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Chapter 1

Thesis goals & contributions

In this short chapter, the main goals and contributions of this thesis are discussed.
The thesis focuses on the simulation and analysis of pulsed discharges, specifically
streamers. Streamers are rapidly growing ionized channels, that enhance the
electric field at their tips. Due to this field enhancement, they can penetrate
into regions where the electric field is below the breakdown threshold. Streamers
occur in nature, where they for example pave the path for lightning leaders, or
they appear as sprite discharges high above thunderclouds [1-3]. They are also
used in diverse industrial applications [4-8]. A general introduction to discharges,
streamers and their numerical modeling can be found in chapter 2.

Two types of simulation models have commonly been used for streamer dis-
charges: particle models [9-11] and fluid models [12-19]. In chapter 3, a compar-
ison study is presented, using four models for the three-dimensional simulation of
a short negative streamer: a particle-in-cell model, two plasma fluid models [20]
and a hybrid model [21, 22|, in which the particle-in-cell code was spatially cou-
pled to one of the fluid models. Streamers have a tendency to branch [19, 23-28],
and their branching is accelerated by stochastic density fluctuations. An advan-
tage of particle models is that such fluctuations can be included, but a drawback
is that they are computationally significantly more expensive. Both the parti-
cle and the hybrid model eventually use super-particles in chapter 3, but the
hybrid model’s reduced computational cost allowed to use super-particles with
lower weights. The computational cost was a general problem for the simula-
tions described in this chapter. Because the models lacked grid refinement, the
background field had to be significantly above breakdown, so that a discharge
would quickly form. In order to get a single negative streamer, the simulations
were performed in pure nitrogen without photoionization, and with a localized
initial seed. In chapters 6-8, more realistic simulations of discharge inception
above breakdown are presented.

For the simulation of streamer discharges, the inclusion of adaptive mesh re-
finement (AMR) is important, see for example [19]. It became clear that the



spatial coupling in the hybrid model significantly complicated the implementa-
tion of mesh refinement. We therefore decided to develop a ‘pure’ 3D particle
model with adaptive mesh refinement. To improve the performance, the parti-
cle code present in the hybrid model [20-22] was optimized and parallelized —
essentially all code was rewritten. But perhaps even more important was the
development of an ‘Adaptive Particle Management’ method, which adaptively
adjusted the weights of simulation particles. In chapter 4, we describe how a k-d
tree can be used to merge simulation particles, and we discuss various merging
schemes. When going from two to one particle, it is generally not possible to
conserve both momentum and energy. We therefore introduced schemes that
used random numbers, so that on average energy and momentum could both be
conserved.

In chapter 5, the implementation of adaptive mesh refinement and a needle
electrode into the particle model are discussed. A major challenge was the so-
lution of Poisson’s equation. An ideal solver would allow for the inclusion of
mesh refinement and electrodes, yet still be highly efficient, and run in parallel.
Because no such solver was available to us, mesh refinement was implemented
as in [29], using the fast Poisson solvers from [30]. An electrode was included
using a custom algorithm, which can be seen as an iterative charge-simulation
method [31]. The resulting model is then used to study the inception of pulsed
discharges near a positive needle electrode, in various nitrogen/oxygen mixtures.
We observe the formation of small ‘inception clouds’ [32-34], depending on the
electrode voltage and the oxygen concentration. The oxygen concentration is im-
portant because it changes the typical length scale for photoionization, thereby
affecting the density of free electrons around the discharge. Note that the source
code of the particle model is available as free software at [35].

Chapters 6 — 8 deal with the development of discharges in background fields
above the breakdown threshold. Several authors have performed streamer sim-
ulations in such background fields in air, often using a plasma fluid model in
cylindrical symmetry [14, 14, 15, 36-38|. In these simulations, the formation of
so-called ‘double-headed’ streamers was observed, that grew from an initial seed.
In chapters 6 and 8, we show that the presence of background ionization is impor-
tant for the discharge evolution. Instead of a single (double-headed) streamer,
many overlapping electron avalanches start to grow in ambient air. The ini-
tial electrons that start these avalanches can come from electron detachment,
discussed in some detail in chapter 8.

A more theoretical analysis of discharge growth above breakdown is given in
chapter 7, where we introduce the ‘ionization screening time’ 735. This time scale
is a generalization of the Maxwell time (¢¢/c), by taking into account electron
impact ionization, which increases the conductivity o over time. We also present
estimates for the homogeneity of overvolted discharges, and discuss the effects of
photoionization and electron detachment in No:O9 mixtures.

Streamers are generally thought to propagate (approximately) along electric
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field lines. In chapter 9, experimental results from S. Nijdam and E. Takahashi
show that a positive streamer can be guided by weak pre-ionization from a laser.
The guiding is observed in nitrogen/oxygen mixtures with less than about 0.5%
oxygen, at 133 mbar. The particle model described in chapter 5 is then used
to investigate how such guiding can occur. Photoionization is found to play an
important role. When there is little photoionization, almost all free electrons
ahead of the streamer come from the laser channel, so that the streamer is likely
to follow the pre-ionized path.

In most of the previous chapters, a 3D particle model is used for the discharge
simulations. Even with the techniques described in chapter 4 and 5, such a model
is computationally more expensive than a plasma fluid model. Furthermore, the
Poisson solver of the particle model is sequential, and the mesh refinement has
some limitations (see chapter 5). In order to perform larger or faster discharge
simulations, we have developed a framework called Afivo: ‘Adaptive Finite Vol-
ume Octree’. The framework can be used for finite volume simulations in two
and three dimensions, on quadtree and octree meshes. In chapter 10, we de-
scribe the implementation of Afivo. An important component is the geometric
multigrid [39-41] solver, which can operate in parallel on the adaptively refined
grids. There already exist several frameworks for doing parallel simulations on
adaptively refined structured grids, for example [42—44|. The main motivation
for developing Afivo was to provide a smaller, simpler alternative, not designed
for large scale parallel computations — instead shared-memory parallelism is in-
cluded.

Non-locality complicates the parallel implementation of an algorithm, which
explains why it is hard to construct efficient parallel Poisson solvers. In many
discharges, another non-local process is important: photoionization [45, 46]. The
implementation of photoionization has proven to be quite challenging, see for
example [17, 47, 48|. In chapter 11, we present the implementation of a Monte
Carlo method for photoionization that can be used in plasma fluid models. The
method was inspired by the discrete-photon approach of the particle-in-cell code
described in [11]. The two main contributions are the adaptive absorption of
individual photons on different mesh levels, and the introduction of a systematic
sampling method.

Finally, appendix A contains a more personal discussion of the author’s ex-
perience in trying to become a computational scientist/physicist. Appendix B
describes how the Koren flux limiter [49] can be implemented, to demonstrate
how the implementation of an algorithm can differ from its description.






Chapter 2

An introduction to discharges,
streamers and their numerical
modeling

There exists a wide variety of electrical discharges, some of which are well-known,
such as lightning. Section 2.1 contains a brief description of what electric dis-
charges are and how they form. Most of the work in my thesis focuses on streamer
discharges, which are discussed in more detail in section 2.1.5. Even when we
only consider streamers, there are still several numerical discharge models that
can be used. A brief overview of these models is given in section 2.2, in which
the electrostatic approximation and typical Poisson solvers are also discussed.

2.1 Electric discharges

An electric discharge occurs when an electric current flows through an otherwise
non-conducting medium. A discharge thus requires a voltage difference and a
mechanism to ionize the medium, so that a current can flow.

2.1.1 Conductors and insulators

We can classify most substances based on their electric conductivity. Conduc-
tivity can be expressed in S/m (siemens per meter), as the ratio of the electric
current J to the electric field F.

Conductors such as copper or iron have a high conductivity. In these mate-
rials, some of the electrons can move relatively freely. When a voltage is applied
over a conductor, these electrons are accelerated by the resulting electric field.
As they move through the medium, collisions with atoms or molecules slow them
down again, which generates heat.
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Insulators on the other hand contain almost no mobile electrons or other
charge carriers. With the same applied voltage, the resulting electrical current
will thus be negligible.

Even though we have no perfect conductors or insulators®, the difference be-
tween them is typically large enough to warrant such a distinction. For example,
the conductivity of copper is about 10?2 times larger than that of air. This means
that a copper wire with a radius of 0.1 mm is a better conductor than a column
of air with the radius of the earth.

2.1.2 Important processes in discharges

As already mentioned above, insulators contain almost no mobile charge carriers.
In order to form a discharge, such carriers can be produced by the ionization of
neutral atoms or molecules, which generates electron-ion pairs. The ionization
of a neutral requires a certain energy, which is called the ionization potential.
This energy can be supplied in a number of ways.

Suppose that an insulating gas such as air is exposed to a high electric field.
When an electron-ion pair is created, the free electron will be accelerated by this
field, gaining energy. The ion will also accelerate, but not as quickly because of
its much larger mass. Compared to electrons, ions also lose more energy in elastic
collisions with neutrals, because the colliding masses are similar. Therefore we
ignore the ions for now. As the electron moves through the medium, it collides
with neutral atoms or molecules. There are different types of electron-neutral
collisions, some of the most important ones are:

e Elastic collisions,
e+ M—e+ M

in which the internal energy of the colliding particles does not change. An
amount of energy proportional to me/M can be exchanged, where m, is
the electron mass and M the neutral mass.

e Excitations,
e+M— e+ M*

in which some of the electron’s kinetic energy is transferred to the internal
energy of the atom or molecule. The generated excited states can be lost
due to collisional or radiative quenching, or due to a de-excitation in which
their energy is transferred back to an electron.

e Electron impact ionization,

e+M—se+e+M"

!Superconductors are perfect conductors, but only below a certain current.
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which can happen if the electron carries enough energy to liberate another
electron from the neutral. This is the main ionization mechanism in most
discharges.

e Attachment, in which the electron sticks to the neutral to form a negative
ion. In air, typical attachment processes are

e+02—>0"4+0

(The process e+02 — Oy is less important, because energy and momentum
conservation is hard when going from two to one particle.)

Besides electron impact ionization, ionization can also be produced in other ways,
which we briefly discuss below. Photoionization occurs when excited atoms or
molecules emit UV photons with enough energy to ionize other neutrals. A re-
lated process is Penning ionization: an excited molecule M7 can ionize a molecule
M, if its excitation energy is higher than the ionization potential of Ms. The
heat generated by a discharge can also cause thermal ionization to occur, when
the gas molecules have kinetic energies comparable to the ionization potential.
Ionization can also be produced at surfaces in or around the medium, for exam-
ple due to the 2om impact on an electrode, or by photoemission. Furthermore,
collisions between excited molecules can create higher excited states, which can
eventually lead to ionization.

The main mechanism by which ionization can be lost is recombination, where
one can distinguish between electron-ion recombination and the recombination
of positive and negative ions. For laboratory discharges, the diffusion of charged
particles to the walls can also be important, especially at low pressures.

2.1.3 Electron avalanches

Suppose that we expose a gas such as air to a high electric field. Every now
and then free electrons will appear, for example because a neutral gets ionized
by cosmic radiation. Depending on the applied field and the gas, there is a
certain probability that electrons ionize further neutrals by impact ionization.
There will also be a certain probability of losing electrons due to attachment.
These probabilities can be expressed as Townsend coefficients a and 7. The
number « expresses how many ionizations a single electron produces per unit
length. Because an electron can only attach once, we can interpret ndzr as the
probability that attachment occurs over a small length dzx.

If @ > n, then ionization is more likely than attachment, and we expect
electron avalanches to form. Each electron that gets liberated can in turn liberate
other electrons. The result is an avalanche of electrons, in which the number of
electrons grows approximately exponentially in time. The minimal electric field
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at which @ > 7 is called the critical or breakdown field E.. In atmospheric
air, this field is about 30kV /cm, which corresponds to 240V over a distance of
0.08 mm.

There are several factors that determine the critical field of a gas. The ion-
ization potential and the electronegativity of the gas molecules will play a role,
but the excited states can sometimes be even more important. If electrons are
likely to lose energy in excitations, then this reduces the probability that they
gain enough energy for ionization. This is the reason that discharges form at
lower fields in noble gases, which have relatively few excited states below the
ionization potential. A related difference between molecular and atomic gases is
that molecules have rotationally and vibrationally excited states.

2.1.4 From avalanche to streamer

In electric fields above breakdown we have a > 7, so that electron avalanches
can form. Their growth can be described by the effective tonization coefficient:
@ = a —n. Starting from a single electron, an avalanche contains about N,
electrons after propagating a distance d:

N, = e, (2.1)

In atmospheric air exposed to a background field of 10 MV /m, a typical value
for @ is @ ~ 9 x 10*m~!. For d = 100 um this gives N, ~ 10*, a reasonable
value. But if we take a larger distance, for example d = 1 mm, equation (2.1)
gives N, ~ 10%?. Such a large avalanche would never form: as avalanches grow
larger, they produce space charge effects that modify the electric field, so that
equation (2.1) no longer holds.

The Raether-Meek criterion is a rule of thumb that states that space charge
effects become important when ad ~ 18 to 21, or when N, ~ 10® to 10°. At
this point, the avalanches become streamers?, which are discussed in the next
section.

2.1.5 Streamer discharges

In an electron avalanche, the electrons drift away from the positive ions. This
charge separation increases with the size of the avalanche. Eventually, the charge
from the avalanche starts to significantly modify the electric field that it propa-
gates in. The avalanche then becomes a streamer discharge.

Figure 2.1 shows an illustration of the avalanche-to-streamer transition. The
curved space charge layers screen the electric field inside the discharge, which
leads to electric field enhancement at its tips. Due to this enhancement, streamers
can propagate into regions where the background field is below breakdown.

’In chapters 6-8, we will see that streamers do not form if there are sufficiently many
overlapping avalanches.
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electron density n, field strength | E| Ne — N

Figure 2.1: Illustration of the avalanche to negative streamer transition, showing
the top half of an avalanche propagating to the right. Time proceeds downwards,
and n; indicates the positive ion density. The background field is twice the
critical field, and points to the left. Red and blue indicate high and low values,
respectively. The color coding for the electron density is adjusted for each row.

As can be seen in figure 2.1, the field enhancement occurs on both ends of the
channel. If electrons are present in these high-field regions, they can gain enough
energy to ionize neutrals. The degree of ionization increases in time until the
region becomes electrically screened. In this way, the channel gradually extends
forwards, and the high field translates along with it.

Positive and negative streamers

So-called positive streamers propagate in the direction of the applied electric field,
whereas negative streamers go in the reverse direction. There are also double-
headed streamers, which propagate in both directions. A negative streamer prop-
agates in the electron-drift direction, just like an electron avalanche, whereas
positive streamers go the opposite way.

The major difference between positive and negative streamers is that positive
ones can only grow if there is a source of free electrons ahead of them. These
electrons generate ionization in the high-field region around the streamer tip,
after which they are absorbed into the channel. In air, such electrons are mostly
produced by photoionization. In other gas mixtures photoionization might be
weaker or absent, so that the electron density ahead of a streamer will be lower.
In such gases, streamer channels are typically thinner and less smooth than in
air, see figure 2.2.

A possible explanation for this difference is outlined below. Consider two
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Figure 2.2: Positive streamers in air (left) and 99.9% pure nitrogen (right), under
otherwise the same conditions (needle-to-plane geometry, 0.4 bar, 16 kV). Figure
taken from [50].

points 7 (on-axis) and 7y (off-axis) in front of a streamer, where the electron
density is initially ng, see figure 2.3. At 7y the electric field is larger, so for the
electron growth rate S we have S; > Sy. Suppose that Sy = (1 —7)S7, and that
the degree of ionization in the channel is ng,. By the time that n; = nq,, we
have

n

na/ny & ng/ne = (no ) : (2.2)
Nch

where we have for simplicity ignored the effect of electron motion. In other words,

the smaller ng is, the smaller the ratio ng/n; will be, and with a smaller ratio

we expect a thinner streamer.

Perhaps surprisingly, positive streamers often propagate faster than negative
ones, and they form at lower voltages in a given electrode configuration [12,
51]. A reason for this is that positive streamers naturally keep their strong
field enhancement: when the field ahead of a positive streamer is reduced, its
propagation slows down or even stops, because its growth relies on the ionization
of the gas in front of it. In negative streamers the electrons drift outwards, which
can reduce their field enhancement [12] and slow them down. Because this drift
continues in fields below the critical field, it can effectively ‘extinguish’ a negative
streamer.

Typical streamer properties

The properties of lab streamers depend on multiple factors, for example: the type
of gas, the gas number density, the presence of background ionization, the ex-
perimental geometry and the electric circuit. The properties of a single streamer
channel will also depend on its history (e.g., streamer path and conductivity along
the path) and on the presence of other streamers. Nevertheless, an approximate
characterization is usually possible.
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Figure 2.3: Zoom in on the tip of a positive streamer, showing the electric field
strength. Two points indicated: 71 (on axis), and ro (off axis). The streamer
picture was extracted from figure 4 of [52].

In [51], the properties of positive and negative streamers were experimentally
investigated. In a 4 cm needle-to-plane geometry the voltage was varied from 5
to 96 kV, using three different voltage sources. The properties discussed below
have some dependence on the voltage rise time, because (streamer) discharges
might already form before the maximum voltage is reached, affecting the further
discharge evolution.

In atmospheric air, a minimal radius for positive streamers of about 0.1 mm
was observed, at 5 kV. With increasing voltage, the width of these streamers
increased, to about 3 mm at 96 kV. Negative streamers started to form at a
higher voltage of 40 kV. If positive and negative streamers were created with the
same voltage amplitude, they had a comparable radius.

Streamer velocities were also estimated, but in this case there did not appear
to be a clear minimum. At 30 kV, positive streamer velocities of about 0.5 mm/ns
were observed, which increased approximately linearly to 4 mm/ns at 96 kV. The
negative streamers were found to propagate about 25% slower at the same voltage
amplitude.

Measuring the electric field at the tip of a streamer is difficult experimentally.
In numerical simulations, typical electric fields at the streamer tip are 10 to
20MV/m in atmospheric air [53|. The electron and ion density in the channel
are also hard to measure experimentally. In the appendix of |54], the following
estimate was made using a one-dimensional analysis of a negative ionization
front:

E
Ne = — a(E")dE, (2.3)
€ Jo

where F is the maximum electric field at the streamer tip. In the simulations
presented in [52], about 50% higher densities were found. The electron density
for a streamer in STP air is typically on the order of 10! to 102°m~—3, which
corresponds to a degree of ionization of 1075 to 107> in atmospheric air.
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Scaling laws for streamer heads

Here we briefly introduce some of the scaling laws for streamer discharges |2, 50].
A streamer grows due to the high-field region ahead of it. In this region, elec-
trons typically lose energy in two-body collisions with neutrals, such as electron
impact excitation or ionization. The electron mean free path [, is thus inversely
proportional to the gas number density NV

1

Im —. 2.4
fp X N ( )
Since the energy gained between collisions is proportional to the applied electric
field E, the energy distribution depends on the ratio £/N. This motivates the

Townsend unit Td, which is defined as
1Td =107V .m? (2.5)

If we change N, but keep E/N constant, how do the streamer properties change?
Most length scales L are proportional to the electron mean free path, so we have
L o< g o l (2.6)

N
The electron velocity distribution depends on E/N, like the energy distribution.
For typical time scales, such as the time between ionizing collisions, we thus have

1
—. 2.
t o N (2.7)

In electrostatics, the electric field can be computed as

1 / ()T g 2.8)

~ 4reg lr—r/3°

where p is the charge density. If lengths scale as 1/N, then for constant E/N we
have
pox N2. (2.9)

The electron and ion densities also scale as N2, and the degree of ionization is
proportional to N. The scaling laws given above are not perfect, for example
because:

e Three-body processes lead to a different scaling behaviour. An important
example is three-body attachment to oxygen molecules.

e Processes in the gas (such as chemical reactions and heating) depend on
N, which is especially important inside the streamer channel.

e Although length scales for photoionization are proportional to 1/N, the
collisional quenching of emitting states depends on N.
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2.1.6 Other discharges

Depending on the electrode configuration and the voltage source, different types
of discharges can be observed in the lab [55]. These include for example:

e Townsend discharge A stationary discharge with negligible space-charge
effects, in which electron multiplication takes place between two electrodes.

e Glow discharge This is a stationary discharge that can be used for light-
ing. Glow discharges can be seen as Townsend discharges with space charge
effects, which cause the formation of different spatial regions.

e Corona discharge This is the general name for discharges that form
around a high voltage electrode and exhibit space charge effects. There
are pulsed and continuous corona discharges, depending on the voltage
source. Corona discharges typically include streamers.

e Arc, spark The electric current in a discharge can significantly increase
the temperature of the gas. Where the gas heats up the pressure increases,
which generates an expansion wave. This locally reduces the critical field,
making it more likely that current keeps flowing along the heated path.
When the kinetic energy (or temperature) of gas molecules, ions and elec-
trons becomes comparable, we speak of an arc or a spark. In such a dis-
charge, thermal ionization plays an important role.

Most people are probably more familiar with discharges in nature, such as light-
ning or the small electrostatic discharges sometimes occur when one for example
takes off a sweater. Other discharges in nature are for example:

e Lightning leader In lightning discharges, the conductive channels are
generated in different stages. Streamers produce the first ionized channels,
mostly without heating the gas. As electric current flows through these
channels, they heat up, and some of them become lightning leaders. After
a connection to ground, a large amount of charge can suddenly flow, which
generates a bright return stroke. This causes rapid heating of the ionized
channel, which generates a shock wave: thunder.

e Sprite A sprite discharge consists of streamers high in the atmosphere, at
50 — 90 km. At these altitudes, the atmosphere has a much lower density>.
Therefore sprite channels can be tens of kilometers long, and hundreds of
meters wide.

e Other discharges High in the atmosphere there are numerous other dis-
charges, e.g., halos, blue jets, and elves [56].

3The density decreases exponentially with altitude.
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2.1.7 Motivation for studying streamers

Why do we study streamer discharges? There are a number of reasons. First
of all, there is scientific curiosity. Even though streamers were already observed
and described in the 1920s, we still do not understand all of their properties.
For example, even though quite some research has been done on the branching
of streamers, see e.g., [14, 25, 26, 28, 57-59], we are not aware of a model that
predicts when positive streamers branch. Similarly, there is currently no simple
model that predicts how the radius of a single streamer will change in time. For
the curious scientist, there are thus enough basic research questions that still need
to be answered. Since streamers are often the precursor to other discharges, such
as lightning leaders, understanding them can also be important when studying
these later discharges.

From the point of view of applications, there are (at least) two reasons why
we need a good understanding of streamer properties: To design equipment in
such as way that the formation of streamers is prevented, important in the high-
voltage industry, and to optimize applications in which streamers occur.

In streamer discharges, the energy from the applied electric field is mostly
transferred to electrons, because they accelerate much faster than ions. In the
streamer head regions, electrons can reach kinetic energies of a few tens* of
eV’s. One eV already corresponds to an electron temperature of about 10* K, so
these energetic electrons can be used to catalyze chemical reactions that would
otherwise only occur at very high temperatures. Applications in which streamers
are used are for example gas and water cleaning [62], ozone generation [6] and
plasma medicine [7].

2.2 Modeling streamer discharges

In this section, we look at streamers from the modeling point of view. We first
discuss some of the general challenges in simulating streamers, then we briefly
introduce particle and fluid models for streamer discharges.

2.2.1 Challenges in streamer modeling

A combination of different factors makes the modeling of streamers quite chal-
lenging:

e There are steep gradients in the electron and ion density, which generate
thin space charge layers.

e The propagation of streamers is strongly non-linear, because of the coupling
with the electric field that is generated by curved space charge layers.

4The process of electron-runaway can generate electrons with energies of several keV and
higher, see for example [22, 36, 60, 61].
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e Streamers are a transient phenomenon.

Because of the non-linear propagation, the thin space charge layers have to be
sufficiently resolved, otherwise the behavior can be far from the correct dynamics.
In atmospheric air, this means that features of a few pm have to be resolved,
whereas the streamer itself is typically much larger (cm or more). This multiscale
aspect is especially challenging for three-dimensional simulations. Note that at
least a two-dimensional description is required to model the curved space charge
layers of a streamer.

The transient nature of streamers implies that there is no stationary solu-
tion. If streamers would be uniformly translating, a stationary solution could
be obtained by going to a co-moving frame. However, streamers are generally
not found to be uniformly translating, so that time-dependent simulations are
required. In atmospheric air, the smallest time scales that one has to consider
are on the order of 10713 to 10~ s:

e The maximal collision rate of electrons is about 10'3 Hz, which corresponds
to a collision time of 1073 s. This is relevant for particle models.

e The Maxwell time T\faxwen = €0/0 for electric screening can be very short,
see chapter 7. Taking o = euen. as the plasma conductivity due to elec-
trons, we for example get Thaxwenl = 1071%s for n, = 1.5 x 10>! m~3 and
pe = 4.0 x 1072m2/(Vs).

o In general, electrons should move less than one grid spacing at a time. The
electron drift velocity divided by the grid spacing can give time scales of
1075 or less.

Having to resolve such small time scales greatly increases the cost of simulations.
An additional complication is that the electric field in such a simulation has
to be recomputed at every time step. Using the electrostatic approximation,
see section 2.2.5, we need to compute the electric potential, or solve Poisson’s
equation. Although this is a classic and much studied problem, solving Poisson’s
equation sufficiently fast is still one of the major challenges in developing streamer
simulations, see section 2.2.6.

2.2.2 Particle models

We have already looked at the essential processes in streamer discharges in section
2.1.2: electrons gain energy from an electric field, and lose this energy in various
collisions with neutrals. A particle model directly describes the behavior of these
electrons. In such a model, a large number of electrons is followed over time,
by storing their position x and velocity v. The electrons are accelerated by the
electric field, and depending on their energy, they have a certain probability of
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colliding with a neutral. These probabilities are the input data for a particle
model, in the form of cross sections.

The neutrals themselves are typically included as a homogeneous background,
because it would be computationally unfeasible to simulate them individually®.
The location of an electron-neutral collision can then be determined by a Monte
Carlo procedure, using random numbers. Depending on the application, one can
include the ions that are produced as a density or also as particles. Even if we only
model the electrons as particles, there will typically be more electrons than we can
simulate on a computer. For this reason, so-called super or macro particles are
often used, see chapter 4. Such particles represent multiple physical electrons,
which reduces the computational cost at the expense of increased stochastic
fluctuations.

Directly evaluating the electric forces between the electrons (and ions) would
be too costly. Instead, the particles are mapped to a density on a numerical grid.
On this grid, the electric field is computed and interpolated back to the particles.
Codes that use this approach are referred to as particle-in-cell codes.

In general, the use of a particle model has the following (dis)advantages:

Computationally expensive

Requires detailed input data, in the form of cross sections

- The use of super-particles generates artificial noise

+ Close to a ‘first principles’ approach, relatively few assumptions

+ The distribution function of particles f(x,v,t) is directly approximated
+

Realistic particle density fluctuations can be included

2.2.3 Fluid models

In particle models, the use of super-particles reduces the computational cost.
The main reason that this works is that not all electrons have to be described
individually to capture their ‘average’ behavior. In fluid models, this idea is
pushed even further: the electrons are no longer described as particles but as a
density. A review of fluid models for streamer discharges can be found in [19].

In the simplest case, just the electron and ion density are considered. How
these densities change in time can be described by making some (phenomenologi-
cal) approximations. A classical and popular example is the convection-diffusion-
reaction model:

815716 =V 'je + S
8tni =5
Je = vne + DVng,

5A mm? of atmospheric air already contains 2.5 x 10'® neutral molecules.
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where n, and n; are the electron and positive ion density, S is the source term,
Je is the electron flux, v the velocity of electrons and D is a scalar diffusion
constant. To use such a model, these terms have to be specified. A popular
strategy is to use the so-called local field approximation, which assumes that the
electrons are relaxed to the local electric field. By measuring their properties in
various fields, one can then construct tables with coefficients, which can be used
in the model.

Fluid models can also be derived in a systematic way, by taking ‘moments’
of the Boltzmann equation. Several ‘moments’ can be included, for example
the density n, the momentum density mnwv, the energy density %mmﬂ, and so
on. For each moment, an equation can be derived expressing its change in time.
Because these equations depend on a higher moment, some approximation has
to be made to close the system.

For many applications, fluid models are computationally cheaper than parti-
cle models. This speedup comes at a cost: some assumptions have to be made
about the particle distribution, which may not always be valid. Fluid models
that contain more physics will have a wider range of validity, but their implemen-
tation can be challenging. When multiple coupled equations have to be solved,
the steep gradients present in a streamer discharge can easily lead to oscillations.

Fluid models do not contain the density fluctuations present in particle mod-
els. This can be an advantage, because there is no artificial noise, but also a
disadvantage, because physical density fluctuations cannot be described®.

2.2.4 Other models
Hybrid models

Here we briefly mention two other classes of models that can be used for sim-
ulating streamers. The first are the so-called hybrid models, which combine a
particle and a fluid approach, see for example |20, 21, 63]. There are several ways
to combine these models, for example:

e Separate models in energy, by describing high-energy electrons as particles,
and the low energy ones as a density.

e Separate models in space, by using a fluid model in part of the domain and
a particle model in the rest.

A model in which electrons are treated as particles and ions as a fluid can tech-
nically also be called a hybrid model.

In [28], certain density fluctuations have actually been incorporated into a fluid description.
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Tree models

Another class of models are tree or macroscopic models. The microscopic simula-
tion of the propagation of even single streamers has proven to be computationally
expensive; in order to simulate larger discharges containing many streamers, we
therefore need to greatly simplify their description. In a tree model, this is done
by not resolving the micro-physics. Instead, the streamer channels are described
as conducting lines or cylinders. Their growth velocity, conductivity, radius and
branching behavior then have to come from a macroscopic description. In [64],
a phenomenological discharge model was introduced to investigate the fractal
nature of discharges in a plane. Several variations of this model have been de-
scribed in the literature. Recently, a three-dimensional tree model including
more realistic physics and consistent charge conservation was presented in [65].

The validity and accuracy of a tree model greatly depends on how well the
streamer channels can be characterized. It is not yet known what kind of de-
scription would be required. In the ideal scenario, simple equations are found
that can predict how a streamer develops. If this does not work, another op-
tion would be to perform extensive parametric studies, to generate tables with
streamer properties under different conditions. This is a topic that I will work
on at the very end of my PhD, so that the results will not be in this thesis.

2.2.5 Electrostatic approximation

In discharge simulations, we typically assume to work under electrostatic con-
ditions, which greatly simplifies the calculation of the electric field. Instead of
having to solve Maxwell’s equations

V- E = p/e, (2.10)
V-B=0, (2.11)
V x E=—0,B, (2.12)
V x B =py(J+¢co0E), (2.13)

only the electrostatic potential ¢ has to be computed

V2p = —p/eo, (2.14)

after which the electric field is obtained as E = —V¢. A system can be described
by electrostatics when
VxE=-0B=0, (2.15)

or in other words, when F is conservative or rotation-free. With some approx-
imations, we can estimate to what extent this condition holds for a streamer
discharge.

For simplicity, we approximate the streamer as a finite wire, see figure 2.4. We
assume that the wire carries a constant current I. Assuming that the streamer
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streamer

wire

Figure 2.4: Schematic drawing of a streamer (top), which is then represented as
a finite wire (bottom). A point that is a distance r above the ‘streamer head’ is
indicated.

velocity vs is significantly smaller than the speed of light, one can obtain the
following expression for the magnetic field at a distance r above the wire [66]

1
B = ZL [cos a + cos (] , (2.16)

r
see figure 2.4 for the definition of the angles. The largest magnetic field occurs
near the middle of the streamer where o and 3 are small, so that

~ Mol
2mr’

(2.17)

The right-hand side of the above equation is the expression one gets for an infinite
current-carrying wire or outside a current-carrying cylinder”. The current I can
be written as

I=A-|J|=7r* encpicFin, (2.18)

where A is the cross-sectional area of the streamer, J the current density, n.
the electron density, p. the electron mobility and Ei, the average electric field
inside the channel. For atmospheric air, reasonably high values are » = 1 mm,
ne = 102'm=3, By = 5 x 10°V/m and g = 7 x 1072m?/(Vs). This gives
B ~ 3.5mT. Such a magnetic field has little effect on an atmospheric discharge,
as it gives an electron cyclotron frequency of about 108 Hz, whereas the electron
collision frequency is 10'? to 10'3 Hz.

To determine how good the electrostatic approximation is, we have to esti-
mate the magnitude of |V x E| = |0;B|. We expect 9;B to have the largest
magnitude right above the ‘streamer head’, see figure 2.4. If the wire extends at
a velocity vs, then in approximation
. polvs 1

B~ = " uovs |J|, 2.19
a8 ~ B = g, 1] (219)

" Assuming that the current distribution in the cylinder depends only on the distance from
its axis.
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where we have used the fact that @« < 1 and 8 = 7/2, so that 9; cosa ~ 0 and
0y cos B = vs/r. Using the above values and vs = 5 x 10° m/s gives

OB ~ 105 T/s. (2.20)

This is thus also a typical value for the maximum of |V x E|. On the other
hand, the typical maximum for V- E = p/gg is on the order of 101! T/s. Because
we have |V x E| < |V - E|, the electrostatic approximation is probably quite
accurate.

2.2.6 Solving Poisson’s equation

As already mentioned above, solving Poisson’s equation sufficiently fast is a major
challenge in developing streamer simulations. How difficult this task is depends
first of all on the spatial dimension of the simulation. In 1D, 9, F = p/eg has as

a solution
x

E(x) = E(x0) +/ p(x') /g0 d’, (2.21)
o
which can easily be computed numerically. In 2D and 3D, Poisson’s equation
has to be solved, from which the electric field can be obtained as the numerical
gradient. A good (although dated) overview of methods can be found in [67].
There are essentially two classes of Poisson solvers: direct methods and iterative
methods. With an iterative method, each iteration improves the solution until
there is convergence, whereas a direct method directly gives its ‘best’ solution.

The type of mesh plays an important role in deciding which Poisson or elliptic
solver to use. Depending on the type of grid, there are probably four competitive
options:

e The FACR algorithm [68], a combination of the Fourier transform and
cyclic reduction. This direct algorithm is for example implemented in Fish-
pack [30], which is used for the 3D particle model described in chapter 5.
The FACR algorithm has a computational complexity of N log(N), where
N is the number of unknowns.

e Geometric multigrid, an iterative method which uses a hierarchy of grids
to improve the rate of convergence. Multigrid solvers are implemented in
for example Mudpack [69] or [70], and they have an optimal complexity of
order N [39-41]. In Afivo, a simulation framework described in chapter 10,
we have implemented geometric multigrid on adaptively refined quadtrees
and octrees.

e A direct sparse solver, which can solve arbitrary sparse systems of linear
equations. Such solvers have different stages, and typically there is a sepa-
rate factorization and/or analysis step before the solution can be computed.
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The cost of the steps depends on the matrix structure, and there is gen-
erally a trade-off: the more work is put into factorization or analysis, the
faster solutions for the given matrix can be obtained. Examples of direct
sparse solvers are MUMPS [71] and UMFPACK |[72].

e An iterative sparse solver combined with a pre-conditioner. In principle,
such a method can be used to solve arbitrary sparse systems of linear
equations. The efficiency depends strongly on the quality of the pre-
conditioning, however. Iterative sparse solvers typically have much lower
memory requirements than direct sparse solvers. An iterative method
can for example combine GMRES [73] (a Krylov method) with Boomer-
AMG [74] (an algebraic multigrid pre-conditioner), but there are many
other options.

These methods vary in their flexibility. Whereas the FACR algorithm can only
be used for separable elliptic problems on Cartesian grids®, geometric multigrid
can already be applied much more generally. For complicated grids with e.g.,
embedded boundaries or irregular cells, one typically has to resort to a more
general sparse solver.

In practice, the usage of a direct sparse solver can work well for two-dimensional
simulations: one can construct complex mesh geometries as long as one is able
to discretize the underlying equations. Each update of the numerical mesh will
incur some computing costs, because the sparse solver has to operate on a new
matrix. This makes it more attractive to work with a statically refined mesh, or
a mesh that is not updated very frequently. In most cases, solution times will
not be prohibitive.

If we go to three-dimensional simulations, the number of unknowns can in-
crease by two or more orders of magnitude. This makes the computational cost
of direct sparse solvers prohibitive for time-dependent streamer simulations. An
attractive alternative is geometric multigrid. With this technique, the numerical
mesh of the simulation can directly be used to efficiently compute solutions to
elliptic equations. Changing the mesh in time does not incur extra costs, and
no matrix needs to be stored. The downside is that geometric multigrid is not
as flexible as a direct sparse solver; it is therefore harder to include for example
curved electrodes.

8Cylindrical coordinates are also possible.






Chapter 3

A comparison of 3D particle,
fluid and hybrid simulations for
negative streamers

Modeling individual free electrons can be important in the simulation
of discharge streamers. Stochastic fluctuations in the electron density
accelerate the branching of streamers. And in negative streamers, en-
ergetic electrons can even ‘run away’ and contribute to processes such
as terrestrial gamma-ray and electron flashes. To track energies and lo-
cations of single electrons in relevant regions, we have developed a 3D
hybrid model that couples a particle model for single electrons in the
region of high fields and low electron densities with a fluid model in
the rest of the domain. Here we validate our 3D hybrid model on a 3D
(super-)particle model for negative streamers without photo-ionization in
overvolted gaps. We show that the extended fluid model approximates
the particle and the hybrid model well until stochastic fluctuations be-
come important, while the classical fluid model underestimates velocities
and ionization densities. We compare density fluctuations and the onset
of branching between the models, and we compare the front velocities
with an analytical approximation.

This chapter has been adapted from [75]:

A comparison of 3D fluid, particle and hybrid model for negative streamers,
C. Li, J. Teunissen, M. Nool, W. Hundsdorfer, U. Ebert, Plasma Sources Sci.
Technol. 21, 055019 (2012)
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3.1 Introduction

Streamers are growing ionized fingers that appear when ionizable matter is sud-
denly exposed to high voltages. Streamers pave the path for lightning leaders
and precede sparks, and they occur without the subsequent stages in the form of
enormous sprite discharges high above thunderclouds. Streamers are also used
in diverse industrial applications. As reviewed, e.g., in [2, 23, 24|, the evolution
of a single streamer consists of phenomena on several length scales: the ionizing
and exciting collisions of fast electrons with molecules, the emergence of an ion-
ization front with an electric screening layer, and the emergence of a streamer
finger surrounded by such a screening layer and ionization front. The dynamical
instability of a thin screening layer can make a streamer branch [19, 23-28|. In
negative streamers with high field enhancement energetic electrons can run away
from the front and emit hard electromagnetic radiation; taking the further in-
teraction of these run-away electrons with the atmosphere into account, this is a
possible explanation 11, 22, 36, 61, 76, 77| of terrestrial gamma-ray flashes 78|,
electron beams [79] or even electron positron beams [80] emitted from active
thunderstorms.

Streamer propagation is mostly investigated with a density or fluid approx-
imation for the electrons and ions, which continues to be very challenging due
to the widely separated scales; for recent articles we refer to [81-86] and for a
recent review to [19]. However, there are stages of evolution where the statistics
of single electrons matters, either due to their nonthermal energy distribution
with long tails at very high energies [11, 21|, or due to their stochastic pres-
ence in non-ionized regions. Examples include electron run-away from streamers,
ionization avalanches created by single electrons that have now been observed
experimentally in very clean gases [87-89), or density fluctuations that can accel-
erate streamer branching, as was shown in recent simulations [28]; this last study
investigated positive streamers in air with photo-ionization in a background field
below the ionization threshold.

To track the energy and density fluctuations accurately, a Monte Carlo parti-
cle model for streamer simulations tracks single free electrons as they move and
randomly collide with neutrals; neutral molecules are not simulated but provide a
background that electrons stochastically collide with, see for example [9, 11, 21].
Here we look at very short timescales on which ions can be assumed to be immo-
bile. The model contains the energy and location of each electron as well as the
spatial distributions of ions and of the different types of excited states. Therefore
it also can accurately simulate rare events like electron run-away or avalanche
formation from single electrons. But computer memory strongly constrains the
number of electrons that can be tracked. Streamers usually form when the total
number of free electrons reaches 107 — 10” in air at standard temperature and
pressure [10, 90, 91|, and during streamer growth the electron number contin-
ues to increase. This makes computations with real electrons very expensive or
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even impossible, and typically super-particles representing many real particles
are used to accelerate computations. However, super-particles can introduce un-
physical fluctuations and numerical heating, as shown in [10] and below. They
also corrupt the statistics of rare events. This statistical problem motivated us
to develop our ‘spatially hybrid model’.

In a streamer discharge, most electrons reside in high densities in the low field
region in the streamer interior. This region is typically in the ‘hydrodynamic’
regime, that can be well described by a fluid model. Relatively few electrons
are in the region of strong field enhancement at the streamer tip or outside the
streamer, and only those electrons should be tracked individually with a single
particle model (as opposed to super-particles). Therefore we have developed
a code that is hybrid in space |20, 21, 76|, applying a fluid approximation in
the streamer interior and a single particle model at the streamer tip and in the
essentially non-ionized region around it. We call it the ‘spatially hybrid model’ to
distinguish it from other hybrid models, see for example [63]. The model follows
single electrons and their fluctuations in the dynamically relevant region.

In the present paper, we test the consistency and correct implementation
of the particle and the hybrid model on propagating negative streamers in air
(while neglecting photo-ionization), and we illustrate the influence of the (super-
)particle fluctuations on the destabilization of the streamer ionization front. For
comparison, we also present simulations of the same system with a classical and
with our extended fluid model, and we compare the computing times. In the
conclusion we also discuss the effect of photo-ionization that is excluded in the
present work for technical reasons. Therefore the present results are actually
more appropriate for discharges in gases without photo-ionization, like pure ni-
trogen.

3.2 Description of particle, fluid and hybrid model

3.2.1 Particle model

The Monte Carlo particle model is of PIC-MCC type. It describes the motion
and collisions of free electrons in a streamer discharge in air without photo-
ionization. ‘Particle in cell’ (PIC) means that the electric charge of electrons
and ions is mapped to an electric charge density on a numerical grid; this charge
density changes the electric potential (from which the electric field is calculated)
according to the Poisson equation. ‘Monte Carlo collision’ (MCC) means that
collisions of the free electrons with the neutral background molecules occur ran-
domly, so neutral molecules do not need to be simulated. Ions are treated as
immobile. The Monte-Carlo procedure and the differential cross-sections for the
particle model are described in detail in section 2.1 of [21].

The particles represent single electrons during the initial stages of the sim-
ulation, as indicated in the text. However, when the particle number becomes
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too large for the computer memory, super-particles are introduced that represent
several real particles. While particles carry their generic physical distributions
and fluctuations of density and energy, the fluctuations of super-particles are
unphysically increased and can generate artifacts when fluctuation effects or rare
events become important. To avoid this problem, we have developed the spatially
hybrid model. The different models are compared in sections 3.3 and 3.4.

3.2.2 Classical fluid model, bulk and flux coefficients

The classical fluid model for streamers has a long tradition in streamer model-
ing, much longer than the more microscopic particle model. Originally it is a
phenomenological model based on the essential physical mechanisms and con-
servation laws. It can be traced back at least to the 1930s. The classical fluid
model approximates the electron dynamics by a reaction-drift-diffusion equation
for the electron density, and the reaction and transport coefficients are assumed
to depend on the local electric field, in the so-called ‘local field approximation’.
The model is completed with the reaction equation for the ions and with the
Poisson equation for the electric potential.

In order to approximate the particle dynamics well, the coefficients in the
fluid model should be derived from the particle model. This can be done either
through averaging over the Boltzmann equation for the electron distribution in
configuration space, or through evaluating swarm simulations in a Monte Carlo
particle model; in a swarm simulation the evolution of an approximately Gaussian
electron distribution in a constant electric field is traced by a particle model. For
the present paper the transport coefficients and the reaction rates for the fluid
model are derived by fitting the fluid coefficients to the swarm dynamics in a
Monte Carlo particle model, as evaluated in [21]. (Please note that [21]| contains
some corrections to the reaction and transport rates described in [20, 76].) The
coefficients in [21]| were derived up to a field of 250 kV /cm in air at standard
temperature and pressure, and for stronger electric fields fit formulas from the
same article are used.

Furthermore, in a reactive plasma one needs to distinguish between bulk
and flux coefficients [92]. While bulk coefficients characterize the dynamics of
a swarm as a whole including its reactions, flux coefficients characterize the
dynamics of individual electrons within a swarm. Robson et al. [92]| express the
general opinion that bulk data should not be used in low-temperature plasma
simulations, see also figure 2 in [92].

However, essential physics is missing in the classical or minimal model as we
found in |20], and as will be discussed much more extensively and systematically
in a forth coming article [93]. For example, in strong electric fields, the ionization
rate cannot be computed accurately from just the local electric field and the
local electron density. Therefore in [20] we extended the generation term in
the fluid model with a gradient expansion term while in [93] a higher order
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model is derived in a systematic manner by averaging over more moments of the
Boltzmann equation. An important conclusion is that accurate results cannot be
expected from the classical fluid model, independently of whether flux or bulk
coefficients are used, as the functional form of the equations is not sufficiently
general.

For comparing the classical fluid model with the other models, we have chosen
to use bulk coefficients. From studies of planar (1D) fronts, we know that bulk
coefficients in the classical fluid model will lead to approximately correct front
velocities. This is the case because the leading edge of an ionization front, that
pulls the front along, propagates under swarm-like conditions; for details, we
refer to [76] or to a full mathematical analysis of pulled front dynamics to [94].
A particle swarm should be parameterized with bulk coefficients in the classical
model (recall that the bulk coefficients are constructed to give agreement for
particle swarms). Therefore, the streamer ionization front should also be modeled
with bulk coefficients in the classical model. The front velocity is then close to
that of a particle model in the same electric field, although the ionization density
behind the front is too low [76]. If flux coefficients would be used, the ionization
density behind the front would be a bit higher. (Both sets of coefficients produce
the same amount of ionization per unit time in a given electric field. The flux
mobility is typically lower, therefore a larger amount of electrons per unit length
is produced, and the electron density is higher.) But the front velocity would be
significantly too low with flux coefficients, and therefore we use bulk coefficients.
We stress again that accurate results can not be expected from the classical fluid
model with either set of coefficients.

3.2.3 Extended fluid model

The ionization term in the classical fluid model for streamers is calculated in
local field and local density approximation, but the comparison with particle
models shows that the ionization densities in the streamer interior are too low
behind a planar front in a fixed electric field |20, 76, 95]. This is because the
mean electron energy varies even within a swarm in a constant electric field: at
the front edge of the swarm, the electrons have higher energies and are more
likely to ionize the neutrals, while the electrons at the back end of the swarm
are slower on average and less likely to ionize. By including the first term of a
gradient expansion in the electron density in the impact ionization rate, both
particle swarms and planar ionization fronts are approximated well [20]. The
extra term was derived in a model with flux coefficients, therefore we need to use
flux coefficients for consistency with the model derivation.
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3.2.4 Hybrid model

The hybrid model connects the particle model with the extended fluid model
through a moving model interface with a buffer zone, as described extensively
in [21] and briefly recalled in the introduction. When the flux of electrons across
the interface between particle and fluid model is calculated, the same definition
of coeflicients should be used on both sides in order to be physically consistent;
otherwise the physical inconsistency becomes visible in the form of a discontinuity
of the electron density at the model interface [20]. For further details and the
numerical implementation, we refer to [20, 21, 76]. The important feature of
the spatially hybrid model is that it follows the particle dynamics only in the
dynamically relevant region, and that it therefore can continue to track the single
electron fluctuations much longer than the (super-)particle model.

3.3 Simulation methods and results

3.3.1 The simulated system

We simulate the evolution of a negative streamer in air without photo-ionization,
at standard temperature and pressure. The streamer propagates in a background
field of -100 kV /cm, or 372 Td; this field is well above the break-down value. The
simulation volume is 1.17 mm long in the z-direction parallel to the electric field
and extends up to +0.29 mm outwards from the axis in the z and y direction
where homogeneous Neumann boundary conditions are applied to the electric
potential.

The initial distribution of electrons and ions is generated in the following
manner: first 500 electrons and ions are placed at a distance of 0.115 mm from
the cathode on the z-axis and followed by the particle model for 60 ps. At this
time, there are about 2500 electrons and ions with spatial distributions close to
a Gaussian; the electrons are at this time all in the interval of 0.120 to 0.136 mm
from the cathode. These electron and ion distributions are then used as an initial
condition for the simulations in all four models; for the fluid models, the swarm
is mapped to densities on the numerical grid.

3.3.2 Numerical implementation

The models were already described in the previous section, and references to
more detailed discussions were given there as well. Electric field and electron
and ion densities are calculated on a uniform grid of 256 x 256 x 512 points with
Ax = Ay = Az = 2.3 pum, using the numerical schemes described in section
2.2 of [21]. The time step is At = 0.3 ps. The Poisson equation for the electric
field is solved in all models at each time step with the same fast elliptic solver
FisHpack [30].
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In both particle and hybrid simulation, the particle model with single elec-
trons is used in the early stages, until the number of electrons reaches 2 x 107;
this occurs at about 0.46 ns. At this time, the particle model switches to super-
particles, while the hybrid model switches to the full hybrid scheme: the fluid
model is applied inside the streamer channel where the electric field is less than
0.95 Ej or where the electron density is larger than 0.7 n¢ naz, and the particle
model in the remaining part of space; here F} stands for the background field
and 7 maz s the maximal electron density in the complete simulation volume.
When the hybrid model is activated, electrons inside the streamer channel are
removed from the particle list, and the particle model is only applied at the
streamer head where it continues to trace all single electrons. In the particle
model, on the other hand, super-particles are introduced at the time 0.46 ns by
removing at random every second electron, and by doubling the weight of the
remaining particles.
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Figure 3.1: The electron density over time in the four simulation models. Den-
sities are plotted on two orthogonal planes intersecting the 3D domain. On the
right the full height of the simulation domain (1.17 mm) is shown for the 0.72 ns
hybrid model case.
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3.3.3 Overview of simulation results for the four models

Figure 3.1 shows the evolution of the electron density from time 0.72 ns up to
0.9 ns, with time increments of 0.03 ns, and figure 3.2 shows the the electric fields
at 0.72 ns and at 0.9 ns. The electron density and the electric field on the z-axis
are shown in figure 3.3, also at 0.72 ns and 0.9 ns.

Fluctuation and destabilization effects can be seen more clearly in figure 3.4
that zooms into the propagating streamer heads. The electron density, electron
minus ion density and electric field are shown at ¢t = 0.72, 0.81 and 0.9 ns for the
extended fluid model, the particle model and the hybrid model.

3.3.4 Streamer propagation in the four models

At the earlier stage of 0.72 ns, figures 1 and 2 show that a streamer has emerged
and grown to about the same length in all models, and that it has approximately
the same radius and field enhancement at the tip. The streamer in the classi-
cal fluid model (upper row) has stayed a bit behind, and electron and charge
density are lower, though the field enhancement is still similar. The propaga-
tion differences can be seen more clearly in figure 3.3, which shows the electron
density and electric field on the z-axis at 0.72 ns and 0.9 ns. At 0.72 ns, the
profiles of extended fluid, particle and hybrid model are about the same, but
the classical fluid model has a lower field enhancement, lower electron density
and shorter propagation length. That the streamer in the classical fluid model
grows more slowly both in space and in electron density, while the other models
have comparable results, is also reflected in the total number of electrons: it is
(5.340.2) x 10® in particle, hybrid and extended fluid model (more precisely 5.1,
5.6 and 5.3x10%), while it is only 2.9 x 108 in the classical fluid simulation. We
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Figure 3.2: The electric field strength in the four models at ¢t = 0.72 and 0.9 ns.
The full height of the simulation domain is shown (1.17 mm).
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Figure 3.3: Electron density (upper plot) and electric field strength (lower plot)
on the vertical z-axis for the same two time steps 0.72 ns and 0.9 ns as in
figure 3.2. The different models are classical fluid model (dashed dark blue line),
extended fluid model (solid light blue line), particle model (red crosses), and
hybrid model (black circles).

will discuss the dynamics of the classical fluid approximation in more detail in
section 3.4.1.

At this stage, the particle model uses 1.36 x 107 super-particles with a weight
of 32 real electrons, while the hybrid model follows 2 x 107 real electrons and
leaves the rest to the fluid region. The super-particles in the particle model al-
ready create visible fluctuations of the space charge density, as discussed earlier
in [10]. The fluctuations of the local field create numerical heating, and this
effect increases as time evolves. Such numerical artifacts can be somewhat sup-
pressed if the super-particles are formed adaptively using particle coalescence
techniques [36, 96-98|. (This is discussed in detail in chapter 4.)

But as the number of particles increases, the increased fluctuations will affect
the simulations, especially for negative streamers where perturbations in the
electron density can grow as they move outwards. The hybrid model does not
suffer from such artifacts.

3.3.5 Front destabilization in the four models

During the further evolution up to time 0.9 ns, the streamer ionization front
destabilizes in three of the four models, but in characteristically different man-
ners.

The streamer in the classical fluid model is destabilizing into off-axis branches,
which are quite symmetric (as we expect in the deterministic fluid model, and
as we have seen previously in the simulations of Montijn et al. [26]). The actual
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Figure 3.4: Zoom of the electron density (top row), electron minus ion density
(middle row) and electric field strength (bottom row) at t = 0.72, 0.81 and 0.9 ns.
The vertical window shifts upwards with 2.3 mm/ns; it reaches the interval of
0.72 to 1.12 mm at the last time step.
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branching can also be seen in the plot for time 0.9 ns in figure 3.3: the electron
density on the z-axis in the classical fluid model starts to decrease for z >
0.69 mm. As the ionization density is determined by the electric field at the
front at the moment when it passed that particular position, the electric field at
the front increases until the position 0.69 mm is reached, and decreases thereafter
on the axis as the lateral protrusions grow and screen the electric field on the
axis.

The streamer in the extended fluid model propagates in a stable manner until
the last time step 0.9 ns. The off-axis branching of the classical fluid model is
suppressed by the higher ionization rates on the axis in the extended fluid model,
that are due to the gradient correction in the ionization term. However, it cannot
be excluded a priori that the streamer later destabilizes along a different mode.

The streamers in the particle and in the hybrid model both clearly show den-
sity fluctuation effects, both at the front and in the interior charge density. The
fluctuations in the particle model are unphysical due to super-particle artifacts
while the fluctuations in the hybrid model stay physical. The fluctuations at
the front destabilize the streamer into several branches in both models, but the
streamer tips close to the axis keep the strongest field enhancement and screen
new branches up to the end of the simulation at 0.9 ns. It should be mentioned
here that the hybrid model operates with real particles up to 0.69 ns, but has
introduced super-particles of weight 8 at 0.9 ns. The weight of the super-particles
in the particle model at 0.9 ns is 16 times higher, namely 128.

The extended fluid model and the particle model agree very well in propa-
gation velocity, field enhancement and ionization density, up to the large super-
particle fluctuations in the particle model. The hybrid model has similar a ion-
ization density and electric field profile, but is ahead of the other models. At
0.9 ns, there are 3.9, 4.6 and 3.5x10? electrons in particle, hybrid and extended
fluid model, and only 1.3x10” in the classical fluid model.

3.3.6 Computing times

To obtain the results presented here, the computing time for the fluid simulations
was about 1 week, for the hybrid simulation about 1.5 weeks, and for the particle
simulation about 2 weeks (all on an Intel Q6600 2.4 GHz quadcore processor).
The cost of solving the Poisson equation at every time step dominated the to-
tal computational cost, therefore computing times are similar for the different
models. All the simulations ran sequentially on a single core.
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3.4 Discussion of the results

3.4.1 Classical fluid model

Our results show that the streamers in the classical fluid model develop lower
velocities, field enhancement and ionization densities than in the other models;
the model clearly approximates the microscopic dynamics quite badly, as also
found previously in [76]. This is the case even though the transport and reac-
tion coefficients were derived from swarm simulations in the particle model for
consistency, and though bulk coefficients were used. As the fields do not exceed
250 kV /cm in the simulations with the classical model, the fluid coefficients were
only used in the parameter range in which they were actually derived in [21].
By construction, the classical fluid model with bulk coefficients models electron
swarms in a constant electric field well, and earlier numerical studies as well
analytical arguments have shown that also the velocity of a planar front in a
fixed electric field is well approximated |20, 76]. However, the ionization density
behind a planar front in a fixed field is too low in the classical fluid model with
bulk coefficients when the maximal field exceeds 50 kV /cm [76]; this is always
the case in the present calculations.

In the 3D simulations, the deviation from the other models is larger than in
1D [76]. We argue that this is because in our 1D front simulations, the electric
field ahead of the front is fixed, while in 3D the field falls off with distance and
varies in time. As the same field in the front creates a lower ionization density
in the classical fluid model, also the conductivity in the streamer channel and
the consecutive electric screening are lower than in the other models. Therefore
the field enhancement is less in 3D and leaves an even lower ionization density
behind as the ionization level depends on the field at the front. The lower field
enhancement also explains why the streamer is slower than in the other models.

Choosing flux rather than bulk coefficients had not resolved the discrepancy
with other models either, as already discussed in section 2.2. The model with
flux coefficients does not reproduce the swarm results in a constant electric field.
Furthermore, with flux coefficients the electron mobility had been considerably
lower (cf. figure 3 in [21]); therefore the front had been even slower than with
bulk coefficients.

The streamers within the classical fluid model destabilize and branch at about
the same time as in hybrid and particle model, but in a more symmetric manner,
as the destabilization is not supported by electron density fluctuations. This de-
terministic branching in a fluid model is well approximated by moving boundary
models as studied in [27] and reviewed in [24].

We remark that the front destabilization in the present fully three-dimensional
simulations of the classical fluid model for negative streamers without photo-
ionization occurs in a very similar manner as in previous high accuracy cal-
culations under the constraint of cylindrical symmetry [26]. Earlier simula-
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tions [25] demonstrated the mechanism but suffered from lower numerical reso-
lution. In [26], streamers in the same background field were studied, but with a
more ionized initial condition and attached to a planar electrode. In those simu-
lations, the branching instability occurred after 1.09 ns, while here it occurs after
0.81 ns. The somewhat longer evolution time until branching in [26] could be due
to the different initial and boundary conditions, or to the less accurate transport
and reaction coefficients in [26] or to the symmetry constraint; this is subject
of future research. In any case, the results support the argument given in [99]
that the branching time under the symmetry constraint is an approximation and
upper bound of the branching time in the fully 3D calculation.

3.4.2 Extended fluid model, particle model and hybrid model

The extended fluid model was constructed to cure the deficiencies of the classical
model. It was shown already in |20, 76| that with the extension in the reaction
term and with flux coefficients, it approximates the growth and propagation
of particle swarms and of planar streamer fronts well, including the ionization
density behind an ionization front. It should be noted though that the reaction
and transport coefficients are used here for up to 400 kV/cm while they were
derived only for up to 250 kV /cm in [21] and extrapolated to higher field values.
The hybrid model uses the fluid coeflicients only in the range in which they were
derived.

We already discussed above that destabilization into off-axis branches in the
extended fluid model is less likely than in the classical fluid model, but we have
currently no explanation why branching does not occur at all; possibly this is
a mere coincidence and branching does occur at some time after the end of the
present simulations at 0.9 ns. The front destabilization in particle and hybrid
model occurs at a similar time as in the classical fluid model, but in a different
manner: the fastest propagating branch stays close to the axis and screens the
other branches that therefore keep staying behind.

The figures show that the extended fluid model approximates particle and
hybrid model well up to the moment of destabilization, after this moment there
are characteristic differences due to the density fluctuation effects caused by the
discreteness of the electrons. These fluctuations have an unphysical distribution
when the particle model needs to use super-particles, and therefore the hybrid
simulations should be closer to the true dynamics. The stronger destabilization
in the particle model seems to be compensated by the increased noise in the
space charge distribution (see figure 3.4), so that in the end the front moves with
essentially the same velocity as in the extended fluid model.
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Figure 3.5: Upper panel: Front position as a function of time for the four models.
The front position is here defined as the position of the maximum of the electric
field on the axis within the ionization front; this maximum of the electric field
as a function of time is plotted in the lower panel, also for the four models.

3.4.3 The front velocity in the different models compared to an

analytical result

The front positions (see figure 3.5a) and the density and field profiles on the
axis (see figure 3.3) agree very well between the extended fluid model and the
particle model even at the latest stages, when the particle model shows strong
fluctuation effects; the streamer in the hybrid model is a bit faster at the latest
stages. This could be due to two different reasons:

e The single particle fluctuations resolved in the hybrid model cover rare
electron run-away effects better. This could create more new avalanches
ahead of the front, so that eventually the front jumps forward when the
electron density within the avalanches has increased sufficiently. In this
case the front would be moving faster than expected from reaction, drift
and diffusion in the local electric field.

e Or the single particle fluctuations create more branching and thinner stream-
ers with more field enhancement. The front would then propagate faster
because the local field is higher, and not because electrons run away.
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Figure 3.6: Position of the streamer front as a function of time for the four
models. Dashed, dotted, dashed-dotted and solid lines indicate the position
determined from the simulations, as plotted previously in figure 3.5a. The ex-
tended symbols (crosses and circles) indicate the positions for the four models
determined through Eq. (3.1) where the maximal electric fields from figure 3.5b
were inserted and flux coefficients for ue(E), De(F) and «(F) were used.

The maximal electric field as a function of time is plotted in figure 3.5b.
Comparison with the front position in figure 3.5a already points to the second
statement: where the hybrid model is ahead of the other models, the maximal
field enhancement is higher as well. The question is further analyzed in figure 3.6.
For planar fronts in a slowly varying electric field £ and with a sufficiently rapidly
decay of the electron density ahead, the front velocity in the classical fluid model
is given by [100]

V" = le|E| 4 2/ Depie|Ea, (3.1)

where p. is the electron mobility, D, the electron diffusion constant and a the
effective ionization coefficient. We now use this equation for all models, not only
for the classical fluid model. We insert the maximal electric fields E(t) on the
z-axis of the respective models into this equation and evaluate it with our flux
coefficients for pe(F), De(F) and a(E). As the front velocity and the maximal
field in the hybrid and particle model fluctuate heavily during the late stages, we
do not compare velocities, but the resulting front displacements of the models
in figure 3.6. Here the lines indicate the simulation results and the extended
symbols the front displacement as predicted by Eq. (3.1).

Up to time 0.6 ns and a maximal field of about 200 kV/cm, the models
agree very well with the analytical approximation of (3.1). During the further
evolution, the classical fluid model shows almost no deviation from (3.1). (We
should remark that this is somewhat accidental, as the classical fluid model uses
bulk coefficients and the approximation flux coefficients.) For extended fluid
model, particle model and hybrid model, the deviations follow a similar trend
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at later times: the simulation models are always a bit ahead of the analytical
approximations, and in both the hybrid model is ahead of particle and extended
fluid model.

One can conclude (i) that the hybrid model is ahead of the others because the
field enhancement is higher, and (ii) that equation (3.1) is a reasonable approxi-
mation of the front velocity in all models, but somewhat too low at higher fields.
This might be related to the fact that the transport and reaction coefficients
were extrapolated from 250 kV /cm to higher fields.

Some high energy electrons can ‘run away’ from the front in the hybrid and
in the particle model. The first electrons with energies above a typical run-away
threshold of 200 eV appear at time 0.585 ns in the hybrid model, when the
maximal electric field reaches 190 kV /cm, in agreement with the results in [21].
In the particle model the first electrons pass the 200 eV threshold a bit later, at
time 0.65 ns. At the end of the simulation the energies of some electrons exceed
1 keV both in hybrid and in particle model. The role of electron run away for
the front speed will be investigated further in future work, but it does not seem
to have a significant influence on the results presented here, according to our
velocity analysis above.

Finally, it should be noted that we used the maximal electric field on the axis
in our analysis, while after front destabilization at 0.75 ns, the true maximum
fluctuates over some near-axis positions.

3.5 Summary and outlook

3.5.1 Summary

We have tested four 3D models for negative streamers in air without photo-
ionization in overvolted gaps. Particle models have advantages when rare events
are significant, like electron run-away or like ionization avalanches created by
single electrons. With the hybrid model we could lower super-particle weights
than with the pure particle model, which limited artificial noise. The extended
fluid model is a good approximation up to the moment of front destabilization,
but lacks realistic fluctuations. In the classical fluid model propagation speeds
and ionization densities and field enhancement are too low.

We have studied short negative streamers in high fields, because this allows
us to run physically meaningful 3D simulations with all models, without the
need to introduce (adaptive) grid refinement; at this moment, adaptive grid
refinement is only available in our fluid model [19], but introducing it across the
model boundary in the hybrid model still poses a major challenge. This forced
us to exclude photo-ionization from the model for reasons discussed below in
the outlook, and in that sense our present results directly apply to discharges
in gases like high purity nitrogen [87, 88] or like the atmosphere of Venus [101]
where photo-ionization is very weak.
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3.5.2 Outlook on physical implications

As the presented investigations do not include photo-ionization, the question
rises how they change when the nonlocal photo-ionization mechanism is included
for realistic models in atmospheric air. Basically this depends on whether the
background field is below or above the breakdown field, see chapter 8.

Now our choice of system parameters was constraint by the fact that we
had to resolve both the space charge structure of the ionization front and the
complete system with developed streamer in 3D without grid refinement. There-
fore we chose a background field well above the breakdown threshold, to ini-
tiate the streamer sufficiently rapidly. In such a field, the inclusion of photo-
ionization significantly changes the discharge evolution: wherever the nonlocal
photo-ionization mechanism creates a new electron ion pair, a new local ioniza-
tion avalanche will appear. The process was illustrated with the 3D hybrid model
in Fig. 1 of [102] and in Fig. 14 of [21], and with Luque’s density fluctuation
model in Fig. 2 of [28]. The figures show how gradually the whole space fills up
with new avalanches, that can suppress the field enhancement at the streamer
tip.

Depending on the initial conditions, eventually the whole region above the
breakdown field can be filled with plasma. How and when this happens is inves-
tigated in chapters 6 — 8. In experiments, a related phenomenon was recently
observed: the formation of an ionized cloud in the high-field region around a
needle electrode. These ‘inception clouds’ break up into streamers only beyond
some critical radius, as shown experimentally in [33, 103]. In chapter 5, the
formation and destabilization of inception clouds is studied with a 3D particle
model.

The onset of branching of positive streamers in air with photo-ionization in an
undervolted gap was recently investigated in [28] with a model accounting specif-
ically for density fluctuations. There it was found that the density fluctuations
that are due to the discrete nature of electrons, accelerate streamer branching.
Similarly, the present results show that the fluctuations of electron densities and
energies destabilize the ionization front earlier than without fluctuations, but this
does not need to create permanent branching in negative streamers. These ob-
servations open up many questions: Are negative streamers more self-stabilizing
than positive ones as various experiments also seem to indicate? Which differ-
ences are caused by over- or undervolted gaps or by the presence or absence of
photo-ionization, next to the polarity differences? Which role is played by run-
away electrons? Our study lays a methodological basis for future studies of these
questions.






Chapter 4

Controlling the weights of
simulation particles: adaptive
particle management using k-d
trees

In particle simulations, the weights of particles determine how many
physical particles they represent. Adaptively adjusting these weights
can greatly improve the efficiency of the simulation, without creating
severe nonphysical artifacts. We present a new method for the pairwise
merging of particles, in which two particles are combined into one. To
find particles that are ‘close’ to each other, we use a k-d tree data struc-
ture. With a k-d tree, close neighbors can be searched for efficiently, and
independently of the mesh used in the simulation. The merging can be
done in different ways, conserving for example momentum or energy. We
introduce probabilistic schemes, which set properties for the merged par-
ticle using random numbers. The effect of various merge schemes on the
energy distribution, the momentum distribution and the grid moments
is compared. We also compare their performance in the simulation of
the two-stream instability.

This chapter has been published as [104]:
Controlling the weights of simulation particles: adaptive particle management
using k-d trees, J. Teunissen and U. Ebert, J. Comput. Phys. 259, 318 (2014)
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4.1 Introduction

Particle-based simulations are widely used, for example to study fluid flows or
plasmas. The physical particles of interest are often not simulated individually,
but as groups of particles, called super-particles or macro-particles. Most systems
contain so many particles that simulating them individually would be very slow
or impossible. And for many macroscopic properties of a system, individual
particle behavior is not important. On the other hand, a sufficient number of
particles is required to limit stochastic fluctuations.

The weight of a simulation particle indicates how many physical particles it
represents. Traditionally, particles had a fixed weight [67, 105]. More recently,
Lapenta and Brackbill [96, 106, 107], Assous et al. [108], Welch et al. [98] and
others have introduced methods that adapt the weight of particles during a sim-
ulation. As discussed in [108|, adaptive methods have significant advantages
if:

1. Many new particles are created in the simulation. Adaptive re-weighting
is required to limit the total number of particles. Examples can be found
in [11] and [21].

2. The system has a multiscale nature. In some regions more macro-particles
are required, especially if some type of mesh refinement is employed, see
for example [109].

3. Control is needed over the number of particles per cell, for example to limit
stochastic noise to a realistic value.

Our motivation for investigating the adaptive creation of super-particles origi-
nated from the simulation of streamer discharges, as these discharges have both
a multiscale nature and strong source terms |21, 110].

When changing the weights of simulation particles, the goal is to reduce
the number of simulation particles while not altering the physical evolution of
the simulated system. Most methods operate on a single grid cell at a time;
arguments for this approach are given in [107]. There are different ways to
change the number of particles. One option is to merge two (or sometimes
three) particles, to form particles with higher weights. Reversely, splitting can
be performed to reduce weights. Another option is to replace all the particles
in a cell by a new set of particles, with different weights. We will use the name
‘adaptive particle management’, introduced in 98], for all such algorithms.

We present a technique for the merging of particles, that extends earlier work
of Lapenta [96]. This method can operate independently of the mesh, and in any
space dimension. The main idea is to store the particle coordinates (typically
position and velocity) in a k-d tree. A k-d tree is a space partitioning data struc-
ture that given IV points enables searching for neighbors in O(log N) time [111].
We can then efficiently locate pairs of particles with similar coordinates, and
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these pairs can be merged. Because the merged particles are similar, the total
distribution of particles is not significantly altered.

In section 4.2, we briefly discuss the general principles of particle management
and k-d trees. The implementation of the new particle management algorithm is
discussed in section 4.3, where we also introduce different ways to merge particles,
which we call ‘merge schemes’. In section 4.4, we compare how the merging of
particles affects the particle distribution function for two test distributions. We
also study the effect on the grid moments, such as the particle density, and
compare different ways of constructing a k-d tree. As a more practical example,
we show how the different merge schemes affect the evolution of the two-stream
instability.

4.2 Adaptive particle management and k-d trees

As stated in the introduction, it is typically impossible to simulate all the phys-
ical particles in a system individually. Therefore super-particles are used, repre-
senting multiple physical particles. Often, the simulation can run faster or give
more accurate results if the weight of these super-particles is controlled adap-
tively. Different names have been introduced for these algorithms: ‘adaptive
particle management’ [98|, ‘control of the number of particles’ [107], ‘particle
coalescence’ [108], ‘particle resampling’ [11], ‘particle remapping’ [61], ‘particle
rezoning’ [96], ‘(particle) number reduction method’ [112] and probably others.
There seem to be many independent findings, with independent names. We
will use the name ‘adaptive particle management’ (APM), introduced in [98], to
describe this class of algorithms.

4.2.1 Conservation properties

If weights of particles are adjusted, then the ‘microscopic details’ of a simulation
are changed. But the relevant macroscopic quantities should be conserved as
much as possible. To specify these macroscopic quantities, we consider a very
common type of particle simulation: the particle in cell (PIC) method, also
known as the particle mesh (PM) method [67, 105]. In PIC simulations, particles
are mapped to moments on a grid. From the grid moments the fields acting on
the particles are computed, and the particles move accordingly. For example, in
an electrostatic code, the charge density is used to compute the electric field.

An APM algorithm typically changes a set of IV;, particles to a new set of
Nout particles. If the two sets give rise to the same grid moments, they give rise
to the same fields. Therefore, most algorithms are designed to (approximately)
conserve the relevant grid moments.

Only conserving the grid moments is not enough, because the dynamics of
a system are not fully determined by the fields. For example, the results of a
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simulation can be very sensitive to changes in the momentum or energy distribu-
tion. Therefore, some methods try to preserve the shape of these distributions.
More generally, we would like to keep the important aspects of the particle dis-
tribution function f(x,w,t) the same. The changes to f(x,v,t) should not be
significantly larger than the fluctuations that naturally occur. For example, in a
collision dominated plasma, particles frequently change direction. Not conserv-
ing the momentum distribution in each direction might have little effect on the
overall results. But for a collisionless plasma, a change in the momentum distri-
bution might lead to significant differences. Similarly, due to the finite number
of particles, fluctuations in the local particle density occur naturally. Therefore,
keeping the particle density exactly the same on each grid point might not be
necessary, as long as the total number of particles is conserved.

4.2.2 Merging and splitting particles

A set of Ny, particles can be transformed to a new set of Ny, particles in many
ways. If Ny > Nout, we use a pairwise coalescence algorithm, that merges two
particles into a single new one. Compared to algorithms that transform multiple
particles at the same time, pairwise coalescence has two advantages. First, it is a
more local operation, because only closest neighbors in phase space are selected.
This ensures that the distribution of particles is not changed very much. Second,
it involves fewer degrees of freedom, which makes it simpler to set the properties
for new particles. The pairwise coalescence of particles is illustrated in figure 4.1.

In D dimensions, the momentum p of the new particle has D degrees of
freedom. Imposing momentum and energy conservation puts D+1 constraints on
p. Therefore, it is in general not possible to conserve both energy and momentum
in pairwise coalescence. This means that there is no single best way to merge
particles, as different applications require the conservation of different properties.
We consider several coalescence schemes, which are discussed in section 4.3.2.

The situation would be very different if Ny, particles are merged at the same
time to form multiple new particles. We still have D + 1 constraints, but now
D - Ngyt degrees of freedom in the momenta of the Ny, new particles. The
system is under-determined, and additional information about the particles has
to be used. This leads to more complicated algorithms, see for example [98, 108].

If Nin < Nout, particles have to be split. Several methods for particle splitting
have been compared by Lapenta in [96]. As shown there, choosing the right
splitting method can be important, depending on the type of simulation. Here,
we will not consider this problem in detail, as our focus is on the merging of
particles. A simple strategy is to split single particles into two new ones with the
same properties, but half the weight. This can be viable if the simulation includes
random collisions, so that the new particles will undergo different collisions and
spread out. If there are no such collisions, the split particles should be separated
in position or velocity or both.
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Figure 4.1: Example showing the
merging of particles close in space
and velocity (velocity is not shown).
The particles that were removed
after merging are shown as green
crosses, particles that were not
merged as green filled circles, and
the newly formed merged particles
as red empty circles. The latter have
weight 2, the rest weight 1.

Figure 4.2: Schematic example of
how a k-d tree is generated for
points in the plane (indicated as
black dots). At every step (indicated
by the numbers), boxes are split in
two parts. The split is located on
a point, that is added to the tree.
The direction of splitting alternates
between vertical and horizontal.

4.2.3 k-d trees

To locate particles with similar coordinates we use a k-d tree [111]|, which is a
space partitioning data structure. A k-d tree can be used to organize a set of
points in a k-dimensional space, for any k > 1. The tree consists of nodes, that
contain data (the coordinates of one of the points) and links to at most two
‘child’-nodes. The starting point of the tree is the root node, and it contains as
many nodes as there are points.

We will briefly explain how such a k-d tree can be generated. To help with
the explanation, we let nodes have a todo list, that contains points that need to
be processed. Suppose we have a collection of points in the (z,y) plane. Initially
all points are in the todo list of the root node. Then the following algorithm,
which is illustrated in figure 4.2, creates the k-d tree:

1. Pick a splitting coordinate, either x or y. A simple choice is to alternate
between them.
2. For each node with a non-empty todo list:

(a) Sort the particles in the list along the splitting coordinate. The par-
ticle in the middle of the list is the median. If the list contains an
even number of particles, pick one of the two middle particles as the
median.
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(b) The point corresponding to the median is assigned to the node.

(c) The remaining points are moved to the todo lists of (at most) two
new child nodes. The first one gets the points below the median, the
second one those above the median.

3. If there are still points in todo lists, go back to step one. Otherwise, the
tree is completed.

In k dimensions, the only difference would be that there are now k choices for
the splitting coordinate. The computational complexity of creating a k-d tree
like this is O(N log? N), with N the number of points in the tree. This can be
reduced to O(N log N) if a linear-time median finding algorithm is used instead
of sorting at step 2a. Searching for the nearest neighbor to a location  can be
done in O(log N) time. The basic idea is to first traverse the tree down from the
root node, at each step selecting that side of the tree that 7 lies in. (If » happens
to lie exactly on a splitting plane, it is a matter of convention which side to
pick.) During the search, the closest neighbor found so far is stored. Then going
upward in the tree, at every step determine whether a closer neighbor could lie
on the other side of the splitting plane. If so, also traverse that other part of the
tree down (but only where it can contain a closer neighbor). Typically, only a
small number of these extra traverses is required. When the algorithm ends up
at the root node again, the overall closest neighbor is found.

For the numerical tests presented in section 4.4, we have used the Fortran 90
version of the KDTREE2 [113] library.

4.3 Implementation

We will discuss the implementation of our adaptive particle management algo-
rithm in section 4.3.1. Different schemes that can be used for particle merging
are given in section 4.3.2.

4.3.1 Adaptive particle management algorithm

Suppose that we have particles with coordinates x;, v; and weights w;. Fur-
thermore, assume there is some function W (7) that gives the user-determined
optimal weight for particle ¢. Then the APM algorithm works as follows:

1. Create a list merge with all the particles for which w; < %Wopt(i), sorted
by wi/Wopt (i) from low to high. Create a list split with particles for which
w; > %Wopt(i)'

The function Wy (4) gives the desired weight for particle i. The factors %
and % ensure that merged particles are not directly split again, and vice
versa. A good choice of Wyt (i) will often depend on the application. We
typically want to keep the number of particles per cell close to a desired
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value Nppe, and use Wopi(7) = max (1, Nphys(i)/Nppe). Here Nppys(i) de-
notes the number of physical particles in the cell of particle i.
2. For the particles in merge:

(a) Create a k-d tree with the (transformed) coordinates of the particles

as input.
We construct the k-d trees in two ways: using the coordinates (x, A, v)
or using the coordinates (x, A, |v|), where A, is a scaling parameter
and || denotes the L? norm. We will refer to them as the ‘full coor-
dinate k-d tree’ and the ‘velocity norm k-d tree’, and we will denote
them with a superscript ¥ and ®/?|, respectively. The scaling is
necessary because the nearest neighbor search uses the Euclidean dis-
tance between points. There is some freedom in the choice of A,
which should express the ratio of a typical length divided by a typical
velocity. With higher values the differences in velocity become more
important than the spatial distances.

(b) Search the nearest neighbor of each particle in the k-d tree. If the

distance between particles © and j is smaller than dy.x, merge them.
Particles should not be merged multiple times during the execution of
the algorithm, so mark them inactive.
We let dmax be proportional to the grid spacing Az, so particles in
finer grids need to be closer to be merged. There is no single optimal
way to merge two particles. Several schemes for merging are discussed
below in section 4.3.2.

3. Split each of the particles in split into two new particles.
The new particles have the same position and velocity as the original par-
ticle 4, and weights w;/2 and (w; + 1)/2 (both rounded down). As was
discussed in section 4.2.2, for some applications a different method should
be used.

4.3.2 Merge schemes

When two particles are merged, it is generally not possible to conserve both
energy and momentum. Therefore we consider different schemes, that conserve
either momentum, energy or other properties. The performance of these schemes
is compared in section 4.4. We have not used ternary schemes, that merge three
particles into two. As discussed in [96], such schemes do not necessarily perform
better, although they can conserve both momentum and energy. Furthermore,
they are more complicated to construct in 2D or 3D.

When particles ¢ and j are merged, the weight of the new particle is always
the sum of the weights wnew = w; + w;. For the new position we consider two
choices. It can be the weighted average @new = (wi; +wj;x;)/(w; +w;). It can
also be picked randomly as either x; or x;, with the probabilities proportional
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to the weights. If we take the weighted average, then we introduce a (slight) bias
in the spatial distribution. On the other hand, picking the position randomly
increases stochastic fluctuations. For example, suppose we have a cluster of
particles, and particles are being merged until there is only one left. If we use
the weighted average position, then we always end up at the center of mass. So
the spatial distribution of particles has become very different, a single peak at
the center. With the probabilistic method we also end up with a single peak,
located at the position of one of the original particles. But now the probability
of ending up at particle i is proportional to w;. Therefore, the ‘average’ spatial
distribution has the same shape as before the merging.

Below we list several schemes for picking a new velocity vyew. For convenience
of notation, let

Vavg = (Wivi + w;v;) /(Wi + w;),
2 2 2
Vavg = (wi |vl| + w; ‘vj| )/(wl + wj)a
SO Vayg is the weighted average velocity and vgvg is the weighted square norm of

the velocity. The schemes are indicated by the following symbols:

p: Conserve momentum strictly by taking vnew = vavg. Because |'vavg|2 <

2

VUavg the kinetic energy is reduced by an amount FMWnew (vgvg - |'vavg]2),

where m is the mass of a particle with weight one.

e: Conserve energy strictly by taking vpew = 4 /vgWg * Vavg (the hat denotes a

unit vector). Because the energy is kept the same, the momentum increases
by MWnpew (\/ Ugvg - ‘UanD : i)an'

v,: Conserve both momentum and energy on average, by randomly taking the
velocity of one of the particles. The probability of choosing the velocity of
particle ¢ is proportional to its weight w;.

vye: Randomly take the velocity of one of the particles, but scale it to strictly
conserve energy. The expected change in momentum is

MWnpew <\/ Ugvg (wivi + wjvj)/wnew - vavg) s

which is small if |v;| = |v;].

Although they are quite simple, we are not aware of other authors that have
used schemes with randomness. It is possible to use multiple schemes, where the
choice of scheme depends on the properties of the particles to be merged.
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4.4 Numerical tests and results

It is difficult to come up with a general test of the performance of an APM
algorithm. The algorithm should not significantly alter the simulation results,
compared to a run without super-particles. At the same time, it should decrease
the computational cost as much as possible. But whether these criteria are met
depends on the particular simulation that is performed. Therefore we first per-
form tests on a simplified 2D system, using two Gaussian velocity distributions.
In these tests we do not study the time evolution of the system, but focus on
the effects of the coalescence algorithm on the particle distribution and on the
grid moments. After that, we investigate how these changes in the particle dis-
tribution affect the evolution of a ‘real’ simulation: the two-stream instability in
1D.

4.4.1 Effect of the merge schemes on the energy and momentum
distribution

As stated before, our method works in 1D, 2D, 3D or any other dimension. In
these tests we use a 2D domain with periodic boundary conditions. The domain
consists of 2 x 2 cells, each of size 1 x 1. (We let lengths and velocities be of
order unity, and give them without a unit.) Initially, particles with weight 1
are distributed uniformly over the domain. Then the coalescence algorithm is
performed once, with the desired weight of the particles set to 2. We compare
how the different merge schemes change the momentum and energy distribution.
We also measure their effect on the density, momentum and energy grid moments.

First test

In the first test, there are 400 particles with a Gaussian velocity distribution.
Both components of the velocity have mean 1 and a standard deviation of 1/4.
The resulting energy and momentum distribution functions are shown in the top
row of figure 4.3. We show the distribution of momentum along the first coor-
dinate, not the total momentum of particles, therefore we label it z-momentum.
To convert the velocity of a particle to momentum, we multiply it by the weight
of the particle, which represents the mass.

Initially, the particles have weight 1, and a desired weight of 2. Then the
particles are coalesced according to a merge scheme, and the changes in the en-
ergy, momentum and density distribution are recorded. The whole procedure is
repeated 10° times for each scheme, using different random numbers, to reduce
stochastic fluctuations. We have used both the velocity norm k-d tree (contain-
ing «, A\, |v|) and the full coordinate k-d tree (containing x, A,v). Somewhat
arbitrarily we took A\, = 4/5, as the mean velocity plus the standard deviation
in velocity was 5/4.
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Figure 4.3: Results for the first test. Top row: the initial energy (left) and
momentum (right) distribution of the particles. The integrated or cumulative
curves are also shown (dashed). Bottom row: the effect of various merge schemes
on the cumulative energy (left) and momentum (right) distribution function. The
schemes are indicated by the following symbols; €: conserve energy, p: conserve
momentum, v,: conserve energy and momentum on average, v,e: take velocity
from one of the particles at random, scale to conserve energy, */?l: velocity norm
k-d tree, ®¥: full coordinate k-d tree.

The bottom row of figure 4.3 shows the effects of the merge schemes on
the cumulative energy and momentum distribution function. The schemes are
indicated by the same symbols as in section 4.3.2:

p: conserve momentum
€: conserve energy
v,: take velocity of one of the particles at random
vye: take velocity from one of the particles at random, scale to conserve energy
z.|vl. velocity norm k-d tree
%Y. full coordinate k-d tree

Because they are less noisy and reveal trends more clearly, we present cumulative
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differences N

AF(z) = fmerged(l“l) — forig(:c/) dx’, (4.1)
Timin
where forig(2) is the normalized energy or momentum distribution function before
merging and fmerged () is the distribution after merging.

The schemes ¢®/¥l and v,&e% /%l have the same effect on the energy distribu-
tion, so they are shown together there as (v,.)e®!*l. The schemes 'vf’lv‘ and vy
are also shown together, as v,. They take the new velocity randomly from one
of the original particles. Therefore, on average, both do not change the shape
of the energy and momentum distribution. The other schemes move particles
from the tails of the distribution towards the center. To see this in the cumu-
lative distribution functions, note that particles get removed where the slope is
negative, and are moved to where the slope is positive. This happens because
these schemes take averages, which are more likely to lie towards the center of
the distribution. Results are not shown for the velocity norm k-d tree with the
momentum conserving scheme, p®/?l. This combination leads to large changes
in the energy distribution.

For all the merge schemes, on average about 40% of the particles is merged.
The number is below 50% because the k-d tree is created only once, in a static
way. When a particle is merged, it is not removed from the tree, but marked
as inactive. So it might later be the nearest neighbor of another particle, that
is still to be merged. In that case, the second particle is not merged, and the
algorithm moves on to the next particle. Another option would be to search for
the second closest neighbor, and so on. But then merging would happen over
greater distances towards the end of the algorithm.

Note that even when merging only with the closest neighbor, the order in
which the particles are selected for merging can have an effect on the result.
For example, suppose the particles are selected based on their energy, so that
particles at lower energies are merged first. A particle with high energy now has a
lower chance of getting merged, because many of its neighbors of lower energy are
already merged. For the same reason, the particle is more likely to be merged with
another particle of higher energy. In the adaptive particle management algorithm
introduced in section 4.3.1, we therefore sort the particles to be merged by their
‘relative weights’, from low to high, where ‘relative weight’ means current weight
over desired weight.

Second test

The second test is performed in the same way as the first test, but now the
particles have a different velocity distribution. Both components of the velocity
have a mean of 1/4 and a standard deviation of 1. The resulting energy and
momentum distribution functions are shown in the top row of figure 4.4. Because
it is more isotropic, the second velocity distribution poses a bigger challenge for
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Figure 4.4: Results for the second test. Top row: the initial energy (left) and
momentum (right) distribution of the particles. The integrated or cumulative
curves are also shown (dashed). Bottom row: the effect of various merge schemes
on the cumulative energy (left) and momentum (right) distribution function. The
legend is the same as for figure 4.3. In the right figure, the peak for scheme 7!
is cut off, it extends to —0.018.

the merge schemes. The bottom row of figure 4.4 shows the effects of the merge
schemes on the cumulative energy and momentum distribution function. Again,
the schemes v, perform best, as the other schemes move particles from the tail
of the distribution towards the center. Note that the schemes vrsm"”‘ and %
also move particles away from zero momentum. As for the first test, on average
about 40% of the particles is merged.

4.4.2 Effect on grid moments

In many particle simulations, a grid (or mesh) is used. Grid moments are defined
at the grid points, and provide local averages from which the fields acting on the
particles can be computed. For example, the first grid moment gives the particle
density, the second the current density or momentum density, the third the energy
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density and so on. Particles can be mapped to grid moments in different ways,
here we use first order interpolation, also know as cloud-in-cell (CIC) [67, 105].

Using the data of the second test, we now look at the effect of the merge
schemes on the first three grid moments. An APM algorithm should not induce
large differences in these grid moments. The mean difference is often zero, be-
cause the corresponding quantity is conserved. Therefore, we also look at the
relative standard deviation, or o/u, where o is the standard deviation of a ran-
dom variable with mean p. This is a measure of the relative size of fluctuations.
We measure these fluctuations at a single grid point, as they would be correlated
for multiple grid points. In table 4.1 the changes in the grid moments are given
for various schemes. The schemes are labeled by the same symbols as before.
In addition, @x, indicates that the new position is picked randomly from one of
the merged particles. The bottom part of the table is about cell-by-cell merging,
which is discussed in section 4.4.3. The APM fluctuations should be compared
to those resulting from advancing the particles in time. Therefore, the table in-
cludes entries that list the effect of taking a time step At without any merging.
Since we have included no collisions, the particles simply move with a constant
velocity during this time step.

The average deviation in particle density p is zero for all the schemes, because
they conserve the total weight of the particles. Therefore this quantity is not
included in table 4.1. The induced fluctuations in the grid moments can differ by
almost an order of magnitude between the schemes. As expected, conserving mo-
mentum reduces the mean energy, and conserving energy increases momentum.
This is especially problematic when the velocity norm k-d tree is used. The mean
deviations are then larger than 10%. The full coordinate k-d tree in combination
with the energy-conserving scheme, ¢*?, gives good results regarding energy and
momentum conservation. Schemes that select the new velocity at random do not
lead to systematic differences in the energy and momentum grid moments. With
the vy ol scheme, the fluctuations in momentum can be relatively large. The vy
scheme leads to much smaller fluctuations. This scheme performs well: on aver-
age it conserves the grid moments and also the shapes of the energy /momentum
distribution functions, and it does not create big fluctuations.

Taking the new position at random at one of the original particles (x,) in-
creases the fluctuations in particle density. For all the schemes, the fluctuations
in density, momentum or energy are smaller than those resulting from a time
step of At = 0.4.

4.4.3 Cell-by-cell merging

Using k-d trees, there is no reason to do cell-by-cell merging. But because this
type of merging is commonly used, we briefly evaluate its effects. The bottom
part of table 4.1 shows results for cell-by-cell merging, for various schemes, using
the second test distribution. The notation is the same as before, and a superscript
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Method Nuerge  dave o, Apy 0op, Ae o
At=01 - - 16% 0.0% 9%  0.0% 3.8%
At =0.2 - - 29% 0.0% 16%  0.0% 6.7%
At =04 - - 49% 0.0% 25%  0.0% 9.4%
gl 39%  0.16 0.3% 12% 16%  0.0% 0.8%
p=lvl 39%  0.16 0.3% 0.0% 4% —-37% 5.0%
ol 39% 016 0.3% 0.0% 24%  0.0% 1.2%

v e® vl 39%  0.16 0.3% 04% 25%  0.0% 0.8%
v,z 39%  0.16 1.0% 0.0% 24%  0.0% 2.2%
cv 40% 038 0.7% 01% 4%  0.0% 1.5%
pTY 0% 038 0.7% 0.0% 4% —1.2% 1.5%
V2 40% 038 0.7% 0.0% 6%  0.0% 2.4%
p?, cell 0% 0.19 28% 0.0% 12% —09% 3.8%
o2l cell | 39% 017 0.3% 0.0% 23%  0.0% 1.5%
v cell | 39% 017 1.0% 0.0% 23%  0.0% 2.2%
£20 cell 38% 040 0.8% 05% 5%  0.0% 1.8%

Table 4.1: The induced differences and fluctuations in the grid moments by
the various merge schemes, using the second test distribution. Legend: Nperge
is the fraction of merged particles, and d,ys is the average distance between
merged particles. The relative differences in grid moments are indicated by Ap,
(momentum) and Ae (energy), and relative standard deviations by o, (density),
0p, (momentum) and o. (energy). Both are given relative to the mean value.
The rows starting with At show the fluctuations in the grid moments resulting
from a time step (no merging). The merge schemes are indicated by the following
symbols; €: conserve energy, p: conserve momentum, v,: random velocity, v,e:
random velocity, scale to conserve energy, x,: random position, V: k-d tree
contains only the velocity, #/?l: velocity norm k-d tree, *?: full coordinate k-d
tree, cell: perform the merging cell-by-cell.
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Figure 4.5: The relative change in particle density as a result of cell-by-cell merg-
ing, for the test case described in 4.4.1. The 2 x 2 grid structure is clearly visible.
On the left, close neighbors for merging are searched for using the difference in
position and in the norm of the velocity. In the middle, all four position and
velocity coordinates are used, while on the right only the differences in velocity
are considered for merging. Especially in the last case, particles are moved to
the center of the cell as they are merged, because it is the expectation value of
their mean position.

v indicates that only the velocity was used in the k-d tree, not the position. The
fluctuations are mostly similar if the particles are merged locally (cell-by-cell)
instead of globally. With fewer particles per cell, the differences would be larger
though, as close neighbors are more likely to lie in other cells.

The average spatial distribution of particles directly after merging is shown
in figure 4.5. Only the type of k-d tree is important for the effect, because all
the shown merge schemes take the average position. From left to right: With
the velocity norm k-d tree the spatial distribution of particles is affected close
to the cell boundaries. With the full coordinate k-d tree, the effect is similar
as with the velocity norm k-d tree. Using the k-d tree that includes only the
velocity, particles are moved to the center of the cells. The spatial distribution
is severely affected. Furthermore, the fluctuations in particle density are higher,
as can be seen in table 4.1. If particles would be merged globally with a k-d tree
(not cell-by-cell), the spatial distribution would on average be uniform.

Since the density fluctuations due to cell-by-cell merging occur at length
scales smaller than the grid resolution, we do not expect them to have practical
consequences for most simulations. But in some cases, for example if spatial
features expand in time, they might become important.

4.4.4 Simulation example: the two-stream instability

Above, we have studied the changes in momentum and energy distribution that
arise due to the merging of particles. But do these changes in the distribution
function affect the physical evolution that one wants to study? The answer will,
of course, depend on the type of simulation that is performed. Here, we consider
as an example the simulation of the two-stream instability in one dimension [114].
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Figure 4.6: The time evolution of the two-stream instability. In each figure, the
periodic domain is shown horizontally. Vertically, the density in velocity space
is shown. Initially, the two beams of particles are clearly visible. The time ¢ is
indicated in inverse plasma frequencies 1/wy.

To induce this instability we create two beams of particles, that propagate in
opposite directions. The particles have the same charge, and are neutralized by
a background charge density. A fluctuation in the charge density locally changes
the electric field, which affects the beam velocities, which can in turn increase
the density fluctuation.

In figure 4.6, an example of the evolution of the two-stream instability is
shown. We use periodic boundary conditions, and there are N, = 10 particles
per beam. The particles have a Gaussian velocity distribution, with a standard
deviation or thermal velocity vy, = 1 and a drift velocity vy = +4. The spatial
grid consists of 103 points and has length L = 1. To convert the particle line
density to a volume density n, scaling by some unit of area is required. We do
this in such a way that there are 100 Debye lengths in the domain

[eokpT
Ap = = L/100 4.2
D nqg / ) ( )

where kp is the Boltzmann constant, ey the permittivity of vacuum and ¢ the
charge of the particles. Defining the temperature of the particles in a beam as
T = mthh /kp, with m the mass of the particles, the plasma frequency is then
given by

2
Wy = % = 100L /ven, (4.3)
or simply w, = 100 in dimensionless units. We will give simulation times in
inverse plasma frequencies. Note that when defining the simulation parameters
like this, the constants used for the mass and charge of the particles do not
matter.

We perform two tests to investigate how the merging of particles affects the
physical evolution of the system. In the first test, merging starts at ¢t = 5/wy,
when no instability is yet visible in figure 4.6. In the second test, merging starts
later, at ¢t = 20/wy,, when instabilities have grown to a visible size. The desired
weight of the particles is set to 32, and the merging routine is called five times.
For the merging, we either use the energy conserving scheme (), the momentum
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conserving scheme (p), the scheme that picks a velocity at random from one of the
original particles (v,) or the scheme that picks a velocity at random but conserves
energy (v,€). The typical distance between particles in space is dz = L/N,,, while
the typical difference in velocity is dv = vy, We construct the coordinates for
the k-d tree using (x, A\,v), with A, = 106x/dv. The value of A, is adjusted as
the number of simulation particles changes.

How the physical evolution of the system is affected by the merging is shown
in figures 4.7 and 4.8. Figure 4.7 shows simulation results at ¢ = 60/w,, when
merging was performed at t = 5/w, and figure 4.8 shows results at ¢t = 90/wy,
for the case of merging at t = 20/w,. In both figures, we show seven runs,
that differ only in the initial state of the pseudorandom number generator. After
merging, there are about 8-10% particles per beam, instead of the initial 10°. The
simulation results without any type of merging are also shown, for comparison.

In figure 4.9, we show the velocity distribution just after merging at ¢ =
5/wp. The v, scheme does, on average, not alter the velocity distribution of the
particles. The other schemes all take averages in determining the properties of
the merged particles, thereby removing the tails from the distribution. However,
the effect a merge scheme has on average says little about the fluctuations it
introduces. Therefore we also include figure 4.10, in which the difference in the
velocity distribution as compared to the original simulation is shown over time.
More precisely, we show the quantity

|fv(t) - fv,O(t)| / |fv,0(t)| ) (4'4)

where f,(t) and f,0(t) denote the ‘merged’ and the original velocity distribution
function, respectively, that were constructed using 200 bins. (As before, we use
|| to indicate the L? norm.)

From figures 4.7 and 4.10, it can be seen that when merging happens at
t = 5/wp, the momentum conserving scheme (p) seems to perform best. The
schemes that conserve energy (¢ and v,¢) perform almost as good, but the scheme
that picks velocities at random (v,) does considerably worse. The reason for this
is probably that the v, schemes induce greater fluctuations in the momentum dis-
tribution, see table 4.1. When the two-stream instability has a small magnitude,
these induced fluctuations perturb the further evolution of the system.

For the case of merging at ¢ = 20/wj, the results look quite different, see
figures 4.7 and 4.10. Now, the v, scheme has the smallest effect on the evolution
of the simulation, with the other three schemes performing worse. The larger
induced fluctuations of the v, scheme are probably not as important now, because
the two-stream instability has already grown to a larger size before merging.

In the previous sections, we have also presented results for k-d trees that used
the norm of the velocity vector. In one dimension, this corresponds to taking the
absolute value of the velocity. But because in the two-stream simulation particles
flow in two opposite directions, this leads to poor results. Particles from the two
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Figure 4.7: Simulation results of the two-stream instability, showing z,v curves
at t = 60/w, (see also figure 4.6). The top row shows the original simulation
with 10° particles per beam. The other rows show results where repeated merging
took place at ¢t = 5/w,, reducing the particle number to about 8 - 10* particles
per beam. The columns show different runs, differing in the initial state of the
pseudorandom number generator. The € scheme seems to give results closest to
the original evolution.
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Figure 4.8: Simulation results of the two-stream instability. This figure shows
the same as figure 4.7, but at ¢ = 90/w,, and with the merging done at ¢t = 20/w,,.
Here, the v, scheme seems to best preserve the physical evolution.

velocity

Figure 4.9: The velocity distribution function for various merge schemes, just
after merging took place at t = 5/wj, in the two-stream simulation. The curves
shown represent the average over 100 runs, to smooth out noise. In each run,
the number of particles was reduced from 10° to about 8 - 104, by merging five
times. The scheme v, does on average not alter the velocity distribution, so its
curve coincides with the curve before merging. The & and wv,e scheme lead to
almost indistinguishable velocity distributions after merging, and are therefore
shown together. The p scheme gives similar results as these two: the tails of the
distribution are moved towards the center, creating visible bumps in the velocity
distribution function.



60 4.4. Numerical tests and results

0'3 T T Ll T 0'2 T T T T
025 b &Y —— ’ 1
™Y 0.15 -
SR T R S R T
- p™” / | | -
© 0.15 | A RATr ‘ { < o1 1
= /{T =
< 01 ' 1 =
= e A = 0.05 -
0.05 /T .
/ ;
/e
0 — 1 1 1 1 0
0 20 40 60 80 100 0 20 40 60 80 100

Figure 4.10: The difference in the velocity distribution function over time, caused
by the various merge schemes in the two-stream simulation. The left figure shows
results for merging at ¢t = 5/w,,, while the right figure shows results for merging
at t = 20/wp. The quantity shown is the L? norm of the difference in the
velocity distribution due to merging divided by the norm of the original velocity
distribution, or |fy(t) — fu.o(t)|/|fu0(t)| as in equation (4.4). The error bars
indicate the standard deviation in this quantity from run to run, computed from
100 different runs. The v, scheme performs the worst for merging at ¢t = 5/w,,
but when merging at ¢t = 20/w,, it performs the best.

beams are randomly mixed, significantly altering the velocity distribution. In
general, using the norm of the velocity vector should probably only be used
when the flow of particles is in a single direction.

When we perform the merging cell-by-cell, the results show no clear differ-
ences from those presented in figures 4.7 and 4.8.

4.4.5 Computational costs of k-d trees

The goal of an APM algorithm is to speed up a simulation, so the algorithm itself
should not take too much time. Theoretically, the computational complexity of
creating a k-d tree is O(INplog Np,), with N, the number of points in the tree.
The average cost of a random search in the tree is O(log N,). We have tested
the practical performance of the KDTREE2 library on an Intel i7-2600 CPU. In
figure 4.11 the creation time and the average search time are shown for k-d trees
of various sizes. Neighbors can be found faster if the k-d tree is constructed in
fewer dimensions. Note that the average search time is given for uncorrelated
searches, that are done at random locations. This is the worst-case scenario, as
the CPU cannot do efficient data caching. If the next search location is picked
close to the previous search location, search times in 5D decrease by more than
80%.

The time scales for constructing and searching a k-d tree can be compared,



creation time (s)

Chapter 4. Adaptive Particle Management 61

7
7

6

_6
5 g
4 £y
3 53
2 g2
1 1 F i
O O L L L L

0 2 4 6 8 10
N, /108 N, /108

Figure 4.11: Performance figures for k-d trees in 2D-5D with N, points, using
the KDTREE2 [113] library. Left: the time it takes to create the k-d tree. Right:
the time it takes to find a nearest neighbor (for uncorrelated searches). The
calculations were performed on an Intel i7-2600 CPU.

for example, with the cost of updating a particle in an electrostatic plasma
simulation with collisions. On the same machine, about 0.1-1 us is spent per
particle on interpolating forces from the grid, updating the particle position and
velocity, determining whether a collision should occur, mapping the particles to
densities again and computing the electric field. In such simulations merging
would typically not occur at every time step, and only for a fraction of the
particles. Therefore, the computational cost of setting up k-d trees and searching
for neighbors would not contribute much to the simulation time.

If in a simulation the cost of advancing particles is very small, but their
weights have to adjusted very often, then the use of k-d trees might slow the
simulation down. In such cases, it might be better to divide the particles over
the grid cells, which can be done much faster than setting up a k-d tree, and then
use a fast algorithm that operates on a cell-by-cell basis to adjust the weights.

4.5 Conclusion

Adaptively adjusting the weights of simulated particles can greatly improve the
efficiency of simulations. We follow Welch et al. [98] and call algorithms that
do this ‘adaptive particle management’ (APM) algorithms. In this work, we
have focused on the pairwise merging of particles. We found that the use of a
k-d tree offers several important advantages over present methods. First, only
particles that are ‘close together’ are merged. ‘Close together’ can be defined
as desired (for example close in position and velocity). This ensures that the
distribution of particles is not significantly altered. Second, the merging can be
performed completely independent of the numerical mesh used in the simulation.
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The algorithm works in the same way, whether the simulation is in 1D or in any
higher dimension. Third, with a k-d tree, the closest neighbors can be located
efficiently. Therefore, the method can be used for simulations with millions of
particles. Fourth, from a practical point of view, the use of a k-d tree library
greatly simplifies the implementation of pairwise merging.

Two particles can be merged in different ways, and we have compared vari-
ous merge schemes. An interesting option is to select properties for the merged
particle at random from the original particles. With these stochastic schemes
fluctuations increase, but on average both momentum and energy can be con-
served. In the simulation of the two-stream instability we saw that when system
is sensitive to small fluctuations, a scheme that conserves energy or momentum
is preferred. But when the physical evolution does not depend strongly on small
fluctuations, a stochastic scheme can perform better.

In general, it is more important to preserve the essential characteristics of
the particle distribution function than to exactly conserve grid moments. A
scheme that conserves energy or momentum should typically be used with a
full coordinate k-d tree (containing x,v). A velocity norm k-d tree (containing
x, |v|) can be used with a stochastic scheme. The advantage of a velocity norm
k-d tree is that is can be constructed and searched faster than one with the full
coordinates. The combination of a stochastic scheme with a full coordinate k-d
tree seems a good choice: on average, the shape of the energy and momentum
distribution functions is conserved, while the induced fluctuations in the grid
moments are relatively small.



Chapter 5

Simulating the inception of
nanosecond pulsed discharges in
nitrogen/oxygen mixtures

We investigate the inception of nanosecond pulsed discharges with a 3D
PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive
mesh refinement. This model, whose source code is available online, is de-
scribed in the first part of the paper. Then we present simulation results
in a needle-to-plane geometry, using different nitrogen/oxygen mixtures
at atmospheric pressure. In these mixtures, non-local photoionization
is important for the discharge growth. The typical length scale for this
process depends on the oxygen concentration. With 0.02% oxygen, we
observe the formation of small branches on the discharges. With 2% or
more oxygen, an ionized almost spherical region can form around the
electrode tip, which increases in size with the electrode voltage. Even-
tually this inception cloud destabilizes into streamer channels. On the
other hand, the discharge velocity is almost independent of the oxygen
concentration. We discuss the physical mechanisms behind these phe-
nomena and compare our simulations with experimental observations.

This chapter will be submitted for publication as:
Simulating the inception of nanosecond pulsed discharges in nitrogen/oxygen
mixtures, J. Teunissen, U. Ebert



64 5.1. Introduction

5.1 Introduction

Nanosecond pulsed discharges have many applications, for example pollution
control [115], ozone generation [116] and wound sterilization |7]. With current
technology, voltage pulses of only a few nanoseconds can be made [117]. On
such short time scales, energy is mostly transferred in a few fast electron-neutral
processes. This prevents losses due to gas heating, and allows for more control
over the electron energy.

In this paper, we investigate the inception of nanosecond pulsed discharges
using 3D particle simulations in a needle-to-plane electrode geometry. We con-
sider so-called positive discharges, i.e., the needle electrode has a positive voltage.
Because electrons drift towards the electrode, a non-local source of electrons is
needed for sustained discharge growth. Our simulations are performed in nitro-
gen/oxygen mixtures, in which photoionization is typically the most important
non-local source of electrons [87, 88]. Because the amount of photoionization
produced depends on the oxygen concentration [46], we can study the effect of
photoionization by varying the amount of oxygen. We perform simulations un-
der qualitatively similar conditions as in the experimental investigations of for
example [32, 87, 118].

The paper is organized as follows. In section 5.2, the simulation model is
introduced. Then, in section 5.3, simulation results are shown for four gas mix-
tures (N containing 20%, 2%, 0.2% and 0.02% Os), at four electrode voltages
(3.5, 4.0, 4.5 and 5kV), all at atmospheric pressure. For comparison, results
with different electrode tips and with more particles per cell are also shown. In
section 5.4, we analyze the simulation results and we discuss how the discharge
morphology depends on the oxygen concentration and the electrode voltage.

5.2 Simulation model

The particle model we use is of the PIC-MCC (particle-in-cell, Monte Carlo
collision) type [67, 105, 119]|. This model was used before in [110, 120-122|, here
it is described in more detail. Although we call the model a particle model, we
only track electrons as particles. Ions, which move much slower than electrons,
are included as densities. Neutral gas molecules are not simulated, but they
provide a homogeneous background that the electrons randomly collide with.
Because we consider time scales up to ~ 10ns, we can assume the ions to be
immobile, and the gas not to heat up.

As indicated by the name particle-in-cell, such a model includes a compu-
tational grid. Particles are mapped to densities on this grid, and from these
densities the electric field can efficiently be computed, by solving Poisson’s equa-
tion. The electric field is then interpolated back to the particles.

The main advantage of using a 3D particle model is that we can study how
stochastic fluctuations affect the three-dimensional discharge evolution. In [28] it
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was shown that such density fluctuations can be important, and in chapter 3 such
fluctuations were found to be important for negative streamers. The downside
of using a particle model is that it is computationally more expensive than a
typical plasma fluid model.

The particle model used in this paper was used before in several publications
[120-122|, and its source code is available at the homepage of our group |[35].
Below, we describe the implementation of the model. The electric field solver,
the electrode and photoionization are discussed in more detail; for the other parts
we give a shorter description and refer to other publications.

5.2.1 Collisions

The discharges that we consider will be weakly ionized, having an ionization
degree of about 107° up to 10~*. Therefore, electron-neutral collisions dominate
the behavior and we can neglect electron-electron and electron-ion collisions. We
include impact ionization, (in)elastic scattering and electron attachment. The
time and type of these collisions is determined using the null-collision method
[123].

We use the Ny and Oz cross sections from the Siglo database [124]. After a
collision, electrons are scattered isotropically. This is not realistic, because elastic
scattering already becomes anisotropic at ~ 10eV, see for example [125]. How-
ever, most electron-neutral cross sections below one keV are normalized under the
assumption of isotropic scattering. For consistency, one should then also use this
assumption in the simulation model. From a practical point of view, isotropic
scattering is simpler to work with, and obtaining differential electron-neutral
cross sections is complicated. This is illustrated at [126]: differential cross sec-
tions are only available for argon, based on Quantum-mechanical computations

[127, 123).

5.2.2 Particle mover & time steps

We use the ‘Velocity Verlet’ scheme [129] to update the particles’ position & and
velocity v over time

Tips, = Ty + V0 + %atf5t27 (5.1)

1
Viys, = Vi + 5 (@ + agys,) O,

where a; is the acceleration of the particle due to external forces. Because we
work under electrostatic conditions without an external magnetic field, a; =
q/m - E;, where q/m is charge over mass and E; the local electric field.

There are several time step restrictions in the simulations we perform. First
of all, we impose a CFL-like condition on the particles, so that they move less
than half a grid cell: At < %Aw/vmax. We take vpax as the velocity at 9/10%"
of the velocity distribution, to reduce fluctuations.
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The electric field (see section 5.2.3) is not always recomputed when the par-
ticles are moved, instead a separate time step Atg is used. Each time the field
is recomputed, the maximum relative difference with the previous field is esti-
mated, using 1000 randomly selected samples at particle locations. When the
maximum difference is larger than 7.5%, Atg is reduced, and when it is smaller,
Atg is increased.

Although we assume that the plasma in our simulations is weakly ionized,
high densities are sometimes produced, for example near the electrode tip. The
presence of such regions also imposes a time step restriction, because Atg should
be smaller than the dielectric relazation time [122, 130|:

Atp < go/(enepe), (5.3)

where ¢( is the dielectric permittivity, e the elementary charge, n. the electron
density and p. the electron mobility. This condition prevents ‘over-screening’
of an electric field, which can occur when the time step is too large: then the
conductivity of the plasma reduces the electric field so much that it actually
increases in the opposite direction.

To not have to use a small time step because of a small high-density region,
we artificially limit the electron density to 2.5-10?! m—3, which corresponds to an
ionization degree of 10™%. Above this density, electrons are gradually converted
to negative ions. This effectively limits the conductivity of the plasma to prevent
oscillations. The effect on the simulations is usually small, because the maximum
density is either never reached, or only in a small region.

5.2.3 Adaptive mesh refinement for the electric field

We assume that the discharge develops under electrostatic conditions, so that
the electric field can be calculated from the electric potential, which is obtained
by solving Poisson’s equation. This approximation can be made because typical
electron velocities are much smaller than the speed of light, and because the
induced magnetic fields have negligible effect.

Nanosecond pulsed discharges have a ‘multiscale’ nature: around the space
charge layers, a mesh resolution of a few micrometers is required, while a typical
discharge measures at least a millimeter. Mesh refinement can therefore greatly
help to speed up simulations. We use a 'nested grid’ type of adaptive mesh
refinement (AMR), similar to the procedure used in [29, 131]. The refinement
procedure works in the following way. First, the coordinates at which refinement
is needed are collected and grouped into boxes. If two boxes are within two
grid points of each other, then they are merged into a single larger box. Each
separate box then becomes a new refined grid, with a refinement factor of two.
The Dirichlet boundary conditions for the potential on these new grids are inter-
polated from the parent grid. This procedure is repeated recursively, until there
are no more grids to refine.
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Figure 5.1: Schematic drawing of a mesh, to illustrate how refined patches are
merged. a) The regions were refined patches ‘touch’ are indicated by red dots.
b) The touching regions have been merged into larger rectangles.

Because boundary conditions are interpolated from the parent grid, refined
boxes are not allowed to ‘touch’ each other, since this would limit the accuracy
at the boundary. This is why boxes within two grid points of each other are
merged into one larger box. As illustrated in figure 5.1, the merging of boxes
typically increases the total number of fine grid points, which is a downside of the
approach described here. We have experimented with a fine-to-coarse correction
as described in [132, 133|, but decided no to include this, because we observed
only modest improvements in our test problems.

Our refinement criterion depends on the local electric field:

Az < 2/a(E), (5.4)

where a(FE) is the effective ionization coefficient in a field of strength E. The
reason for using this criterion is that 1/« is a typical length scale for ionization,
so that the space charge layers of a discharge will have a width of a few times 1/a.
The factor 2 in equation (5.4) is empirical. With a higher number the results
visibly change because the mesh is not fine enough; lower numbers increase the
computational cost.

We use Fishpack [30], a fast elliptic solver, to compute the electric potential
on each block from the charge density. The electric field is then computed by
taking central differences of the potential.

5.2.4 Electrode

The solver that we use to compute the electric potential, Fishpack, can only
be used for separable, constant-coefficient elliptic problems on Cartesian grids.
Including an electrode with such a solver can be done with the capacitance matriz
or charge simulation method [31, 67|. These approached seemed unfeasible for
three-dimensional refined grids, so we use the custom method described below.
Our method is based on the linearity and symmetry of Poisson’s equation:

v2¢ = =P,
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where we have omitted ey for simplicity. A point charge §(r — 7;) will affect
the potential at r; by an amount f; ; = f(r;,r;). In free space we have f; ; =
1/|r; — rj|, so that there is a symmetry f; ; = f;;. Numerical tests suggest that
the discrete Poisson equation in a bounded domain also has this symmetry. This
inspired the procedure outlined below.

Suppose that we place N point charges 6(r — r;) (for i« = 1,2,...,N) at
points r;. We can now numerically compute the potential ¢; at each point, and
store these values as \;’s:

Ni=¢i=> fij (5.5)
J

To get an average potential V) at the points r;, we set the point charges to
¢ = Vo/Ai. The potential at each point is then

$i=> qifi;=>_ Vofij/ N
J J
so that the average potential is indeed Vj:

%Z@' = % D fiilX (5.6)

53 (Z fm) i 1)
= % > Ai/N =T, (5.8)
J

where we have used equation (5.5) and the fact that f; ; = f;;. Although the
average potential is now Vj, the potential at individual points might be far off.
Suppose that the differences are §; = Vp — ¢;, then an amount §;/\; can be added
to each charge ¢;. From equation (5.6) it follows that the average potential is
then still V. This adjustment of the charges can be repeated, and in all our test
cases we observed convergence towards the solution of having Vj at each point,
up to the discretization error.

To represent an electrode, we generate a large number of points on its surface.
For the simulations presented here, these points are spaced by 3 um close to
the electrode tip. Away from the tip the spacing is increased to reduce the
computational cost. When all these points have a potential Vj, they effectively
represent an electrode surface.

This convergence towards Vj is unfortunately rather slow, but that is not too
much of a problem, for two reasons. First, in experiments the electrode voltage
will also not precisely be Vj during a nanosecond pulsed discharge. Second, in
the simulations the potential is recomputed at every time step. Because each
electrode-iteration starts from the previously determined surface charges, and
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the potential distribution changes relatively slowly, the slow convergence is less
of a problem. After a discharge has formed, the surface charges of the electrode
are greatly reduced because of the conductivity of the plasma.

5.2.5 Adaptive particle management

The number of electrons in a typical discharge quickly grows to a value of 10%
or more. To make particle simulation feasible on modest machines, we have
developed an adaptive particle management algorithm [104], see chapter 4. This
algorithm uses a k-d tree to locate particles that are close in position and velocity.
Simulation particles can be merged or split, thereby changing their weights w.
For merging we use the v, scheme, in which the velocity is chosen at random
from one of the original particles, see chapter 4. We set the ‘desired” number of
particles per grid cell (Nppe) to 32, so each particle has a ‘desired weight’ wg of

Wy = neAr* /Nppe, (5.9)

where n, is the local electron density and Az?3 the volume of the grid cell con-
taining the particle. The particles for which w < %wd are stored in a k-d tree
with coordinates (x,\|v|), where A = 107!, see [104]. Each particle in this
tree can then be merged with its nearest neighbor. The resulting particle gets
its position and velocity randomly from one of the original particles.

Particles for which w > 3wy can be split into [wy/w] new particles. These
new particles have the same velocity as the original particle, but their positions
are uniformly distributed over a volume Az3/Nppe. This is done to ‘smear out’
particles moving into a finer grid. In the simulations, merging and splitting is
performed each time the total number of particles has grown by a factor of 1.2.

Equation (5.9) gives large weights in the discharge interior, because both n.
and Az? are large there (see section 5.2.3 for a description of the grid refinement
used). In high-field regions where the discharge is actively growing, the weights
are smaller, because both n, and Az3 are smaller.

The use of ‘super-particles’ (w > 1) leads to increased density fluctuations,
so that one has to be careful when studying a system sensitive to such fluctua-
tions. To investigate whether this is a problem for our simulations, we include
simulations for Nppe = 48 and Ny, = 64 in section 5.3.4.

Even with the adaptive particle management described above, the number
of simulation particles required is still large. Therefore, the particle code was
also parallelized using MPI (Message Passing Interface). The simulations shown
in section 5.3 were performed on nodes containing two Intel L5640 CPU’s, each
having 6 cores. They took up to 48 hours, with up to 5-107 simulation particles.

5.2.6 Photoionization

Positive discharges can only grow if there are free electrons ahead of them. These
electrons can start avalanches that grow towards the discharge, thereby extend-
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ing it. In nitrogen/oxygen mixtures, photoionization can create these non-local
electrons.

Photoionization can occur when an excited No molecule decays via the emis-
sion of a UV-photon. If the photon has a wavelength between 98 and 102.5 nm,
it can ionize an Og molecule. Although photoionization is relatively well-studied
for No /O mixtures, it is not clear which excited Ny state(s) generate the ionizing
photons [45, 57]. We therefore use a stochastic version of the photoionization
model of [46], as was done before in [11]|. In this model, n ionizing photons are
(on average) produced per ionization. The factor n can be written as n = ng-nq,
where ng is an efficiency depending on the local electric field £ and 7, is a
quenching-factor. For ng we use the data shown in figure 5.2, taken from [46].
We set the quenching factor 7, to

30 mbar

. 5.10
p + 30mbar’ (5.10)

g

where p is the pressure. At the ‘quenching pressure’ of 30 mbar, half the excited
states decay due to collisions with other molecules instead of emitting a UV-
photon. Equation (5.10) was also taken from [46], which makes use of older
references [134].

If a simulation particle with weight w (representing w physical particles)
undergoes an ionization, the number of photons produced is sampled from the
Poisson distribution with mean nw. Note that these photons are always created
individually, i.e., a super-particle produces no ‘super-photons’. The absorption
depth of a UV-photon depends on its wavelength. As in [11], we assume the
wavelength to be uniformly distributed over the interval from 98 to 102.5nm.
Given a uniform random number R, the typical absorption length [ of a photon
is then given by [46]

=1 /PO (5.11)

where [pin = 0.67 um, lhax = 0.38 mm and po, is the partial pressure of oxygen
in bar. The average absorption length [ resulting from equation (5.11) is

[ =~ 0.093 mm/po, (5.12)

After the absorption length [ has been determined according to equation
(5.11), the actual distance to absorption is sampled from the exponential distri-
bution with mean [. The photon gets a random isotropic direction, and at the
location of absorption an electron-ion pair is created instantaneously.

We would like to point out some uncertainties within this model:

e We only know the quenching factor (5.10) for air, and assume it to be the
same for other mixtures.

e There should be some delay between creating the excited state and the
emission of a UV-photon. Because we are not aware of good data on this
delay, we assume it to be zero in the simulations.
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Figure 5.2: The photoionization coefficient ng versus electric field strength. This
number indicates how many ionizing photons are produced per electron-impact
ionization, in the absence of quenching. The solid curve shows four tabulated
points from [46], the dashed curved is an extrapolation of these values that we
use for higher fields.

e There are discrepancies between the photoionization rates measured in dif-
ferent experiments, so it is unclear how accurate the above coefficients are,
see the discussion in [45, 57].

However, as we will see, the simulation results are not very sensitive to the
photoionization coefficients, as was observed before in [88].

5.2.7 Other sources of free electrons

Besides photoionization, there can be other sources of free electrons. We briefly
discuss some of them here, although we do not include them in the simulations
of section 5.3.

First, some level of background ionization is always present, mostly in the
form of negative ions from which electrons can detach, see for example [121] or
chapter 8. However, typical densities are 10 - 10%cm ™3 [57], which is negligible
compared to typical photoionization levels (even for nitrogen with just 0.02%
oxygen). On the other hand, background ionization can be important to start
a discharge, since photoionization only occurs when the discharge has already
started. For simplicity, we use an ionized seed in front of the electrode, as
discussed in section 5.2.8.

Second, many pulsed discharges are repetitive, so that left-over ionization
can affect the next discharge [34]. However, we assume here that there is a long
enough time between pulses to ignore this.

Third, there can be secondary (electron) emission from the cathode, due to
the impact of positive ions. But for nanosecond pulsed discharges, the positive
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ions typically cannot reach the cathode within the pulse duration.

5.2.8 Simulation conditions

The simulation conditions were chosen to reveal the influence of the electrode
voltage and the oxygen concentration as clearly as possible. We therefore use
a smaller domain and a lower voltage than is used in most experiments. Fur-
thermore, the initial conditions were chosen such that the discharges start in the
same manner, see below.

Computational domain

A slice through the computational domain is shown in figure 5.3, showing the
electrical potential at t = 0. The domain measures (5.12mm)3, and an electrode
with radius 0.25 mm and height 2mm is centered at the bottom. Unless men-
tioned otherwise, see section 5.3.3, the radius of curvature of the electrode tip
is 0.125 mm. The side and top walls of the domain are grounded. In the plane
with the embedded electrode we use an analytic expression for the potential: it
decays linearly to ground potential at three times the electrode radius.

The boundary condition at the bottom can locally create strong electric fields.
In experiments, a dielectric material is often used to electrically insulate the
electrode from the discharge chamber. We cannot implement this in our field
solver, but we still want to prevent discharges from starting there. We therefore
do not allow electrons or grid refinement below about 1.5mm, see figure 5.3.
We used at most 7 levels of grids, with the coarsest mesh having a resolution of
80 pm and the finest a resolution of 1.25 um.

Initial conditions

To start the discharge, we place an ionized seed 0.13 mm above the electrode tip,
indicated by the pink dot in figure 5.3. The seed contains 10% electron-ion pairs,
that have a Gaussian distribution of width 0.05 mm. Instead of such a seed we
could have used background ionization to start the discharges. Although this is
perhaps more realistic, it is not very convenient for the simulations presented in
this paper: it can take considerable time before the discharge starts, and because
different discharges start at a different locations it is harder to compare them. We
do not include a rise-time for the electrode voltage, to ensure that the simulated
discharges all start at the same voltage.

5.3 Simulation results

In this section the simulation results are presented. First, we show the discharge
evolution for four N /Oy mixtures, containing 0.02 to 20% oxygen, and voltages
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Figure 5.3: A slice through the computational domain at ¢ = 0, showing the
electrical potential. Red indicates the electrode voltage, blue zero voltage. The
grid at t = 0 is shown in the left half of the figure. Electrons are not allowed below
the dashed line, to prevent discharges from forming near the bottom boundary
where the electrode is embedded. The pink dot indicates the location of the
initial seed.

between 3.5 and 5kV. Then we present additional simulations for the 20% O-
and 5kV case, but with a blunter and a sharper electrode. We also compare
results for a different number of super-particles per cell (see section 5.2.5), to see
how much this affects the discharge evolution.

5.3.1 Dependence on voltage and oxygen concentration

In figures 5.5 to 5.8, we show the evolution of the electron density, for electrode
voltages of 3.5, 4, 4.5 and 5kV, respectively. For each voltage, results are shown
for four different Oy concentrations: 0.02%, 0.2%, 2% and 20%.

All images in figures 5.5 — 5.7 are zoomed in on the electrode tip. They use
the same scale and viewpoint, see figure 5.4 and its caption. The electron density
is visualized with volume rendering, using Visit [135]. Densities above 102! m~3
are fully opaque, zero density is fully transparent, and in between the opacity is
linearly interpolated.

Looking at the results, we can make a few observations. In all cases, an
ionized region forms above the electrode tip. This is to be expected: the electric
field is strongest there, and the initial seed of electrons and ions was placed right
above the electrode. The electrode voltage affects this growth in two ways: With
a higher voltage, the discharges grow much faster. But with a higher voltage, the
ionization grows also in a more ‘spherical’ way, compare for example the results
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Figure 5.4: A view of the computational domain with the electrode, used for

figures 5.5 to 5.8. In those figures we show two views: one is aligned on the +Y
axis and the other on the -7 axis, indicated here.
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Figure 5.5: Simulation results for a 3.5kV electrode, for four different oxygen
concentrations. The electron density is shown using volume rendering with Visit
[135]. The opacity is indicated in the legend, above which a length scale is
indicated. The highest electrons densities occur inside the discharges, and are
therefore hard to see.
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Figure 5.8: Simulation results for a 5kV electrode.

for 2%—20% oxygen between figures 5.5 and 5.8. Especially at 5kV the formation
of an ionized cloud is clearly visible. These inception clouds [32, 33, 50, 50, 103,
136] all destabilize into streamers, with the number of streamers increasing with
the voltage. This seems to happen at the moment when the inception clouds
have slowed down in their spherical expansion.

The discharges are also affected by the oxygen concentration. With the low-
est oxygen concentrations, the discharges primarily develop in the vertical di-
rection, as a single streamer channel. At higher oxygen levels there is more
non-local photoionization, which leads to smoother growth and wider discharges
that eventually branch out into multiple streamers. This is discussed in more
detail in section 5.4.

5.3.2 Cross sections showing the electric field and charge density

Here we have a closer look at the development of the discharges with 20% and
0.02% Oz at 5 kV. Figure 5.9 shows cross sections (in the z,z-plane) of the
electric potential and the electric field for these discharges.

The difference between the case with 20% and 0.02% Os is clearly visible
in the electric field: with 20% Og, the discharge develops smoothly, while the
discharge boundary is much more irregular with 0.02% O,. These irregularities
strongly enhance the local electric field.

5.3.3 Effect of electrode tip

To investigate how discharge inception depends on the shape of the electrode tip,
we have also performed simulations with a sharper and a blunter tip. For the
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Figure 5.9: Cross sections of the electric potential and the electric field, for
nitrogen with 0.02% and 20% oxygen. With 20% Os, the discharge is in the
inception cloud phase for all figures, with 0.02% Os it destabilizes around 1.5 ns.
The electrode voltage is 5 kV for both cases.

results in section 5.3.1, an electrode with a radius of curvature at its tip 7. = 2/16
mm was used. In figure 5.10, additional results are shown for electrodes with
re =1/16 mm and r. = 3/16 mm, for the case of 5 kV and 20% oxygen.

With a larger radius of curvature, the discharge seems to be less symmetric,
and it destabilizes earlier into streamers. Possible reasons for this are:

e The high electric field near a sharp electrode tip is concentrated in a small
region. This makes it more likely that a symmetric, ‘cloud-like’ discharge
develops.

e With a sharper electrode the electric field is higher, and therefore also the
degree of ionization. Because the amount of photoionization is proportional
to the amount of ionization (see section 5.2.6) we expect the development
to be more homogeneous with a sharp electrode.

We should emphasize that more simulations have to be performed to make the
observations of figure 5.10 statistically significant, ideally combined with exper-
iments.

5.3.4 Varying the number of particles per cell

In the simulations we make use of so-called super-particles, see section 5.2.5.
For the simulations presented thus far, we used a desired number of particles
per cell of Npe = 32. Due to the way we adjust the weights, the number of
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Figure 5.10: Simulation results for a sharper (r. = 5z mm) and a blunter (r. =
2

mm) electrode tip, where 7. is the radius of curvature. The electrode with r. = 5
mm was also used for figures 5.5 — 5.8. The simulations were performed in Ny with
20% Og, using a voltage of 5 kV, so that the row with r. = 1% mm corresponds
to the bottom row of figure 5.8.

particles per cell will typically be higher by a factor of about 3/2, so that we
would have about 50 particles per cell. In regions where there is strong electron
impact ionization, the number of particles per cell will also be higher, because
the merging of particles takes time.

To determine how important the parameter Nppc is in our model, we have
performed simulations for two additional cases: Nppe = 48 and Nppe = 64, at 5
kV with 20% Og. The results are shown in figure 5.11. If Npp. is too low, then
one would expect the inception cloud to destabilize earlier, due to artificially
increased fluctuations in the electron density. For the test cases presented here,
no such effect is visible. This means that the value Ny, = 32 is probably high
enough for the qualitative description of discharges that we give in this paper.

5.4 Discussion

5.4.1 The growth of positive discharges

In our simulations, the discharge starts to grow in the following way. First, elec-
trons from the seed accelerate towards the electrode, forming many overlapping
electron avalanches. These avalanches are absorbed by the positive electrode, but
leave positive charge behind around the electrode. Due to photoionization, new
free electrons are created, which can form consecutive avalanches. Eventually, so
much positive charge is deposited around the electrode that a region around it
takes over (almost) the electrode voltage, see figure 5.9. New avalanches continue
to grow outside this region, depositing additional positive charge. In this way,
the boundary of the electrically screened region (hereafter called the discharge)
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Figure 5.11: Simulation results for three values of N,pc, the number of particles
per cell (see section 5.2.5.) A voltage of 5 kV was used, and the gas contained
20% oxygen. The case of Nppe = 32 corresponds to the bottom row of figure 5.8.

continues to move outwards.

5.4.2 Discharge growth velocity

The growth velocity in our simulations was not very sensitive to the oxygen
concentration, see figures 5.5 to 5.8. This has been observed before. In [87],
experiments on streamers in different nitrogen/oxygen mixtures were performed.
When the oxygen concentration was varied over almost six orders of magnitude
the streamers propagated with roughly the same velocity, even though their mor-
phology changed significantly. A simulation study in cylindrical symmetry [88]
also found that the streamer velocity was insensitive to the amount of photoion-
ization, whereas the streamer diameter did change with the oxygen concentration.

Let us try to understand this. Suppose that we have an already developed
discharge, for which we can somehow change the amount of photoionization
and the applied voltage. The amount of photoionization affects the electron
density n. ahead of the discharge. This density locally grows approximately
exponentially

Oine & qugne, (5.13)

where « is the ionization coefficient and vy the electron drift velocity. The
exponential growth means that the dependence on the electron density ahead is
rather weak: if the growth starts at a  times lower value, then the same final
density is reached with a delay of about In(v)/(avg).

The dependence on the applied voltage is much stronger, see figure 5.12 where
avg is shown versus the electric field strength for nitrogen and air. This explains
why the growth velocity increased with the electrode voltage in our simulations.
For example, the discharges at 5 kV and 2.0 ns are larger than those at 4 kV and
3.5 ns, see figures 5.6 and 5.8.
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Figure 5.12: The ionization rate awg versus the electric field for nitrogen and air
at 1 bar.

What we have not taken into account in the above arguments is that the
amount of photoionization and the applied voltage will change the shape of a
discharge, which will in turn affect the electric field. With less photoionization
thinner structures emerge, that give rise to higher electric fields. This could
explain why some discharges seemed to grow faster with less oxygen, see figure
5.7.

5.4.3 Relation oxygen / photoionization level

If we vary the oxygen concentration, what is the effect on the photoionization
density around a discharge? Equation (5.12) tells us that the mean absorption
length of ionizing photons is inversely proportional to the oxygen concentration.
This means that the number of photoionization events in a small volume around
the discharge is approximately proportional to the oxygen concentration.

We can use equation (5.11) to compute the expected fraction f(r) of UV-
photons absorbed within a distance r. By integrating, we get

Ei(—TpOQ/lmaX) - Ei(_rpoz/lmin)
1n(lrnin/lmin) ’

Fry=1+ (5.14)
where Ei(z) is the exponential integral. In figure 5.13, f(r) is shown for several
oxygen concentrations.

5.4.4 Morphology at low oxygen concentrations

The morphology (shape) of a developing discharge is quite sensitive to the oxygen
concentration, as can be seen in figures 5.5 to 5.8. As explained in the previous
section, a low oxygen concentration means that there will be less photoionization
close to the discharge. With fewer electron avalanches coming in, the discharge
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Figure 5.13: The function f(r) shows the fraction of UV-photons that are ab-
sorbed within a distance r after being created. For small values of r, we see that
f(r) is proportional to the oxygen concentration. See also equation (5.14).

growth is more irregular. The protrusions enhance the electric field, so that they
can quickly grow into streamer channels, see figure 5.9. This irregular growth
shows some qualitative similarities with ‘diffusion limited aggregation’ [64].

Especially at the lowest oxygen concentration used in this paper (0.02%), we
observe the formation of thin branches on the discharge, see figure 5.14. Such
branches have been observed in several experiments in nitrogen and other pure
gases, see for example (34, 87, 89]. In these studies, the branches were referred
to as feathers. It was found that the repetition frequency of a pulsed discharge
affects the formation of feathers, because it influences the background ionization
density, see the discussion in [34].

One question raised in this earlier work was whether feathers are single
avalanches [89] or small branches that carry space charge [34]. For our simu-
lations, the answer is clear: feathers are small branches that carry space charge.
These branches locally enhance the electric field, but on average the discharge
still grows faster in the forward direction. The main channel reduces the field
enhancement at the protrusions, and they stop growing.

5.4.5 The formation of inception clouds

At higher oxygen concentrations and higher voltages, we observed the formation
of an ionized, almost spherical region around the electrode tip, see figures 5.7
and 5.8. Such inception clouds have been observed experimentally in [33, 50, 50,
103, 136]. In [32], the properties of these inceptions clouds have recently been
studied in quite some detail. It was found that the typical radius of the inception
cloud T¢louq was between 0.6Ry and 0.9Rg, where Ry = V/E, is the electrode
voltage divided by the critical electric field. For the simulation results with 20%
oxygen at 4.5kV (figure 5.7), we get Tcjouq ~ 0.6 Rp, and at 5kV (figure 5.8) we
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Figure 5.14: Zoom of the 0.02% oxygen case of figure 5.5 at 8.5ns, showing the
small-scale protrusions on the sides of the streamer channel.

get Teioud ~ 0.7 to 0.8 Ry, in good agreement with the experimental observations.

At a voltage of 4kV (figure 5.6), the observed inception clouds are much
smaller: 7couq ~ 0.3 to 0.4 Ry, and at 3.5kV (figure 5.5) they are not visible
at all. We are not aware of experimental observations of inception clouds at
such ‘low’ voltages. It could be that inception clouds only form to sizes of
Teloud ~ 0.6 to 0.9 Ry when 7.ouq is at least a few times a typical streamer
radius. Another possibility is that the electron-ion seed used in our simulations
affects the formation of the cloud.

The larger the inception cloud gets, the lower the electric field outside it will
be. Assuming that the cloud is equipotential (see figure 5.9), we can relate the
electric field at its surface to the local curvature, see for example [137]. The
relation between curvature and electric field eventually destabilizes the cloud:
regions with stronger curvature grow faster, further increasing their curvature.
In 138, 139] this so-called Laplacian instability is analyzed in detail. Typical
length scales that could be important for the destabilization process are:

e The ‘radius’ of the area above breakdown.

The typical separation between incoming electron avalanches. If a typical
photoionization density is ng, then the corresponding length scale is 1/ &mny.

e The ‘ionization length’ 1/a.

The typical photoionization distance.

The radius of curvature of the electrode.
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We leave a careful analysis of the relevance of these length scales for future
research.

5.5 Conclusion

This chapter has made two contributions: First, a 3D PIC-MCC (particle-in-cell,
Monte Carlo collision) was introduced, and its source code was made available
at [35]. Second, this model was used to investigate the inception of nanosecond
pulsed discharges. The main advantage of using a particle model in 3D is that one
can observe how stochastic fluctuations affect the discharge. We have performed
simulations in a needle-to-plane geometry, for voltages between 3.5 and 5 kV,
and for nitrogen with between 0.02% and 20% oxygen.

We found that the discharge velocity was almost independent of the oxygen
concentration, in agreement with experimental observations [87]. With 0.02%
oxygen, we observed the formation of thin branches on the discharge, which
likely correspond to the ‘feathers’ observed in various experiments [34, 87, 89].
With 2% or more oxygen and a voltage of 4.5 or 5kV, we observed the formation
of an ionized, almost spherical region around the electrode tip. The radius of
these observed inception clouds was about a factor two smaller than was found
in a recent experimental study [32].






Chapter 6

Why isolated streamer
discharges hardly exist above the
breakdown field in atmospheric
alr

We investigate streamer formation in the troposphere, in electric fields
above the breakdown threshold. With fully three-dimensional particle
simulations, we study the combined effect of natural background ioniza-
tion and of photoionization on the discharge morphology. In previous
investigations based on deterministic fluid models without background
ionization, so-called double-headed streamers emerged. But in our im-
proved model, many electron avalanches start to grow at different loca-
tions. Eventually the avalanches collectively screen the electric field in
the interior of the discharge. This happens after what we call the ‘ion-
ization screening time’, for which we give an analytical estimate. As this
time is comparable to the streamer formation time, we conclude that
isolated streamers are unlikely to exist in fields well above breakdown in
atmospheric air.

This chapter has been published as [110]:

Why isolated streamer discharges hardly exist above the breakdown field in at-
mospheric air, A.B. Sun, J. Teunissen and U. Ebert, Geophys. Res. Lett. 40,
2417 (2013)
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6.1 Introduction

Streamers play a key role in the early stages of atmospheric discharges; they ap-
pear, e.g., in lightning inception, in the streamer coronas of lightning leaders and
of jets, and in sprite discharges. The late D.D. Sentman liked to call streamers
the “elementary particles” of discharge physics.

Streamers are rapidly growing plasma filaments that penetrate into non-
ionized regions due to the electric field enhancement at their tips. When the
local electric field exceeds the breakdown threshold of a gas, the neutral gas
molecules start to become ionized by impact of electrons with energies above 12
eV. While the ionization density grows, charged particles move in the electric
field and form space charge regions that modify the field. The ionization then
grows rapidly at channel edges where the field is enhanced, while the electric
field is suppressed in the ionized interior. In this manner long ionized channels,
so-called streamers, can grow. Positive or negative streamer channel heads have
to be distinguished depending on the net charge in their heads; they propagate
along or against the direction of the electric field.

We present a new view on streamer formation in fields above the breakdown
threshold. Recently, [140] have shown the importance of detachment from neg-
ative ions for delayed sprite formation in the mesosphere. Here, we show that
this mechanism also changes our understanding of streamer discharges in the
troposphere.

In the past 30 years, simulations that model electrons and ions as densities
have developed into a key method for exploring streamer physics. Most simula-
tions are effectively performed in two dimensions (2D), using a longitudinal and
a radial coordinate, hence assuming cylindrical symmetry of the streamer. The
emergence of a double-headed streamer, with a positive and a negative grow-
ing end, was first seen in simulations by [38]. The nonlocal photoionization
mechanism that allows positive streamers to propagate in air, was first imple-
mented by [37]; he also extrapolated his numerical results and suggested that
such streamers grow exponentially in fields above the breakdown value. Similar
observations were later made by [14] who studied how these results depend on at-
mospheric altitude or on air density. The exponentially growing single streamers
in high fields also play a role in a recent theory on terrestrial gamma-ray flashes
by |77]. [11] developed a 2D axisymmetric PIC-MCC model to study streamers,
and found that a double-headed streamer forms at 10 km altitude, with simi-
lar initial conditions as [14]. At sprite altitudes around 70 km, double-headed
streamers were simulated by [14], [15] and [11, 36]. Most of these simulations
were performed with fluid models in 2D, enforcing cylindrical symmetry.

In the present paper, we reinvestigate streamer formation in electric fields
above the breakdown value. Such ‘overvolted regions’ can for example form
around the tip of a lightning leader. We here assume that the field quickly rises
to a value above the breakdown threshold and that it is initially homogeneous.
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Although not directly corresponding to a particular physical situation, this keeps
the analysis more simple and general, and it can serve as a local approximation.
Our findings are very different from those of the authors cited above, because our
model contains essential additional features: First, we include electron detach-
ment from negative ions, which are present due to natural background ionization.
Second, we are able to perform our simulations in full three spatial dimensions.
Third, we work with a particle model, following the stochastic motion of in-
dividual electrons rather than approximating them as densities with completely
deterministic dynamics. In this manner, we include physically realistic stochastic
fluctuations, in particular, in the regions with low ionization, similarly as [11, 36|,
[21, 102], and [28]. The calculations are performed in atmospheric air at 1 bar.
Our results show that in a field above breakdown in air, isolated streamers are
unlikely to form. This is consistent with lab experiments: [34] and [50] observed
‘inception clouds’ that form around electrodes when a high voltage is suddenly
applied to air. These clouds form essentially in the region where the field is
above the breakdown value, and streamers only form beyond this region. We
conclude that under normal atmospheric conditions, isolated streamers hardly
exist in fields well above the breakdown threshold.

6.2 Model

A 3D particle-in-cell code with a Monte Carlo collision scheme has been developed
to simulate the dynamics of streamer formation. In the model, electrons are
tracked as particles. lons are immobile, as they would not move significantly
on the time scales we consider. Neutral molecules are not simulated, but they
provide a background density that the electrons randomly collide with. We
include elastic, inelastic, ionizing and attaching collisions. These collisions were
implemented in the same way as in [21], with the same cross sections for collisions.
Photoionization is an important process in many discharges, where excited Ny
molecules emit photons that ionize O molecules. We use a stochastic version of
the photoionization model of [46], as was done before by [11]. Below we present
the most important new features of our model.

6.2.1 Natural background ionization and electron detachment

In atmospheric air near ground pressure, background ionization is mostly present
in the form of O, and positive ions. The number of free electrons is much smaller,
because they quickly attach to Oz molecules to form O . In enclosed areas such
as buildings, typical background ion densities are 103 - 10*cm™2, mostly due
to the decay of radon [57]. As altitude increases, cosmic radiation becomes the
dominant source of background ionization [141]. Ermakov et al. measured the
concentration of negative ions in the lower atmosphere. The ion concentration
increases as altitude increases. A level of approximately 103cm ™3 was recorded
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at 5 km altitude, in agreement with estimates by [142] and [143|. Background
ionization can also be present due to previous discharges [34, 140, 144].

Electron detachment can occur when an O5 ion collides with a neutral gas
particle. The probability of electron detachment from O, depends on the lo-
cal electric field and on the gas density. We include electron detachment from
negative ions in the model, with rate coefficients from [145].

We remark that at mesospheric altitude, most negative background ions are
O~ ions as they form by dissociative attachment at low air density. These ions
are also a source of electrons by detachment [140, 146, 147].

Electron storage in the form of negative ions, from which they can later be
detached, combined with the strong non-local effect of photoionization distin-
guishes discharges in air from those in other gases, e.g. high purity nitrogen.

6.2.2 Numerical techniques

An adaptive particle management algorithm is used to control the number of
simulation particles in the code. We use relatively more simulation particles
around the streamer head, and relatively few in the streamer interior. And
where the electron density is low, electrons are tracked individually. Details of
the particle management method are given by [104].

To be able to simulate larger systems, an adaptive mesh refinement (AMR)
technique is used. The AMR method is similar to the methods of [29] and [12],
but now in 3D. The code is electrostatic, as the velocities are much smaller than
the speed of light and the induced magnetic fields are negligible compared to the
electric fields. At every time step, the electric potential is computed from the
charge density by solving the Poisson equation with Fishpack [30]. The electric
field is then the numerical gradient of the electrical potential. To increase the
performance and the maximum number of simulation particles, the particle code
was parallelized using MPI (Message Passing Interface).

6.3 Results and discussion

We perform simulations in a gas mixture of 80% Ny and 20% Os, at 1 bar and 293
Kelvin. The simulation domain is cubic, of size (4 mm)3. An external electric
field of 7 MV /m is applied in the negative z-direction, which is about 2.3 times
of the breakdown field Ej. One electron-ion pair is placed at the center of the
domain. We first show ‘unrealistic’ results with photoionization only, followed
by ‘realistic’ results where natural background ionization is included. Then we
indicate how these results depend on the initial presence of free electrons, and
we introduce the concept of the ‘ionization screening time’. Finally, we discuss
discharges at higher altitudes in the atmosphere.
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Figure 6.1: The electron density (top row) and the electric field (bottom row)
using photoionization only (unrealistic). Times are indicated below each column.
The simulation started with a single electron-ion pair in non-ionized air at 1 bar
and 293 K in a downward homogeneous background field of 7 MV/m (about
2.3 times Ej). Of the total simulation domain of (4 mm)?3, the range from 2 to
4 mm is shown in the vertical direction, and the range from 1.5 to 2.5 mm in
the two lateral directions. The figures were generated using volume rendering,
and the opacity is shown next to the colorbar; black indicates transparency. For
figures in the second row, a quarter of the domain is removed to show the inner
structures of electric field.

6.3.1 Photoionization only

We first present results with photoionization only, and no background ionization.
This is not very realistic, as some background ionization will always be present
in air. But these results help to clearly illustrate the effects of background ion-
ization later on. We remark that other authors have often presented results with
photoionization only.

Figure 1 shows the evolution of the electron density and the electric field in
three stages, from 2.67 ns to 3.12 ns. The initial electrons are accelerated rapidly
in the external electric field. They collide with molecules and ionize them, so the
number of electrons and ions increases rapidly. Since the charged particles drift
in the electric field, a negative charge layer forms at the upper tip, and a positive
charge layer at the lower tip. When space charge effects become significant,
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the discharge is in the streamer regime. The positive front requires a source of
electrons ahead of it to propagate. Because these electrons have to be created
by photoionization, there is a delay in the propagation of the positive side of the
streamer.

After ~ 2.7 ns, a double-headed streamer starts to form. The electric field at
the streamer tips is approximately three times the breakdown field. Meanwhile,
new avalanches start to appear around the main streamer that formed by the
initial seed in the middle. The new avalanches are triggered by photoionization.
As the avalanches develop, they overlap and interact with the main streamer,
see the second and third columns of Figure 1. Eventually, the middle streamer
is completely surrounded by new avalanches.

Similar results were presented by [21, 102], who used a hybrid model, a higher
background field of 10 MV /m and a larger ionization seed. Therefore, double-
headed streamers form earlier in their simulations. We also performed simula-
tions with a background field of 5 MV/m and with all other conditions as for
Figure 1. Similar phenomena were observed as in Figure 1, but after a longer
time of ~ 8 ns.

We notice a remarkable difference when we compare our results with 2D fluid
model simulations [12, 14, 77|. In contrast to our particle model or to the hybrid
model by [21], or to the stochastic fluid model by 28], normal fluid models cannot
reveal such pronounced multi-avalanche structures in overvolted gaps.

Photo-ionization plays an essential role for positive streamer formation and
propagation, if background ionization can be neglected. Without photoionization
or background ionization, only negative streamers are able to form, because there
are no seed electrons for the positive streamer to grow. This can for example be
seen in simulations by [21] and by [36].

Because the gap is overvolted, the photo-electrons can create new avalanches
in the whole space. In an undervolted gap, photoionization would only create
avalanches in regions where the electric field is enhanced, close to the streamer.
Then a pronounced streamer can emerge, with a larger radius and smoother
gradients than without photoionization [88].

6.3.2 Background ionization and photoionization

We now turn to the more realistic case where natural background ionization is
included. This important mechanism was missing in previous discharge models
in air. The initial conditions now include a homogeneous density of O, and
positive ions, both 103 cm™3. All other conditions are the same as for the case
with photoionization only. Figure 2 shows the electron density and the electric
field at 2.67 ns and 2.97 ns. We now compare Figure 2 with the first and the
second columns of Figure 1. With background ionization, there are more new
avalanches, as they can start from detached electrons as well as from photo-
electrons. Figure 1 shows that photo-electrons are mostly generated close to the
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electric field (MV/m)

Figure 6.2: The electron density (top row) and the electric field (bottom row)
using photoionization and natural background ion density. Times are indicated
below each column. The simulation and plots were set up in the same way as for
Figure 6.3.1, but now background ionization in the form of O, and positive ions
was included, both with a density of 103cm™3. Here the full simulation domain
is shown from 0 and 4 mm in all directions.

discharge, within 1 mm distance. On the other hand, detachment can happen
anywhere, even though it happens faster in higher electric fields. Therefore, the
avalanches are much more distributed over the whole domain in Figure 2. As
the avalanches grow, they overlap more and more, and it is no longer possible
to discern a single streamer. Since the avalanches are close together, the electric
field enhancement at their tips is reduced.

Now the difference with the results of 2D fluid model simulations is even
greater. Instead of a double-headed streamer, we see a discharge that spreads
out over the whole domain. Similar discharges were observed in laboratory ex-
periments by [50] and by [34]. Around a needle shaped high voltage electrode,
the field is above breakdown and an ionized ‘inception cloud’ forms. Farther
away from the electrode where the instantaneous field drops below breakdown,
the cloud destabilizes into streamer channels.

Therefore the existence of well separated accelerating streamers in the over-
volted region near lightning leaders in air, as postulated by [14] and [77], is
unlikely.



92 6.3. Results and discussion

-
o
electron density (1019m'3)

0.1

2.97 ns

Figure 6.3: The electron density at 2.67 ns and 2.97 ns, using the same simulation
parameters as for Figure 6.2, but now without the initial electron-ion pair.

6.3.3 Dependence on the initial seed

Overvolted gaps are sensitive to the initial conditions, because homogeneous
breakdown competes with streamer-like breakdown. All fluid model simulations
referenced in this paper used big initial electron seeds, without much discussion
where these electrons would come from.

For the results presented above, a single electron-ion pair was initially present
in the domain. We have also performed the simulation of section 6.3.2 without
that initial electron. The electron density at 2.67 ns and 2.97 ns is shown in
Figure 6.3. We can see that the discharges start a bit later, due to the delay in
the detachment process, and they are also more uniform. Furthermore, we have
performed simulations that start with 10 or 100 electron-ion pairs. As expected,
with more free seed electrons, the discharge initially grows faster, and is more
concentrated around the initial seed.

6.3.4 Ionization screening time

The simulation results we have presented show only the first few nanoseconds of
a discharge. Here we will discuss what happens at later times.

If in some region the electric field suddenly rises above the breakdown thresh-
old, then the number of free electrons will grow due to impact ionization. The
electrons drift in the field and leave positive ions behind, and this charge sepa-
ration reduces the electric field in the interior. After some time 7, the electric
field in the interior drops below the breakdown threshold. This we call the ‘ion-
ization screening time’. We note that [77] introduced a similar time scale, which
was named ‘critical time’. For screening to happen, there have to be some free
electrons in the overvolted region. These are clearly present above ~ 60 km, but
in the troposphere they can appear, for example, due to electron detachment
from O, ions.

We first determine 75 using a plasma fluid model, then we give a more general
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analytical approximation. We use a simple geometry: there is a uniform electric
field Fp, pointing in the negative z-direction, and the initial electron and ion
density are ng for zyp < z < z1, elsewhere they are zero. The length z; — 2 is
taken sufficiently large, then the results do not depend on this length. Figure 6.4
shows the ionization screening time for different fields Fy, starting from an initial
density ng = 10% cm ™2 of electrons or O, ions.

Analytical approximations to these curves are also shown, these are based
on a few assumptions: there is no diffusion and the electrons keep their initial
drift velocity vq(Ep) and effective ionization coefficient a(Ep). In the geometry
described above, there are then no electrons below zg + vgt, as they drift up.
The ion density between zp and zg + vgt is equal to noea(Z_ZO), so the integrated
charge along the z-coordinate is (e®d! — 1)eng/c, where e is the elementary
charge. Equating this to the charge €y Fy needed to screen an electric field Ey,
and solving for ¢ gives the ionization screening time

E )/(avd), (6.1)

where €y is the vacuum permittivity. Using the values o and vy for the initial
field Fy underestimates the ionization screening time; to compensate for this we
compute the time to shield the electric field completely to zero. Note that in
the limit o — 0, (6.1) reduces to the dielectric relaxation time ey/(engpo), with
po = vq/Ep, also known as the ‘Maxwell time’ [13]. If we start with negative
ions, the delay due to the detachment time 7p can be included by adding a term
In(1 + avgrp)/(awvg) to (6.1).

Figure 6.4 also includes the detachment time [145] and the typical streamer
formation time based on the Raether-Meek criterion. When the electric field
is sufficiently above breakdown, the ionization screening time is close to the
streamer formation time. Then, from these time scales alone, we can say that
the presence of natural background ionization inhibits the formation of isolated
streamers. The reasoning behind this statement is as follows: When there are
many seeds, many streamers try to form. Their collective charge separation
quickly screens the electric field in the interior of the discharge, which halts the
growth of streamers there. Then the discharge grows only at the boundary of
the screened, originally overvolted, region.

Under certain conditions, for example when the electric field rises more slowly
to a value above breakdown, many streamer-like channels might form that to-
gether shield the electric field. We leave this for future research, and note that
in such a case one cannot speak of isolated streamers.

In a field of 7 MV /m we find that 75 = 3.2 ns if an initial density of 103 cm~3
O, ions is present. These conditions correspond to the simulations shown in
Figure 6.2 and 6.3, which end at 2.97 ns. It was not possible to simulate up to
the screening time, because the number of free electrons increases rapidly before
screening, dramatically slowing down our particle code.
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Figure 6.4: The ionization screening time 75 for a preionization density ng =
103 cm™3 of electrons or negative O; ions. The corresponding analytical ap-
proximations are also shown, see section 6.3.4. Furthermore we include the de-

tachment time and the streamer formation time, based on the Raether-Meek
criterion: 18/(awy) at 1 bar.

6.3.5 Discharges at higher altitudes in the atmosphere

At higher altitudes in the atmosphere, the role of background ionization is qual-
itatively similar, as was stated in [148]. But there are quantitative differences:
First, based on scaling laws, the ionization density, the spatial extension and du-
ration and the electric fields in the streamer tip scale with air density, but natural
density fluctuations, photo-ionization and air heating do not simply scale [2]|. In
the mesosphere where sprite discharges occur, photoionization is about 30 times
more efficient than at ground level, because there is no collisional quenching of
the photo-emitting states. Furthermore, cosmic radiation supplies a higher level
of background ionization, also in the form of free electrons; therefore in the iono-
sphere electrons start avalanches and screening ionization waves as soon as the
electric field increases; they are seen as halos [140, 149]. At lower altitudes like
the night time mesosphere, electrons are predominantly attached, but bound as
O~ rather than as O; as at ground altitude. Electron detachment from O~ was
included into discharge models by [140] and by [147]. If previous cosmic radia-
tion or discharges have supplied sufficient O™, this ion density can even detach
so many electrons that the local breakdown field almost vanishes [140].
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6.4 Conclusion

We have studied steamer formation in atmospheric air at ground altitude with
a 3D particle code, including the effects of background ionization. Due to de-
tachment of electrons from O, ions, isolated streamers do not emerge in our
simulations in fields above breakdown. Instead, many new avalanches appear,
that overlap as they grow. This creates a discharge in the whole region above
the breakdown field, in agreement with experimental observations [34, 50]. An
analysis of the ionization screening time, after which there is global breakdown,
leads to the same conclusion. Photo-ionization has a similar effect as background
ionization, as was already observed by [21] and [28]. But because photo-electrons
are mostly produced close to the discharge, a more localized structure emerges.

Discharges at higher altitudes like halos and sprites evolve in a qualitatively
similar manner though ionization rates due to cosmic radiation and reactions of
electron attachment and detachment differ quantitatively.

This is the reason why double-headed streamers in the troposphere and
double-headed sprites in the mesosphere rarely exist, as was observed by [150]. If
the electric field is above breakdown in a larger region, the breakdown is rather
uniform due to background ionization and electron detachment, while if the field
is below breakdown, positive streamers emerge and propagate much more easily
than negative ones [12, 151].






Chapter 7

A time scale for electrical
screening in pulsed gas
discharges

The Maxwell time is a typical time scale for the screening of an electric
field in a medium with a given conductivity. We introduce a generaliza-
tion of the Maxwell time that is valid for gas discharges: the ionization
screening time, that takes the growth of the conductivity due to im-
pact ionization into account. We present an analytic estimate for this
time scale, assuming a planar geometry, and evaluate its accuracy by
comparing with numerical simulations in 1D and 3D. We investigate the
minimum plasma density required to prevent the growth of streamers
with local field enhancement, and we discuss the effects of photoioniza-
tion and electron detachment on ionization screening. Our results can
help to understand the development of pulsed discharges, for example
nanosecond pulsed discharges at atmospheric pressure or halo discharges
in the lower ionosphere.

This chapter has been published as [122]:
A time scale for electrical screening in pulsed gas discharges, J. Teunissen,
A.B. Sun, U. Ebert, J. Phys. D: Appl. Phys. 47, 365203 (2014)
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7.1 Introduction

When a weakly ionized plasma is exposed to an external electric field, charges
will move to screen the plasma interior from the field. A typical time scale for
this process is the Maxwell time, also known as the dielectric relaxation time
[130], that depends on the mobility and density of charge carriers in the plasma.
In this paper, we present a generalization of the Maxwell time that is also valid
for electric fields above breakdown, by taking into account charge multiplication.
We call this generalization the ionization screening time.

Our motivation for investigating electric screening in discharges came from
two other articles [110, 121], in which we simulated the breakdown of ambient
air. We included background ionization in the form of negative ions, from which
electron avalanches could grow after electron detachment. These avalanches to-
gether started screening the electric field, but we could not simulate up to the
end of this process. Therefore, we briefly introduced the concept of an ionization
screening time in [110]. This name was inspired by a similar phenomenon: after
a lightning stroke, ionization screening waves can form in the lower ionosphere,
also known as halos [149].

In this paper, we investigate the ionization screening time in more detail.
The paper is organized in the following way. In section 7.2 the Maxwell time is
discussed and the ionization screening time is introduced. Our analytic estimate
for the ionization screening time is compared with simulation results in section
7.3. These simulations are performed in 1D and 3D, using a fluid and a particle
model. For low levels of initial ionization, discharges become inhomogeneous and
local field enhancement becomes important, which is investigated in section 7.4.
Finally, we discuss the effect of electron detachment and photoionization on the
screening process in section 7.5, which is especially relevant for air.

7.2 The ionization screening time

Below, we first discuss the Maxwell time, also known as the dielectric relaxation
time [130]. Then we introduce the ionization screening time, for which we give
an analytic estimate.

7.2.1 The Maxwell Time

Although the Maxwell time is valid for any medium with a constant conductivity,
we focus here on the case of a plasma. Suppose we have a neutral plasma with an
electron density n. on which an electric field FE is applied. The field accelerates
the electrons in the plasma, while collisions slow them down again. This gives
rise to an electrical current

J. = encueFE, (7.1)
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where p. denotes the electron mobility and e the elementary charge. (We ignore
the much smaller contribution of the ions.) This current reduces the electric field
inside the plasma. By taking the divergence of Ampére’s law, we can relate the
current to the time derivative of the electric field

V- (J. + 200 E) =0, (7.2)

where ¢¢ is the dielectric permittivity. This equation can be interpreted more
easily if we assume the system is planar, i.e., effectively one-dimensional, so that
we get a scalar equation. If a constant external field Ey (i.e., 0;Fo = 0) is applied
from some location outside the plasma, integration of (7.2) gives

OE = —J./e0 = —(enepe/co) E. (7.3)

A typical time scale for electric screening is given by —FE/0E, which is called
the Maxwell time:

TMaxwell — 50/(€neﬂe)- (74)

For a different derivation see [152]. Note that there is no dependence on the
density profile at the plasma boundary.

7.2.2 The ionization screening time

When the field Ey applied to a plasma is above the breakdown threshold, the
Maxwell time is no longer valid, because the electron density ne grows in time.

We present a generalization of the Maxwell time, which we call the ionization
screening time or Ti. It estimates how long it takes for the electric field inside a
discharge to drop below the breakdown threshold. Below we present a derivation,
the result of which is

aefre0 B

n=tn 1+ ) an ) (75)

€N
where aeg is the effective ionization coefficient. Note that in the limit aeg — 0,
equation (7.5) reduces to the Maxwell time (7.4).

7.2.3 Analytic estimate

To derive an analytic estimate for the ionization screening time, we study a
simplified system. The assumptions are listed below:

e The system is planar (effectively one-dimensional); there is spatial variation
in the z-direction only.

e Initially, the electron and ion density is ng between zg and z1, and zero
elsewhere. The width x1 —xg is taken larger than the distance the electrons
will drift up to the ionization screening time.
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Figure 7.1: Schematic view of (a) electric field, (b) ion density and (c) electron
density at three times ty < t1 < to. The electric field decreases in the ionized
region due to the charge separation at the left and right boundary.

e Electrons keep the same drift velocity vg = p.FEp and effective ionization
coefficient aig as in the initial background field Ejy.

e There is no diffusion.

The evolution of this system will resemble the one depicted in figure 7.1. The
electrons, which are initially present between xg and x1, drift to the right with
velocity v4. Their number density grows in time as e®fvd!, At time ¢ there are
no electrons below xg + vgt, while they have created an ion density nge®ef (z—0)
between xy and xg + vgt. Therefore, the integrated net charge in this region
is (eaeﬁ””dt — 1)eng/aer. Equating this to the charge g9 Ep needed to screen an
electric field Fy, and solving for ¢ gives the following expression for the ionization
screening time

aer€o o

Tis = In (1 + ) /(Qefiva), (7.6)

eng

where vy can be replaced by peFyp.

In deriving equation (7.6) we have assumed that aeg and vy keep their values
for the initial field Ey. This approximation becomes more accurate if the initial
electron density ng is small compared to the density at the time of screening.
Then the electric field stays close to Ey during most of the screening process,
because the charge density is not yet large enough to affect it. Note that by using
these initial coefficients we will underestimate the ionization screening time. This
is somewhat compensated for by computing the time to shield the electric field
to zero, instead of to a value below breakdown.
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7.3 Comparison with simulations

We will now compare the predictions of equation (7.6) with numerical simula-
tions. In these simulations, we determine how long it takes for the electric field
inside a discharge to drop below the breakdown threshold. We perform these
comparisons in nitrogen at 1 bar and 293 Kelvin, for which we have used a
breakdown field of 3MV/m. (Since there are no electron loss mechanisms in
pure nitrogen, the breakdown field is not well-defined.) Below, we describe the
simulation models.

7.3.1 Simulation Models

We use two types of simulation models here: a plasma fluid model (1D) and a
particle model (1D and 3D). It will turn out that in 1D, the fluid model gives
almost the same results as the particle model. We nevertheless include both, to
provide a link between the 3D particle simulations presented in section 7.3.3 and
the plasma fluid description used for equation (7.6).

In all cases, a spatial resolution of 8 yum and a time step of 1ps was used.
In 1D, the computational domain was 16 mm long. In 3D, the computational
domain measured 8 mm along the z-direction, with an area of 1 x 1 mm? in the
transverse direction. To get the planar structure of the 1D simulations in 3D,
we have used periodic boundary conditions in the transverse direction.

1D fluid model

The plasma fluid model that we use is of the drift-diffusion-reaction type [29]. It
contains the following equations:

One =V - (eEne + D.Vn,) + cerpic| Ene, (7.7)
O™t = Qeftlle| E|ne, (7.8)
V-E =e(n™ —n.)/eo, (7.9)

where D, is electron diffusion coefficient and n™ is the density of positive ions.
In the simulations, the coefficients u., D, and ae.g depend on the local electric
field, which is recomputed at every time step. These coefficients are computed
from the particle cross sections [124] by measuring the properties of simulated
particle swarms, see [153]. The same coefficients are used for equation (7.6).
The fluid equations are solved with a third-order upwind scheme, as in [29].
Time stepping was done with the classic fourth order Runge-Kutta scheme.

3D particle model

The 3D model is of the PIC-MCC type, with electrons as particles and ions as
densities. The electrons randomly collide with a background of neutral molecules.
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Figure 7.2: The ionization screening time versus the applied electric field, for
two initial plasma densities (10! and 10'3). Results are shown for a 1D fluid
model, a 1D particle model and equation (7.6), for No at 1 bar.

We use cross sections from the Siglo database [124], Fishpack [30] to compute
the electric potential and adaptive particle management for the super-particles
[104]. This model is described in some detail in [110, 121].

1D particle model

The 1D particle model was constructed from the 3D particle model described
above. The 3D model is converted to 1D by projecting the particles onto one
spatial dimension for the calculation of the electric field. The particles then
have just one coordinate for their position, but their velocities still have three
components.

7.3.2 Comparison with 1D simulations

We now compare our analytic approximation to the two numerical simulation
models. In figure 7.2, we show the screening time for fields between 5 and 10
MV /m. Two initial conditions are used: an electron and ion density of 103 or
10 m~3 was present between 12 and 14 mm. Equation (7.6) predicts shorter
screening times than we see in the simulations, but the agreement is nevertheless
quite good. Note that the particle and fluid model give almost identical results.

As discussed in section 7.2.3, the partial screening of the electric field was
not included in deriving equation (7.6). An example of this partial screening is
shown in figure 7.3, where the electric field and the electron density are shown
at various times, using the 1D fluid model in a background field of 6 MV /m.
Close to the screening time, the exponential growth of the electron density slows
down, because the field is partially screened.
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Figure 7.3: Partial screening of the electric field in the 1D fluid simulations, for
a background field of 6 MV /m and an initial plasma density of 103 m~3. The
electric field (left) and the electron density (right) are shown at various times.
The exponential growth of the electron density slows down because the electric
field gets screened.

7.3.3 Comparison with 3D simulations

To investigate how inhomogeneities affect the ionization screening time, we have
performed 3D particle simulations in a field of 6 MV /m.

We will show results using two initial plasma densities: 10'3 and 10" m=3.
In both cases, the plasma is initially present between 4 and 6 mm. Because the
electric field is now a varying 3D vector field, we cannot directly compare it to
the 1D results. Therefore, we show the electric field and the electron density
averaged over transverse planes. This leaves only the longitudinal component of
the field nonzero, due to the periodic boundary conditions.

We first present the results for an initial density of ng = 103 m™3 between 4
and 6 mm. In figure 7.4 we present averaged electric field and electron density
profiles at various times. In figure 7.5, a 3D view of the electron density at
4.05ns is shown. The screening time is about 3.75ns, as in the 1D case of figure
7.3. Some noise can be seen in the electric field and density profiles, because the
initial density corresponds to 10% electrons per mm?.

With an initial density of ng = 10 m™3, the results look quite different, see
figures 7.6 and 7.7. There is now significant noise in the electric field and espe-
cially in the electron density profiles. These larger fluctuations emerge because
the initial density corresponds to only 102 electrons per mm?®. The screening
time is about 5.1 ns, which is still in agreement with the 1D results of figure 7.2.

Compared to the 1D results, we observe almost the same screening times in
3D, but with lower initial densities fluctuations become larger. If we would fur-
ther reduce the initial electron density, we would eventually get a few separated
electron avalanches that develop into streamers.
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Figure 7.4: Electric field and electron density in the 3D particle simulations, for
a background field of 6 MV/m and an initial density of ng = 10*m™3. The
values are averaged over planes perpendicular to the x-direction.
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Figure 7.5: The electron density in the 3D particle model at 4.05ns, for an
initial density of ng = 10 m~3. (This figure is made using volume rendering;
transparency is indicated in the legend.)
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Figure 7.6: Electric field and electron density in the 3D particle simulations, as

in figure 7.4, but now for a lower initial density of ng = 10" m=3.
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Figure 7.7: The electron density in the 3D particle model at 5.25 ns, for an initial
density of ng = 10" m~3.

7.4 The homogeneity of discharges

In the previous section we have seen that discharges can develop quite irregularly
if the initial electron density is low. The irregularities cause field enhancement,
that could invalidate our estimate for the ionization screening time. To estimate
when this happens, we first discuss how long it takes for space charge effects to
develop.

7.4.1 The streamer formation time

If an electron avalanche starts from a single electron, how long does it take for
space charge effects to become significant? In other words, how long does it take
for a streamer to form? The answer depends on the processes that can affect
the space charge fields: ionization, drift and diffusion. The coefficients of these
processes can be described in terms of the electric field F and the gas number
density IV, so that in general the ‘streamer formation time’ is a function of E
and N. According to [2, 91|, the number of electrons required for a streamer to
form scales as g(E) - No/N, where g(E) is some function of the electric field and
Ny is the density of air at standard temperature and pressure. Then the time
scale for streamer formation can be expressed as

Tstreamer — In [Q(E) : NO/N] /(Oée{-f?}d).

For N = Ny, a commonly used empirical approximation is to take g(E) ~ 10%,
so that In[g(E)] ~ 18. This criterion is know as the Raether-Meek criterion, for
which the streamer formation time is given by

TRM ~ 18/ (teftvg)- (7.10)

7.4.2 Required pre-ionization for homogeneity

From the previous section we have an estimate for the time it takes to develop
space charge effects. Given this time, we can estimate how high the initial
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Figure 7.8: The required initial electron density for homogeneous breakdown
according to equation (7.11), for three values of k. The curves shown are for No
at 1 bar.

electron density ng needs to be to prevent streamer formation. Several authors
have made such estimates in the past, see for example [154-156]. Much of this
research was aimed at generating homogeneous discharges for CO4 lasers. Below,
we derive an alternative criterion for homogeneity that is based on arguments
from [154-156], but perhaps simpler.

As long as space charge effects are negligible, the electron avalanche will ra-
dially expand due to diffusion. In the radial direction, the electron density at
time t will have a Gaussian distribution with a standard deviation of \/2D.t. If
we let Rs denote the typical radius at the time of streamer formation, see equa-
tion (7.10), we get Ry = 64/ D./(vqcx). If streamer formation is to be prevented,
the avalanches need to be sufficiently close to each other. This means that their
initial separation should be on the order of Rs. Suppose it is k - Rs, where k is
about one, then the initial electron density ng should be at least

N
> . (7.11)

1
~ 3 _
no~ 1(Rs)" = o575 (De

In figure 7.8, equation (7.11) is shown against the electric field for Ny at 1 bar,
for three values of k. We can see that the result is quite sensitive to k. Using
1 < k < 3, the required initial density lies between 102 and 10" m~3 for a field
of 6 MV /m, in agreement with the results from section 7.3.3.

7.5 The effect of detachment and photoionization

Besides impact ionization, there can be other ways to generate free electrons in
a gas, which may affect our estimate for the screening time. This is especially
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true for air, in which electron detachment and photoionization can occur. The
effect of these processes is discussed below.

7.5.1 Electron detachment

In electronegative gases there might initially be negative ions instead of free
electrons. lonization screening by electrons can still take place in such a gas if
electrons are able to detach from the negative ions. If a typical time scale for
detachment is 74, then the screening process will be delayed by approximately

Tdelay = In(1 + 740efvq) /(e vg), (7.12)

so that the total screening time is given by the sum of equations (7.6) and (7.12)

co
S [m (1 n O‘gﬂ”) +In(1+ Tg0erva) | /(Ceiva), (7.13)

where n~ denotes the negative ion density. Equation (7.12) is the solution to
Ne(Tdelay) = 1~ given the following equation

8tn6(t) - TL_/Td + ne(t)aeffvd7

with n(0) = 0. This last equation describes the growth of the electron density
in time, but it does not take the depletion of negative ions by detachment into
account (n~ should change in time). The underlying assumption is that ioniza-
tion quickly dominates over detachment. Furthermore, the coefficients 74, aeg
and vy are assumed to be constant, since we do not expect the electric field to
change during the detachment phase.

Summarizing, if there are negative ions from which electrons first have to de-
tach, then there will be a delay in the ionization screening process. The ionization
screening time can then be approximated by equation (7.13).

7.5.2 Photoionization

Photoionization can occur if excited molecules (or atoms) emit photons energetic
enough to ionize other molecules (or atoms). With a few assumptions, we can
estimate how photoionization will affect the screening time. Suppose that on
average 1 photoionization events take place per electron-impact ionization. Sup-
pose further that these photoionizations take place at a distance that is larger
than n Y 3, where ng is the initial density of electrons. If there is no delay in
emitting the ionizing photons, and if space charge effects can be neglected, then
the electron density will grow as

ne(t) = ngelltmaenvat, (7.14)
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So, photoionization effectively increases aeg with a factor 1+n. For air at atmo-
spheric pressure 7 is less than 1%, and at low pressures n < 0.1 [46]. Therefore
photoionization does not change the ionization screening time (7.6) much.

Another effect of photoionization could be to make a discharge more ho-
mogeneous. One interpretation of equation (7.14) is that photoionization has
effectively increased the initial density ng by a factor e7%fivd! at time ¢. From
equation (7.10), we get that aegvgt ~ 18 when space charge effects set in. For
n = 1%, the factor e'® is about 1.2, so that the effect of photoionization on the
homogeneity of a discharge is rather weak. For n =~ 0.1, the factor is about 6, so
that photoionization should be taken into account.

7.6 Conclusion

We have introduced the ionization screening time, a generalization of the Maxwell
time that is also valid for electric fields above breakdown. An analytic estimate
for this time scale was introduced, which was compared with numerical simula-
tions in 1D and 3D, finding good agreement. We have given an estimate for the
required plasma density to prevent the growth of inhomogeneities, and we have
discussed the effects of electron detachment and photoionization on ionization
screening.

These results can help to understand the development of pulsed discharges,
such as nanosecond pulsed discharges at atmospheric pressure or halo discharges
in the lower ionosphere. First, our estimate can be used to predict whether
such a discharge initially develops homogeneously. If so, then two stages can be
distinguished: Before the ionization screening time, growth takes place in the
complete discharge volume. After this time, the discharge grows at its boundary,
because its interior is electrically screened.



Chapter 8

The inception of pulsed
discharges in air: simulations in
background fields above and
below breakdown

We investigate discharge inception in air, in uniform background electric
fields above and below the breakdown threshold. We perform 3D par-
ticle simulations that include a natural level of background ionization
in the form of positive and O; ions. In background fields below break-
down, we use a strongly ionized seed of electrons and positive ions to
enhance the field locally. In the region of enhanced field, we observe the
growth of positive streamers, as in previous simulations with 2D plasma
fluid models. The inclusion of background ionization has little effect in
this case. When the background field is above the breakdown threshold,
the situation is very different. Electrons can then detach from O; and
start ionization avalanches in the whole volume. These avalanches to-
gether create one extended discharge, in contrast to the ‘double-headed’
streamers found in many fluid simulations.

This chapter has been published as [121]:

The inception of pulsed discharges in air: simulations in background fields above
and below breakdown, A.B. Sun, J. Teunissen, U. Ebert, J. Phys. D: Appl. Phys.
A7, 445205 (2014)
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8.1 Introduction

Developments in pulsed power technology have increased the interest in pulsed
discharges over the last two decades. These discharges now have a wide range
of applications, for example, ozone generation |6, 116, 157, 158|, gas and water
cleaning [6, 159, 160], flow control and plasma assisted ignition and combus-
tion [161]. Pulsed discharges appear also in thunderstorms and in high voltage
technology for electricity networks.

Here, we focus on the initial development of such pulsed discharges in air at
standard temperature and pressure, which we study with a 3D particle model.
We consider two different cases for the background electric field: it is either only
locally above the breakdown threshold, or globally. Homogeneous background
fields above breakdown can occur for example between parallel electrodes, or far
from charge accumulations, as in thunderclouds [60, 162]. The main objective of
the current paper is to show that in air one needs to distinguish between fields
above and below breakdown, due to the presence of background ionization.

If the background field is only locally above breakdown, a discharge can only
grow in that region, typically forming a streamer. Streamers are fast growing
plasma filaments that can penetrate into non-ionized regions due the electric
field enhancement at their tips. They have been studied in different gases and
in different electric field configurations both experimentally [34, 58, 87, 101, 118,
163, 164] and numerically [12, 38, 88, 165-171].

If the background field is globally above breakdown, ionization processes can
take place in the whole volume, at least if some background ionization is present
to provide the first free electrons. Because most background ionization is present
in the form of negative ions, this first requires electron detachment, which we
discuss in some detail. We will see that the growth of electron avalanches in the
whole volume can actually inhibit the formation of separate streamers.

The outline of the paper is as follows. In section 8.2, we first briefly discuss
previous work. In Section 8.3, we introduce the simulation model, and discuss
background ionization and electron detachment. In Section 8.4, we present simu-
lation results showing streamer formation in fields only locally above breakdown.
These results are in qualitative agreement with previous work. Then, in Sec-
tion 8.5, we investigate discharge formation in background electric fields globally
above breakdown. The results here show that the presence of background ion-
ization leads to the formation of a ‘global discharge’, consisting of many electron
avalanches.

8.2 Previous work

Up to now, pulsed discharges in air have mainly been simulated with plasma fluid
models [12-18], where the charged particles are approximated by densities. The
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most common fluid model assumes that the electrons drift, diffuse and react (ion-
ize), with the coefficients for these processes determined by the local electric field
strength. Typically cylindrical symmetry is assumed, and therefore these fluid
models need just two spatial coordinates, making them computationally much
less expensive than our 3D particle code. Authors typically place some localized
initial ionization in the domain to start a discharge [12, 16-18|. In background
fields above the breakdown threshold, this ionization seed then develops into a
‘double-headed’ streamer. The effect of including natural background ionization
(and detachment) has not been studied with these models.

In [110], we have recently demonstrated that including background ioniza-
tion and detachment can be important for discharges in air above breakdown.
We there used the same simulation model to compare discharge formation in
atmospheric air with and without ‘natural’ background ionization. The present
paper is an extension of [110]. The main differences are that we can discuss the
simulation model and the results in more detail here and that we include results
in fields only locally above breakdown.

8.3 The set-up of the MC particle model

In recent years, we have developed a 3D particle code of the PIC-MCC (particle-
in-cell, Monte Carlo collision) type [172] to study discharge inception. This
simulation model is made available on our group’s web page [35]. The reason
for using a 3D particle model is that the start of discharges is often a stochastic
process, that lacks cylindrical (or other) symmetry. In the model, electrons are
tracked as particles. Ions are assumed to be immobile, and are included as
densities. They only contribute to space charge effects. Neutral gas molecules
provide a background that electrons can randomly collide with; they are included
in the code as a random background of given density.

The simulations of the present paper are performed in dry air (80% No, 20%
O2) at 1 bar and 293 Kelvin. For the electrons, we include elastic, excitation,
ionization and attachment collisions with the neutral gas molecules. We use the
cross sections from the SIGLO database [124] and the null-collision method to
select collisions [173], with isotropic scattering after every collision. We ignore
electron-electron and electron-ion collisions, because the degree of ionization in
a pulsed discharge in STP air is typically below 104, which is also the case in
the simulations we perform.

Simulating a discharge with a 3D particle code is computationally expensive,
especially as the discharge grows. This limits the simulations we can perform to
the first nanoseconds of a discharge, during which the inception takes place. On
this time scale, heating, recombination and multi-step excitation or ionization
can be neglected.
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8.3.1 Adaptive particle management

As the number of electrons in a typical discharge quickly rises to 10® or more, so-
called super-particles have to be used. Using super-particles with a fixed weight
would induce significant stochastic errors, and therefore we employ ‘adaptive
particle management’ as described in [104]. The weight of simulated particles
can then be adjusted by merging or splitting them, and care is taken to not
alter their properties in a systematic way. A particle ¢ can only be merged with
its closest neighbor j that also needs to be merged, with ‘closest’ defined as
minimizing

d2 = (:IZZ‘—CCJ')2+)\2’U¢—’UJ"2, (8.1)

where x denotes the Cartesian position vector, v is the norm of the velocity and
A is a scaling factor that we set to one picosecond. A newly formed merged
particle gets its velocity at random from one of the original particles, while its
position is set to the weighted average position, see [104] for a comparison of
different schemes to merge particles. We adjust the weights so that every cell
of the grid (see below) contains at least 50 simulation particles. So if no more
than 50 electrons are present in a cell, then each simulation particle represents
a single electron. But where the electron density is high, with much more than
50 electrons in a cell, most simulation particles represent many electrons.

8.3.2 Adaptive Mesh Refinement for the electric field

In the particle code, the electric field is computed from the electric potential.
The potential is computed by solving Poisson’s equation with the charge density
as the source term, using the HW3CRT solver from the FISHPACK library [30].
When space charge effects become important in a discharge, a grid fine enough
to resolve the space charge structures has to be used. In our simulations, we use
the following criterion for the grid spacing

Azr < 1/a(E), (8.2)

where a(F) is the ionization coefficient, that describes the average number of
ionizations a single electron will generate per unit length in a field of strength E.
For air at 1 bar and in an electric field of 15 MV /m, a typical field for streamer
tips, this gives Az ~ 5 um. Because a typical simulation domain measures at
least a few mm in each direction, using such a fine grid everywhere is computa-
tionally infeasible. Therefore, we have implemented block-based adaptive mesh
refinement, in the same way as in [29], although now in 3D. First, the electric
potential is computed on a uniform, coarse grid. Then the rectangular area that
contains the points at which the electric field is larger than some threshold is
refined, by a factor of two. The electric potential in the refined rectangle is
then computed by imposing Dirichlet boundary conditions interpolated from the
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coarse grid. This procedure is repeated with the refinement criterion given by
equation (8.2).

For the simulation of streamer discharges, the block-based grid refinement
strategy described above works relatively well, because high electric fields are
present only in a small region. But for the simulation of discharges that spread
out over the whole domain, as we will see in section 8.5, this type of grid refine-
ment does not reduce the computational cost much.

8.3.3 Photoionization

Photoionization provides a non-local ionization mechanism in air. This is espe-
cially important for the propagation of positive streamers, that need a source
of free electrons ahead of them to propagate. We use the same approach as
in [11, 102], where a discrete, stochastic version of Zheleznyak’s photoionization
model [46] is implemented. In this model, the average density of ionizing photons
Sph produced at r is given by

Sph(r) = Sion(r) 77(E)7 (83)

where Sjo, represents the number of ionizations and n(FE) is an efficiency, esti-
mated from experimental measurements, that depends on the local electric field
FE and the gas mixture. When an ionizing photon is generated, its place of absorp-
tion is determined using random numbers, and at that position an electron-ion
pair is created. The average absorption distance is about 0.5 mm in air at 1 bar.
For details about the implementation of the photoionization model we refer to
[11].

8.3.4 Electron detachment from background ionization

In atmospheric air, there is always some background ionization present, due to
radioactivity and cosmic or solar radiation. Previous discharges can also play
a role, both in nature [174] and in the lab [34]. At standard temperature and
pressure, the free electrons that are created by these sources attach to oxygen
molecules mostly by three-body attachment [145]:

e+ 02+02 — Oy + O, (8.4)

e+ Ny +0y — O; + No. (85)
These negative ions have a longer life time than the electrons. Inside buildings,
background ionization levels of 103 — 10* cm™ are typical, primarily due to the
decay of radon, see [57] for a review. When O molecules collide with a neutral
gas molecule, the attached electrons can detach again, so that reactions (8.4)
and (8.5) are reversed:

05 +02 — e+ Oy + 0O, (8.6)

02_+N2 — e+ Ng + Os.
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Figure 8.1: The detachment time 7p as a function of the electric field strength
in STP air. In higher fields, negative ions have a higher energy and drift faster,
so they are more likely to lose an electron in a collision with a neutral molecule.

We use the following rates for reactions (6) and (7), which were taken from [145]
(reactions (56) and (57) in that reference)

ks = 2.7-10710/T/300 exp(—5590/T) cm? s, (8.8)
ks7; =1.9-107'2/T/300 exp(—4990/T) cm3s~1, (8.9)

where T is the gas temperature in Kelvin, in the absence of an electric field. In
our case, there is an applied electric field, which means that the ions will have a
higher effective temperature Tio, than the background gas. It was suggested to
us [175] to take T as the average of the gas and the ion temperature,

T = (Tgas + Tion) /2, (8.10)

with the latter given by

2
7Mi0n (,UfionE)27 (811)

2
7Mi01’1 /Ui20n == Tgas + ?)kB

Tion = Tgas + 3]63

where kg is the Boltzmann constant, Mj,, the ion mass, vio, the ion drift velocity,
and fion the ion mobility, which we approximate by pion = 2 - 1074m?/(Vs).
Note that it is assumed that the total energy of the ion is twice the ‘drift energy’
(Mion v2,,/2) [176].

Using equations (8.6)—(8.11), we can compute the total rate at which electrons
detach from O ions in a given electric field . We call this rate the detachment
rate, and its inverse the detachment time Tp. In figure 8.1, the dependence of
7p on the electric field strength is shown. At the breakdown field (3 MV /m) the
detachment time is about 500 ns, but at 5 MV /m it is only 10 ns.



Chapter 8. Inception above and below breakdown 115

We currently consider only O ions for detachment, although O™ can also
form due to dissociative attachment, mostly at lower pressures or higher elec-
tron energies. From these ions electrons can detach in fields much below break-
down [140, 147, 177]. Furthermore, many other types of ions can be generated
by chemical reactions [140, 178§].

We want to emphasize that both detachment and photoionization are char-
acteristic for nitrogen/oxygen mixtures. In pure gases or other mixtures these
processes might be absent or much weaker, see e.g. [87].

8.4 Discharges in background fields below breakdown

In this section, we show an example of discharge formation in background elec-
tric fields below breakdown. Of course, the field has to exceed the breakdown
threshold in some region, otherwise a discharge cannot start. Such a region
can be created by sharp electrodes or by polarizable object such as dust, water
droplets or ice crystals. We use a method that has been commonly used in fluid
simulations of streamers for the past 30 years, namely to place an ionized seed
in the domain [12, 16-18|. The electrons in such a seed move in the background
field, polarizing the seed, so that the electric field gets enhanced at the endpoints.
Our results are in agreements with previous modeling efforts, and the inclusion
of background ionization has little influence.

8.4.1 Conditions for the simulations below breakdown

The computational domain that we use for fields below breakdown is shown in
figure 8.2. It contains two parts: an interior grid of 5 x 5 x 10 mm?, in which
we use the particle model, and a four times larger grid around it that is used
to set the boundary conditions for the electric potential on the interior grid.
Dirichlet boundary conditions are imposed on the sides of the larger grid to get
a homogeneous background field Fy < Ej in the vertical direction. Inside the
interior grid we use adaptive mesh refinement, so that the strong electric fields
around streamer heads can be resolved. As a background gas we use dry air at 1
bar and 293 Kelvin, with a density of 10 O, ions per cm?, and an equal density
of positive ions.

8.4.2 Results

We use a long, neutral ionized column, similar to the initial condition used in
[151], but then scaled to ground pressure. The peak ion and electron density
is 1.3 x 10'3 cm™3. In the two lateral directions, the distribution of electrons
and ions is Gaussian, with a width of 0.2 mm. The distribution of plasma in
the vertical direction is uniform over a length of 4 mm; at the endpoints there is
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Figure 8.3: Schematic view of the
Figure 8.2: Schematic view of the computational domain in the 3D
computational domain in the under- overvolted simulations.  Periodic
volted simulations. The simulated boundary conditions are used in the
plasma region is embedded in a four two lateral directions. Initially back-
times larger domain. ground ionization is present in the

green region.

again a Gaussian distribution. An external electric field of ~ 0.5F} is applied in
the vertical direction.

Figure 8.4 shows how this seed develops further in the simulations. First,
the column gets polarized, and negative and positive charge layers emerge at the
top and bottom of the column, respectively. After ~ 10 ns, a positive streamer
forms at the upper end of the column, as shown in the first row of figure 8.4.
At the lower end, electrons spread out or attach to neutral molecules. On the
time scales that can be simulated with our particle model, we have not observed
negative streamers emerging. An important difference between positive and neg-
ative streamers is that positive streamers grow from electrons drifting inwards
towards their head, while negative streamers grow from the electrons drifting
outwards. Thus, the space charge layer of a positive streamer head is formed by
rather immobile ions, while the space charge layer of a negative streamer head
is formed by mobile electrons. Negative streamers are therefore typically wider
and more diffusive, with less field enhancement, and they do not form as easily
[12].

8.4.3 Effect of background ionization

We have repeated the simulations presented above without initial background
ionization, and the results showed no apparent differences. There are two reasons
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Figure 8.4: Simulation results in a field of 1.7 MV /m, about half the breakdown
value. The top row shows the electron density and the bottom row the electric
field, at various times. Initially an ionized column is present, that causes local
field enhancement. The domain measures 10mm x (5mm)?, and is cut open.
The figures were generated using volume rendering; opacity is indicated in the
colorbar.
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for this. First, photoionization produces most free electrons ahead of the front
after the discharge has started [88]. Second, detachment from O only plays a
role in the region above breakdown, but electrons are already present there due
to the initial seed. In regions below breakdown, the detachment time is more
than 500 ns (see figure 8.1), and if an electron would appear, then it would not
produce an ionization avalanche.

The simulation results look qualitatively similar to those obtained with typ-
ical 2D fluid simulations. This will be different in the simulations above break-
down presented in the next section.

8.5 Discharges in background fields above breakdown

In this section, we present simulations in a background field globally above break-
down. Below, we first describe the computational domain used for these simula-
tions.

8.5.1 Simulation conditions

In this section, we present new simulation results for a discharge developing in
a field of 6 MV /m, twice the breakdown field. The same level of background
ionization is present as in section 8.4, namely a density of 10*cm™3 O; and
positive ions. However, we use a different computational domain here, because
we want to simulate the development of a discharge that is not in contact with
physical boundaries, like electrodes. Therefore, we use periodic boundary con-
ditions in the z and y direction, while limiting the region where background
ionization is present in the z direction. In other words, we simulate the de-
velopment of a thick discharge layer growing from background ionization. The
elongated computational domain is shown in figure 8.3, where the region with
background ionization is shaded green. At the top and bottom of the domain we
apply Neumann boundary conditions for the electric potential, thereby creating
a uniform background field Ey of 6 MV/m. We remark that in the GRL [110]
we were less careful with the boundary conditions, and used something similar
to figure 8.2.

We do not use grid refinement to calculate the generated electric field in this
simulation, as grid refinement would be required nearly everywhere in the pre-
ionized region. The static grid contains 100 x 100 x 535 cells, with a cell length
of 15 ym. The domain length is chosen in such a manner that the discharge does
not reach its boundaries within the time simulated.

8.5.2 Simulated discharge evolution

Figure 8.5 shows the evolution of the electron density and the electric field in
four time steps between 4.5 ns and 5.4 ns. The evolution of the discharge can be
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electric field (MV/m)

Figure 8.5: The time evolution of the electron density (top row) and of the
electric field (bottom row). Background ionization is initially present in the
green region of Figure 8.3, in the form of O; and positive ions, both with a
density of 10 cm™>. The gas is dry air at 1 bar and 293 K in an upward directed
homogeneous electric field of 6 MV /m, which is about two times the breakdown

field. The domain between 2 mm and 6 mm in the vertical direction of Figure 8.3
is shown.
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with a field smaller than E as a func- field of the simulation shown in fig-
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characterized as follows. First, free electrons appear due to detachment. As can
be seen in figure 8.1, the characteristic detachment time in a field of 6 MV /m is
about 3ns. Then these free electrons start electron avalanches, that quickly grow
due to impact ionization. The growing avalanches also produce photoionization,
thereby starting additional avalanches. Eventually, many avalanches emerge in
the simulation domain.

After about 5ns, space charge effects start to become important, causing the
electric field to increase locally up to ~ 9 MV /m while decreasing elsewhere.
These space charge effects increase in magnitude until the simulation stops at
5.4 ns. The distribution of the electric field values is shown in figure 8.6. After
4.5 ns, almost the complete system is still at the background field of 6 MV /m,
but after 5.4 ns, about 8% of the volume has a field lower than the breakdown
value of 3 MV /m

Figure 8.7 shows the distribution of electric fields in the simulation in another
manner; it shows the electric field averaged over the horizontal planes intersecting
figure 8.5 and plotted as a function of the longitudinal coordinate. The screening
of the electric field occurs in a ‘noisy’ way, and the electric field varies significantly
inside the discharge. This is not so surprising, as initially only about 45 negative
ions (O ) are present. With these ions randomly placed in a volume of 4.5
mm?, we do not expect a discharge homogeneously filled with ionization. The
simulation stops when there are too many simulation particles for the computer’s

memory, which happened here at about 3 - 107 particles.
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8.5.3 Effect of background ionization

Above breakdown, we observe a ‘global’ discharge. Free electrons can appear
anywhere in the region containing pre-ionization, due to detachment from O
ions. The electrons then form electron avalanches, building up space charge.
The avalanches together reduce the field in the interior of the discharge, which
can clearly be seen in figure 8.5. There seems to be competition between local
streamer formation and homogeneous breakdown: on the one hand, the collective
space charge from all the avalanches inhibits the formation of streamers, which
are characterized by strong local field enhancement. On the other hand, there is
actually some local field enhancement due to the limited number of avalanches,
which makes the discharge rather inhomogeneous.

Our results are very different from previous publications in which ‘double-
headed’ streamers were observed in background fields above breakdown, see for
example |11, 14, 15, 38]. Therefore, we think that the inclusion of background
ionization (and detachment reactions) is essential for discharge simulations in air
above the breakdown threshold. Note that we would observe a similar discharge if
we had included a density of free electrons, or other ions from which electrons can
detach, instead of O5 . The main difference with previous publications is caused
by the fact that the pre-ionization is distributed uniformly over the domain,
instead of locally into a single seed.

Note the difference between the simulations we have shown below and above
breakdown: below breakdown, a localized seed was required to start a streamer
discharge, while above breakdown, homogeneous pre-ionization prevents the (im-
mediate) formation of streamers.

8.5.4 Homogeneous breakdown

If we increase the amount of pre-ionization in the simulations, the discharges will
become more homogeneous and form a layer, see [179] for a related experimental
example. Homogeneous, high-pressure discharges have been generated for use
in gas combustion and excimer lasers, see the review in [180]. For the excimer
lasers it is important to prevent arc formation, and therefore the discharge should
be as homogeneous as possible. Typically, a high level of pre-photoionization
is generated for this purpose. There have been several studies estimating the
required initial ionization density ng to prevent streamer or arc formation [154—
156]. These estimates are typically derived by assuming that avalanches should
overlap (to some degree) when space charge effects become important. In a recent
publication [122|, we have also given such an estimate

L (vacer ) (8.12)
ny~ —-—- .
O~ 916k3 \ D, ’

where k is a number around one, vg the electron drift velocity, aeg the effective
ionization coefficient and D, the electron diffusion coefficient.
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In figure 8.5 we could already see that the electric field in the interior in
the discharge is reduced in time. In [122], we have presented an estimate for the
‘ionization screening time’, which is the time it takes for the interior field to drop

below breakdown
aereoFo

Tis = In (1 +
eng

) /(Qetvg) (8.13)
where Ej is the applied field and ng the initial electron density. If there are
instead of electrons negative ions, there will be a delay in the screening process
because detachment takes some time. This delay can be approximated by [122]

Tdelay = In(1 + 7geftvq) / (Qefivg), (8.14)

where 74 is the detachment time.

8.6 Conclusion

We have studied pulsed discharge formation in electric fields above and below
the breakdown threshold with a 3D particle model for air at standard tempera-
ture and pressure. Photoionization, a natural level of 10* cm™3 O ions due to
background ionization and electron detachment were included.

In background electric fields below the breakdown value, we observed the
formation of a positive streamer if the field is locally sufficiently enhanced. The
inclusion of background ionization did not affect the results, and our 3D particle
model gives similar results as commonly used 2D plasma fluid models. But
in background electric fields above breakdown, we see discharges distributed
over the whole domain instead of the ‘double-headed’ streamers often appearing
in other publications. The major cause for this difference is the inclusion of
homogeneous background ionization. Free electrons appear at many different
places due to detachment from O, ions, and start electron avalanches. These
avalanches interact and overlap, and can eventually screen the electric field in
the interior of the discharge, which we discuss in a separate paper [122].

The main conclusion of our work is therefore that in background fields above
breakdown, the distribution of the pre-ionization determines the evolution of
the discharge. Therefore relevant sources of background ionization should be
included.



Chapter 9

Streamer discharges can move

perpendicularly to the electric
field

Streamer discharges are a primary mode of electric breakdown in thun-
derstorms and high voltage technology; they are generally believed to
grow along electric field lines. However, we here give experimental and
numerical evidence that streamers can propagate nearly perpendicularly
to the background electric field. These streamers are guided by pre-
ionization that is orders of magnitude lower than the ionization density
in a streamer channel, hardly affecting the background field. Positive
streamers could be guided in nitrogen with 0.5 % of oxygen or less, but
not in air. This observation also tests the role of photo-ionization in gas
mixtures with varying nitrogen-oxygen ratio.

This chapter has been published as [120]:
Streamer discharges can move perpendicularly to the electric field, S. Nijdam, E.
Takahashi, J. Teunissen, U. Ebert, New J. Phys. 16, 103038 (2014)
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Figure 9.1: Schematic overview of the set-up including the ICCD camera, stereo-
scopic set-up and vacuum vessel with indication of laser beam path. In the
presented images the recorded images are rotated anti-clockwise by 90° so that
the electrode tip is shown on top.

9.1 Introduction

Streamer discharges are a primary mode of electric breakdown when a high volt-
age pulse is applied to ionizable matter. They occur in thunderstorms as streamer
coronas ahead of lightning leaders or directly as sprite discharges high above
thunderclouds [1-3]. They also occur in plasma and high voltage technology,
with applications ranging from air purification to material treatment and wound
healing [4-8].

Streamers can have negative or positive polarity, propagating with or against
the electron drift. Paradoxically, positive streamers emerge and propagate much
more easily than negative ones [12, 51, 151]. Streamers can also guide a gas
flow rather than being guided [181]. Here we describe another unexpected ob-
servation: positive streamers can propagate nearly perpendicularly to the local
electric field.

Streamers are generally believed to follow the direction of the background
electric field (i.e., the field in absence of the streamer). When they do not fol-
low the background field lines, they are usually repelled by neighboring stream-
ers [182] and still follow the new local electric field direction. However, we re-
cently have observed cases where streamers propagated along invisible paths in
the gas that could not plausibly coincide with the direction of the local electric
field. This was, in particular, the case when positive streamers propagated along
the edge of a rather spherical cloud of pre-ionization left behind by a previous
negative discharge [103]. But in this case it was difficult to establish the actual
distribution of pre-ionization and of the electric field at the moment when the
positive streamers were growing.

Therefore, we here present experiments with pre-ionization created through
very weak laser illumination, allowing full control over timing, location and den-
sity of the pre-ionization trail. We demonstrate through experiments and model-
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40 mm

Figure 9.2: Stereoscopic images of laser-guided streamer discharges for various
laser positions. The laser path is outlined by the purple lines. The streamers
start at the tip, indicated in green. White streamers move in the image plain, the
others outside. Measurements in 133 mbar pure nitrogen with a 5.9kV, 600 ns
voltage pulse 1.1 ps after the laser pulse. The images integrate over the duration
of the voltage pulse.

ing that positive streamers can follow this very weakly pre-ionized region rather
than the electric field lines, even if this pre-ionization is too weak to modify the
electric field.

The use of laser-induced weakly ionized channels can help us gain fundamen-
tal insight in repetitive discharges [34, 103, 183-185] by providing well-controlled
experiments that are easy to model. This can lead to better understanding of
the highly complex repetitive discharges themselves. It also allows testing the
models of the nonlocal photo-ionization reaction in gas mixtures with varying
nitrogen oxygen ratio.

9.2 Set-up and methods of the experiment

We have used an KrF excimer laser to create a trail of increased pre-ionization
and studied the effect of this trail on streamer development and morphology, with
a focus on streamer guiding. The laser produces pulses at 248 nm of about 1mJ
per 20ns long pulse at a maximum repetition rate of 10 Hz. The (unfocused)
laser beam is shaped by four shutters to a quasi-rectangular beam with a height
of 10mm and a width (perpendicular to the image plane) of 9mm. This beam
enters a vacuum vessel from above as shown in figure 9.1. This vessel contains an
electrode tip positioned 103 mm from a cathode plane and is filled with different
nitrogen-oxygen mixtures with achieved impurity levels of about 10 ppm. The
laser beam was aligned to a symmetry-plane which includes the electrode tip.
The ionization density induced by the laser beam has been determined by
measuring the time-integrated current, and thus the total charge, between two
flat electrodes induced by a laser pulse. One of these electrodes is grounded and
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the other one is kept at a positive potential between 0 and 2000 V. This procedure
is performed in the same vessel and under the same conditions as the laser guiding
experiments. From the measurements we conclude that the ionization density is
about 8-10% cm™3 in 133 mbar pure nitrogen with the laser at full power, as was
the case in all experiments shown here (although guiding was also observed at
lower laser powers). In mixtures with low oxygen concentrations the ionization
density nearly equals the electron density because attachment and recombination
are negligible during our experiments [185].

Some nano- to milliseconds after the laser pulse a single high-voltage pulse
was applied to the electrode tip. The voltage pulses have a quite rectangular
shape with pulse lengths of 600-1500 ns, rise/fall times of about 15ns and pulse
amplitudes of 4-10kV. The vacuum vessel and pulse forming network are the
same as described in [185].

The created streamers are imaged with an Andor ICCD-camera, combined
with a stereo-photography set-up like in past experiments [182, 186]. The full
angle between the two image-paths of the stereo set-up is 24 — 28°. The line
connecting the two outer mirrors of the stereo-setup is parallel to the line between
electrode point and cathode plate, as indicated in figure 9.1. This makes it
possible to measure the location of streamers channels following the laser beam.
In our previous work the stereo-setup was rotated 90° around its axis to measure
channels propagating directly between the point and plane.

During post-processing the images are rotated so that the electrode tip is
centered at the top. In our composite (anaglyph) images the images from the
two viewing directions are laid over each other in red and cyan respectively. The
stereo-images are aligned in such a way that the electrode tip has the same po-
sition in both images so that their image plane coincides with the central plane
of the experiments. A displacement between the red and cyan colors indicates
that channels are located in front or behind the image plane. However, note
that channels that propagate vertically down will always be white in the images,
regardless of their position. Examples of the stereoscopic images are given in
figure 9.2. We can clearly see that many streamer channels are guided by the
laser pre-ionization: these streamers propagate parallel to the laser beam and
show a very small offset between the red and cyan components. They are there-
fore mostly represented in white. Each of the figures 9.2a-f also contains some
unguided channels that either propagate vertically or show a large, non-constant,
offset between the red and cyan trails.

9.3 Experimental observations

9.3.1 General laser guiding observations in nitrogen

All sub-figures from figure 9.2 show guiding of at least one streamer channel.
Under the conditions used in this figure, guiding occurred in nearly all imaged
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Figure 9.3: Detail of the measurement from figure 9.2(f) with calculated equipo-
tential lines of the background electric field. The arrows indicate the directions
of the streamer and the background electric field at a point where streamer and
equipotential lines cross.

discharges. In conditions where the laser is quite far from the tip, like in image
9.2e, the streamers have spread out so much that they are clearly in front or
behind the image plane (large vertical offset between red and cyan trails), do
not cross the laser path and are not guided. There are no indications that the
streamers are actually attracted to or repelled from the laser path; this indicates
that the laser path does not develop own space charge effects. However, the
guided streamer channels can follow the laser beam for a long distance; often
until the point where the laser beam enters through the window or where it
hits the other wall. The measured velocities of guided streamers are up to 10%
higher than those of non-guided streamers. However, this may be caused by the
projection, because most of the non-guided streamers propagate out of the image
plane. The guided streamers can also become longer than the unguided ones.
All streamers in each of the figures 9.2a-f start simultaneously from the electrode
tip and therefore also propagate simultaneously, except for the small differences
in propagation velocity.

The background electric field has been calculated for a geometry that closely
resembles the experimental set-up. This calculation was performed with a cylin-
drically symmetric Poisson-solver in the COMSOL software package. In figure 9.3
equipotential lines from this calculation are overlaid on a zoom into figure 9.2(f).
At one location, the angle between the background electric field and the streamer
direction is shown. This angle is about 86°, confirming the observation that the
streamer is propagating nearly perpendicularly to the background electric field.
Similar angles are found in the other laser guided streamers from figure 9.2 al-
though at most locations the angle is smaller.
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9.3.2 Guiding in nitrogen-oxygen mixtures

In our purest nitrogen guiding by the laser is most straightforward. For low pulse
voltages and short delays between the laser and the voltage pulses the streamers
are almost always guided, when they cross the laser beam. In pure nitrogen the
maximal delay between laser and voltage pulse with guiding effect is about 2 ms.
However, when the oxygen concentration is increased, guiding becomes more
difficult and only occurs for shorter delays between laser and voltage pulses. The
highest oxygen concentration for which guided streamers were still observed, was
0.5%, at a maximal delay between laser and voltage of about 1ps. Streamer
guiding was thus not observed in air with these low pre-ionization densities.

At higher oxygen concentrations free electrons are lost faster but according to
our calculations (see [185]) the electron loss at 1% oxygen in 133 mbar nitrogen
is almost the same as in pure nitrogen while in our experiments streamers are not
guided in 1% oxygen. We therefore suggest that the guiding effect is suppressed
by photoionization.

9.4 Analysis and modelling

9.4.1 How photoionization can inhibit guiding

Positive streamers need free electrons ahead of them to propagate. These elec-
trons move towards the positive discharge, and where the field is above break-
down, they generate electron avalanches due to impact ionization. In this way,
the degree of ionization ahead of the discharge increases, and the discharge grad-
ually extends forwards. The velocity at which this happens depends on the
electric field profile ahead and the electron density ahead.

We call a streamer guided if it does not grow in the direction of the high-
est electric field, but in the direction with more free electrons ahead. Streamer
guiding requires the electron density ahead of the discharge to be sufficiently
anisotropic. Since the laser pre-ionization we use is clearly anisotropic, why we
do not observe guiding at higher oxygen concentrations? The reason is photoion-
ization, which produces non-local electrons isotropically around the discharge.

In nitrogen/oxygen mixtures, photoionization can occur when excited nitro-
gen molecules decay and emit UV photons. The average absorption length [,1¢
of these photons is

labs =~ 0.093 mm - bar/po,,

where po, is the oxygen fraction times the pressure [46] (the gas is assumed to
be at room temperature). With a higher oxygen concentration there will thus
be more photoionization events close to the discharge. To illustrate this, we
can estimate the fraction of photons absorbed within one millimeter, using the
data from [46]. For 133 mbar with 10 ppm oxygen this fraction is about 5- 1075
(labs = 70m), for 133mbar with 1% oxygen it is about 5% (laps ~ 70 mm)
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laser position

Figure 9.4: (a) The electrical potential at ¢ = 0 on a cross section through the
center of the 3D computational domain, with equipotential lines. (b) Particle
simulation results in N9 with 10 ppm Og at 133 mbar. Top row: the evolution of
the electron density, visualized with volume rendering (low densities are trans-
parent); bottom row: slice through the domain showing the evolution of the
electric field. Note that (a) and (b) are not to scale and that the laser beam is
outlined in purple.

and for atmospheric air it is about 86% (laps ~ 0.5 mm). Because more local
photoionization causes a more isotropic distribution of free electrons around the
discharge, guiding is inhibited at higher oxygen concentrations.

A related phenomenon was observed in streamer experiments [87]. With
a low oxygen concentration, streamers would developed ‘feathers’ and would
propagate in a more erratic way. Because there was little photoionization, the
electron density around the streamers was anisotropic, which caused them to not
always propagate in the (forward) direction of strongest electric field.

9.4.2 Modelling of laser-induced guiding

We have performed numerical simulations to investigate how a discharge evolves
when laser pre-ionization is present.

Simulation model

The simulations were performed with a 3D particle model of the PIC-MCC type.
In this model, electrons are tracked as particles. We use adaptive particle man-
agement [104] to adjust the weights of the simulation particles, which control
how many physical electrons they represent. Ions are assumed to be immobile
compared to the electrons, and are included as densities. The neutral gas is
included as a background that electrons randomly collide with, using the null
collision method [123]. Because the simulated discharges have an ionization de-
gree below 1074, only electron-neutral collisions are included. We use cross sec-
tions for elastic, inelastic, ionization and attachment collisions from the SIGLO
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Figure 9.5: Zoom of figure 9.4(b) at 13 ns, showing the electric field strength on
a slice through the domain. Arrows indicate the direction of: the background
field (Eyg), the current maximum field (Epax) and the streamer velocity (v).
Equipotential lines for the background field are also shown in white.

database [124]|. Furthermore, photoionization is included as non-local source of
free electrons, implemented similarly as in [11], using data from [46].

The simulations are performed assuming electrostatic conditions. At each
time step, the self-consistent electric field is computed from the charged parti-
cle densities. To resolve the thin charge layers and high electric fields around
streamer heads, we use block-based adaptive grid refinement. An electrode is in-
cluded by placing ‘artificial’ charges on its surface which are iteratively updated
to keep it close to a desired potential, similar to the charge simulation method.
Note that the source code of our simulation model is available online [35].

Simulation conditions

The gas used in the simulations was No with 10 ppm Os at 133 mbar and 293 K.
The computational domain measured (25mm)3, with the finest grid having a
resolution of 12.5 pm. In figure 9.4(a) we show the electrical potential at ¢ = 0 on
a cross section through the 3D computational domain. At the top an electrode is
present, at a voltage of 3.5 kV. The other sides of the domain are grounded. Att =
0, electrons and positive ions are present along a horizontal channel, representing
the laser pre-ionization. The ionization density in this channel is 8 - 108 cm ™3,
and its cross section is (1 mm)?. Compared to the experiments, the domain is
smaller, the laser beam is thinner and the voltage is lower. The reason for using
this scaled-down system is that simulations with the experimental conditions are
computationally prohibitively expensive. Our comparison between simulations

and experiments is therefore qualitative.

Simulation results

In figure 9.4(b), the evolution of a discharge around the 3.5kV electrode is shown.
First, electrons from the pre-ionized channel drift upwards, towards the electrode.
During this period the space charge density is too low to have a significant
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effect on the electric field amplitude or direction. When the electrons reach the
electrode, the discharge starts to grow downward, inside the region where the
electrons from the laser beam now are. (Note that the pre-ionization itself is too
weak to show up in figure 9.4(b).) When the discharge reaches the boundary of
this region, its downward propagation stops, as photoionization has not produced
enough free electrons for further growth there. Instead, the discharge now starts
to grow horizontally, to both sides of the pre-ionized channel. At the same time
it also moves a bit downwards, following the present positions of the electrons
from the laser beam. Towards the sides, these electrons have drifted less than in
the center. At ¢t = 13ns, the streamer is propagating at an angle of more than
60° to the initial background electric field, as indicated in figure 9.5. We can
also see that the streamer does not propagate in the direction of the maximum
electric field, because it needs the electrons from the laser beam to grow

9.4.3 Comparison with other laser guiding experiments

The phenomenon we have described should not be confused with the laser guiding
of (streamer) discharges described by [187, 188] and others, where focused high
power lasers create a thin channel with an electron and ion density of 1016
10" em™3 in atmospheric air, while the ionization inside a streamer channel
amounts to 10 cm™ at most. Such laser channels modify the background
electric field at least one order of magnitude more rapidly than a streamer, and
effectively act as conductors. In contrast, we have demonstrated that positive
streamers can be guided by regions with an electron density of 10° cm™2 or less
in nitrogen/oxygen mixtures at 133 mbar, while a typical streamer would have
an ionization density of 10'2cm™ (when scaling a typical ionization density
of 10 cm™3 at atmospheric pressure to 133mbar [2]). These channels hardly
change the electric field.

Furthermore, in the other studies [188, 189] the laser is usually aligned parallel
to the field lines. Here we have shown that very weakly ionized regions that are
almost perpendicular to the local field lines, can still guide the streamers. Our
numerical simulations generally support the conclusions from the experiments
and demonstrate that the laser pre-ionization does not modify the electric field,
while it does guide the streamers.

9.5 Conclusions

We have observed that streamers can be guided in a direction nearly perpen-
dicular to the background electric field with a very low level of laser induced
pre-ionization (< 10°cm™3). This pre-ionization itself has a negligible effect
on the electric field. This occurred in nitrogen/oxygen mixtures at 133 mbar
with oxygen concentrations below 0.5 %. At higher oxygen concentrations the
streamer locally produces so many free electrons through photoionization that
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it is no longer influenced by the laser produced electron trail. Finally, we have
presented numerical simulations that showed the same laser guiding effect as in
our experiments and confirmed that the space charge effects of the laser trail
itself indeed are negligible.



Chapter 10

Afivo: a framework for finite
volume simulations on adaptively
refined quadtree and octree grids

Afivo is a small framework for doing numerical simulations on adaptively
refined quadtrees (2D) and octrees (3D). A geometric multigrid solver
suitable for these grids is included. Compared to other simulation frame-
works, a ‘feature’ of Afivo is that it provides less functionality, which can
make it easier to adapt. For example, only shared-memory paralleliza-
tion (OpenMP) is included, so that no code for parallel load balancing
or communication is required. The framework is available as free/open
source software.

This chapter will be submitted for publication as:
Afivo: a framework for finite volume simulations on adaptively refined quadtree
and octree grids, J. Teunissen, U. Ebert
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10.1 Introduction

Numerical simulations can often be sped up by having a different mesh in differ-
ent parts of the domain. There is usually a trade-off: with a more flexible mesh,
the cost per computational cell increases. For example, computing a second or-
der approximation of the Laplacian is straightforward on a uniform Cartesian
grid. But on an unstructured triangle mesh, such an operation is more compli-
cated: first the neighbors of a cell need to be determined, and then some form
of interpolation is required.

Here, we present a framework for simulations on adaptively refined quadtree
(2D) and octree (3D) meshes. The main advantage of such meshes is that they
provide adaptivity while keeping the grid structure simple. In D dimensions,
a quadtree or octree grid consist of boxes that each contain NP cells. A box
with a grid spacing h can be subdivided into 2P smaller boxes with grid spacing
h/2. By refining boxes up to different levels, local refinements can be created.
In Afivo ‘2:1 balance’ is ensured, which means that between neighboring cells
the refinement level differs by at most one. The framework is implemented in
Fortran 2003, and is available under the GNU GPLv3 license.

Below, we first discuss the motivation for developing Afivo, by comparing it
to some alternatives. Then the basic data structures and methods are described
in sections 10.3 and 10.4. In section 10.5, design choices for parallelization and
ghost cells are discussed, after which the multigrid implementation is described
in section 10.6.

10.2 Motivation and alternatives

There exist numerous frameworks for doing (parallel) numerical computations.
Table 10.1 lists frameworks that operate on structured grids. There are perhaps
even more unstructured grid and/or finite element frameworks, but we do not
discuss these here.

Two types of structured meshes are commonly used: block-structured meshes
and orthtree! meshes. Examples of these meshes are shown in figure 10.1. All
the listed frameworks use MPI (which stands for Message Passing Interface) for
parallelization. This is a distributed memory technique, so that multiple proces-
sors connected by a network can be used in parallel. Some codes also support
OpenMP, which is a shared-memory parallelization technique that requires pro-
cessor cores to have access to the same memory.

Block-structured meshes are more general than orthtree meshes: any orthtree
mesh is also a block-structured mesh, whereas the opposite is not true. Some of
the advantages and disadvantages of these approaches are:

'Note that we here refer to quadtrees and octrees as orthtrees, because the general name
for quadrants and octants is orthants [190].
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Name Application Language Parallel Mesh

Boxlib [43] General C/F90 MPI/OpenMP  Block-str.
Chombo [42] General C++/Fortran MPI Block-str.
AMRClaw Flow F90/Python MPI/OpenMP  Block-str.
SAMRALI [191] | General C++ MPI Block-str.
AMROC Flow C++ MPI Block-str.
Paramesh [44] | General F90 MPI Orthtree
Dendro [192] General C++ MPI Orthtree
Peano [193] General C++ MPI/OpenMP  Orthtree
Gerris [194] Flow C MPI Orthtree
Ramses [195] Self gravitation F90 MPI Orthtree

Table 10.1: A list of frameworks for parallel numerical computations on adap-
tively refined but structured numerical grids. For each framework, the typical
application area, programming language, parallelization method and mesh type
is listed. This list is largely taken from Donna Calhoun’s homepage [196].

Figure 10.1: Left: example of a block-structured grid, taken from [197|. Right:
an quadtree grid consisting of boxes of 2 x 2 cells.

e In a block-structured mesh, blocks can have a flexible size. Computations
on larger blocks are typically more efficient. When ghost cells are required
(virtual cells on the boundary of a block), the overhead is smaller when
blocks are larger.

e For an orthtree grid, there is a trade-off: larger block sizes allow for more
efficient computations, but reduce the adaptivity of the mesh. For a block
structured grid, there is a similar trade-off: in principle it can be refined in
a more flexible way, but adding many refined blocks increases the overhead.

e The connectivity of the mesh is simpler for an orthtree mesh, because each
block has the same number of cells, and blocks are refined in the same way.
This also ensures a simple relation between fine and coarse meshes. These
properties make operations such as prolongation and restriction easier to
implement, especially in parallel.
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10.2.1 Motivation: a brief history

Now given the fact that there are already several frameworks available, what
was the motivation for developing another one? The main reason was that a
simple or basic framework seemed to be missing — at least to our knowledge.
Our motivation came from work on time-dependent simulations of streamer dis-
charges. These discharge have a multiscale nature, and require a fine mesh in the
region where they grow. Furthermore, at every time step Poisson’s equation has
to be solved. A streamer model that uses a uniform Cartesian grid is therefore
computationally expensive, especially for 3D simulations.

In [82], Paramesh was used for streamer simulations. The main bottleneck
in this implementation was however the Poisson solver. Other streamer models
(see e.g., [19, 21, 29]) had the same problem, because the non-local nature of
Poisson’s equation makes an efficient parallel solution difficult, especially on an
adaptively refined grid. An attractive solution method to get around this is
geometric multigrid, discussed in section 10.6.

We first considered implementing multigrid in Paramesh [44], which already
includes an alpha version of a multigrid solver with the following comment [198]:

This is an ALPHA version of this feature. You should be aware
that it may be ‘buggy’. Also, construction of multigrid algorithms
and AMR is much less straightforward than incorporating AMR into
finite-volume hydro codes.

Because Paramesh does not seem to be actively maintained, we decided not to
move forward with it after experiencing several problems (creating and visualizing
output, performance with a large number of blocks, code organization).

Next, we considered Boxlib [43], an actively maintained framework which
is also used in Chombo [42|. Boxlib contains a significant amount of multigrid
code, including several examples that demonstrate how a solver can be set up
and used. After spending some time getting familiar with the framework, we
tried to modify the multigrid solver to our needs. This involves operations like:
get the coarse grid values next to refinement boundaries to perform a special
type of ghost cell filling (see section 10.6.4). Although such tasks are definitely
possible in Boxlib, they are not trivial to implement. The reason is that the
framework is quite large and supports many features, uses MPI parallelization
and block-structured grids.

In our experience, a large number of scientific simulations fit into the memory
of a desktop machine or cluster node, which nowadays typically have 16 or 32
gigabytes of RAM. A practical reason for this is that for larger problems, the
visualization of the results becomes quite challenging. For the application we had
in mind, efficient large scale parallelism would anyway be hard, due to the non-
locality of the Poisson equation. Furthermore, writing parallel code with good
scaling takes considerable effort, for which the manpower and resources are often
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Figure 10.2: Left: Example of a quadtree mesh that gets refined. Here boxes
contain 2 x 2 cells, and different boxes have different colors. Right: the spatial
indices of the boxes. When a box with indices (7, j) is refined, its children have
indices (2¢ — 1,25 — 1) up to (2i,2j).

lacking. This inspired us to develop a framework that uses shared-memory paral-
lelism, which makes many operations much simpler, because all data can directly
be accessed. The goal was to create a relatively simple framework that could
easily be modified, to provide an option in between the ‘advanced’ distributed-
memory codes of table 10.1 and simple uniform grid computations.

10.3 Overview of data structures

We now start with the description of Afivo’s implementation. First, the proper-
ties of orthtree meshes are discussed. Three data types are used to store these
meshes: boxes, levels and trees. These data types are described below.

10.3.1 Orthtree meshes

In Afivo, quadtree (2D) and octree (3D) meshes are used, which can be described
by the following rules:

e The mesh is constructed from boxes that each contain N” cells, where D
is the number of coordinates and N is an even number.

e When a box with a grid spacing h is refined, it is subdivided in 27 ‘children’
with grid spacing h/2.

e The difference in refinement level for adjacent boxes is at most one. This
is called ‘2:1 balance’.

Figure 10.2 shows an example of a quadtree that gets refined. All the boxes are
stored in a single one-dimensional array, so that an integer index can be used to
point to a box, see section 10.3.4 below.
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Figure 10.3: a) Each box contains an array of children and neighbors. The
ordering of these arrays is shown here for a 2D box. Red: children, blue: neigh-
bors. b) Location and indices of the cell-centered variables (black dots) and the
face-centered variables in the x-direction (red dots) for a box of 2 x 2 cells.

10.3.2 Box data type

A boz is the basic mesh unit in Afivo. Each box consists of N” grid cells, where
N has to be an even number and D is the spatial dimension. In figure 10.2, there
is for example a box with 2 x 2 cells at coordinate (1,1). Each box stores its
parent, an array of 2 children and an array of 2D neighbors. In figure 10.3a, the
indices of the children and the neighbors are shown. A special value a5_no_box
(which is zero) is used to indicate that a parent, child or neighbor does not exist.
In the case of neighbors, boundary conditions are specified by negative numbers.

Two types of cell data are supported by default: cell-centered data and face-
centered data, see figure 10.3b. These are stored in D + 1-dimensional arrays,
so that multiple variables can be stored per location. Furthermore, boxes con-
tain some ‘convenience’ information, such at their refinement level, minimum
coordinate and spatial index.

10.3.3 Level data type

The level data type contains three lists:
e A list with all the boxes at refinement level [
e A list with the parents (boxes that are refined) at level [
e A list with the leaves (boxes that are not refined) at level [

This separation is often convenient, because some algorithms operate only on
leaves while others operate on parents or on all boxes. These lists contain the
integer indices of the boxes in the tree data structure described below.
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10.3.4 Tree data type

The tree data type contains all the data of the mesh. Most importantly, it stores
two arrays: one that contains all the boxes and one that contains all the levels®.
Some other information is also stored: the current maximum refinement level,
the number of cells per box-dimension N, the number of face and cell-centered
variables and the grid spacing Ax at the coarsest level.

10.4 Methods

In this section we give a brief overview of the most important methods in Afivo.
The names of the methods for two-dimensional meshes are used, which have the
prefix a2. The three-dimensional analogs have, not surprisingly, a prefix a3.

10.4.1 Creating the initial mesh

In Afivo the coarsest mesh, which covers the full computational domain, is not
supposed to change. To create this mesh there is a routine a2_set_base, which
takes as input the spatial indices of the coarse boxes and their neighbors. In
figure 10.4, a 2D example is shown for creating a single coarse box at index
(1,1). This box is its own neighbor in all four directions, or in other words,
there are periodic boundary conditions. Physical (non-periodic) boundaries can
be indicated by a negative index for the neighbor. By adjusting the neighbors
one can specify different geometries, the possibilities include meshes that contain
a hole, or meshes that consist of two isolated parts. The treatment of boundary
conditions is discussed in section 10.4.3.

10.4.2 The refinement procedure

Mesh refinement can be performed by calling the a2_adjust_refinement rou-
tine, which should be passed a user-defined refinement function. This function is
then called for each box, and should set the refinement flag of the box to one of
three values: refine (add children), derefine (remove this box) or keep refinement.
It is also possible to set the refinement flags for other boxes than the current one,
which can for example be useful to extend refinements to a neighbor.

In Afivo, a box is either fully refined (with 27 children) or not refined. Fur-
thermore, 2:1 balance is ensured, so that there is never a jump of more than one
refinement level between neighboring boxes. These constraints are automatically
handled, so that the user-defined refinement function does not need to impose
them.

2Since Afivo is implemented in Fortran, these arrays start at index one.
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! Initialize tree
call a2_init(tree, & ! Tree to initialize

box_size, & ! Number of cells per coordinate in a box
n_var_cell, & ! Number of face-centered wariables
n_var_face, & ! Number of cell-centered variables

dr) ! Distance between cells on base level

! Set the spatial index and neighbors
ix_list(1:2, 1) =1 ! 0One bozxz at (1,1)
nb_list(1:4, 1) = 1 ! Periodic boz is its own neighbor

! Create the base mesh
call a2_set_base(tree, ix_list, nb_list)

Figure 10.4: Fortran code fragment that shows how a base mesh can be con-
structed. In this case, there is one box at (1, 1), with periodic boundary condi-
tions.

Each call to a2_adjust_refinement changes the mesh by at most one level.
To introduce larger changes one should call the routine multiple times. A number
of rules is used to make the user-supplied refinement consistent:

e Only leaves can be removed (because the grid changes by at most one level
at a time)

e A box flagged for refinement will always be refined, including neighbors
that are required for 2:1 balance

e Boxes cannot be removed if that would violate 2:1 balance

e If all the 27 children of a box are flagged for removal, and the box itself
not for refinement, then the children are removed

o Boxes at level one cannot be removed
e Boxes cannot be refined above the maximum allowed refinement level

The a2_adjust_refinement routine returns information on the added and
removed boxes per level, so that a user can set values on the new boxes or clean
up data on the removed ones.

When boxes are added or removed in the refinement procedure, their connec-
tivity is automatically updated. References to a removed box are removed from
its parent and neighbors. When a new box is added, its neighbors are found
through its parent. Three scenarios can occur: the neighbor can be one of the
other children of the parent, the neighbor can be a child from the neighbor of the
parent, or the neighbor does not exist. In the latter case, there is a refinement
boundary, which is indicated by the special value a5_no_box.
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10.4.3 Filling of ghost cells

When working with numerical grids that are divided in multiple parts, it is often
convenient to use ghost cells. The usage of ghost cells has two main advan-
tages: algorithms can operate on the different parts without special care for the
boundaries, and algorithms can straightforwardly operate in parallel.

In Afivo each box has one layer of ghost cells for its cell-centered variables,
as illustrated in figure 10.3b. The built-in routines only fill the ghost cells on
the sides of boxes, not those on the corners. The reasons for implementing ghost
cells in this way are discussed in sections 10.5.1 and 10.5.2.

For each side of a box, ghost cells can be filled in three ways

e [f there is a neighboring box, then the ghost cells are simply copied from
this box

e If there is a physical boundary, then the box is passed to a user-defined
routine for boundary conditions

o If there is a refinement boundary, then the box is passed to another user-
defined routine

Physical boundaries are indicated by negative values for the neighbor index, and
these values are passed on to the user-defined routine. In this way, one can set
up different types of boundary conditions.

10.4.4 Interpolation and restriction

Because corner ghost cells are not filled by Afivo, interpolation schemes cannot
use diagonal elements. Instead of the standard bilinear and trilinear interpo-
lation schemes, a 2 —1—1 and 1 — 1 —1 — 1 scheme is used in 2D and 3D,
respectively. These interpolation schemes use information from the closest and
second-closest neighbors; the 2D case is illustrated in figure 10.5. Zeroth-order
interpolation is also included, in which the coarse values are simply copied with-
out any interpolation. As a restriction method (going from fine to coarse) Afivo
just includes averaging, in which the parent gets the average value of its children.

A user can of course implement higher order interpolation and restriction
methods, by using information from additional grid locations. It is generally
quite complicated to do this consistently near refinement boundaries.

10.4.5 The list of boxes

In Afivo, all the boxes are stored in a single array. New boxes are always added
to the end of the array, which means that removed boxes leave a ‘hole’. There
is a route a2_tidy_up to tidy up the array: all the unused boxes are moved
to the end of the array, and the boxes that are still in use are sorted by their
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Figure 10.5: Schematic drawing of 2 — 1 — 1 interpolation. The three nearest
coarse grid values are used to interpolate to the center of a fine grid cell. Note
that the same interpolation scheme can be used for all fine grid cells, because of
the symmetry in a cell-centered discretization.

refinement level. Furthermore, for each level, the boxes are ranked according to
their Morton index [199].

Sometimes, extra storage is required when a2_adjust_refinement has to
add new boxes to the mesh. In such a case, the array of boxes is simply resized
so that there is enough space.

10.4.6 Producing output

It is important that one is able to quickly and conveniently visualize the results
of a simulation. Afivo supports two output formats: VTK unstructured files and
Silo files.

For VTK files, Afivo relies on the unstructured format, which support much
more general grids than quadtree and octree meshes. This format should prob-
ably only be used for grids of moderate sizes (e.g., 10° or 10° cells), because
visualizing larger grids can be computationally expensive. Although there is
some support for octrees in VTK, this support does not yet extend to data vi-
sualization programs such as Paraview [200] and Visit [135].

Afivo also supports writing Silo files. These files contain a number of Carte-
sian blocks (‘quadmeshes’ in Silo’s terminology) that can each contain multiple
boxes. This is done by starting with a region R that contains a single box. If all
the neighbors to the left of R exist, have no children and are not yet included
in the output, then these neighbors are added to R. The procedure is repeated
in all directions, until R can no longer grow. Then R represents a rectangular
collection of boxes which can be added to the output, and the procedure start
again from a new box that is not yet included. This merging of boxes is done
because writing and reading a large number separate meshes can be quite costly
with the Silo library.
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10.5 Design discussion

10.5.1 One ghost cell

There are essentially two ways to implement ghost cells in a framework such as
Afivo.

1. Ghost cells are not stored for boxes. When a computation has to be per-
formed on a box, there are typically two options: algorithms can be made
aware of the mesh structure, or a box can be temporarily copied to an
enlarged box on which ghost cells are filled.

2. Each box includes ghost cells, either a fixed number for all variables or a
variable-dependent number.

Storing ghost cells can be quite costly. For example, adding two layers of
ghost cells to a box of 8 cells requires (12/8)% = 3.375 times as much storage.
With one layer, about two times as much storage is required. Not storing ghost
cells prevents this extra memory consumption. However, some operations can
become more complicated to program, for example when some type of inter-
polation depends on coarse-grid ghost cells. Furthermore, one has to take care
not to unnecessarily recompute ghost values, and parallelization becomes slightly
harder.

If ghost cells are stored for each box, then there are still two options: store
a fixed number of them for each variable, or let the number of ghost cells vary
per variable. In Afivo, we have opted for the simplest approach: there is always
one layer of ghost cells for cell-centered variables. For numerical operations that
depend on the nearest neighbors, such as computing a second order Laplacian,
one ghost cell is enough. When additional ghost cells are required, these can of
course still be computed, there is just no default storage for them.

10.5.2 No corner ghost cells

In Afivo, corner ghost cells are not used. The reason for this is that in three
dimensions, the situation is quite complicated: there are eight corners, twelve
edges and six sides. It is hard to write an elegant routine to fill all these ghost
cells, especially because the corners and edges have multiple neighbors. There-
fore, only the sides are considered in Afivo. This means that Afivo is not suitable
for stencils with diagonal terms.

10.5.3 OpenMP for parallelism

The two conventional methods for parallel computing are OpenMP (shared mem-
ory) and MPI (communicating tasks). Afivo was designed for small scale paral-
lelism, for example using at most 16 cores, and therefore only supports OpenMP.
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do 1vl = 1, treelmax_1lvl
!$omp parallel do private(id)
do i = 1, size(tree¥lvls(lvl)?%ids)
id = tree)lvls(lvl)¥ids(i)
call my_method(treel,boxes(id))
end do
!$omp end parallel do
end do

Figure 10.6: Fortran code fragment that shows how to call my_method for all
the boxes in a tree, from level 1 to the maximum level. Within each level, the
routine is called in parallel using OpenMP.

Compared to an MPI implementation, the main advantage of OpenMP is simplic-
ity: data can always be accessed, sequential (user) code can easily be included,
there is no need for load balancing and no communication between processes
needs to be set up. For problems that require large scale parallelism, there are
already a number of frameworks available, as discussed in section 10.2.

Most operations in Afivo loop over a number of boxes, for example the leaves
at a certain refinement level. All such loops have been parallelized by adding
OpenMP statements around them, for example as in figure 10.6.

The parallel speedup that one can get depends on the cost of the algorithm
that one is using. The communication cost (updating ghost cells) is always
about the same, so that an expensive algorithm will show a better speedup.
Furthermore, on a shared memory system, it is not unlikely for an algorithm to
be memory-bound instead of CPU-bound.

10.6 Multigrid

Multigrid can be seen as a technique to improve the convergence of a relaxation
method, by using a hierarchy of grids. Afivo comes with a built-in geometric
multigrid solver, to solve problems of the form

A(u) = p, (10.1)

where A is a (nearly) elliptic operator, p the right-hand side and u the solution
to be computed. In discretized form, we write equation (10.1) as

Ap(up) = pp, (10.2)

where h denotes the mesh spacing at which the equation is discretized.

There already exists numerous sources on the foundations of multigrid, the
different cycles and relaxation methods, convergence behaviour and other as-
pects, see for example [39-41, 201]. Here we will not provide a general introduc-
tion to multigrid. Instead we briefly summarize the main ingredients, and focus
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on one particular topic: how to implement multigrid on an adaptively refined
quadtree or octree mesh. On such a mesh, the solution has to be specified on
all levels. Therefore we use FAS multigrid, which stands for Full Approxima-
tion Scheme. Below, the implementation of the various multigrid components in
Afivo are described.

10.6.1 The V-cycle

Suppose there are levels | = lyin, lmin + 1, - - . , Imax, then the FAS V-cycle can be
described as

1. For [ from lyax t0 lmin + 1, perform Ngown relaxation steps on level [, then
update level [ — 1 (see below)

2. Perform Nyp,ee relaxation steps on level I, or apply a direct solver

3. For [ from Iy + 1 to lmax, perform a correction using the data from level
-1
up, (—Uh-l-.[]}_"l(UH —vly), (10.3)

then perform N, relaxation steps on level [. (See below for the notation)

The first two steps require some extra explanation. Let us denote the level [ — 1
grid by H and the level [ grid by A, and let v denote the current approximation
to the solution u. Furthermore, let J’EI be an interpolation operator to go from
coarse to fine and [ }:I a restriction operator to go from fine to coarse. For these
operators, the schemes described in section 10.4.4 are used.

In the first step, the coarse grid is updated in the following way

1. Set vy I}flvh, and store a copy vy of vy
2. Compute the the fine grid residual rp, = pp, — Ap(vp)

3. Update the coarse grid right-hand side

PH <—I;IL{T‘h—|-AH(UH) (10.4)

This last equation can also be written as
pr < Iyl on + 73
where 7 is given by [39-41, 201, 202]
i = Ap(Ifvy) — I Ap(vp). (10.5)

This term can be seen as a correction to p on the coarse grid. When a solution
up, is found such that Ap(up) = pp, then uy = I}Ifuh will be a solution to
A (upg) = pH.
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In the second step, relaxation takes place on the coarsest grid. In order
to quickly converge to the solution with a relaxation method, this grid should
contain very few points (e.g., 2 X 2 or 4 x 4 in 2D). Alternatively, a direct solver
can be used on the coarsest grid, in which case it can be larger. Such a direct
method has not yet been built into Afivo, although this is planned for the future.
As a temporary solution, additional coarse grids can be constructed below the
coarsest quadtree/octree level. For example, if a quadtree has boxes of 16 x 16
cells, then three levels can be added below it (8 x 8, 4 x 4 and 2 x 2), which can
then be used in the multigrid routines.

10.6.2 The FMG-cycle

The full multigrid (FMG) cycle that is implemented in Afivo works in the fol-
lowing way.

1. If there is no approximation of the solution yet, then set the initial guess
to zero on all levels, and restrict p down to the coarsest grid using I f CIf
there is already an approximation v to the solution, then restrict v down
to the coarsest level. Use equation (10.4) to set p on coarse grids.

2. For | = lnin, lmin + 1, - - -, linax

e Store the current approximation v, as vﬁl
o If [ > lyin, perform a coarse grid correction using equation (10.3)

e Perform a V-cycle starting at level [, as described in the previous
section

10.6.3 Gauss Seidel red-black

In Afivo, we have implemented Gauss Seidel red-black or GS-RB as a relaxation
method. This method is probably described in almost all textbooks on multigrid,
such as [39-41, 201], so we just give a very brief description.

The red-black refers to the fact that points are relaxed in an alternating
manner, using a checkerboard-like pattern. For example, in two dimensions with
indices (4, 7) points can be labeled red when i + j is even and black when i + j
is odd. Now consider equation (10.2), which typically relates a value ug’J ) to
neighboring values and the source term p. If we keep the values of the neighbors
fixed, then we can determine the value ugf’] ) that locally solves the linear equa-
tion. This is precisely what is done in GS-RB: the linear equations are solved for

all the red points while keeping the old black values, and then vice-versa.

10.6.4 Conservative filling of ghost cells

The finer levels will typically not cover the complete grid in Afivo, so that ghost
cells have to be used near refinement boundaries. These ghost cells can be
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Figure 10.7: Two coarse cells, of which the right one is refined. The cell centers
are indicated by dots. There are two ghost values (red dots) on the left of the
refinement boundary. Fluxes across the refinement boundary are indicated by
arrows.

filled in multiple ways, which will affect the multigrid solution and convergence
behavior. Here we consider conservative schemes for filling ghost cells [40, 202].
A conservative scheme ensures that the coarse flux across a refinement boundary
equals the average of the fine fluxes, see figure 10.7.

Ensuring consistent fluxes near refinement boundaries helps in obtaining a
consistent solution. For example, if we consider a general equation of the form
V - F = p, then the divergence theorem gives

/pdV:/V-FdV:/F-ndS, (10.6)
1% 1%

where the last integral runs over the surface of the volume V', and n is the normal
vector to this surface. This means that when fine and coarse fluxes are consistent,
the integral over p will be same on the fine and the coarse grid.

The construction of a conservative scheme for filling ghost cells is perhaps
best explained with an example. Consider a 2D Poisson problem

Viu =V - (Vu) = p, (10.7)
with a standard 5-point stencil for the Laplace operator
1
Ly=h"2|1 -4 1|. (10.8)
1

With this stencil, the coarse flux fy across the refinement boundary in figure
10.7 is given by

fu = [yt —ulpV)/m, (10.9)
and on the fine grid, the two fluxes are given by
Fur = [ — gD/, (10.10)

o = [ — g2 /h. (10.11)
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The task is now to fill the ghost cells 922,1) and g,(l2’2) in such a way that the

coarse flux equals the average of the fine fluxes, i.e., such that

fo = (fni+ fn2)/2 (10.12)

To relate u'>" to the refined values up, the restriction operator 1 ,Il{ needs to be

specified. In our implementation, this operator does averaging over the children,
which can be represented as

11 1
H—f
I} _4[1 J. (10.13)

The constraint from equation (10.12) can then be written as

gé?,l) n g,(f’Q) _ ug,l) n Z (uf’l) n u23,2)> _ % (ul(f,l) I ugh?)) . (10.14)

Any scheme for the ghost cells that satisfies this constraint will be a conservative
discretization.
Bilinear extrapolation (similar to standard bilinear interpolation) gives the

following scheme for g,(f’l)

2,1 I ay 9 31 3/ (32 4,1 1 2
g}(L ):iugq )4—§u,(1 )_g(“/(z )~l—u,(l ))—I—gul(l ), (10.15)

(The scheme for 922’2) should then be obvious.) Another option is to use only the

closest two neighbors for the extrapolation, which gives the following expression

for g,(f’l)

1 1/
g = Sulp? +udt — 2 (P + ). (10.16)

This last scheme is how refinement-boundary ghost cells are filled by default in

Afivo.

Three-dimensional case

In three spatial dimensions, the 5-point stencil of equation (10.8) becomes a 7-
point stencil with -6 at the center, and the restriction operator has eight entries
of 1/8. The analog of equation (10.16) then becomes

1 ) 1
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Change in ¢ at cell face
For the more general equation with a coefficient ¢
V - (eVu) = p, (10.18)

we consider a special case: € jumps from €1 to €2 at a cell face. Local reconstruc-
tion of the solution shows that a gradient (¢;+1 — ¢;)/h has to be replaced by

26182 Qit1 — di
- . , (10.19)
or in other words, the gradient is multiplied by the harmonic mean of the ¢’s
(see for example chapter 7.7 of [40]). The 5-point stencil for the Laplacian can
be modified accordingly.

When a jump in € occurs on a coarse cell face, it will also be located on a
fine cell face, see figure 10.7. In this case, the ghost cell schemes described above
for constant ¢ still ensure flux conservation. The reason is that the coarse and

fine flux are both weighted by a factor 2e1e2/(£1€2).

Cylindrical case

In cylindrical coordinates, the Laplace operator can be written as
1 1
V2u = ~0,(rou) + 0*u = 0*u + ~d,u + 0%u, (10.20)
r r

where we have assumed cylindrical symmetry (no ¢ dependence). At a radius
r # 0, the 5-point stencil is

1
-2
Ly=h2|1-L —4 1+2]. (10.21)
1

With the cell-centered grids in Afivo, radial grid points are located at (i — %)h
for:=1,2,3,..., which means we do not have to consider the special case r = 0.
For this type of grid indexing, the 5-point stencil can also be written as

1

Lp=h"%|2=2 —4 2|, (10.22)
1

If we do not modify the restriction operator, then the ghost cells can still be
filled with the schemes from equations (10.16) and (10.17). One way to interpret
this is that fluxes are computed in the same way in cylindrical coordinates,
although their divergence is weighted by the radius:

1
V-F=-0,(rF)+... (10.23)
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From figure 10.7, we can see that for refinement in the r-direction, the coarse
and fine flux are ‘weighted’ by the same radius. For the fluxes in the z-direction,
the computations are the same as for the Cartesian case. Note that when the
restriction operator is changed to include radial weighting, these arguments are
no longer valid.

10.6.5 Multigrid test problems

In this section we present two test problems to demonstrate the multigrid behav-
ior on a partially refined mesh. We use the ‘method of manufactured solutions’:
from an analytic solution the right-hand side and boundary conditions are com-
puted. Two test problems are considered, a constant-coefficient Poisson equation

Viu=V-(Vu)=p (10.24)

and a cylindrical version with a coefficient ¢
1
—0p(redru) + 0.(e0,u) = p, (10.25)
r

both on a two-dimensional rectangular domain [0, 1] x [0, 1]. For the second case,
¢ has a value of 100 in the lower left quadrant [0,0.25] x [0,0.25], and a value 1
in the rest of the domain. In both cases, we pick the following solution for u

u(r) = exp(|r —r1| /o) + exp(|r — ra| /o), (10.26)

where 71 = (0.25,0.25), 72 = (0.75,0.75) and o = 0.04. An analytic expression
for the right-hand side p is obtained by plugging the solution in equations (10.24)
and (10.25)3, and the solution itself is used to set boundary conditions.

The two different problems can now be solved numerically. For the cylindri-
cal case with the varying e, a modified Laplacian operator is used, as described
in section 10.6.4. The Gauss Seidel red-black relaxation methods are also modi-
fied, because they depend on the applied operator, see section 10.6.3. For these
examples, we have used Ngown = Nup = Npase = 2 (number of down/up/base
smoothing steps), and a coarsest grid of 2 x 2 cells.

It is possible to do adaptive mesh refinement in multigrid, for example by
using an estimate of the local truncation error based on equation (10.5) (see also
chapter 9 of [40]). Such a technique is not used here, instead the refinement
criterion is based on the right-hand side: refine if Az?|p| > 5.0 x 107*. The
resulting mesh spacing is shown in figure 10.8a.

In both cases, one FMG (full multigrid) cycle is enough to achieve convergence
up to the discretization error, which was approximately 10~* for the mesh of
figure 10.8a. Consecutive FMG cycles have a negligible effect on the absolute
error, although they do reduce the residual 7 = p — V2u. The maximum value of

3Note that jumps in ¢ also contribute to the source term p.
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Figure 10.8: Left: mesh spacing used for the multigrid examples, in a [0, 1] x [0, 1]
domain. Each step in color is a factor two in refinement, with red indicating
Az = 275 and the darkest blue indicating Az = 27!2. Right: the maximum
residual versus FMG iteration, case 1 corresponds to equation (10.24) and case
2 to equation (10.25).

Residual

|r| is shown versus iteration number in figure 10.8b. The convergence behaviour
is similar for both cases, with each iteration reducing the residual by a factor of
about 0.056. The offset between the lines is caused by the ¢ = 100 region, which
locally amplifies the source term by a factor of 100.

10.7 Implementing a plasma fluid model

To illustrate how Afivo can be used, we describe the implementation of a simple
2D /3D plasma fluid model for streamer discharges below. For simplicity, pho-
toionization (see chapter 11) is not included in this example. A review of fluid
models for streamer discharges can be found in [19].

10.7.1 Model formulation

We use the so-called drift-diffusion-reaction approximation:

One = =V - je + aljel, (10.27)
on; = aljel, (10.28)
je = _ﬂeneE — D.Vne, (1029)

where n, is the electron density, n; the positive ion density, j. the electron flux,
@ the effective ionization coefficient, . the electron mobility, D, the electron
diffusion coefficient and E the electric field. The above equations are coupled
to the electric field, which we compute in the electrostatic approximation, see
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chapter 2.2.5:

E = -V, (10.30)
V2 = —p/eo (10.31)
p=e(n; —ne), (10.32)

where ¢ is the electric potential, €y the permittivity of vacuum and e the ele-
mentary charge. The electric potential is computed with the multigrid routines
described in section 10.6.

We make use of the local field approzimation [76], so that u., D, and @ are
all functions of the local electric field strength E = |E|. These coefficients can
be obtained experimentally, or they can be computed with a Boltzmann solver
[203, 204] or particle swarms [20].

10.7.2 Flux calculation and time stepping

The electron flux is computed as in [29]. For the diffusive part, we use central
differences. The advective part is computed using the Koren limiter [49], whose
implementation is discussed in appendix B. The Koren limiter was not designed
to include refinement boundaries, and we use linear interpolation to obtain fine-
grid ghost values. These ghost cells lie inside a coarse-grid neighbor cell, and we
limit them to twice the coarse values to preserve positivity. (We would like to
improve this in the future.)

Time stepping is also performed as in [29], using the explicit trapezoidal rule,
also known as the modified Euler’s method. The time step is determined by a
CFL condition for the electron flux and the dielectric relaxation time, as in [29].

10.7.3 Refinement criterion

Our refinement criterion contains two components: a curvature monitor C for
the electric potential and a monitor a@Ax which gives information on how well
the ionization length (1/&) is resolved. For both, we use the maximum value
found in a box in order to decide whether to (de)refine it.

Since V2¢ = —p/e, the curvature monitor can be computed as ¢, = Az?|p|/eo.
The quantity @Ax is computed by locating the highest electric field in the box,
and looking up the corresponding value of @. The combined refinement criterion
is then as follows, where later rules can override earlier ones:

o If aAx < 0.1 and Ax < 25 um, derefine.

e If ¢t < 2.5ns, ensure that there is enough refinement around the initial seed
to resolve it.

o If @Az > 1.0 and cg > 0.1 Volt, refine.



Chapter 10. Afivo: Adaptive Finite Volume Octree 153

initial

seeds‘

Figure 10.9: Cross section through the center of the three-dimensional simulation
domain. The ionized seeds with a density of 102 m™3 electrons and ions are
indicated in red. There is a background density of 5x 10" m~3 electrons and ions,
and the background electric field points down with a magnitude Ey = 2.5 MV /m.

10.7.4 Simulation conditions and results

A cross section through the computational domain of (32 mm)? is shown in figure
10.9. The background field points down, with a magnitude Ey = 2.5MV /m,
which is about 5/6 of the critical field — see chapter 8 for a comparison of
discharges above and below the critical field. The background field is applied by
grounding the bottom boundary of the domain, and applying a voltage at the
top. At the other sides of the domain we use Neumann boundary conditions for
the potential. We use transport coefficients (e.g., @, p.) for atmospheric air, but
for simplicity photoionization (see chapter 11) has not been included. Instead a
background density of 5 x 10" m™2 electrons and positive ions is present.

Two seeds of electrons and ions locally enhance the background electric field,
see figure 10.9. These seeds have a density of 102 m~3, a width of about 0.3 mm
and a length of 1.6mm. The electrons from these seeds will drift upwards,
enhancing the field at the bottom of the seed where a positive streamer can
form.

In figure 10.10, the time evolution of the electron density is shown, and in
figure 10.11 the electric field is shown. Two positive streamers grow downwards
from the ionized seeds. The upper one is attracted to the negatively charged
end of the lower one, and connects to it at around 9.5 ns. The three-dimensional
simulation took about 3.5 hours on a 16-core machine, and eventually used about
1.3 x 107 grid cells.
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Figure 10.10: A three-dimensional simulation showing two positive streamers
propagating downwards. The upper one connects to the back of the lower one.
The electron density is shown using volume rendering, for which the opacity is
indicated in the legend; low densities are transparent.
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Figure 10.11: Cross section through the three-dimensional domain showing the
time evolution of the electric field. The full height of the domain is shown
(32mm), but only 6 mm of the width.



Chapter 11

A Monte Carlo approach for
photoionization in discharge
simulations

We present a Monte Carlo approach for photoionization in plasma fluid
simulations of gas discharges. A number of discrete photons is used to
approximate the photoionization profile. Two strategies for photon ab-
sorption are considered: the photons can be absorbed on a single uniform
grid, or on a grid with multiple levels, with the level chosen for each pho-
ton. The method has several advantages. It can be used in 2D and 3D,
for a general photon absorption function. The interaction with objects
and surfaces can be included relatively easily, and one can trade accuracy
for performance by reducing the number of discrete photons. We present
numerical examples in a cylindrical geometry.

This chapter will be extended for publication as:
A Monte Carlo approach for photoionization in discharge simulations,
J. Teunissen, U. Ebert
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11.1 Introduction

Photoionization can play an important role in electrical discharges in air and
other gases. Several numerical methods for including photoionization in discharge
models have been described in the literature [11, 17, 47, 48|. Here, we present
a new Monte Carlo method that is aimed at plasma fluid simulations, especially
those on adaptively refined grids.

If we consider models for streamer discharges, then two typical challenges are
solving Poisson’s equation to obtain the electrostatic potential, and computing
the photoionization profile. Both challenges involve a non-local process or inter-
action — at least when we assume that the speed of light is effectively infinite.
However, the required accuracy for these two problems is quite different: dis-
charges are much less sensitive to the amount of photoionization around them
than to the electric field [88]. The method presented here was thus designed to
be fast and flexible, but not necessarily highly accurate.

The physics of photoionization have recently been reviewed [45] for air, Og,
Ng and COs. In air, photoionization can take place when an excited nitrogen
molecule emits a UV photon in the 98 to 102.5 nm range, which is enough energy
to ionize an oxygen molecule:

N; — No + 7, (11.1)
Oy +7v — OF +e. (11.2)

How far the photon « will travel depends on the gas mixture and density. Ac-
cording to the Zheleznyak model [46], the mean absorption distance is about
0.45mm for air at 1 bar and room temperature, see the next section.

To compute the photoionization profile generated by a distribution of photon
sources, we can use the following integral

sy = [ 1= s, .

At|lr — 7’2

where Sph () is the produced photoionization, I(7’) the photon source term and
the denominator is the standard geometric factor for isotropically distributed
photons. The absorption function f(r) gives the probability density of absorption
at a distance r, so that

/000 f(r)dr = 1. (11.4)

The factor f(|r — r’|) in the integrand complicates the numerical solution of
equation (11.3). In this paper, a method is presented that approximates this
integral using Monte Carlo techniques.

The content of the paper is as follows: in section 11.2, past models for pho-
toionization in discharge simulations are briefly reviewed. In section 11.3, the
Monte Carlo procedure for approximating the integral is described, and in section
11.4 numerical examples are presented.
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11.2 Past work

When discussing photoionization in discharge models, there are two aspects to
consider: the physical model for photoionization and the numerical implemen-
tation. The physical processes that generate photoionization in Os, air, No and
COz have recently been reviewed in [45].

Below, we will briefly discuss the numerical methods that have thus far been
used to implement photoionization in discharge simulations. The authors all used
the Zheleznyak model [46] for photoionization in air, in which the absorption
function is given by

f(?“) _ exp(_XminpOQT) - exp(_XmaxpOQT)’ (115)

r ln(Xmax/Xmin)

where Xmax ~ 1.5 x 102/(mmbar), Ymin &~ 2.6/(mm bar) and po, is the partial
pressure of oxygen. Equation (11.5) is based on the assumption that:

e Photon wavelengths A are uniformly distributed between Ay = 98 nm and
A1 = 102.5nm.

e At awavelength ), the absorption coefficient is given by £y, = X% X:2¥ po,,
where u = (A — Ag) /(A1 — Ao).

Note that u lies between zero (at Ag) and one (at A;). The absorption function
for photons at a given wavelength / value of u is

fu(r) = Ky exp(—fur). (11.6)

To compute the average absorption function, we integrate over the range u = 0
tou =1 (i.e., from Ay to A1), which gives equation (11.5):

! XP{—Xmin PO>T) — €XP(—Xmax PO, T
1) = [ futr)du = SR Xmin b0 1) = SR POLT) (11

The mean absorption distance can be computed as
o0
T = / rf(r)dr ~ 0.093 mm bar/po, . (11.8)
0

In the Zheleznyak model, the production of ionizing photons is proportional
to the electron impact ionization term, with a coupling constant 7 that depends
on the gas and electric field. The model was derived for a steady-state discharge,
and does not include the decay time of emitting states. If this decay time is
known, it can of course be included when computing the source term I(r’) of
equation (11.3).
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11.2.1 Helmholtz approximation

As stated above, the absorption function in the integrand of equation (11.3)
complicates its numerical solution. Luque et al. [47] therefore approximated
equation (11.5) by the following expansion

N
f(r)= TZAj exp(—A;7). (11.9)

J=1

The authors used N = 2, and the A; and \; were fitted to get the best agreement
with equation (11.5). Equation (11.3) can then be transformed into a set of
Helmholtz equations, which can be solved with fast elliptic solvers.

Note that equations (11.5) and (11.9) differ by a factor of 2. (Compared with
equation (11.6), the difference is only a factor » however.) An expansion with few
terms can therefore only be accurate in a limited range. Furthermore f (0) =0,
whereas the original absorption function has a maximum. As discussed in [47],
this difference is not as bad as it seems. Close to the discharge, impact ionization
dominates, so that only the non-local photoionization (r > 0) is important.

Bourdon et al. [17] used three terms for equation (11.9), and investigated
the importance of the boundary conditions for the Helmholtz equations. They
also presented results for a ‘three group Eddington (SP3) model’, which was
introduced in an earlier paper [48].

11.2.2 Photoionization for PIC codes

Chanrion and Neubert [11] proposed a method suitable for PIC-MCC codes
(particle-in-cell, Monte Carlo collision). In such a simulation, the particles each
have a weight w, which determines how many physical electrons they represent.
For each electron impact ionization, there is a probability n that w discrete
photons are produced. The photons get a random isotropic direction, and their
absorption length is sampled from the distribution underlying equation (11.5).
At the locations of absorption, electron-ion pairs are created.

This method can be seen as a Monte Carlo approximation to equation (11.3),
and the method presented here shares some of its features.

11.3 Description of the method

In our Monte Carlo method for photoionization, we assume that photon scatter-
ing can be neglected, and that the direction of ionizing photons is isotropic. The
method can be divided in three parts:

1. Determine the coordinates at which photons are produced, and store these
coordinates in a list L.
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2. Determine the coordinates at which photons are absorbed, and store these
coordinates in a list Lgst.

3. Compute the resulting photoionization profile on a mesh.

The implementation of these steps is described below.

11.3.1 The source of ionizing photons

In a plasma fluid simulation, the computational domain is divided into cells. We
assume that for each cell the production of ionizing photons I is known within
a given time step At. In our Monte Carlo method, this information is converted
to a list L of approximately N discrete photons in the following way.

1. Determine the total photon production Iy, within the time step At, by
summing over all the cells.

2. For each cell n, = NI/I5, photons should be produced. To convert n, to
an integer, first draw a uniform random number U(0,1). If ny — [n,] > U
round up, else round down.

3. For each produced photon, add the coordinate of the cell center to the list
Ly, of photons.

Some additional remarks: In principle the number of photons N can be chosen
adaptively, for example to create discrete ‘super-photons’ with a given weight.
It is also possible to assign different weights to different photons by modifying
the above procedure, see section 11.3.4.

Instead of rounding n., to an integer as described above, it can be more
realistic to sample from the Poisson distribution with parameter n,. For n, < 1
the result would be almost identical, but for larger values there are differences.
However, most of the random fluctuations in our method are due to the stochastic
photon direction and absorption, as discussed in the next section. Therefore our
rounding with uniform random numbers should be fine for most applications.

When grid cells are large compared to typical photoionization length scales,
one could determine a ‘subgrid’ production location in the cell, instead of using
the cell center. However, this scenario should generally be avoided, because the
resulting photoionization profile would itself be insufficiently resolved.

11.3.2 Absorption of ionizing photons

Now that we know where photons are produced, we need to determine where
they are absorbed. This is done in the following way. First, we determine
the absorption distance r for a photon. Given an absorption function f(r),
the cumulative absorption function F(r) = [ f(')dr’ can be computed, either
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Figure 11.1: Illustration of inversion sampling. If F'(r) is a cumulative distribu-
tion function, then one can obtain samples r from that distribution by solving
F(r) = U, where U is a uniform random number between zero and one. In our
Monte Carlo procedure, a linear lookup table is constructed of r versus F(r), to
speed up the sampling.

numerically or analytically. Then a so-called lookup table is constructed with
columns F(r) and r. Now we can do inversion sampling: given a random number
U(0,1), the corresponding distance 7 is obtained by linear interpolation from the
table. The procedure is illustrated in figure 11.1. (In the special case where the
inverse of F'(r) is known, one could directly compute r = F~1(U), but this will
often be slower than using a lookup table.)

Then a random orientation # for the photon is determined, using a procedure
for picking a point on a sphere proposed by Marsaglia [205]:

1. Get two random numbers Uy (—1,1) and Uz(—1,1). If U2 + U3 < 1 accept
them, otherwise draw new numbers.

2. Let @ = U} + U2 and b = 2y/1 —a. The isotropic random direction is
7 = (bUy, bUs3, 1 — 2a) in Cartesian coordinates.

In the special case of a 2D Cartesian (z,y) coordinate system, we should not
pick points on a sphere but points on a circle. Then the second step is replaced
by

L U -U2 201U
(oot v m)
Given the direction and the distance, the location of absorption r = r# is known,
which is added to the list Lggt.

Sometimes, the typical absorption length of photons is much larger than the
domain size. Since most photons will not be absorbed within the domain, the
Monte Carlo approximation becomes less accurate. This can be resolved by
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changing the lookup table. Suppose that all photons with absorption distances
7 > Tmax can be ignored, then one can construct a lookup table up to ryax and
scale the corresponding F'(r) values to the range (0,1). Each photon that is
produced now gets a smaller weight F'(rpax).

11.3.3 Computing the photoionization profile

At this stage, a list Lqg with the absorption locations of the photons has been
constructed. These coordinates now need to be mapped to a mesh to get the
photoionization profile. We consider two options: the photons can be absorbed
on a single mesh with a constant grid spacing, or they can be absorbed at different
levels in a refined mesh.

In both cases we use nearest grid point (NGP) to map the photons to den-
sities, which means that photons are absorbed within a single cell. With linear
(and higher order) interpolation the resulting density profiles are smoother, but
it becomes harder to handle refinement boundaries.

Absorption using a constant grid spacing

If the photons are absorbed on a mesh with constant grid spacing Az, two
length scales have to be considered. First, Ax should be some fraction of the
typical absorption distance of photons, to resolve the absorption profile. Using
the lookup table for absorption distances (see section 11.3.2) one can for example
use Az ~ F~1(0.25), so that about 25% of photons is absorbed within a distance
Azx. Second, Az should be smaller than some typical length scale Ig. for the
photon source term. The reason for this is the geometric falloff of the absorption
density, which goes like 7~2 for a point source.

The above requirements on Ax ensure that its value is small enough, so that
we get an accurate solution close to the photon sources. However, a small grid
spacing will lead to significant noise in regions farther away, where few photons
are absorbed. Fluctuations have a typical size of v/N, where N is the number of
photons absorbed in some region. We can increase Az, so that some accuracy is
lost near the sources, but a smoother profile is obtained farther away from them.

Absorption using a photon-dependent grid spacing

With a constant grid spacing we cannot get a good approximation of the ab-
sorption profile in all regions. Near the source we need a small grid spacing, but
farther away we would like to use a coarser grid, to reduce fluctuations. This
could be achieved by creating a mesh that is suitably refined, but ideally we
would like to use the same mesh as is already used for the plasma fluid model.
Assuming that this is a sufficiently refined mesh with multiple levels, we use the
following procedure.
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For each photon, determine its distance until absorption r as described above.
Then compute the level | at which the photon should be absorbed as

[ =logy(kr/Axy), (11.10)

where Az is the mesh spacing at the coarsest grid (level one) and & is a factor
suitably chosen between zero and one, see section 11.4. The number [ is then
rounded to an integer such that I,y < 1 < lhax, with the minimum and maximum
chosen such that photons are not absorbed on a too coarse or fine mesh for the
application at hand. The rounding is performed by drawing a random number
U(0,1): if I — |I] > U round up, else round down. This randomization is done
to reduce mesh artifacts; without it, there would be sudden transitions between
mesh levels.

All photons are now absorbed at their levels [, and the resulting absorption
densities are added from coarse to fine grids, by linear interpolation. Near the
boundaries, some type of boundary conditions must be specified in order to do
linear interpolation. For the examples in the next section, we have used Neumann
zero boundary conditions.

11.3.4 Physical fluctuations

In the description of the absorption methods, we assumed that the number of
discrete photons used is much smaller than the number of physical photons. The
discrete photons then become ‘super photons’, which increases the stochastic
fluctuations in their absorption profile. The goal of the absorption methods
described above is to reduce these stochastic fluctuations.

Sometimes, the fluctuations produced by a limited number N,y of physical
photons are of interest. If Ny is small enough, one can represent the pho-
tons individually to obtain a realistic sample of the absorption profile. Note
that equation (11.3) does not take such fluctuations into account — it effectively
assumes that Nppys = oo.

11.4 Examples

We will now present examples to illustrate the properties of the proposed method.
The absorption function from the Zheleznyak [46] model is used for these exam-
ples, see equation (11.5). As a gas, nitrogen with 20% oxygen (air) is used at
room temperature.

For the examples a 2D cylindrical (7, z) grid of 8mm? is used. The coarsest
and finest grid have a spacing of 1 mm and ~ 7.8 um, so that there are 8 levels
of refinement (each with a refinement factor of two). A point source of photons
is present at 7. = (0,4mm) and N =5 x 10* discrete photons are produced.
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Figure 11.2: The photoionization profile given by equation (11.11) for air at
a pressure of 1 bar and 1 mbar, on a logarithmic scale. At 1 bar the mean
absorption length is about 0.45 mm, at 1 mbar it is 0.45 m.

With a point source 6(r — r) the integral in equation (11.3) simplifies to

f(r —7e)

S (r) = . 11.11
ph (") Art|r — 7re|? ( )
We compare against this solution to evaluate the accuracy of our method, see

figure 11.2.

11.4.1 Results for air at 1 bar

In figure 11.3 results are shown for a gas pressure of 1 bar, using 5 x 10* discrete
photons. The photons are mapped to densities using either a constant grid
spacing Az or a varying grid spacing, see section 11.3.3.

With a constant grid spacing, the photoionization profile is quite noisy when
a small Ax is used. This can be improved by using more photons or by increasing
Az. With a larger grid spacing the Monte Carlo approximation improves away
from the point source, but close to it the approximation gets worse. The reason
is that the grid becomes to coarse to resolve the absorption profile, as discussed
in section 11.3.3. (This does not always matter, see the remark in section 11.2.1.)

With a varying grid spacing for absorption, each photon is absorbed on a grid
with a spacing of approximately x times the photons’ distance until absorption.
The resulting profiles are generally smoother than those using a constant Azx.
With small k’s, there is more noise, but with larger x’s mesh artifacts become
visible around the source term. These mesh artifacts occur when the grid for
absorption is too coarse to resolve the fast decay of the absorption profile, see
figure 11.2. The best value for k thus depends on the number of photons used:
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0.125

Figure 11.3: The relative error of the Monte Carlo method for air at 1 bar. Top
row: results with a constant Ax for absorption (see section 11.3.3). Bottom row:
results with varying Ax, controlled by the parameter s (see section 11.3.3). The
same random sample of photons is used for all cases.

with more photons, one can use a smaller value to reduce mesh artifacts while
still having reasonably low noise levels.

11.4.2 Results for air at 1 mbar

In figure 11.4 results are shown for the same conditions as in figure 11.3, but now
at a pressure of 1 mbar. At this pressure most photons are not absorbed within
the domain, so we have used the procedure described in section 11.3.2 to modify
the lookup table. Only photons with absorption distances less than twice the
domain size were produced.

With a constant grid spacing, there is less noise than for the 1 bar case,
because of the larger values of Az that are used. As before, we see that the
solution near the source term cannot be resolved when Ax gets too large. With
a varying grid spacing, the results are typically close to the analytic solution in
the whole domain. The mesh artifacts for larger values of x are smaller than for
the 1 bar case.

11.5 Conclusion

We have presented a Monte Carlo approach for photoionization in discharge
simulations, in which a number of discrete photons is used to approximate the
photoionization profile. An efficient sampling method for these photons was
described, which can also be used when absorption lengths are much larger than
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Figure 11.4: The relative error of the Monte Carlo method for air at 1 mbar.
Top row: results with a constant Az for absorption (see section 11.3.3). Bottom
row: results with varying Az (see section 11.3.3). The same random sample of
photons is used for all cases.

the computational domain. Two strategies for photon absorption are considered:
the photons can be absorbed on a single uniform grid, or on a grid with multiple
levels, with the level chosen for each photon. The method presented in this paper
has the following advantages:

e The same approach can be used for 2D and 3D simulations and those in
cylindrical symmetry, with relatively minor modifications.

e By changing the number of photons and the parameters in the method,
one can control the noise in the solution and the accuracy.

e The method is quite flexible and can be used for almost any absorption
function f(r).

e Because the start and end location of each photon is known, the interaction
of photons with objects and surfaces can be included.

e When adaptive mesh refinement is used, the photoionization profile can be
computed on the same mesh as is used for the plasma fluid model.

Although the amount of noise can be controlled in our method, it is diffi-
cult to reproduce physically realistic noise levels in all regions. On the other
hand, simulations that require such accurate noise levels should probably not be
performed with a fluid model.

Our method was not designed to give the best accuracy in the whole solution
domain, because that is typically not necessary for photoionization. When an
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equation like (11.3) has to be solved with high accuracy, one could use the Fast
Fourier Transform (FFT) to perform a convolution with a general kernel, see for
example chapter 6-5-4 of [67]. On a Cartesian grid with N grid points, the cost
of such an operation is of order O(N log N).



Chapter 12

Conclusions & outlook

12.1 Conclusions

This thesis deals with various topics, all related to the modeling of streamers
and nanosecond pulsed discharges. Below, the main conclusions on these topics
are summarized, with references to the relevant chapters.

A general conclusion could be that the simulation of streamer discharges
is quite challenging, due to their transient and three-dimensional nature, their
steep density gradients, their thin space charge layers which generate strong elec-
tric field enhancement and their strongly non-linear propagation — see chapter
2.2.1. The same arguments hold in general for nanosecond pulsed discharges that
exhibit strong space-charge effects in a non-trivial geometry. Adaptive mesh re-
finement (AMR) is an important technique for the simulation of such discharges,
especially in three dimensions. This is illustrated in chapter 3, in which the sim-
ulations lacked mesh refinement and were limited to a small domain and rather
unrealistic conditions. One way to reduce computational costs is to restrict a
model to two (or even one) spatial dimensions. However, many discharges do
not have the symmetry that is in this way imposed on them, as illustrated in
chapters 5-9. For a better understanding of such discharges, three-dimensional
simulations are valuable. After this quite general conclusion, we summarize the
most important conclusions from individual chapters below:

e Chapter 3 Both particle and fluid models can be used for streamer sim-
ulations. Particle models include more physics, but are computationally
more expensive. A hybrid model can combine advantages of both models,
but the implementation of such a model is challenging. Without adap-
tive mesh refinement, three-dimensional streamer simulations are limited
to small domains and unrealistic conditions.

e Chapter 4 — To speed up simulations, the weights of simulation particles
can be changed adaptively by merging and splitting them. Using random
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numbers, pairs of particles can be merged in such a way that energy and
momentum are on average preserved. The usage of a k-d tree allows to
efficiently search for pairs of particles that are close in both position and
velocity.

e Chapter 5 A three-dimensional particle-in-cell model has been constructed,
with adaptive mesh refinement, adaptive particle weights, parallelized par-
ticle routines and the possibility of including a needle electrode. With this
model, we show that the formation of a pulsed discharge depends on the
nitrogen/oxygen ratio, which affects the photoionization density.

e Chapters 6,8 In atmospheric air, we do not expect isolated streamer
discharges when the electric field is above the breakdown threshold. Due to
background ionization and electron detachment, electron avalanches start
to grow in the whole overvolted region. After the ‘ionization screening
time’, these avalanches together screen the electric field. The formation of
isolated double-headed streamers, observed in several previous studies, is
therefore unlikely.

e Chapter 7 By taking into account electron impact ionization, the Maxwell
time £g/0 can be generalized to the ‘ionization screening time’ 7ig. In the
limit of negligible ionization, 75 again reduces to €p/o. The predicted
screening times are compared with one- and three-dimensional simulations,
and a simple criterion for the homogeneity of overvolted discharges is given.

e Chapter 9 Positive streamers can be guided by weak pre-ionization, i.e.,
pre-ionization that has a negligible space charge effect. This guiding is
demonstrated by experiments and a simulation, which show that a streamer
can move almost perpendicular to the background electric field. A re-
quirement for guiding is that the pre-ionized region contains a significantly
higher electron density than the bulk gas.

e Chapter 10 For doing numerical computations on adaptively refined grids,
quadtree and octree meshes have attractive properties. We present Afivo, a
framework suitable for modest-scale parallel computations on quadtree/octree
grids. Afivo can be a simpler alternative for some of the already existing
frameworks aimed at large scale parallel computations. Geometric multi-
grid is highly efficient for solving elliptic equations on structured grids, and
is therefore implemented in Afivo.

e Chapter 11 Photoionization plays an important role in many discharges,
but including this process in simulations can be challenging. A Monte
Carlo approach for photoionization is presented, suitable for plasma fluid
models. By absorbing photons on different grid levels, the photoionization
profile can efficiently be approximated.
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12.2 Outlook

Using the Afivo framework described in chapter 10, several types of three-dimensional
simulations can now be performed, to investigate for example streamer branch-
ing, the interaction between two streamers or the propagation of streamers close

to flat dielectrics. Many two-dimensional simulations can be performed much
more quickly than with previous models, allowing for an interactive exploration

of parameter regimes. An important algorithmic development would be the in-
clusion of curved electrodes in the multigrid method. This probably requires the
implementation of a direct solver for the coarse-grid equations. The develop-
ment of an advection scheme that can handle refinement boundaries would also

be valuable.

Compared to plasma fluid models, particle models are computationally often
more expensive. This computational expense comes with a big advantage, how-
ever: the particle distribution function f(x,v,t) can directly be approximated.
Fluid models have to make assumptions about the shape of f(x,v,t), potentially
limiting their validity. Particle models can therefore be attractive for problems
in which f(ax,v,t) behaves in a complicated way — for example near physical
boundaries or when electron runaway occurs. Particle models will also be an
important tool for the development and validation of fluid approximations, as
they have been in the past.

As discussed above, the microscopic modeling of streamer discharges is com-
putationally challenging. An interesting development is the use of so-called ‘tree’
models [65], see section 2.2.4. In a tree model, the streamers are character-
ized as macroscopic channels with a velocity, radius, conductivity and branching
probability. The development of such tree models is important, because most
discharges in nature and in the lab contain many streamer channels, making
microscopic simulations computationally unfeasible. The strategy could be to
use microscopic simulations of single streamers to characterize the behavior of
individual channels in a tree model.






Appendix A

Becoming a computational
scientist

I have now been working on computational science and computational physics
problems for more than six years. What has surprised me, in hindsight, is the
great number of things that one has to be familiar with in order to be productive.
The reason is probably the relatively large amount of DIY (do it yourself) in
computing, compared to other disciplines. Below I will try to summarize what
skills I have found to be generally important.

A.1 Selecting problems

For doing research, the most important skill is perhaps the ability to pick the
right problems. This is a rather difficult skill to master, and I am confident that
I have not done so yet. Still, there are a couple of simple questions that I find
useful for selecting problems:

e Are you interested in the problem?
e Are others interested in the problem?
e Do you expect to learn something useful when studying the problem?

e Does the problem seem feasible to you? If this is not clear, how much time
do you approximately have to invest to answer this?

e Suppose that everything works out: you solve the problem. What would
that mean to you? And what could you do next?

e How long do you give yourself? And suppose that you are unable to solve
the full problem, is there then an intermediate result that could be of value?
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e How hard will it be to write about the results? For example, for certain
types of results a carefully written introduction, motivation, discussion or
analysis might be required.

Another question that becomes more relevant towards the end of a PhD is
whether it is possible to obtain (future) grants or funding for a topic.

A.2 Theoretical skills

Below, I briefly discuss some of the theoretical topics that I believe to be impor-
tant for a computational scientist. The most important topic is missing however,
namely knowledge of the domain that you are working in. Such knowledge will
help in selecting the right problems and in making the right approximations.

A.2.1 Applied mathematics

These are some of the topics in applied mathematics that I think are important
for a computational scientist:

1. Linear algebra: many problems can be written as a system of linear equa-
tions.

2. Calculus: ordinary differential equations and Taylor series are important for
many numerical methods. Also helps for knowing what can be calculated
analytically or for being able to construct reference solutions.

3. Statistics: Monte Carlo methods are quite common; to work with them,
at least a basic understanding of statistics is required. The same goes for
problems that are probabilistic in nature or contain data with noise.

A.2.2 Computer science

When we want to solve a problem on a computer, we have to select the appropri-
ate algorithm. Algorithms can be classified by their ‘difficulty’ or computational
cost, which is the main topic of computational complexity theory. Knowing and
understanding the computational cost of algorithms is not only important for
efficiently solving a problem, but also for predicting what problems are feasible.
For example, if you recognize that you are trying to solve an NP-hard' problem,
then you immediately know that you are limited to small problem sizes. With
parallel computing, it is usually possible to go to larger problem sizes. To what
extent this is the case depends on how well the algorithmic components can be
parallelized, i.e., on the amount of local computation versus global communica-
tion.

!See https://en.wikipedia.org/wiki/NP-hard
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The practical cost of algorithms also has to do with the device that performs
the algorithmic steps or computations. Modern processors operate in a rather
complicated way, but knowledge of the cost of typical operations is important
when you have to develop an efficient numerical method. The hardware in a
processor also determines what integer and floating point numbers you can use.
Understanding floating point arithmetic and its subtleties can save you a lot of
time debugging ‘weird” behavior.

A.2.3 Computational science

Although there are many types of computations, most of them can be categorized
into just a few categories:

e Solving linear systems of equations, i.e., solve Az = b for a given matrix A
and vector b. Surprisingly many problems can be transformed into such a
linear system.

e Optimization, for example: find the shortest path between N cities, find
the ground state energy of a quantum system or find the minimum of a
function.

e Ordinary and partial differential equations. Many (physical) systems can
be described by such equations. Different types of partial differential equa-
tions require quite different solution strategies.

A computational scientist should probably be familiar with the basic methods
for solving problems from these categories, so that one is able to find and select
the best methods when the need arises. To prevent reinventing the wheel, some
knowledge of the available libraries and codes is valuable.

A.3 Practical skills

The best strategy for solving a problem depends on what tools are already avail-
able. If sufficiently many other people have worked on a (similar) problem,
software might be available that you can directly use. Take for example CFD
(computational fluid dynamics), for which there are many different simulation
tools. Selecting the right one then becomes one of the most important aspects
of solving your problem.

The other extreme would be that no existing software exists for your problem,
so that you have to develop everything yourself. There are of course also many
cases in between, for example when existing tools have to be modified to suit
your needs. This means that it is often necessary to write computer code. Below,
some of the practical aspects of writing your own code and reusing others’ code
are discussed.
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A.3.1 Computer basics

For computing, the *nix operating systems appear to be most popular. Being
familiar with a variant of e.g., GNU/Linux, BSD or OS X is therefore quite
helpful — this allows you to quickly use the code and tools that others have
written.

Good command of a text editor such as vim or emacs, or a suitable IDE (inte-
grated development environment) will speed up your code and text editing. This
might also reduce the risk of developing RSI (repetitive strain injury), because
most editors can be operated without a mouse?. There are many useful tools
included in a *nix system, but ssh gets a special mention, because it allows you
to work on remote systems.

There exist a number of software suites for doing numerical or symbolic
computations. Commercial packages are for example Matlab and Mathematica,
whereas Octave [206] or SageMath [207| are examples of free software alterna-
tives. The many built-in functions can help you to quickly develop a computa-
tional method. Even if you eventually have to implement this solver in a different
environment, it can be helpful to start from a simple proof-of-concept. The gen-
erality of such suites is also their drawback: typically they will not be as efficient
as a special purpose solution.

A.3.2 Programming

When you develop a method from scratch, you can use your preferred program-
ming language — this is of course not possible when you have to modify an existing
method. The traditional languages for computing are C and Fortran. Especially
C is quite ‘low-level’, so that experience with C will be useful for understanding
how a computer and other languages work. Fortran was specifically designed
for numerical computing, which can make code development more convenient.
Another popular compiled language is C++, which allows for many program-
ming styles. This flexibility can be good for the expert but is sometimes hard
for the beginner. Performance wise, there are no major differences between these
languages as long as you know what you are doing.

For certain tasks, scripting or interpreted languages such as Python can be
more convenient. Such languages can for example be used to glue together other
programs, to process data or to visualize results. Python can also be used for
computations, although the numerical work is then typically performed by rou-
tines written in C or Fortran, which are made available by Python modules such
as numpy.

Numerical code is no different from other code: many things can go wrong.
Sometimes a program simply does not compile or run, but at other times it might

2In my experience, the combination of stress and mouse usage is most likely to cause physical
discomfort.
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not be clear whether there is a bug or whether there is a failure for another reason.
Code often depends on (particular versions of) libraries, which is a source of
compilation errors; understanding how code is compiled will help in figuring out
what is required. Another example are the Makefiles® included with numerical
software: they might not work on your machine, in which case you need to know
how to modify them. As most programs contain bugs, basic debugging skills
are very valuable. The larger a project grows, the more important these skills
become.

Being familiar with a version control system such as git has various benefits:
you can keep tracks of your changes, get the latest version of a code, collaborate
with others etcetera. Perhaps even more important is being able to visualize
your results. There exist many tools for this, examples of popular open source
packages are gnuplot, Visit [135] and Paraview [200].

3Makefiles contain rules that describe how a collection of source files should be compiled.
Another common build system is CMake.






Appendix B

Implementing numerical
algorithms: the Koren flux
limiter

B.1 Introduction

An important aspect of scientific computing is the actual implementation of
an algorithm. Here we demonstrate this for a relatively short algorithm: the
Koren flux limiter [49]. Flux limiters are used to prevent oscillations in flow
simulations, by switching gradually between a low order scheme (for the difficult
regions) and a higher order scheme. The goal of this appendix is to show that a
robust implementation of an algorithm can look quite different from the original
definition. We also describe some of the general numerical problems that one
encounters when implementing algorithms.

B.2 Koren limiter

We discuss the implementation of the Koren limiter. The original paper [49]
gives the following definition for the flux at a cell face

vy (o4 560y - >) for u,,; >0
fiv 1= (B.1)
UH_% Ci+1 ‘|‘ ( )(CH—l - Cz+2)> for UH_% <0,
2
where wu, il is the velocity at the cell face and ¢; is the density at the center of

cell 1. The flux limiter ¢ is defined as follows, see figure B.1:

6(r) = max (0, min <2r, min <; + % 2))) , (B.2)
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Figure B.1: The Koren limiter function ¢(r).

and r is the upwind ratio of consecutive solution gradients, which for u,, 1 >0

+}
is given by
Cit1 — Ci T €
+  _ G+l 1
rl,=— (B.3)
3 ¢ —ciote

and for u; 1 <0, the definition is
2

Ci — Ciy1 T €
P = TR (B.4)
3 Ciy1— 2 te
Here € is ‘some very small number (e.g. ¢ = 10719), introduced to avoid, e.g.,

division by zero in uniform flow regions’ [49].

B.3 Implementation

In principle, we could directly implement the algorithm described in the previous
section, because all operations can be translated to instructions in C, Fortran
or some other language. That implementation will not be the most robust and
efficient, however. For example, we would like to remove €’s from equations (B.3)
and (B.4). The denominator in these equation can still be zero when the terms
cancel out. This can be prevented by automatically changing the sign of €, but
then the value of € is still somewhat arbitrary. Furthermore, for small densities
¢; ~ €, the € term could cause inaccuracies.

B.3.1 Potentially unsafe operators

In a way, most floating point operation can be regarded as unsafe, because with
the ‘wrong’ arguments, the result might be undefined or +o0o. However, some
operations are more likely to fail than others. For example, = + y or x - y works
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fine as long as the result can be represented, but operations like y/z, \/x or
log(z) have to be treated more carefully. The reason is that these functions
have a domain that excludes some ‘typical’ floating point values, such as zero or
negative numbers.

For example, 1/0 gives oo on most systems (a special floating point value),
and 0/0 gives NaN, or Not a Number. However, division by a non-zero number
is also unsafe. If z = y/x is smaller or larger than the numbers that can be
represented in the floating point system, one still ends up with +oo.

When one works with real numbers, /2 gives NaN for z < 0, and logarithms
require positive arguments. There are of course more functions that are defined
on a limited domain, e.g., the arcsine. The occurrence of NaN’s or oco’s in nu-
merical calculations is often caused by calling such functions with an invalid
argument, often caused by rounding errors. For example, on most computers
evaluating 0.3 — 3z in double precision for x = 0.1 gives about —5.55 x 10717, A
detailed discussion of floating point arithmetic can be found in e.g., [208, 209].

Note that we just consider robustness here, not accuracy. Different ways of
calculating the same value can differ in their accuracy. And a practical tip: it can
be convenient to enable trapping on floating point exceptions in your compiler,
to detect the problems described in this section.

B.3.2 Actual implementation

We first define a function ¢, that incorporates the factor 1/2 from equation (B.1)

$(r) = max (O,min <7«, min (1*62’" 1))) . (B.5)

If we write r;, 1 = a/b, where a and b are the terms of equations (B.3) and (B.4)
2

DO

$1(r) =
without the ¢, then equation (B.1) becomes

) Wit
fi—i—% - {u

1+

(c; + bop1(a/b)) for Uit 1 >0 B.6
(Cit1 + bp1(a/b))  for U1 <0. (B:6)

= N

For ¢, four cases should be considered (see figure B.1, which shows ¢)

0 forr <0
r for0<r<1/4
o1(r) = / (B.7)
(1+2r)/6 forl/4d<r<5/2
1 for r > 5/2.

We now define a new function

¢a(a,b) = bd1(a/b), (B8)
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real function phi2(a, b)

real, intent(in) :: a, b
real, parameter :: sixth = 1/6.0
real :: aa, ab

aa = a * a
ab = a *x b

if (ab <= 0) then

phi2 = 0
else if (aa <= 0.25 * ab) then
phi2 = a

else if (aa <= 2.5 * ab) then
phi2 = sixth * (b + 2 * a)
else
phi2 = b
end if

end function phi2

Figure B.2: Fortran implementation of ¢2(a,b) = bo1(a/b), see equation (B.5).
Note that for a double precision version the constants should also be modified.

which we can compute without any division, for example as in figure B.2. A small
trick is used: a/b < x is not equivalent to a < bx, because b can be negative or
zero. However, if ab > 0 then a/b < x <= a® < abzx.

Our implementation of the Koren flux limiter is then as follows: Depending
on the sign of the velocity, define three variables a, b and ¢ in the following way

Cit1 — Ciy Ci — Ci—1,C; for u,
a,b,c= { " (B.9)

>0
Ci — Cit1, Cit1 — Cit2,Cip1  for u, 1 <0,

N N

after which the flux can be computed as
fi—i—% = Uiyl (c+ p2(a, b)),

where ¢9(a,b) is the routine from figure B.2.
On an Intel i7-37708 CPU, this implementation of ¢2(a,b) is about twice as
fast as a similar implementation of b¢1(r), see equation (B.5).

B.4 Conclusion

We have presented a robust implementation of the Koren flux limiter, which looks
quite different from the original description of the algorithm. Besides conditional
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statements (if constructs), our implementation uses only multiplication and
addition.

Carefully implementing an algorithm takes some effort, but this effort might
save considerable debugging time. This is especially important for large and
complex computations. For example, the occurrence of NaN (not a number) after
several hours of parallel computing can easily take more than a day to debug.
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Summary

3D Simulations and Analysis of Pulsed Discharges

There exists a wide variety of electrical discharges in nature, in the lab and in
technological applications. Well known examples are lightning (nature), Tesla
coils (lab) and fluorescent lamps (technology). In this thesis, the focus is on
nanosecond-pulsed discharges, and in particular on streamers. Streamers are
rapidly growing ionized channels, which are often the precursors for other dis-
charges. They for example occur in corona discharges used for gas processing
and plasma medicine, or high above thunderclouds in the form of sprites.

In nanosecond-pulsed discharges there are steep gradients in the electron and
ion density, which generate thin space charge layers. These charge layers modify
the electric field, and because the electric field largely determines the growth of
such discharges, their propagation is strongly non-linear. This makes it for exam-
ple difficult to predict how fast streamers will grow or how their radius will change
in time. To help answer such questions, computer simulations are valuable: one
can control what physics to include, there is complete information about the
system, and simulations can be performed under conditions that are experimen-
tally hard to realize. However, simulating nanosecond pulsed discharges can be
quite challenging. Because these discharges are transient phenomena that typi-
cally lack cylindrical symmetry, computationally costly three-dimensional time-
dependent simulations are often required. This is illustrated by the results from
chapter 3 and chapters 5 to 9. For future studies on streamer branching or the
interaction between multiple streamers, three-dimensional simulations will also
be required.

In the chapters of this thesis a suite of numerical approaches and physi-
cal predictions is developed, as summarized below. In chapter 3, four models
are compared for the simulation of a negative streamer: a particle model, two
fluid models and a hybrid model, which couples the particle and fluid approach
in space. Particle models include more physics, but they are computationally
expensive. The hybrid model can combine advantages of both models, but its
implementation is more challenging. The comparison demonstrated that particle,
fluid and hybrid models can be in good agreement, at least up to the moment
of front destabilization. Without adaptive mesh refinement three-dimensional
streamer simulations are limited to small domains and unrealistic conditions,
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however.

To speed up particle simulations, the weights of simulation particles can be
changed adaptively by merging and splitting them. In chapter 4, we demonstrate
that a k-d tree can be used to efficiently search for pairs of particles that are
close in both position and velocity. Using random numbers, such pairs can be
merged so that energy and momentum are on average preserved. In chapter
5, the implementation of a three-dimensional particle-in-cell code is described.
This code includes adaptive mesh refinement, adaptive particle weights, paral-
lelized particle routines and the possibility of including a needle electrode. We
show how the formation and destabilization of an ‘inception cloud’ around an
electrode tip depends on the nitrogen/oxygen ratio, which affects the non-local
photoionization density.

In chapters 6 and 8, the formation of discharges far from electrodes is inves-
tigated. If the electric field in such a region rapidly increases to a value above
breakdown, then background ionization plays an important role: due to electron
detachment, electron avalanches start to grow in the whole overvolted region.
After the ‘ionization screening time’, these avalanches together screen the elec-
tric field. The formation of isolated double-headed streamers, observed in several
previous studies, is therefore unlikely. In chapter 7, an analytical approximation
for the ionization screening time is derived. This time scale is a generalization of
the Maxwell time that takes into account electron impact ionization. Predicted
screening times are compared with one- and three-dimensional simulations, and
a simple criterion for the homogeneity of overvolted discharges is given.

In chapter 9, experiments and simulations demonstrate that the growth of
positive streamers is not only determined by the electric field. With weak pre-
ionization (having a negligible space charge effect), such streamers can be guided
so that they move almost perpendicular to the background electric field. Guiding
only happens when the pre-ionized region contains a significantly higher electron
density than the bulk gas. This is the reason we observe guiding in nitrogen but
not in air, in which more non-local photoionization is produced.

Even using adaptive particle weights, particle models are computationally
quite expensive compared to fluid models. In chapter 10 we present Afivo, a
framework suitable for modest-scale parallel computations on adaptively refined
quadtree/octree grids. Afivo can be a simpler alternative for some of the already
existing frameworks aimed at large scale parallel computations. For discharge
simulations, one of the major computational challenges is Poisson’s equation, for
which geometric multigrid has been implemented in Afivo. Examples of discharge
simulations in two and three dimensions are presented.

Photoionization plays an important role in many discharges, but including
this process in simulations can be challenging. In chapter 11, a Monte Carlo
approach for photoionization is presented, suitable for plasma fluid models on
adaptively refined grids. By absorbing photons on different grid levels, the pho-
toionization profile can efficiently be approximated.
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