results of the model, we vali-

date some of the modeling choices that we made. First,

we compare the two formulations. Then, we evalu-

ate the impact of the online scheduling rule that we

Figure 5. Geographical Distribution of Patients’ Pickup and Drop-Off Locations

1 2–9 10–49 50–99 100–999 1,000–1,999 ≥ 2,000

introduced in Section 4. Finally, we compare the pre-

sented model that maximizes the coverage for emer-

gency calls with a model that just maximizes the num-

ber of requests executed by a BLS ambulance.

Note that in some cases, some of the instances might

not provide a feasible solution. This can occur when

no feasible solution exists or when the solver cannot

find a feasible solution within the time limit. The latter

mainly occurswhen the short time limit of 10 seconds is

used.When comparing different scenarios, we consider

only the instances for which in each scenario a feasi-

ble solution could be found. The number of considered

instances will be depicted in the corresponding tables.
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Table 1. Performance of the Two Formulations in the Online Case with a Time Limit of 10

Seconds on the Set of Days for Which Both Could Find a Solution

% by Difference CI Difference CI

Model BLS % by BLS Coverage coverage

DARP formulation 92.8 — 0.8963 —

Discrete formulation 84.4 −6.6± 1.0 0.8898 −0.0065± 0.0014

Note. The table is based on 252 instances with a total of 9,220 B2 calls for which both formulations

could find a solution.

Table 2. Performance of the Two Formulations in the Online Case Where No Time Limit Is

Set for the Discrete Model

% by Difference CI Difference CI

Model BLS % by BLS Coverage coverage

DARP formulation 92.0 — 0.8964 —

Discrete formulation 90.2 −1.8± 0.4 0.8961 −0.0004± 0.0004

Note. The table is based on 271 instances with a total of 10,243 B2 calls.

For all tables comparing multiple cases, we present

the percentage of B2 requests served by a BLS ambu-

lance as well as the remaining coverage by ALS ambu-

lances for emergency calls. For both, we also provide

confidence intervals (CIs) for the difference compared

to the base case, which is always depicted in the first

row of results in each table. For the percentage of

B2 requests executed by a BLS ambulance, we sim-

ply divide the total number of B2 requests served by

a BLS ambulance by the total number of B2 requests

over all days. For the confidence intervals, we com-

pute this percentage for each case and each day, sep-

arately. We compute 95% confidence intervals based

on the daily difference compared to the base case.

Note that the center of the confidence interval does

not necessarily coincide with the overall difference,

as we use a weighted average to compute the overall

percentage and an unweighted average for the confi-

dence intervals. For the remaining coverage, we use an

unweighted average in both cases.

5.2.1. DARP vs. Discrete Formulation. In this paper,

we present two formulations for the same problem.

The first is an exact DARP formulation for the prob-

lem. In the second formulation, the possible starting

times of the B2 calls are discretized to limit the solution

space. Here, we compare the two models. For the sec-

ond model, we need a level of discretization. We use a

time step of 15 minutes, which gives us a maximum of

9 start times for each request; that is, |Mi | ≤ 9. In both

models, we do not allow for time flexibility for requests

that are served by an ALS ambulance. These requests

are assigned to a base at their requested time.

First, we evaluate the models in the real-time setting

with a time limit of 10 seconds for each instance. Note

that for one day, multiple instances are solved. Every

time a new call arises in the system, an instance of the

offline model is solved.

For two days, both models concluded that no feasi-

ble solution exists. For another 19 days, the discretized

model could, for at least one instance, not find a feasi-

ble solution within the 10 second time limit. For now,

we compare only the 252 remaining days for which

both models could find a feasible solution.

Table 1 clearly shows that the performance of the

DARP formulation is better than the performance of

the discrete formulation. However, one cannot know

whether this difference is caused by the approximation

in the formulation or by the gap in solving the model

caused by the time limit of 10 seconds. To investigate

this, we solved the discrete model without a time limit.

Now, we can use the larger set of instances, as it does

not occur that no feasible solution can be found even

though a feasible solution exists. This gives a total of

271 days. For the DARP formulation, we still have the

time limit of 10 seconds.

The results in Table 2 show that even if the instances

of the discrete model are solved to optimality, the mo-

del is still outperformed by the DARP formulationwith

a time limit of 10 seconds. So, for real-time applica-

tions, the DARP formulation is more appropriate.

In analyzing the behavior of the model, it can be

of interest to analyze the results of the offline version

of the model. As this results in one large instance for

each day, the behavior of the formulations might dif-

fer. Therefore, we also evaluate the performance of the

two formulations in the offline setting. As solving to

optimality is too time consuming in this case (a com-

putation time of more than one day for one day of the

used data set given the DARP formulation), we set the

time limit to one hour. Table 3 shows the results of this

experiment.

Here, we see that the discrete formulation results in

better solutions. In total, it is able to serve 1.1 percent-

age point more requests with BLS ambulances. This
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Table 3. Performance of the Two Formulations in the Offline Case with a Time Limit of

One Hour

% by Difference CI Difference CI

Model BLS % by BLS Coverage coverage

DARP formulation 94.6 — 0.8991 —

Discrete formulation 95.7 0.6± 0.2 0.9009 0.0018± 0.0008

Note. The table is based on 271 instances with a total of 10,243 B2 calls.

Table 4. Performance of the DARP Formulation and the Discrete Formulation for Both

Online and Offline Scenarios with Different Time Limits

DARP formulation Discrete formulation

Model % by BLS Coverage Model % by BLS Coverage

Online 10 sec 92.8 0.8963 Online 10 sec 84.4 0.8898

Online 5 min 93.3 0.8966 Online optimal 90.9 0.8957

Offline 1 hour 95.5 0.8991 Offline 1 hour 96.1 0.9001

Offline upper bound — 0.9005 Offline optimal 96.1 0.9001

No release dates optimal 97.6 0.9005

Note. The table is based on 252 instances with a total of 9,220 B2 calls for which all models could

provide a solution.

also results in an increase in coverage. Clearly, this

must be caused by larger gaps for the DARP formu-

lation. Of the 271 instances of the DARP formulation,

only 114 were solved to optimality. The other 157 had

an average gap of 0.48%, with a maximum of 8.1%. Of

the instances that were solved to optimality, 67 were

Saturdays or Sundays. Figure 5 already showed that

on these days the call volume is significantly lower.

Of the weekdays, only 47 of the 193 instances were

solved optimally. The discrete formulation resulted in

4 instances with no guaranteed optimal solution, with

an average gap of 0.02%. Themaximumgap in this case

was 0.04%. This indicates that for larger instances, the

discrete formulation might be more appropriate.

To allow for a comparison of all the different settings

discussed in this section, Table 4 gives an overview

of the results of the two formulations for online and

offline scenarios with different time limits. These re-

sults are based on 252 instances for which a solution

could be found in each setting. The table also includes

results for the online DARP formulation with a time

limit of five minutes for each instance. Even though

this time limit is not practically feasible, it gives some

insight into the potential performance of the system in

Table 5. Performance of the Two Formulations in the Online Case with a Time Limit of 10

Seconds on the Set of Days for Which Both Could Find a Solution

% by Difference CI Difference CI

Model BLS % by BLS Coverage coverage

With scheduling rule 92.0 — 0.8964 —

Without scheduling rule 89.1 −2.9± 0.5 0.8954 −0.0010± 0.0004

Note. The table is based on 265 instances with a total of 9,985 B2 calls for which both formulations

could find a solution.

the online case. For 219 of the 252 days, we found the

optimal solution for all instances solved for that day.

So, for those 219 days, this gives us the optimal solution

to the online problem. Finally, the table includes an

upper bound for the offline performance of the DARP

formulation. This upper bound is provided by CPLEX

after running the model for one hour.

5.2.2. Effect of Online Scheduling Rule. In Section 4,

we discussed a tie-breaking rule to stimulate the early

execution of requests. The main reason for including

this rule is to avoid unnecessary idle time for BLS

ambulances. Without this online scheduling rule, it

could occur that BLS ambulances remain idle even

though requests are available for execution. Note that

since it is only a tie-breaking rule, adding the rule

does not change the coverage of the offline version.

In Table 5, we see that by including the online schedul-

ing rule in the DARP formulation, 2.9% more requests

can be executed by BLS ambulances. Also, the coverage

increases by adding this simple rule.

5.2.3. Effect of Maximizing Number of Executed Re-
quests. One novelty of our model is that it uses the

coverage for emergency calls as the objective function
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Table 6. Performance of Offline Model for Coverage Maximization and Maximization of

Executed Transportation Requests for Instances Where a Solution Within 1% of the

Optimum Could Be Found Within One Hour for Both Cases

Difference CI Difference CI

Model % by BLS % by BLS Coverage coverage

Max coverage 97.9 — 0.8942 —

Max # BLS 98.2 0.2± 0.1 0.8940 −0.0002± 0.0001

Note. The table is based on 177 instances with a total of 5,433 B2 calls.

in scheduling patient transportation requests. Another,

more common, approach is to not include the cover-

age and simply focus on the number of requests exe-

cuted by BLS ambulances. One might expect that by

maximizing the number of requests executed by BLS

ambulances, and thus minimizing the workload on the

ALS ambulances, the coverage for emergency calls will

be maximized as well. However, Table 6 shows that

this is not the case. This table compares the results

of the offline version of the DARP formulation with

the offline version of the DARP formulation where the

objective function is changed such that the number of

requests executed by BLS ambulances is maximized.

The objective function then becomes

max

∑
i∈I

Zi .

To obtain the coverage for that model, we still have to

assign the requests that cannot be served by BLS ambu-

lances to ALS ambulances. To not favor our presented

model, we do this in an optimalway. In otherwords, we

maximize the remaining coverage after assigning all

unserved requests to ALS ambulances. We exclude all

instances forwhich no solutionwithin 1% of optimality

can be found within one hour to avoid that the results

are disturbed by optimization gaps while still being

able to evaluate a significant number of instances.

The table shows that even though the number of

requests executed by BLS ambulances is increased, the

coverage decreases slightly by using this objective func-

tion. Apparently, serving asmany calls as possible with

BLS ambulances does not necessarily correspond to

maximizing coverage. Thus, it is important to carefully

select which requests are not assigned to a BLS ambu-

lance. The model ensures that ALS ambulances are

used only for patient transportation requests in time

periods with sufficient capacity for emergency calls.

5.3. Value of Information
In this section, we compare three different cases of

dealing with the dynamic aspects of the data. The first

case is the online case where requests become available

at their release dates. This corresponds to the base case.

In the second case, we assume all information is known

in advance, but the release dates have to be respected.

This gives us a feasible solution for the online case, as

all constraints of the model are respected. However,

since in practice, requests are not known before their

release dates, this schedule could not be derived in real

time. This does give an upper bound on the perfor-

mance of the online case. Finally, we include a case in

which we ignore the release dates completely. This cor-

responds to the case where all transportation requests

are known at the start of the day. This deviates from

practice in two ways: first, we have more flexibility in

B2 transportation requests with release dates within

one hour of the requested time; second, since all infor-

mation is known in advance, more efficient schedules

can be made.

The difference in performance between the first and

second case gives us the loss in efficiency as a result

of making the wrong decision because the future is

unknown. The difference between the second and third

case measures the impact of the loss of flexibility as a

result of late notification by the hospital. Together, they

give the loss in performance as a result of not knowing

all requests at the start of the day, and thus the value of

information. As the optimal solution of the two offline

cases cannot be found in reasonable time for the DARP

formulation, we compare the three cases based on the

discrete formulation.

Table 7 shows that the impact of flexibility is smaller

than the impact of knowing future requests. This is

because 49.7% of the B2 requests are already known an

hour before their requested times. For these requests,

there is no difference between the second and third

cases. In the case where we do not consider release

dates, we can execute 97.2% of the B2 requests with a

BLS ambulance. For the offline case, this is 95.7%, and

for the online case, this is 90.2%. The same behavior

can be seen when looking at the remaining coverage;

that is, flexibility has less impact than having infor-

mation of the future. In total, knowing all requests at

the start of the day would lead to a 0.5% increase in

coverage.

5.4. Results Base Case
In Section 5.2.1, we concluded that the DARP formu-

lation with a time limit of 10 seconds and the online

scheduling rule is the most appropriate formulation to

use in a real-time setting. From now on, we call this the
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Table 7. Performance of Online, Offline, and No Release Date Cases of the Discretized

Model Without a Time Limit

Difference CI Difference CI

Model % by BLS % by BLS Coverage coverage

Online 90.2 — 0.8961 —

Offline 95.7 5.0± 0.5 0.9009 0.0049± 0.0005

No release date 97.2 6.7± 0.6 0.9014 0.0053± 0.0006

Note. The table is based on 271 instances with a total of 10,243 B2 calls.

base case. As the solution to this base case is, in prin-

ciple, a feasible solution in practice, we can compare

this solution with the current execution in practice. For

the base case, we see that 92.0% of all B2 transporta-

tion requests can be served by BLS ambulances. In the

current execution, this is only 80.8%. Note that in the

model, we allow for less flexibility in the execution time

of a request than in practice. In the current execution,

13.5% of the requests are executed more than 60 min-

utes after the requested time. This is not allowed in

the model, where each request is scheduled within one

hour from the requested time. On average, a call that is

served by a BLS ambulance is served 4 minutes before

the requested time. This is mainly because a signifi-

cant number of requests that are known in advance are

served at the earliest possible execution time, which is

one hour before the requested time. Requests for which

the release date is equal to the requested time are on

average served 25 minutes after the requested time.

When none of the ALS ambulances are used for

non-urgent patient transportation, the average cover-

age equals 0.9156. The resulting remaining coverage for

emergency calls in the base case equals 0.8964, whereas

it equals 0.8945 in the current execution. When we con-

sider only workdays, this difference in remaining cov-

erage is a bit higher: 0.9096 for the base case and 0.9065

in the current execution.

Figure 6. Number of B2 Transportation Requests That Can Be Served by BLS Ambulances per Day of the Week in the Base

Case
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Figure 6 shows the number of B2 transportation

requests that can be executed by BLS ambulances per

day of the week. We see that both the number of

served and the number of unserved transportation

requests increase as the number of requests increases.

So, more transportation requests allow for more effi-

cient scheduling of transportation requests on BLS

ambulances, but this efficiency gain is not sufficient to

fully compensate for the higher workload.

Figure 7 shows the average demand of B2 transporta-

tion requests served byALS ambulances during awork-

day. Naturally, the demand served by ALS ambulances

is close to zero during the night. A peak in the demand

served by ALS ambulances can be seen in the after-

noon. Most of the first demand peak around 11 a.m.

can be taken care of by BLS ambulances because of the

one hour flexibility in scheduling the B2 transportation

requests. Because of this, many of the requests are post-

poned, which results in an even higher peak in demand

for ALS ambulances around 2 p.m.

Figure 8 shows the number of requests that are

scheduledwithin each shift for workdays andweekend

days. The shift numbers correspond with the number-

ing of the shifts in Figure 3. For daytime shifts on work-

days (shifts 2–7), this is, on average, 5.10, whereas the

number of requests per shift in the evening (shifts 8–10)

is, on average, 2.74. During the weekends, the number

of requests per shift is lower.
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Figure 7. Total Average Demand and Average Demand Served by ALS Ambulances During Workdays in the Base Case
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As mentioned in Section 5.1, the night shift consists

of two parts, as it runs overnight. The first part runs

from midnight until 8 a.m., whereas the second part

runs from 11 p.m. until midnight. As calls that start just

before midnight will not finish before midnight, we

artificially extent the second part until 03:30 a.m. the

next day. By using this time, we use the capacity of

the next day. In the base case, this time is used in 136

of the 271 instances. On these days, the shift finishes,

on average, 44 minutes after midnight. The latest finish

time is 01:56 a.m. For 42 of these 136 days, this results

in a conflict, as the night shift is used during this time

the next day. When implementing the model in prac-

tice, this will not be a problem, because the model will

then be used continuously, and we will not separate

the different days.

Figure 9 shows the average utilization of the dif-

ferent shifts on weekdays. We see that the afternoon

shifts can obtain a utilization of almost 80%, whereas

the evening shifts have a utilization of less than 60%.

The night shift has very low utilization, but this shift

is also used to provide acute home care, which is not

Figure 8. Minimum, Average, and Maximum Number of Transportation Requests per Shift in the Base Case
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included in this utilization. The figure further shows

that approximately 70% of the busy time of an ambu-

lance is spent with a patient. The remaining 30% of

the time, the ambulance is on its way to a patient. The

figure, in combination with Figure 7, indicates that it

might be worthwhile to move an evening shift toward

the afternoon.

5.5. Sensitivity Analysis
In this section, we evaluate the impact of small changes

in the data. First, we consider the case of a different

level of flexibility in the execution time of the trans-

portation requests. In the base case, calls can be served

up to one hour before or after the requested time, as

long as the release date is respected. Here, we evalu-

ate the impact of less flexibility. Second, we evaluate

the impact of uncertain duration of the calls. Up to

now, we have assumed that the duration of a call is

known in advance. Now, we relax this assumption and

assume only that an estimate duration is available. In

both experiments, we use the online DARP formula-

tion with a time limit of 10 seconds as the base case.
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Figure 9. Average Utilization of the Different Shifts on Weekdays in the Base Case
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As before, we excluded days for which, for at least one

instance, no feasible solution could be found.

5.5.1. Effect of Flexibility. In the base case, we allow

for a flexibility of one hour around the requested time

for B2 transportation requests. Here, we evaluate the

impact of reducing this flexibility to 15 minutes or

30 minutes. Clearly, reducing the flexibility will reduce

the performance.

Table 8 shows that with a flexibility of 15 minutes,

we can execute only 65.8% of the B2 requests with BLS

ambulances. By increasing the flexibility to 30 min-

utes, this percentage increases to 81.1%. For a flexibility

of 60 minutes, which corresponds to the base case, it

is 92.0%.

From the input data, we know that 48.4% of the

B2 requests are released at their requested time. With

the flexibility set to 15 minutes, this gives us very few

options. If, for example, the driving time from the clos-

est available ambulance is more than 15 minutes, we

will not be able to schedule this request on a BLS ambu-

lance. By increasing the flexibility to 30 minutes, we

can already significantly increase the number of exe-

cuted calls. This can be further increased by increasing

the flexibility to one hour. In this case, we have enough

flexibility for good planning. This can also be seen in

the remaining coverage for emergency calls.

However, by allowing a large deviation from the

requested time, we might risk lower patient and

doctor satisfaction. The resulting deviations from the

Table 8. Performance of Online Model with Different Levels of Flexibility in the Execution

Time of the Transportation Requests

% by Difference CI Difference CI

Model BLS % by BLS Coverage coverage

1 hour 92.0 — 0.8967 —

30 minutes 81.1 10.8± 0.6 0.8923 −0.0044± 0.0005

15 minutes 65.8 27.7± 1.1 0.8859 −0.0108± 0.0009

Note. The table is based on 266 instances with a total of 10,031 B2 calls.

requested time for the three different levels of flexi-

bility are shown in Figure 10. In all three cases, we

see a large peak at the earliest possible execution time.

We further see that the model uses the flexibility by

scheduling calls later when the flexibility permits this.

On average, a call is served 4.0, 2.6, and 3.7 min-

utes before the requested execution time for one hour,

30 minutes, and 15 minutes of flexibility, respectively.

Calls that cannot be served before their requested time

because of their release date are served 24.7, 15.0,

and 8.9 minutes after their requested execution time,

respectively.

5.5.2. Effect of Uncertain Call Duration. Up to now, we

have assumed that the duration of a request is known

at the release date. In the base case, we take the real-

ized duration in practice as the duration of a request.

However, the exact duration of a request is typically

not known at the moment the request arrives at the

call center. In this section, we evaluate the impact of

uncertainty in the request duration.

We assume that we know an expected, minimum,

and maximum duration for each request. Based on

some distribution, we generate the real duration of

the request, which lies between the given minimum

and maximum duration of the request. We consider

two ways of handling the uncertainty. In the first case,

we set the initial estimate of the duration equal to

the maximum duration. When the request finishes, the

ambulance becomes available, and we reoptimize the
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Figure 10. Distribution of Deviation from Requested Time of Execution Time of B2 Requests Served by BLS Ambulances for

Different Levels of Flexibility

0.20

0.30

0.40

0.50

1 hour flexibility

30 minute flexibilty

15 minute flexibilty

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60
0

0.02

0.04

0.06

Fr
ac

tio
n 

of
 c

al
ls

schedule given the realized duration. In the second

case, we set the initial estimate equal to the expected

duration. If the request finishes earlier than expected,

we follow the same procedure as described before. If a

request is not yet finished at its expected end time, we

reoptimize the schedule assuming that the duration of

the request is equal to its maximum duration. Since the

request has already been started, it is not possible to

change its assignment. Again, the request might finish

earlier than this new expected end time, in which case

we follow the previously described procedure.

Note that the delay in the execution of a request can

cause a shift to run in overtime. In the original version

of the model, we do not allow for this to happen, but

given the uncertain duration, this is unavoidable. The

overtime can, however, never be more than the differ-

ence between the expected and maximum duration of

the last request scheduled on a shift. Similarly, it can

happen that, as a result of the longer duration of a call

that is assigned to an ALS ambulance, the capacity at

the selected base does not suffice. As we, again, cannot

change the assignment, this would lead to overtime of

an ALS shift.

To evaluate the impact of the uncertainty in the

request duration, we apply the two new versions of the

model to a varying minimum and maximum request

duration. We compare the base case to the cases with

Table 9. Performance of Online Model with Different Levels of Uncertainty in the

Duration of the Transportation Requests

% by Difference CI Difference CI

Model BLS % by BLS Coverage coverage

Base case 92.1 — 0.8965 —

5% max 91.7 −0.4± 0.3 0.8953 −0.0011± 0.0003

5% exp 92.4 0.2± 0.3 0.8960 −0.0005± 0.0003

10% max 91.4 −0.8± 0.3 0.8940 −0.0024± 0.0004

10% exp 92.7 0.5± 0.3 0.8954 −0.0010± 0.0003

20% max 90.3 −1.8± 0.4 0.8912 −0.0053± 0.0006

20% exp 92.7 0.5± 0.3 0.8942 −0.0022± 0.0004

Note. The table is based on 269 instances with a total of 10,126 B2 calls.

a maximum deviation of 5%, 10%, and 20% of the ex-

pected duration. To generate the real duration, we use

the triangular distribution. Generating from this distri-

bution can be done by

X �



min+
√

U(max−min)(exp−min)
0 ≤U ≤

exp−min

max−min

,

max−
√
(1−U)(max−min)(max−exp)

exp−min

max−min

≤U ≤ 1,

where U is uniformly distributed in the interval [0, 1].
One advantage of the triangular distribution is that it

has a continuous density function, whereas, for exam-

ple, a truncated normal distribution has jumps at the

minimum and maximum call durations.

Table 9 shows the results for the base case (0%) and

for deviations of 5%, 10%, and 20% of the expected

duration. Here, “max” corresponds to an initial esti-

mate equal to the maximum duration, and “exp” cor-

responds to an initial estimate equal to the expected

duration. We consistently see that starting with an ini-

tial estimate of the call duration equal to the expected

duration performs better than assuming the worst-

case call duration. This can be seen in the num-

ber of executed requests, as well as the remaining
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coverage. Surprisingly, we see that the number of exe-

cuted requests is higher than in the base case if we use

the expected duration as initial estimate. On the other

hand, the coverage decreases with increasing uncer-

tainty. In the 20% case, the expected coverage for emer-

gency calls is decreased by 0.22 percentage points. This

is approximately twice the difference between schedul-

ing with and without the online scheduling rule.

6. Conclusions
We have introduced a method to optimize the routes

of basic life support ambulances for non-urgent pa-

tient transportation while maximizing the remaining

advanced life support capacity for emergency calls. We

consider the situation where part of the non-urgent

transportation requests are knownat the start of theday

and the remainder of the requests arrive throughout the

day. Most of these transportation requests can be exe-

cuted by BLS ambulances, but because of the limited

capacity of BLS ambulances and the basic level of care

provided by the BLS ambulances, several of the non-

urgent transportation requests have to be executed by

ALS ambulances. As the primary task of ALS ambu-

lances is to respond to emergency calls,wehave tomake

sure that the non-urgent transportation requests are

assigned to the ALS ambulances in such a way that the

remaining coverage for emergency calls is maximized.

We include this by setting our objective function such

that expected coverage, as defined byMEXCLP (Daskin

1983), is maximized.

One of our contributions is taking the coverage of

ALS ambulances for emergency calls into account.

Most papers make a strict distinction between non-

urgent and urgent transportation requests. By also

allowing ALS ambulances to respond to non-urgent

transportation requests, we are able to use fewer BLS

ambulances, and thus improve the utilization of the

BLS ambulances. This means that both the ALS and

BLS ambulances are used more efficiently, and we are

better able to meet the targets. If we compare our

approach to the standard approach of maximizing the

number of requests executed by BLS ambulances, we

see that we could execute more requests with BLS

ambulances, but that this reduces the remaining cov-

erage of ALS ambulances for emergency calls. Even

though this reduction is small, we see that our objec-

tive function is needed to maximize the remaining

coverage.

Another contribution is that we formulate the prob-

lem as an integer linear program instead of using an

heuristic approach. However, as the problem has to

be solved in real time, we cannot solve the integer

linear program to optimality within reasonable time.

We present two approaches to overcome this. First,

we solve the exact formulation with a time limit of

10 seconds. Second, we present an alternative formu-

lation with discretized time to find solutions more effi-

ciently. For the online situation with relatively small

instances, the exact DARP formulation outperforms the

discretized formulation. However, for analysis of the

offline case where we have larger instances, the dis-

cretized formulation is more appropriate.

One disadvantage of our approach is that we only

take the expected request duration into account. Our

sensitivity analysis shows that even though the num-

ber of requests served by BLS ambulances increases,

the remaining coverage decreases with 0.10%when we

allow 10% deviation in the duration of the requests.

This percentage increases to 0.22% if we allow 20%

deviation. As this decrease is very moderate, and we

expect dispatchers to be able tomake good predictions,

we do not consider this uncertain call duration a sig-

nificant problem.

Althoughmost non-urgent patient transportation re-

quests cannot be predicted, some can. For example,

some of the patients that have to be transported from

home to a hospital also need to be transported back

home on the same day. For future research, it would

be interesting to investigate the potential benefit of

taking expected future requests into account. Schilde,

Doerner, and Hartl (2011) already showed that using

this information can improve the results significantly.

This effect is also shown in Table 7, where we compare

our base case to the case where we would have all the

information available beforehand.

As the idea for this research originated from one of

the ambulance providers in the Netherlands, we aimed

at developing a method that could be used in practice

for the real-time planning of BLS ambulances. Despite

that the developedmethod is suitable to do this, imple-

menting our approach in the system of the ambulance

provider is a challenging task. One of the issues to

deal with when implementing our approach in prac-

tice is what solver should be used, as the costs of using

CPLEX will probably be too high. Nevertheless, the

developed approach can be used to determine whether

the results described in this paper hold up in prac-

tice. The results obtained from practice could in turn

lead to the development of heuristics that are easier to

implement in practice.

Even though the implementation of the model for

the real-time scheduling of patient transportation re-

quests requires more work, two other applications that

are easier to implement come to mind. First, the model

could be used to tune the shift schedule of the BLS

ambulances. The developed method can already be

used to compare several schedules. For future research,

it would be interesting to develop a method that can

optimize the shift schedule such that a good bal-

ance between the efficiency of BLS ambulances and
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the remaining coverage of ALS ambulances can be

obtained.

The second application of the model is to steer the

incoming transportation requests of the hospitals such

that the requests are spread more equally over the

day. Currently, there are peak loads of transportation

requests at 11 a.m. and 3 p.m. for patients that are

being admitted to or discharged from the hospital. This

means that around these times, not enough BLS ambu-

lances are available, whereas at other times there are

more than enough BLS ambulances available. With the

use of the information obtained in this study, the ambu-

lance providers are able to set up plans with the hos-

pitals to spread the requests more evenly over the day.

In this way, the BLS ambulances can be used more effi-

ciently, the remaining coverage for emergency calls can

be improved, and the requested pickup times can be

met more often.
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