
A computational approach to
the syntax of displacement and the semantics of scope

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301638211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Published by LOT

Janskerkhof 13
3512 BL Utrecht
The Netherlands

phone: +31 30 253 6006
fax: +31 30 253 6406
e-mail: lot@let.uu.nl
http://www.lotschool.nl

Cover illustration: c© 2007 Zach VandeZande
(http://www.animalshaveproblemstoo.com)

ISBN: 978-94-6093-021-8 NUR 616

Copyright c© 2010: Christina Unger. All rights reserved.



A computational approach to
the syntax of displacement
and the semantics of scope

Een computationele benadering
van de syntaxis van beweging
en de semantiek van bereik

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de rector magnificus, prof. dr. J. C. Stoof,
involge het besluit van het college voor promoties

in het openbaar te verdedigen
op woensdag 31 maart 2010
des ochtends te 10.30 uur

door

Andrea Christina Unger
geboren op 5 mei 1982
te Leipzig, Duitsland



Promotoren: Prof. dr. D. J. N. van Eijck
Prof. dr. E. J. Reuland



Contents

Acknowledgements 9

1 Introduction 11

2 Contrasting displacement and scope 15
2.1 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Restrictions on displacement . . . . . . . . . . . . . . . . . . . 19

2.2.1 C-command . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Rigid locality . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Relativized locality . . . . . . . . . . . . . . . . . . . . . 24

2.3 Operator scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Restrictions on operator scope . . . . . . . . . . . . . . . . . . 28
2.5 Two sides of the same coin? . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Concurrences . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Mismatches . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.3 Reconciling concurrences and mismatches . . . . . . . . 34

2.6 A brief tour through the thesis . . . . . . . . . . . . . . . . . . 37

3 The base grammar 39
3.1 Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Combining form-meaning pairs . . . . . . . . . . . . . . . . . . 46
3.4 Summary and limitations . . . . . . . . . . . . . . . . . . . . . 47

4 A syntactic procedure for displacement 51
4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Displacement operations . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Multiple wh-questions and feature checking . . . . . . . . . . . 62
4.4 Intervention effects . . . . . . . . . . . . . . . . . . . . . . . . . 70



6

4.4.1 Wh-islands . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Superiority . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Extension: Remnant movement and Freezing . . . . . . . . . . 77
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Comparison with other approaches . . . . . . . . . . . . . . . . 85

4.7.1 Brosziewski’s Derivational Theory . . . . . . . . . . . . 85
4.7.2 Movement-based approaches . . . . . . . . . . . . . . . 86
4.7.3 Feature-enriched categorial grammar and

Minimalist Grammars . . . . . . . . . . . . . . . . . . . 87
4.8 Concluding remark: Why displacement? . . . . . . . . . . . . . 88

5 A semantic procedure for scope construal 91
5.1 Operator scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Delimited control . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Extending the meaning dimension . . . . . . . . . . . . . . . . 99
5.4 Quantificational noun phrases . . . . . . . . . . . . . . . . . . . 104

5.4.1 Strong quantifiers . . . . . . . . . . . . . . . . . . . . . 104
5.4.2 Weak quantifiers . . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Free scope . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Wh-phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1 Displaced wh-phrases . . . . . . . . . . . . . . . . . . . 121
5.5.2 Scope marking . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.3 In situ wh-phrases . . . . . . . . . . . . . . . . . . . . . 130

5.6 A note on the source of the delimiter . . . . . . . . . . . . . . . 133
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Implementation 139
6.1 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Operator scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Concluding remarks and future perspectives 163

Bibliography 167

Index 177

Samenvatting in het Nederlands 181

Curriculum vitae 183



List of Figures

3.1 Example lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Summary of the form dimension. . . . . . . . . . . . . . . . . . 83
4.2 Summary of the syntactic operations. . . . . . . . . . . . . . . 84

5.1 Lexical entries for the quantificational noun phrases everyone and
someone, and the corresponding determiners every and some. . 106

5.2 Lexical entries for the complementizers that and whether. . . . 106
5.3 Derivation tree for Ishtar admires some human. . . . . . . . . . . 107
5.4 Derivation tree for Every goddess admires some human. . . . . . 109
5.5 Derivation trees for someone from every city. . . . . . . . . . . . 111
5.6 Derivation trees for Someone from every city hates Gilgamesh. . 112
5.7 Lexical entries for the wh-noun phrase who and the wh-determiner

which. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8 Summary of the operational semantics . . . . . . . . . . . . . . 136





Acknowledgements

Science is made by friends.
(Haj Ross)

I have been among many marvellous people, without whom this thesis would
not be. And although I would like to thank some of them more than I should, I
am afraid I will not thank half of them half as well as I should like and certainly
not all of them more than half as well as they deserve. Nevertheless I wish to
express my gratitude to all of them.

Rightfully first in this list are my supervisors. Jan, for pushing and pulling
me at all possible times in all necessary ways and far beyond this thesis. And
Eric, for being the L in UiL OTS.

I am also deeply indebted to Gereon Müller, who had been an invaluable
source for everything syntax-related, and without whom I might have neither
started nor finished this dissertation.

Among the people that inspired me are Klaus Abels, Ulf Brosziewski, Alexis
Dimitriadis, Philippe de Groote, Greg Kobele, Andres Löh, Michael Moortgat,
Rick Nouwen, Eddy Ruys, Chung-chieh Shan, and Craig Thiersch.

Among my fellow PhDs there are two that I want to thank in particular.
Gianluca Giorgolo, for an innumerable amount of things, especially for his
computer science influence and a lot of rock’n’roll. Andreas Pankau, for sharing
the cultural background and an apartment, and for providing me with beer and
football. And both of them for sharing and discussing ideas, for their friendship,
and for all the fun.

And I am no less grateful to all other colleagues and friends that made life in-
side and outside the UiL OTS smashing: Min Que, Sander van der Harst, Bert
Le Bruyn, Anna Volkova, Roberta Tedeschi, Gaetano Fiorin, Clizia Welker,
Bettina Gruber, Xiaoli Dong, Berit Gehrke, Nino Grillo, Giorgos Spathas,
Jakub Dotlačil, Marieke Schouwstra, Anna Chernilovskaya, Lizet van Ewijk,



10 Acknowledgements

Ana Aguilar Guevara, Nadya Goldberg, Matteo Capelletti, Linda Badan, Ma-
rijke de Belder, Dagmar Schadler, Diana Apoussidou, Natalie Boll-Avetisyan,
Frans Adriaans, Arjen Zondervan, Paolo Turrini, Radek Šimı́k, Arno Bastenhof
and Jeroen Goudsmit, as well as the Tilburg Chicks. They all made a huge
difference. As did those whom I don’t know how to thank.

Moreover, very visible contributions have to be attributed to Andreas, who
pointed me to Brosziewski’s work, Min, Xiaoli and Mana, wo helped me with
the data, and Marieke, who translated the samenvatting.

And although not directly connected to this thesis, I wish to thank Philipp
Cimiano for offering the time and freedom I needed to finish up, and for pro-
viding an environment that made it more than worth to move on.

Finally, a very special thanks goes to my parents and my brother for being
my parents and my brother.



1

Introduction

The grammatical knowledge we have allows us to effectively link spoken lan-
guage with meaning, both when we perceive utterances and need to understand
them, and when we want to convey a meaning and need to choose the sounds we
have to articulate. The aim of theoretical linguistics is to model this grammat-
ical knowledge. Such a model usually comprises several recursive procedures,
among them one for combining words into phrases and sentences (syntax ) and
one for constructing meanings (semantics). Since syntactic units and their
meanings are related in a very systematic way, syntax and semantics are taken
to be tightly connected.

The thesis at hand is about two particular phenomena at the interface be-
tween syntactic structure and meaning: wh-displacement and operator scope.
Together they embody as well as challenge the tight connection between syntax
and semantics that is commonly assumed. On the one hand, a lot of languages
syntactically displace operator expressions exactly to the position where they
semantically take scope. This led to many theories assuming displacement and
scope to be two sides of the same coin. But on the other hand, displacement
and scope do not coincide in general and across all languages. In fact, in quite
a lot of cases operator expressions are neither displaced nor does their syntac-
tic position correspond to their semantic scope position. This is why I want
to explore an alternative way of looking at displacement and scope. Instead
of considering them to be tightly linked, I want to argue that they are not
connected at all, and that the mismatches are actually the normal case. This
goes hand in hand with an alternative view on the syntax/semantics interface,



12 Introduction 1

in which syntactic and semantic procedures can operate independently of each
other.

In particular, I propose that our grammatical knowledge consists of two
subsystems. The first one is a core system for combining simple expressions
into more complex expressions, with syntax and semantics working completely
in parallel. The second one comprises extensions to the core system consisting
of syntactic and semantic procedures that operate independently of each other.
I propose that it is those extensions that are responsible for non-local depen-
dencies such as displacement and scope construal. More specifically, I propose
that displacement is derived by a syntactic procedure that receives no semantic
interpretation, and that operator scope is established by a semantic procedure
that has no syntactic counterpart.

I will proceed by first developing the core system and a basic link between
syntax and semantics, and then extending the core system with independent
procedures for displacement and scope construal. This partial decoupling of
syntax and semantics will provide a straightforward way to explain mismatches
between form (in particular syntactic surface positions) and meaning (in par-
ticular semantic scope positions).

Additionally, my approach will be computational, as the title of the thesis
suggests. And it will be so in two respects. First, the adopted semantic proce-
dure employs concepts from computer science for establishing operator scope,
mainly evaluation contexts and delimited control. And second, although I fol-
low most theoretical linguists in studying language as a formal rule system, I
go further by also implementing this rule system. Formal linguistics in this
thesis is thus not a pen and paper enterprise but uses the computational tools
at hand. I do not only want to specify a recursive algorithm that can system-
atically generate phrases and sentences along with their meanings, but I want
to also be able to execute this algorithm and actually compute form-meaning
pairs. So instead of only devising an algorithm that is formal enough to be
implemented in a machine, I want to provide such an implementation. This
can then be used to go one step further than formal definitions: test them for
empirical adequacy and predictive power. In particular, the implementation
will enable us to easily test cases that get too complex for keeping track of all
details by hand. And it furthermore proves useful to sharpen the theory and
ensure it to be consistent and work the way it was intended to work.

The language of choice for the implementation is the functional program-
ming language Haskell. Functional programming is suitable for the task of
linguistic computation because it allows to program at a very abstract level
and furthermore keeps the step from definition to implementation very small.
In fact, the main part of the implementation follows the formal definitions al-
most to the letter. The implementation thus can indeed serve to check the
correctness of the definitions. The linguistically minded reader can neverthe-
less safely skip the implementation and simply feel assured that the linguistic
rules I employ indeed compute the grammatical phrases and sentences of the



1 13

fragment I will focus on.
The plot of the book is the following. Chapter 2 introduces the dependencies

this thesis is about: wh-displacement and operator scope. It investigates their
characteristic properties and concludes that they are not two sides of the same
coin but rather constitute two distinct mechanisms. After carving out the core
system in Chapter 3, Chapter 4 models a syntactic procedure that can tell the
story of displacement, and Chapter 5 models a semantic procedure that can
tell the story of operator scope. In Chapter 6, I give an implementation of the
suggested algorithm and briefly explain how it can be used. Finally, in Chapter
7, I summarize and investigate the implications that the proposed view has on
the general modeling of the syntax/semantics interface.





2

Contrasting
displacement and scope

This chapter introduces the two phenomena under consideration: wh-displace-
ment and operator scope. We will start by looking at their behavior and
characteristic properties. Of special importance will be restrictions on wh-
displacement and scope and in howfar these restrictions can be considered to
be related. Then I will review the reasons why it is commonly assumed that
both phenomena are two sides of the same coin and look at reasons to reject
this parallelism. The chapter ends with an overview of the thesis.

To get a taste of the phenomena under investigation, consider the following
wh-question.

(2.1) Whom did the gods know that every citizen of Uruk feared?

On the one hand, there is a structural dependency between the clause-initial
position of the wh-expression and the gapped position where it presumably
originates from. Throughout the book, I will designate the gap as and mark
the dependency by indices on the involved elements, as in (2.2a). And on the
other hand, there is an interpretative dependency between these two positions:
the front position semantically corresponds to an operator that binds a variable
in the argument position marked by the gap, as indicated in (2.2b).

(2.2) a. Whom1 did the gods know that every citizen of Uruk feared 1?

b. Which x is such that the gods knew that every citizen of Uruk feared
x?



16 Contrasting displacement and scope 2

Both dependencies are unbounded : in principle arbitrarily many clause bound-
aries can intervene.

(2.3) a. Whom1 did you say that Anu thought that the gods know that every
citizen of Uruk feared 1?

b. Which x is such that you said that Anu thought that the gods knew
that every citizen of Uruk feared x?

I follow Gazdar [42] in conceiving unbounded dependencies as consisting
of three parts: top is the position where the dependency is introduced (in
our example the wh-expression whom and the operator ‘which x’), middle is
the substructure that the dependency spans, and bottom is the position where
the dependency ends (in our examples the gap or the variable). The top is
also called head of the dependency and the bottom is also called foot of the
dependency.

The next two sections are dedicated to looking at the two unbounded depen-
dencies under consideration, displacement and operator scope, in more detail.
Although they display a parallel structure in example (2.2) above, they turn
out to have different characteristics, as we will see in Section 2.2. I will then,
in Section 2.5, propose to take the mismatches as indication that displacement
and operator scope are in fact different dependencies that should be treated
separately.

2.1 Displacement

Consider again our first example:

(2.4) Whom1 did the gods know that every citizen of Uruk feared 1?

What tells us that the wh-phrase is indeed displaced, i.e. that there is a struc-
tural dependency between the wh-phrase and the gap position? An obvious
observation is that the question asks for the object of the verb fear, which in
echo questions and declarative sentences appears in the position indicated by
the gap, as shown in (2.5).

(2.5) a. The gods knew that every citizen of Uruk feared whom?

b. The gods knew that every citizen of Uruk feared Gilgamesh.

Two facts further suggest a relation between the object position of the embed-
ded verb fear and the fronted wh-phrase in (2.4). First, the fronted wh-phrase
shows agreement with the verb. Due to the lack of overt agreement morphol-
ogy, English is not a good language to observe this, but we can see at least
that in (2.4), the wh-expression whom seems to get its case from the embedded
verb fear, just like in (2.5a). Now, virtually every syntactic framework assumes
that case assignment is a local dependency between a verb and its arguments;
especially, case cannot be assigned across clause boundaries. Therefore, we



2.1 Displacement 17

need to establish a local relationship between the fronted wh-phrase and the
embedded verb somehow.

Second, we know that pronouns can only be bound in certain structural
configurations. The configuration that is commonly accepted to be most rel-
evant is c-command. We will look at it later; here, as a starting point, we
simply assume that linear precedence is important for binding. To illustrate
this consider (2.6), where we mark the interpretative dependency of pronomi-
nal binding by indices. In (2.6a) the antecedent precedes the pronoun, binding
is therefore possible, whereas in (2.6b) the antecedent does not precede the
pronoun, binding is therefore not possible.

(2.6) a. [Every king]1 tyrannized his1 citizens.

b. ∗ His1 king tyrannized [every citizen]1.

Now, when the pronoun his is contained in a displaced wh-phrase, as in (2.7), it
is not preceded by its antecedent everyone (neither is it c-commanded, for that
matter) and binding should therefore be impossible. Nevertheless, binding is
possible.

(2.7) [Which god of his1 ancestors]2 did everyone1 worship 2?

Why is that? Important is that the pronoun could be bound if the wh-phrase
resided in the gap position. So, again, we have to assume that the wh-phrase
is related to the gap position somehow.

In order to keep things general for now, we simply conclude that there is a
dependency of some sort between a fronted wh-phrase and the corresponding
gap. Let us now look at what form this dependency takes in other languages.
There are mainly three strategies for the formation of wh-questions across lan-
guages, differing in where wh-phrases occur. The first one is wh-in-situ, which
is employed for example in Korean (an SOV language), Chinese, and Japanese.
In these languages, wh-phrases always appear at the bottom of the dependency.

(2.8) Korean (Beck & Kim [8])
Suna-ka muôs-ûl ilk-ôss-ni?
Suna-nom what-acc read-pst-q

‘What did Suna read?’

(2.9) Mandarin Chinese (Watanabe [126])
Ni xiang-zhidao wo weishenme gei Akiu shenme?
you wonder I why give Akiu what

‘What do you wonder why I give Akiu what?’

(2.10) Japanese1

Akira-no Hikaru-ga dare-ni nani-o ageta-to omotte-imasu-ka?
Akira-top Hikaru-nom who-dat what-acc gave-comp think-be-q

‘Whom does Akira think that Hikaru gave what?’
1All Japanese examples without a reference are based on judgments by Mana Kobuchi.



18 Contrasting displacement and scope 2

The second strategy is simple wh-movement, employed for example by En-
glish and Dutch. Exactly one wh-phrase is fronted and all others stay in situ.

(2.11) Whom1 did Gilgamesh tyrannize 1 how?

(2.12) Dutch

Wie1 heeft de jager 1 waar ontdekt?
whom has the hunter where discovered

‘Whom did the hunter discover where?’

The third strategy is multiple wh-movement, found in many Slavic languages
such as Bulgarian and Serbo-Croatian. All wh-phrases have to be fronted.

(2.13) Bulgarian (Billings & Rudin [11])

Koj1 kakvo2 [na kogo]3 1 kaza 2 3?
who.nom what.acc to who.dat say.pst

‘Who told what to whom?’

(2.14) Serbo-Croatian (Bošković [123])

Ko1 koga2 1 voli 2?
who who.acc loves

‘Who loves whom?’

Additional to where a wh-phrase occur, there is a strategy for indicating the
scope of the corresponding wh-operator, referred to as wh-scope marking. While
the actual wh-expression stays in situ or is displaced only within one clause,
its scope is explicitly indicated by a scope marker in a higher position. The
scope marker usually takes the form of the language’s wh-word corresponding
to what. This is illustrated by the German example (2.15). Another language
with scope marking, also over long distances, is Hindi, see (2.16). In some
cases the scope marker even seems to be phonologically empty, as in the Malay
example (2.17). This is also referred to as partial wh-movement.

(2.15) German

Was glaubst du [wen1 Shamhat verführen soll 1]?
what believe you who.acc Shamhat seduce shall

‘Whom do you believe that Shamhat shall seduce?’

(2.16) Hindi (Mahajan [72])

Raam-ne kyaa socaa [ki ravii-ne kyaa kahaa [ki kon sa aadmii
Ram-erg what thought that Ravi-erg what said that which man

aayaa thaa]]?
came be.pst

‘Which man did Ram think that Ravi said came?’



2.2 Restrictions on displacement 19

(2.17) Malay (Cole & Hermon [25])

Kamu fikir [[ke mana]1 Fatimah pergi 1]?
you think to where Fatimah go

‘Where do you think that Fatimah went?’

Scope marking overlaps with the three other strategies we saw. Korean
and Japanese, for example, are wh-in-situ languages but require an obligatory
question particle that marks the scope of the corresponding wh-operator. We
will look at the role of scope marking in Chapter 5.

In general, we assume that if a language fronts a wh-phrase, this fronting
is obligatory. There are some languages that are considered to have optional
fronting (for example Bahasa Indonesia, Egyptian Arabic and Palauan), how-
ever, Cheng [16] provided evidence for assuming that this fronting is, in fact,
an instance of clefting and that those languages are best classified wh-in-situ
languages.

2.2 Restrictions on displacement

Displacement is a dependency between two syntactic positions. It is subject to
the structural condition of c-command and the following two kinds of locality:

• Rigid locality
An expression may not be extracted from an island.

• Relativized locality
An expression can be displaced only when no element intervenes that also
has the relevant properties.

Let us examine those conditions in turn, after a short note on terminology: In
the following, I will use the term ‘displacement’, or ‘extraction’, when refering
to the structural dependency between an expression and a gap, and about
‘movement’ when talking about the operation that establishes this dependency.
The term movement will not bear any theoretical commitment, though.

2.2.1 C-command

The most fundamental structural condition on displacement dependencies is
the following:

A displaced expression must c-command the corresponding gap.

C-command is a representational notion. According to the standard definition
due to Reinhart [88], it is defined as a relation between nodes in a tree.

A node x c-commands another node y in a tree if x does not dom-
inate y but every node that dominates x also dominates y.



20 Contrasting displacement and scope 2

In other words, the c-command domain of a node comprises its sisters and
everything contained in them. As an illustration, consider the embedded sen-
tence in (2.18a) together with the tree (2.18b), that represents its constituent
structure as it would be commonly assumed. (The category labels are of no
particular importance here.)

(2.18) a. The citizens of Uruk heard [CP whom1 the king welcomed 1 ].

b. CP

whom1 CP

C TP

NP

the king

TP

T VP

welcomed 1

From a representational point of view, this tree is considered a syntactic object
that is built by iterative rule applications, or that is defined by well-formedness
conditions on trees. The displacement dependency between whom and the gap
satisfies the c-command requirement posed above.

From a derivational perspective, this c-command requirement gets a trivial
taste. Derivational perspective means that the focus is not on the syntactic
object that is built but rather on how it is built. Looking at the tree above
from a derivational point of view, we can read it as the history of how the CP
was built: the and king were combined in order to build an NP, which was then
combined with the result of combining T and the VP, then the resulting TP
was combined with C, which was then combined with whom in order to build
the CP.

The c-command relation between a displaced expression and the corre-
sponding gap can be couched in derivational terms in the following way (cf.
Epstein [35] and Epstein et al. [36]):

An expression x c-commands another expression y if x was com-
bined with y in the course of a derivation. Furthermore, x c-
commands everything that was combined to form y, i.e. all of y’s
constituents.

So according to Epstein, syntactic relations are derivational constructs; they
are established when expressions are combined.

If we now assume a movement-like operation that establishes the displace-
ment dependency, i.e. if we assume that a displaced expression originates from
the gap position, we can describe the derivational history of whom in our ex-
ample roughly like this: First, whom is combined with the verb welcomed. This



2.2 Restrictions on displacement 21

establishes a syntactic relation between both (this allows for case assignment,
for example). Later in the derivation, the original position of whom is replaced
by a gap and whom itself is combined with the CP. It thereby c-commands
everything contained in this CP, most importantly the position where it orig-
inated. Note that this is not specific to our example but holds in general for
all displaced wh-phrases. Displaced wh-phrases therefore trivially c-command
their corresponding gap.

2.2.2 Rigid locality

There are phrases that block displacement, so-called islands, first discussed by
Ross [96]. Standardly, two kinds of islands are distinguished:

• Strong (or absolute) islands are phrases out of which no extraction what-
soever is allowed.

• Weak (or selective) islands are phrases out of which some elements may
be extracted and others may not.

Let us first look at strong islands, i.e. phrases that do not allow any ex-
traction at all. An example for strong islands are adjuncts. Extraction out of
adjuncts seems to be impossible across all known languages and independent
of the type of expression that is extracted. An example is given in (2.19) with
the adjunct island indicated by brackets.

(2.19) ∗ Whom1 is she sure that Gilgamesh was happy [because he defeated 1 ]?

Other cases of strong islands, although less universal, are subjects, whose
behaviour with respect to extraction shows a clear asymmetry to that of ob-
jects: extraction from the subject in (2.20a) is out, whereas extraction of the
same wh-phrase from the object in (2.20b) is fine.

(2.20) a. ∗ Whom1 did [a story about 1 ] amuse you?

b. Whom1 did you hear [a story about 1 ]?

However, contrary to adjuncts, subjects do not cross-linguistically behave like
islands, for there are a variety of languages that do allow extraction from sub-
jects in certain configurations (e.g. Japanese, Hungarian, Turkish, Palauan,
see Stepanov [110]). Such cases can actually also be found in English: while
extraction from a subject is generally ungrammatical in active sentences like
(2.21a), it is possible in their passive counterparts, see (2.21b) (cf. Chomsky
[23]).

(2.21) a. ∗ [Of which ship]1 did [the captain 1 ] defeat pirates?

b. [Of which ship]1 was [the captain 1 ] found dead?



22 Contrasting displacement and scope 2

Adjunct and subject islands are commonly captured by the Condition on
Extraction Domain (CED) by Huang [55], which can be formulated as follows.

Condition on Extraction Domain
Extraction out of an XP is possible only if XP is a complement.

Since adjuncts and subjects are commonly considered to be non-complements,
the CED predicts them to be islands.

Another example of strong islands are complex noun phrases like in (2.22).

(2.22) ∗ Who1 did Enkidu believe [the claim that Gilgamesh defeated 1 ]?

Next, let us look at weak islands, i.e. phrases that allow only some expres-
sions to extract. An example for weak islands are wh-phrases and topicalized
phrases. They block extraction of the same kind, i.e. a wh-phrase blocks wh-
extraction and a topicalized phrase blocks topicalization, as shown in (2.23)
and (2.24).

(2.23) a. ∗Whom1 did you know [where2 the Mogelmons found 1 2 ]?

b. ∗Why1 did you wonder [whether the Mogelmons seeked John 1, ]?

(2.24) ∗ [The mogelmons]1, you knew [that John2, 1 seeked to kill 2].

Other contexts that constitute weak islands are induced by negatives and scope-
bearing elements. For a more extensive survey on weak island see Szabolcsi &
den Dikken [114].

In general it seems that an f -domain blocks f -extraction, where f is some
feature that triggers displacement. That is why weak island effects are nowa-
days often reduced to Rizzi’s [95] Relativized Minimality , which prohibits move-
ment of some type across an intervener of the same type, e.g. A-bar move-
ment another A-bar moved expression, head movement across another dis-
placed head, and so on. Assuming a more fine-grained distinction of movement
types, this principle can account for weak island effects: wh-movement is not
possible across another displaced wh-expression, topicalization is not possible
across another topicalized expression, and so on. In Chapter 4 we will see how
Relativized Minimality follows from our feature checking mechanism and how
we can use it to derive the weak islands we just saw.

There is a problem with this approach to weak islands, though. It predicts
that extraction should not be blocked by an intervener of a different kind. For
example, it should well be possible to extract a wh-phrase from a topicalized
phrase, and likewise it should be possible to topicalize an expression disregard-
less of wh-interveners. However, the facts are slightly different. It appears that
topicalization islands are stronger than wh-islands – not only with respect to
topicalization but also with respect to wh-movement and relativization. The
German examples in (2.25), taken from Müller [81], show this. In (2.25a), a
wh-phrase is extracted out of of topicalization island and the result is bad as
expected. In (2.25b), on the other hand, an expression is topicalized across



2.2 Restrictions on displacement 23

a wh-island and the result is significantly better. The same picture holds for
relativization: The ungrammatical (2.25c) shows relativization across a topi-
calization island and the slightly better (2.25d) shows relativization across a
wh-island.

(2.25) German (Müller [81])

a. ∗ Was1 glaubst du [gestern2 hat Fritz repariert 2 1]?
what.acc believe you yesterday has Fritz fixed

b. ?? Radios1 weiß ich nicht [wie2 man 2 repariert 1]?
radios know I not how one fixes

c. ∗ die Radios, die1 ich glaube [gestern2 hat Fritz repariert 2 1]
the radios which I believe yesterday has Fritz fixed

d. ?? die Radios, die1 ich nicht weiß [wie2 man 2 repariert 1]
the radios which I not know how one fixes

We will briefly come back to this contrast in Chapter 4.
An interesting fact about islands in general is that they do not constrain

all unbounded dependencies: whereas displacement is subject to strong and
weak island constraints, pronominal binding, for example, is not. Examples of
this are (2.26) and (2.27). (2.26) is an instance of extraction from an adjunct.
Since adjuncts are islands, the sentence is ungrammatical. In (2.27), on the
other hand, the displacement dependency is replaced by a pronominal binding
dependency. Dispite the island boundary, the sentence is perfectly fine.

(2.26) ∗ Whom1 did Enkidu smile [before Gilgamesh tyrannized 1 ]?

(2.27) [Every citizen]1 was happy [before Gilgamesh tyrannized him1 ].

Island sensitivity is, in fact, a steady characteristic of extraction. And since
other dependencies like pronominal binding generally lack it, it is often taken
as a diagnostic for movement: If some operation is island-sensitive, it does
involve movement; if it is not island-sensitive, it does not. In the course of the
book, I will often draw on this diagnostic. It has to be used carefully, however,
for two reasons. The first one is that sometimes where there is an island, there
is also a way to get off it. One way to resort linguistic islands is by means of
resumptive pronouns, as they occur, for example, in Irish, Hebrew and some
varieties of Arabic. An example is the following sentence where the wh-phrase
is related to a position inside an adjunct island. If this position were gapped,
the sentence would be ungrammatical; if it is filled by a resumptive pronoun,
however, it is fine.

(2.28) Lebanese Arabic (Aoun & Li [2])

Miin raaèit saamia minduun-ma ťsuuf-o?
who left.3fs Samia without see.3fs-him

‘Who did Samia leave without seeing?’



24 Contrasting displacement and scope 2

The second reason is that a lot of non-syntactic factors pervade island phe-
nomena, especially weak islands. Among them are definiteness as in (2.29),
and D-linking (referring to specific members in a pre-established set), as illus-
trated with ‘how many’ phrases in (2.30).

(2.29) a. ∗ [Which woman]1 did you discover [the poem about 1 ]?

b. ∗ [Which woman]1 did you discover [Goethe’s poem about 1 ]?

c. [Which woman]1 did you discover [a poem about 1 ]?

(2.30) a. ∗ [How many books]1 are you wondering [whether to write 1 soon]?

b. [How many books]1 on the list are they wondering [whether to publish

1 soon]?

Besides those semantic and pragmatic factors, possibly also processing issues
play a role (c.f. Kluender [64]). But since these factors lie outside the scope
of this thesis, I will not pay much attention to the data they give rise to. It
should just be kept in mind that this kind of data exists and that it is not
easily covered within a purely structural dimension.

2.2.3 Relativized locality

At the beginning of this section we saw that languages have different strategies
for forming multiple questions: either all wh-phrases stay in situ (as in Chinese
and Japanese), all wh-phrases are fronted (as in many Slavic languages), or
exactly one wh-phrase is fronted (as in English and German). But this is not
all variation there is; also with respect to the surface linear order of the fronted
wh-phrases, languages behave differently. We find languages where it plays a
role, which wh-phrase is fronted or in which order multiple wh-phrases occur.
First take English, a language where exactly one wh-phrase is fronted. As the
following example shows, it is not arbitrary which one this is.

(2.31) a. Who1 [ 1 sought whom]?

b. ∗ Whom1 did [who seek 1 ]?

These ordering effects are called superiority effects. Superiority expresses
that it is the structurally higher one of two expressions that is targeted by
an operation or enters a dependency, where A is structurally higher than B
if A c-commands B. In the English examples above, the subject wh-phrase is
structurally higher than the object wh-phrase, thus the subject wh-phrase is
the one that is displaced.

The intuition behind recent accounts for superiority is that a structural re-
lation must be satisfied in the smallest possible environment in which it can be
satisfied. This is commonly captured by the Minimal Link Condition (MLC)
[20], a version of Relativized Minimality. With respect to displacement depen-
dencies, the MLC requires the structure these dependencies span to be as small
as possible. That is, the MLC prevents extraction when there is an intervener



2.2 Restrictions on displacement 25

between gap position and front position, where intervention can be understood
either in terms of a closer landing position for the extracted expression, or in
terms of another expression that is closer to the landing position and could also
be extracted. The latter case is instantiated in example (2.31b) above. There,
extraction of whom is not the shortest extraction possible because who could
also be extracted (since it is also a wh-phrase) and is structurally higher, i.e.
closer to the front position.

Now take Slavic languages, where all wh-phrases are fronted. Do they show
superiority effects? The answer varies. Some of them do not show superiority
effects but rather admit a relatively free word order, as does Czech.

(2.32) Czech (Rudin [97])

a. Kdo kdy koho pozval, nev́ım.
who when whom invited not-know.1.sg

‘Who saw whom when, I don’t know.’
b. Koho kdy kdo pozval, nev́ım.

c. Kdy kdo koho pozval, nev́ım.

Others, like Bulgarian, on the other hand do exhibit ordering effects.

(2.33) Bulgarian (Rudin [97])

a. Koj kogo vižda?
who whom sees

‘Who sees whom?’
b. ∗ Kogo koj vižda?

However, note that the ordering is different from what superiority would re-
quire. Assuming that the position where the subject wh-phrase originates is
structurally higher than the position where the object wh-phrase originates,
the subject wh-phrase would be required to move first, and only after that
the object wh-phrase could move. If movement expands structure, as widely
assumed, this would give the ordering in (2.33b).

There are several ways to explain the different orderings we find. One
is to conclude that in some languages, Bulgarian among them, it is not the
structurally higher element that is extracted but the structurally lower one.
This is dubbed antisuperiority effect because the ordering is the opposite of
what superiority would predict. Another possibility is to claim that languages
like Bulgarian do in fact obey superiority, i.e. it is the subject wh-phrase that is
extracted first. However the object wh-phrase then does not move to a higher
position but instead is ‘tucked in’ below the subject wh-phrase (cf. Richards
[93]). In Chapter 4, we will see how to derive superiority and antisuperiority
effects from the syntactic mechanism employed in this thesis.

So far we considered only two wh-phrases when looking at superiority ef-
fects, but once we turn to multiple questions with more than two wh-phrases,



26 Contrasting displacement and scope 2

things start to get even more interesting. For example, the English example
(2.34a) is ungrammatical. According to the Minimal Link Condition that is
because the fronted wh-phrase was not the structurally highest one. However
this example is suddenly rendered grammatical upon adding another wh-phrase
like in (2.34b).

(2.34) a. ∗ Whom did who seek?

b. Whom did who seek where?

A possible way to think about these examples is along the lines of Kayne’s
connectedness approach [59]. Kayne’s insight is that a dependency obeying a
certain condition can eliminate the effects of that condition along the path of
the dependency. For (2.34b) this would mean that whom does obey superi-
ority with respect to where, and this furthermore voids superiority along the
movement path, i.e. with respect to who.

Superiority violations like in (2.34b) can also be observed in languages where
all wh-phrases are fronted. The picture for Bulgarian shows that although the
wh-phrase that is fronted must be the structurally highest one, the ordering of
lower wh-phrases does not play a role at all.

(2.35) Bulgarian (Bošković [120])

a. Koj kogo kak e tselunal?
who whom how is kissed

‘Who kissed whom how?’
b. Koj kak kogo e tselunal?

Also here, Kayne’s general line of thinking can be applied. Richards [94] does
so in explaining the above facts with a principle he calls Minimal Compliance.
It states that, within certain domains, a grammatical constraint has to be
respected by one dependency of a particular kind only. Once that is the case,
the constraint does not need to be respected anymore by other dependencies
of the same kind in the same domain. This principle can be used to explain
the Bulgarian examples if we assume that all wh-phrases are involved in one
dependency, e.g. a feature checking relation with a particular other expression.
The first instance of this checking relation targets the structurally highest wh-
phrase and as a result it is fronted. Once this is done, all other wh-phrases are
tucked in below (recall Richard’s idea of tucking in from above). Now, since
superiority was already satisfied, they are not obliged to obey it anymore. Thus
the ordering of the lower wh-phrases is free.

Like in the previous section, there should be a final caveat about the em-
pirical underpinnings of the facts mentioned. There are many non-structural
factors that influence speaker’s judgements with respect to the sentences we
considered, among them animacy, D-linking, phonological differences and the
distinction between main clauses and subclauses (see e.g. Featherstone [38] and
Meyer [76]). But again, these factors lie outside the scope of this thesis and
will not play a role in our further explorations.



2.3 Operator scope 27

2.3 Operator scope

Let us now turn to the interpretative side of wh-question constructions. De-
spite the variety of surface realizations, the wh-questions above do not differ
in meaning. Their interpretation amounts to an operator-variable structure of
the form ‘Which x [. . . x . . .]’. We assume that both the operator ‘Which’ and
the variable x are part of the meaning of the wh-expression (independent of
whether it is displaced or not). The wh-expression thus makes two contribu-
tions to the sentence meaning: On the one hand, it supplies a variable to fill
an argument slot of the verb, and on the other hand, it introduces an operator
that binds that variable and takes scope over the whole sentence.

Let us also look at another kind of expressions that denote scope-taking
operators: quantificational noun phrases such as every citizen, no god and some-
one. They are usually not displaced at all, but still the same operator-variable
structure underlies their interpretation. The only difference with respect to
wh-questions is that the operator involved is not ‘Which’ but ‘For all’, ‘There
is’ and the like. Usually, quantificational noun phrases occur in the argument
position they bind – in (2.36a) in subject position, in (2.37a) in object position,
and in (2.38a) inside another noun phrase. Exceptions are floating quantifiers
like all or both, whose position is not fixed but variable, as shown in (2.39).

(2.36) a. Every human is condemned to mortality.

b. For all humans x it holds that x is condemned to mortality.

(2.37) a. The gods awarded someone with an eternal life.

b. For some x it is the case that the gods awarded x with an eternal
life.

(2.38) a. [The servant of the ruler of some city] despises tyranny.

b. There is a city x such that the servant of the ruler of x despises
tyranny.

(2.39) a. We both should have defeated Huwawa.

b. We should both have defeated Huwawa.

c. We should have both defeated Huwawa.

Now what does it mean for an operator to take scope? The scope of an
operator can be specified as follows (cf. Szabolcsi [113]):

The scope of an operator is the domain within which it has the
ability to affect the interpretation of other expressions.

Expressions that can be affected comprise pronouns, other quantifiers, and
negative polarity items, among others. This thesis will concentrate solely on
effects on other quantifiers in form of the relative scope they take. For example,
in (2.40), the ancient gods can co-vary with the cultists such that for every
cultist there is a different god he worships.



28 Contrasting displacement and scope 2

(2.40) Every cultist worships an ancient god.

The scope taking abilities of an operator expression are determined both by
its syntactic position and its particular semantics. A collection that explores the
semantic properties and their role in scope taking is Szabolcsi [112]. Although
those semantic properties play a crucial role for the behavior of operators, we
will not consider them at all. Instead, we will concentrate on the structural
dimension involved. This is because our main focus is the role that the syntactic
position of the operator expression plays in its scope taking. This way, we will
end with a structural and feasible yet necessarily non-exhaustive treatment of
operator scope.

This said, let us turn to restrictions on operator scope.

2.4 Restrictions on operator scope

Although operator expressions appear to give rise to the same operator-variable
structure when interpreted, they do not show uniform scope behavior.

The most important observation with respect to the scope of quantifiers is
that, in all the cases we have seen, the scope of the quantifier ranges over the
whole clause it occurs in, independent of where exactly it occurs. Furthermore,
the scope of a quantifier is restricted to that clause. The following sentence, for
example, can only have the reading in (2.41a), where the quantifier everyone
has scope over the embedded clause, but cannot have the reading in (2.41b),
where it takes scope over the matrix clause.

(2.41) Someone thinks [that everyone can reach eternal life].

a. There is an x such that x thinks that for all y it holds that y can
reach eternal life.

b. For all y it holds that there is an x such that x thinks that y can
reach eternal life.

Note that the reading in (2.41b) is less specific than the one in (2.41a), i.e.
admits more situations in which it is true. For a speaker to include these
possibilities, it is thus not sufficient to use (2.41).

In case a clause contains more than one quantifier, their respective scope
is not necessarily fixed. A widely acknowledged fact about English are scope
ambiguities like in (2.42), which has both the linear scope reading in (2.42a)
and the inverse scope reading in (2.42b).

(2.42) Most heroes survive all devastating battles.

a. Most heroes x are such that for all devastating battles y it holds
that x survives y.

b. All devastating battles y are such that for most heroes x it holds
that x survives y.



2.4 Restrictions on operator scope 29

Again, b. does not entail a., therefore the reading in b. is not simply a subcase
of the one in a., thus cannot be obtained by the linear order of quantifiers in
(2.42) but only by their reversed order.

However, this does not hold in general. For example, the following sentence
is not ambiguous, despite its containing two quantifiers. Instead it has only a
linear scope reading.

(2.43) Most gods admire no human.

So it seems that not every quantifier can outscope other quantifiers. The dis-
tinction that is often considered relevant here is one between strong and weak
quantifiers. It was first formulated by Milsark [77] with respect to indefinites
and definites and later more broadly conceived and formalized by Barwise &
Cooper [6]. Weak quantifiers are intersective (i.e. their truth depends only
on the intersection of the two sets they relate) or, stated in different terms,
symmetric (i.e. their restriction and scope can be exchanged without change in
truth-conditions). Examples are some, no and less than two. Strong quantifiers,
on the other hand, are non-intersective, or asymmetric. Examples are every,
most, and not all. The distinction can be seen clearly with there-sentences: they
are fine with weak quantifiers but not with strong ones.

(2.44) a. There are some archaeologists searching for new tablets.

b. There are no archaeologists searching for new tablets.

c. There are less than two archaeologists searching for new tablets.

(2.45) a. ∗ There is every archaeologist searching for new tablets.

b. ∗ There are most archaeologists searching for new tablets.

c. ∗ There are not all archaeologists searching for new tablets.

Some quantifiers have both a weak and a strong reading. Examples are many
and few. With respect to the there-test, they pair with weak or strong quanti-
fiers, depending on the reading. That is, the sentences in (2.46) do not allow
a strong reading, i.e. the reading that many/few of the archaeologists were
searching for new tablets, but they do allow a weak reading, i.e. the reading
that many/few of the people searching for new tablets were archaeologists.

(2.46) a. There are many archaeologists searching for new tablets.

b. There are few archaeologists searching for new tablets.

When modelling different scope behavior in Chapter 5, I will take up the
intuition that only strong quantifiers can outscope other quantifiers, but weak
quantifiers cannot (cf. e.g. Ruys [98]).

Among weak quantifiers there are some that deserve closer attention: cer-
tain indefinites show exceptional behavior in that their scope is not clause-
bound like that of other quantifiers. Instead they can take almost unrestricted
wide scope. For example, while the scope of every is restricted to the subclause



30 Contrasting displacement and scope 2

of (2.47) that it occurs in and the sentence therefore only has a linear scope
reading, the indefinite in (2.48) can take scope over the intermediate and ma-
trix sentence as well. This is shown in (2.48b) and (2.48c), both of which are
available readings although they do not entail the linear reading (2.48a).

(2.47) a. Some archaeologist were happy [if every tablet could be deciphered].

b. We invited someone [who deciphered every fragment you found].

(2.48) We believe [it is unlikely [that some tablet cannot be deciphered]].

a. We believe that it is unlikely that there is a tablet x for which holds
that x cannot be deciphered.

b. We believe that there is a tablet x for which holds that it is unlikely
that x cannot be deciphered.

c. There is a tablet x for which holds that we believe that it is unlikely
that x cannot be deciphered.

The scope freedom of indefinites does not only hold for embedded clauses but
also shows with other scope islands. For example, adjuncts and coordinate
constructions restrict the scope of many quantifiers (cf. (2.49a) and (2.50a),
which have no inverse scope reading) but are not able to restrict the scope of
indefinites (cf. (2.49b) and (2.50b), which allow an inverse scope reading).

(2.49) a. Many Dolions were killed [because no-one realized the mistake].

b. Many Dolions were saved [because someone realized the mistake].

(2.50) a. Every mythology expert thinks that [Jason and every argonaut] sought
the golden fleece.

b. Every mythology expert thinks that [Jason and some argonauts] sought
the golden fleece.

This concludes the scopal behavior of quantifiers. To summarize, quantifiers
can take scope only over the clause they occur in, except for certain indefinites
which are exceptionally free in taking scope. Within their scope, quantifiers
can outscope other quantifiers if they are strong, but cannot if they are weak.
In Chapter 5 we will look at how to model these different scope behaviors. We
will do so in a purely structural way, so we will not have anything to say about
how weakness or strength are connected to semantic properties (such as being
intersective or not).

The exceptional behavior of some indefinites led researchers to conclude
that there are two types of indefinites: those that par with quantifiers and
therefore are subject to the same scope restrictions, and those that par with
referential expressions, thus are not quantifiers and therefore not subject to
scope restrictions (cf. Fodor & Sag [40], among others). I want to stay neutral
with respect to this discussion. I will therefore concentrate on non-indefinite



2.4 Restrictions on operator scope 31

quantifiers when modeling scope behavior in Chapter 5. However, I will add a
section on how to model exceptional wide scope with this mechanism as well.
This will moreover prove useful for wh-operators in some in situ and scope
marking languages.

Let us now turn to operators associated with wh-phrases. With respect
to their scope, we can roughly state the following three observations. First,
if a wh-expression is displaced, the corresponding wh-operator usually takes
scope over the clause it was displaced to. This can be seen in the following two
English examples. In (2.51a), the wh-phrase is displaced inside the embedded
clause, over which it takes scope. In (2.51b), on the other hand, it is displaced
to the matrix clause and indeed takes scope over the whole sentence.

(2.51) a. Gilgamesh wonders [whom1 the gods favored 1 more than him].

b. Whom1 did Gilgamesh think [that the gods favored 1 more than
him]?

Second, in the presence of a scope marker, the scope marker determines the
clause over which the wh-operator takes scope. This is illustrated for Japanese
in the following examples. In case of (2.52a), the question particle ka marks
the embedded clause, in case of (2.52b), it marks the matrix clause. The scope
of the wh-operator behaves accordingly.

(2.52) Japanese (Bošković [122], Cresti [29])

a. Peter-wa [anata-ga dare-o mita-ka] tazuneta.
Peter-top you-nom who-acc saw-q asked

‘Peter asked whom you saw.’

b. Kimi-wa [dare-ga kai-ta hon-o yomi-masi-ta]-ka?
you-top who-nom wrote book-acc read q

‘Which person x is such that you read a book that x wrote?’

Third, for in situ wh-expressions without an obligatory scope marker there are
two possibilities. Either they take scope inside the clause in which they occur,
as illustrated in the following Hindi example (where jaan (‘know’) can take both
interrogative and propositional complements).

(2.53) Hindi (Bhatt [10])

Wajahat jaan-taa hai [ki Rima kis-ko pasand kar-tii hai]
Wajahat know-m.sg be.prs.sg that Rima who-acc like do-f be.prs.sg

‘Wahajat knows who Rima likes.’
∗ ‘Who does Wahajat know Rima likes?’

Or they take scope in an arbitrary interrogative clause, as in the following
Chinese example.



32 Contrasting displacement and scope 2

(2.54) Mandarin Chinese2

Zhangsan zhidao [shei du-le shu]
Zhangsan knows who read-asp books

‘Who does Zhangsan know read books?’
‘Zhangsan knows who read books.’

2.5 Two sides of the same coin?

In the previous section, we saw that the syntactic position of a quantifier or wh-
phrase and the scope position of the operator it denotes sometimes coincide and
sometimes diverge. Let us recall the concurrences and mismatches and then
consider the implications they have for the syntax/semantics interface.

2.5.1 Concurrences

The concurrences are evident: Many languages displace one or all wh-expressions
to the position where they take scope. An instance is English with the following
two examples. In (2.55a), the wh-operator is displaced to the matrix clause and
indeed takes scope over the whole sentence, while in (2.55b), the wh-operator
stays within the embedded clause and takes scope only there.

(2.55) a. Who1 do you think [Enki loves 1]?

b. You know [who1 Enki loves 1].

Languages that do not displace wh-expressions often make use of particles
that occupy the position where the in situ wh-expression is intended to take
scope. An example are the following two sentences of Japanese. In (2.56a),
the question particle ka modifies the matrix clause, the wh-operator thus takes
scope over the whole sentence. In (2.56b), on the other hand, the question
particle ka modifies the embedded clause, the wh-operator thus takes scope
only over the embedded clause.

(2.56) Japanese

a. Anata-wa Enki-ga dare-o aisiteiru-to omotte-imasu-ka?
you-top Enki-nom who-acc love-comp think-be-q

‘Who do you think that Enki loves?’

b. Anata-wa Enki-ga dare-o aisiteiru-ka sitte-imasu.
you-top Enki-nom who-acc love-q know-be

‘You know who Enki loves.’

2All Chinese examples without a reference were checked with a native speaker (mostly
Min Que).



2.5 Two sides of the same coin? 33

These concurrences led to theories assuming a tight connection between
displacement and scope. This is quite natural given that most formal linguists
share Montague’s assumption that there is a strict correspondence between
syntax and semantics. More specifically, the syntactic and semantic principles
of combination are designed to be homomorphic: Every syntactic rule is paired
with a semantic rule. More specifically, it was proposed that the syntactic
operation of displacement is mapped to the semantic operation of establishing
scope. It became quite common to assume that displacement creates operator-
variable structures and that therefore there is a one-to-one correspondence
between the syntactic c-command domain of an expression and the semantic
scope of the operator it denotes (see e.g. Heim & Kratzer [49]).

2.5.2 Mismatches

There are quite a few mismatches as well. Let us recall the three major ones.
The first one is that languages can establish operator scope without displace-
ment. Most quantificational noun phrases are a case in point, since they do not
show any signs of having been displaced. Also, in some languages, in situ wh-
phrases do not show characteristics of displacement. For example in Chinese
and Quechua, questions with in situ wh-phrases can violate island constraints.

(2.57) Mandarin Chinese

Ni xiang-zhidao [wo weishenme gei Akiu shenme]?
you wonder I why give Akiu what

‘Which reason x is such that you wonder what I give to Akiu because
of x?’

(2.58) Ancash Quechua (Cole & Hermon [24])

Qam kuya-nki [ima-ta suwaq nuna-ta]?
you love-2pl what-acc steal man-acc

‘Which x is such that you love the man who stole x?’

The second mismatch is that even in cases where wh-expressions are dis-
placed, the overt position of the wh-phrase does not always coincide with the
scope position of the corresponding operator. For examples, the in situ wh-
phrase in the Japanese example (2.59) seems to have been displaced covertly
for it gives rise to an island violation.

(2.59) Japanese
∗ Anata-wa [Taro-ga dare-o hometa-ka doo-ka] sitte-imasu-ka?

you-top Taro-nom who-acc praised-q how-q know-be-q

‘Which x is such that you know whether Taro praised x?’

Another example is the Malay question (2.60) we already saw. The wh-phrase
is fronted inside the embedded clause but takes scope over the matrix clause.



34 Contrasting displacement and scope 2

(2.60) Malay (Cole & Hermon [25])

Kamu fikir [[ke mana]1 Fatimah pergi 1]?
you think to where Fatimah go

‘Where do you think that Fatimah went?’

Similar instances are wh-phrases that occur deep inside a pied piped phrase
like in (2.61). Also there the wh-phrase occurs in a position lower than the one
from where it takes scope.

(2.61) [The king of which city]1 did Ishtar admire 1?

And the third mismatch is that sentences with more than one scope-taking
expression display scope ambiguities. That is, despite the syntactic order
among operator expressions, their semantic scope is not ordered. We saw ex-
amples of this in the last section. For instance, the relative scope of the two
quantifiers in Most heroes survive all devastating battles was not fixed: either
most heroes scopes over all devastating battles or vice versa.

To summarize, by far not all wh-expressions are displaced to their scope
position or related to a scope marker. And other operator expressions, such
as quantificational noun phrases, are neither displaced nor does their syntactic
position correspond to the position where they take scope. That is, in many
cases, the scope of an expression cannot be read off of its syntactic position.

2.5.3 Reconciling concurrences and mismatches

The mismatches between displacement and scope required theories assuming
them to be tightly connected to undergo considerable adjustments. They
needed to change either the syntactic operations in order to fit with seman-
tics (e.g. by positing a covert displacement rule with slightly different prop-
erties than overt displacement), or the semantic operations in order to match
the syntactic structures (e.g. by positing additional strategies of scope taking
that do not rely on displacement). Let us briefly look at the most prominent
adjustments that were proposed.

Adjusting the syntactic operations is based on the idea that the positions
an expression can be interpreted in are those positions through which it moved
in the course of a derivation. For example, quantificational noun phrases that
occur in a position lower than where they take scope are considered to actually
move to their scope position in the course of the derivation. To this end, May
introduced a displacement rule called Quantifier Raising that moves quantifiers
to their scope position on a level that is input to interpretation but invisible to
phonology, hence is not spelled out (see May [74], [75]). This abstract syntactic
level of representation is called Logical Form (or short: LF). Soon the common
view on LF was one according to which all operators occupy a position that
uniquely determines their absolute and relative semantic scope. That is, for
every semantic reading, a different syntactic structure was postulated. This
preserved a strict one-to-one correspondence between syntax and semantics.



2.5 Two sides of the same coin? 35

Let us look at an example: The sentence in (2.62a) would have a logical form
like in (2.62b).

(2.62) a. Whom did everyone fear?

b. [whom1 [everyone2 [ 2 fear 1]]

And the ambiguous sentence (2.63) would give rise to the two logical forms in
(2.63a) and (2.63b), depending on the order in which the two quantificational
noun phrases are raised.

(2.63) Most heroes survive all devastating battles.

a. [[most heroes]1 [[all devastating battles]2 [ 1 survive 2]]]

b. [[all devastating battles]2 [[most heroes]1 [ 1 survive 2]]]

The rationale behind LF was that the principles of grammar do not only deter-
mine possible syntactic structures but also possible logical forms that represent
those syntactic aspects that are relevant for interpretation. Also, LF seemed
to come for free because logical forms were assumed to be common syntactic
structures and Quantifier Raising seemed to be the regular movement opera-
tion one already had. At least at first sight. At second sight, the displacement
we know and Quantifier Raising show quite different patterns, as we saw when
looking at constraints on displacement and scope: While the scope of quanti-
fiers is not affected by islands but is clause-bound, displacement fails to reach
beyond islands but can cross clause boundaries quite easily. Other technical
objections against Quantifier Raising were that it is an adjunction rule, while
no other core grammatical principle involved adjunction, and that it does not
target a specific position, opposed to other displacement rules. Moreover, it
did not behave like other displacement rules in that it was not feature-driven
but applied only in order to assign semantic scope. Tanya Reinhart therefore
later proposed that Quantifier Raising is only applied if there is no other way
to arrive at a certain semantic interpretation (see e.g. Reinhart [90]).

Another kind of adjustment leaves the syntactic operations and structures
as they are and instead changes the semantic operations. These adjustments
are mainly based on the observation that situ wh-expressions show no sign
of covert displacement and also in other respects differ from their displaced
sibblings. This suggests that displacement is not essential to the interpreta-
tion of in situ wh-phrases and that languages have a different strategy to deal
with them. There are several strategies that were proposed to deal with scope
assignment of in situ wh-phrases. One of them was given by Baker [3]. He
assumed that an in situ wh-phrase is coindexed with a Q-morpheme that re-
sides in complementizer position, where it takes scope, representative for the
wh-phrase. Engdahl [34], on the other hand, proposed to use the storage mech-
anism developed by Cooper ([26],[27]) and refined by Keller [61] to interpret
in situ wh-phrases. This amounts to employing a stack that stores quantifier



36 Contrasting displacement and scope 2

interpretations which can be drawn from it whenever the semantic construc-
tion reaches the scope position. Other recent work that puts Cooper stores
to use is Kobele’s thesis [65]. Another mechanism that became popular for
assigning scope goes by the name of Unselective Binding. It was developed
by Lewis [71] and Heim [48] as a non-quantificational treatment of indefinites
and was later also used for the interpretation of in situ wh-phrases. The idea
is that indefinites and in situ wh-phrases are interpreted as open expressions
that gain quantificational force only by having their free variable bound by a
c-commanding operator that happens to be around. Reinhart [89], in a similar
vein, assumed in situ wh-phrases to be indefinites that are bound by existen-
tial closure, but proposed to treat them not in terms of unselective binding
but rather in terms of choice functions. In short, many approaches settled for
assuming movement for displaced wh-phrases and an alternative scope assign-
ment strategy for in situ wh-phrases.

To summarize, there are two ways to account for mismatches between dis-
placement and scope while saving a strict correspondence between syntax and
semantics: adjust either the syntactic or the semantic operations. But there
is another possibility, of course. We can decide to give up the strict corre-
spondence between syntax and semantics. A weak way to do this is to give
up the one-to-one correspondence between syntactic structures and semantic
readings. Instead we can assume that one syntactic structure is associated with
one underspecified semantic representation (leaving the scope of quantifiers un-
specified, for example), which then yields several semantic readings once it is
specified (with the scope of quantifiers fixed). Examples for underspecification
approaches are the algorithm by Hobbs & Shieber [53], Quasi Logical Form [1],
UDRT [92], Hole Semantics [12], and Minimal Recursion Semantics [28].

All the above approaches have in common that they take the parallels be-
tween displacement and scope to be the normal case and then look for a way
to account for the mismatches. Considering the quantity and quality of the
mismatches, I want to explore the opposite view, viz. that the mismatches
are the normal case. I want to propose that displacement and operator scope
are two separate mechanisms, not necessarily working in parallel. It is then
straightforward that in many cases they do not coincide. As a consequence, we
get mismatches for free but have to account for the cases where displacement
and scope, in fact, do coincide.

So, I will follow the general line of thinking of underspecification approaches
in giving up a strict correspondence between syntax and semantics. But I will
do so in a different way. I will assume that there is a core system of grammar
for which there is indeed a strict correspondence between syntax and semantics.
On top of that, however, I assume grammar to employ other procedures – purely
syntactic ones without an effect on interpretation as well as purely semantic
ones with no syntactic counterpart. And it is these procedures that I propose
to handle displacement and operator scope.



2.6 A brief tour through the thesis 37

2.6 A brief tour through the thesis

The general goal of this thesis is an algorithm for systematically construct-
ing and linking forms and meanings. This algorithm is supposed to cover
wh-displacement and operator scope, and it should be explicit enough to be
implementable in a machine.

I will develop this algorithm in three steps. The first step, Chapter 3, is to
carve out a core system for combining simple expressions into more complex
ones. I will take expressions to be form-meaning pairs, where forms will be
represented as typed strings together with syntactic features, and meanings
will be typed terms of a lambda calculus. There will be a mapping between
types of forms and types of meanings, which ensures that syntax and semantics
are in sync.

The other two steps will be to extend the core system with a syntactic
procedure for displacement and a semantic procedure for operator scope.

The syntactic procedure for displacement is the topic of Chapter 4. It will
operate only on forms and will have no effect on meanings. Displacement will
be driven by features. Expressions that carry features will not be combined
immediately but instead will be kept and used only when they are in a local
configuration with another expression that carries a matching feature. This
approach to displacement resembles much work in generative grammar theories.
It differs, however, in not building elaborate syntactic structures such as trees.
The expressions that are stored because they still need to check features will
be the only structure we will have and it will mirror only a rudimentary part
of familiar constituent structure. Chapter 4 can therefore also be read as an
exploration of how we can derive restrictions on displacement, such as island
constraints, with as little structure as possible.

Chapter 5 will then introduce a semantic procedure for establishing scope.
Contrary to the syntactic procedure, which operates only on forms, the seman-
tic procedure will operate only on meanings. The main component will be a
rewriting rule on semantic terms, which establishes scope by means of control
transfer. The effect of this rewriting rule will be very similar to Montague’s fa-
miliar Quantifying In rule (cf. [78]). The difference to most theories on scope,
however, is that it will suffice to assume one single scope taking mechanism
for all operators, be it operators denoted by quantificational noun phrases,
by displaced wh-phrases, or by in situ wh-phrases. And, most importantly,
displacement will not play a crucial role for the interpretation of any of these.

Chapter 6 then provides an implementation of both the core system and its
two extensions for displacement and operator scope.

Finally, Chapter 7 summarizes the thesis, puts it into perspective and ex-
plores its implications. At the end of the book, we will have developed and
implemented an algorithm for systematically constructing forms along with
their meanings.





3

The base grammar

The general point of view this thesis takes is that the expressions of a language
are generated by rules that operate on a finite collection of atomic expressions
in order to build other, more complex expressions. This chapter is about ex-
plicating what expressions are and how they are combined. We will start by
specifying expressions to be form-meaning pairs, with forms being the phono-
logical representation and meaning being the semantic representation of the
expression. Then we will define a simple operation for combining two form-
meaning pairs into another form-meaning pair. It will be based on common
assumptions of generative grammar and cover simple cases not yet involving
displacement and operator scope. In the end of the chapter, we will have
carved out a mechanism to mediate between form and meaning with a smooth
interface that ensures that they are build in accordance with each other.

Let us start with the building blocks of our grammar: expressions. As
already mentioned, expressions are defined as simple form-meaning pairs (and
not as trees, for example). We will extend this definition in the next chapter.

Expression ::= (Form,Meaning)

Throughout the thesis I will use Backus-Naur-Form (BNF) when stating
definitions. I write non-terminal symbols in bold face and terminal symbols
in normal font or italics. For example, the BNF rule A ::= b | B | cD
expresses that a non-terminal A can be rewritten as either a terminal b or a



40 The base grammar 3

non-terminal B or a terminal c followed by a non-terminal D. The definition
of expressions above, thus expresses that an expression is a pair of whatever
Form and Meaning rewrite to (what this is, we will see in a minute). The set
of all expressions is thus defined as the set of all pairs that we can build from
any form and any meaning.

Forms are usually assumed to be sequences of sound making up a linguistic
utterance, possibly together with some syntactic information. We will represent
sequences of sounds as strings for ease of exposition. This is way too rough
from a phonological perspective, but it will suffice for our purposes. So for us,
form comprises a string together with necessary syntactic information such as
a category. Meaning, on the other hand, uniquely determines the denotation
of the expression. For us, it will be an expression of a lambda calculus. The
next two sections will specify form and meaning further.

By defining expressions as form-meaning pairs, we take a stand with respect
to how form and meaning are linked. We follow the conception that the meaning
of an expression is constructed in parallel to the construction of the form.
According to this view, expressions are two-dimensional objects that encode
syntactic as well as semantic information. Other frameworks instantiating this
view are, for example, Head-Driven Phrase Structure Grammar [87].

The opposed view consists in assuming that the meaning of an expression is
assembled only after the construction of its form is finished. Transformational
grammar theories such as Government and Binding theory exemplify this view.
There, the syntactic structure is constructed prior to semantic interpretation.
So a form is paired with a meaning only after all syntactic operations have
applied. And in most cases, syntax is where all combinatorial action happens;
phonology and semantics only interpret the finished syntactic structure. Sound
and meaning are therefore derived from syntactic structure. An operation like
Quantifier Raising fits very well with this picture: Syntax starts by building
the surface structure of an expression, which is then interpreted by phonology.
After that, the structure building process continues and produces a logical form
that can then be input to semantics.

This is different from Montague’s approach to grammar, where the steps
for building a surface string are interspersed with the steps for building a log-
ical form. This integration brings about that every expression that can be
constructed receives an interpretation. That is, the syntactic and semantic
well-formedness of an expression is defined simultaneously at each level of con-
stituency. This is what we have in mind when devising an algorithm that com-
putes the syntactic and semantic representation of an expression in tandem.
This procedural view, in fact, also underlies recent work in transformational
grammar. Many approaches in the Minimalist Program assume a step-wise
procedure for the generation of utterances along with their meanings. The
introduction of phases (c.f. Chomsky [21],[22]), for example, already chunks
the syntactic structure that is built before being input to interpretation, and
Epstein & Seely [37] later proposed to even let every step of the syntactic com-



3.1 Form 41

putation be input to the semantic computation. The incremental view on the
generation of expressions fits very naturally with the computational perspective
we are taking. Therefore it should not be surprising to find our explorations in
this general line of thinking.

Now let us move to explicating forms and meanings. In doing so, we will
disregard all dependencies that are not relevant for the purpose of the thesis,
that is case assignment, agreement, and the like.

3.1 Form

Our starting point is rather naive. Forms simply correspond to strings and syn-
tactic operations combine those strings into other strings. The main conceptual
goal will be to minimize the amount of structure generated by the grammar.
Operations therefore do not build any hierarchical constituent structure un-
less necessary. (And it will be necessary only next chapter, when we consider
displacement.) This approach is in the spirit of all syntax theories that take
syntactic operations to be local and not have access to anything in the past or
future of a derivation.

For combining strings we use string concatenation, i.e. a function that
maps two input strings to the juxtaposition of both. We refer to it as ++. For
example, mighty ++ Gilgamesh yields the string mighty Gilgamesh.

Next, we need to restrict string combination because we do not want to allow
the concatenation of every string with every other string. For instance, we do
not want to allow the concatenation of the string mighty with the string it rains.
In order to restrict the possibilities to those which are actually grammatical,
we classify strings according to their ability to combine with other strings, like
categorial grammars do. The sets of strings that share combinatorial behavior
are named by types. Types thus encode with which kind of other strings a
string can combine, and which kind of string this combination yields.

Types are defined as being either basic types, that specify the syntactic
category of an expression (noun phrases, verb phrases, and so on), or as being
functional types, that specify with strings of which type (and in which order)
a certain string can combine.

Definition 1. The set of syntactic types is given by:

Cat ::= NP (noun phrases)
| N (common nouns)
| VP (verb phrases)
| CP (sentences)
| Cat→Cat (functional types)



42 The base grammar 3

I will use the terms ‘syntactic type’, ‘category’ and ‘syntactic category’
interchangeably.

Now forms can be defined to be typed strings, with :: standing for ‘is of
type’. I will print types in grey font for better readability. (Also this definition
will be extended in the next chapter.)

Form ::= String :: Cat

Here are some examples of forms:

Gilgamesh :: NP
people :: N

the :: N→ NP
tyrannizes :: NP→ (NP→ VP)

Let me first mention that there is no principled reason here for using NP
instead of DP as category for noun phrases. We could as well specify the type
of Gilgamesh as DP, the type of the determiner as N→ DP (or even NP→ DP),
and the type of the verb as DP→ (DP→ VP).

Now we want to combine these example strings according to their categories,
e.g. like specified in the following derivation tree:

Gilgamesh tyrannizes the people :: VP

tyrannizes the people :: NP→ VP

tyrannizes :: NP→ (NP→ VP) the people :: NP

the :: N→ NP people :: N

Gilgamesh :: NP

In order to do so, we need an operation that concatenates strings according to
their types. We will call this function merge. It basically combines a string a
of type c1 → c2 with a string b of type c1 and yields a new string a++ b of type
c2. We say that a subcategorizes for b, or that b is subcategorized by a. So we
can, for example, combine the string the :: N→ NP with the string people :: N
in order to form the new string the ++ people :: NP. Furthermore, I will follow
the notions of generative grammar and call a subcategorizing string head and
a string that is subcategorized a complement .



3.2 Meaning 43

Now there is one more thing we have to take care of: linearization. Defining
merge like we just stated it would always concatenate the complement to the
right of the head. However, this is not the case. Consider the derivation tree
above again. The string tyrannizes the people :: NP→ VP combines with the
string Gilgamesh :: NP and although the latter is subcategorized, it has to be
concatenated to the left.

There are several ways to incorporate linearization. One is to follow Cat-
egorial Grammars and add directionality to the functional types. We would
then have two functional types, which we can write as c1\c2 and c2/c1, or closer
to our previous notation as c1 → c2 and c2 ← c1. Strings of both categories
subcategorize for a string of category c1 and when combined with it yield a
new string of category c2, but in the former case the subcategorized string is
concatenated to the left and in the latter case it is concatenated to the right.

Generative grammar encodes this difference in another way, namely by dis-
tinguishing two kinds of subcategorized expressions, complements and spec-
ifiers. Complements are expressions that are merged first and specifiers are
expressions that are merged later. In a language like English, complements are
always concatenated to the right of the subcategorizing expression and speci-
fiers are always concatenated to the left. (See Kayne [60] for the proposal that
this linearization order is in fact universal and underlies all languages.) Since
we have no means to distinguish first merge from second merge, we will stick
to encoding the direction in which an expression is concatenated in its type.
We do so by introducing a diacritic < that marks categories of strings which
are concatenated to the left. Strings of categories without this diacritic will be
concatenated to the right. For example, the category of tyrannizes changes to
NP→ (NP< → VP). It now selects for an NP that is concatenated to the right
and an NP that is concatenated to the left. This gives the right word order, as
we already assumed it in the example tree above. It is important to note that
the diacritic < does not change the category, so a string that subcategorizes for
an NP< can still be combined with an NP without the diacritic.

3.2 Meaning

Now we want to pair the typed strings with meanings. So what are meanings?
In the Montagovian tradition, a semantics for natural language is specified by
translating natural language expressions into expressions of a logical language
that is then subject to a modeltheoretic interpretation. Throughout this book,
we will stay in this tradition. As logical language we will use a typed lambda
calculus with constants (see e.g. Barendregt & Barendsen [4] for an introduc-
tion). The modeltheoretic interpretation is assumed to be standard and will
not be explicated. The reason is that the mechanism for quantifier scope de-
vised in Chapter 5 will solely rely on rewriting rules. We are therefore only
interested in the structure of our semantic expression, not in the relation they
bear to the real world (or a model thereof).



44 The base grammar 3

To start with, we define meanings as expressions of a lambda calculus dec-
orated with a type Type. Such a type is either a basic type (e or t) or a
functional type. We will slightly extend the type inventory in Chapter 5, but
for now this is all we need.

Type ::= e (entities)
| t (truth-values)
| Type→ Type (functions)

Now the language for meanings consists of the following expressions:

• constants c, which will comprise nullary to n-ary predicate constants such
as the individual constant enkidu, the one-place predicate king, and the
two-place predicate fight, as well as logical constants and operators such
as ∧ and ∃

• variables x for every type

• abstractions λx.E (with E an expression)

• applications (E1 E2) (with E1, E2 expressions of the language)

Meanings are defined as typed expression Meaning, where I again use ::
to stand for ‘is of type’ and again print types in grey font, for better readabil-
ity. I assume that the language contains variables x for every type, and that
abstractions and applications are typed in the standard way. The definition of
meanings uses τ, τ1, τ2 as variables ranging over types. It will be extended in
Section 5.2 of Chapter 5 below.

Meaning ::= c :: τ (constants)
| x :: τ (variables)
| (λx :: τ1.Meaning :: τ2) :: τ1 → τ2 (abstraction)
| (Meaning :: τ1 → τ2 Meaning :: τ1) :: τ2 (application)

Up to now, lambda abstraction is the only variable binding operation we
have, and in fact it is the only one we need for now (later we will add ξ as
another variable binder, however). It relates a variable with a place in an
expression that is named by that variable. In λx.E with E some expression, E
is the scope of the lamba operator. We say that all occurrences of x in E are
bound. For example, in the expression λx.(king x), the variable x is bound by



3.2 Meaning 45

λ. If there is no enclosing lambda abstraction that binds a variable x, then x
is free.

The operational semantics of the calculus is given by the usual beta-reduction
(β) and eta-reduction (η).

(λx.E1 E2) B E1{x 7→ E2} (β)

λx.(E x) B E (η)
where x is not free in E

Beta-reduction is substitution of every free occurrence of x in E1 by E2, notated
as E1{x 7→ E2}. We assume this substitution to be capture avoiding, i.e. ensure
that the variables of E1 and E2 have different names. Eta-reduction tells us
that, for example, λx.(king x) and king express the same predicate.

Since we do not want the pairing of forms and meanings to be arbitrary, we
will restrict it. To this end, we assume that forms are paired with meanings
in such a way that the following mapping ◦ :: Cat→ Type between syntactic
and semantic types is satisfied (it will be refined in Section 5.2 below).

Definition 2. We assume a mapping ◦ between syntactic and semantic types,
such that:

NP◦ = e

N◦ = e→ t

VP◦ = t

CP◦ = t

(c<)◦ = c◦

(c1 → c2)◦ = c◦1 → c◦2

That is, atomic syntactic types are mapped to a stipulated semantic type,
presumably in accordance with the modeltheoretic interpretation one has in
mind. Complex syntactic types are mapped straightforwardly to complex se-
mantic types so that syntactic implication corresponds to semantic implication.
Moreover, linearization has no effect on the mapping, i.e. the syntactic differ-
ence of being concatenated to the left or right is lost on the semantic side.

Here are some simple example denotations of lexical items that satisfy the
mapping ◦. In the next section we will see how they can be combined into a
sentence.



46 The base grammar 3

Form Meaning

Gilgamesh :: NP gilgamesh :: e
goddess :: N goddess :: e→ t
weep :: NP< → VP weep :: e→ t
slay :: NP→ (NP< → VP) slay :: e→ (e→ t)

3.3 Combining form-meaning pairs

Now we want to combine form-meaning pairs into new form-meaning pairs.
The combination should be a combination of the forms paired with a combi-
nation of the meanings. To keep things simple, I assume that the combination
of forms corresponds to string concatenation and the combination of mean-
ings corresponds to functional application. The operation responsible for this,
merge, is defined as follows:

Definition 3. Let s1, s2 range over typed strings and E1, E2 range over typed
semantic expressions,

merge (s1, E1) (s2, E2) = (s1 ⊕ s2, (E1 E2))

Where ⊕ is an operation that concatenates two strings of matching categories,
with the order dependening on the linearization diacritic. Letting c, c′ range
over syntactic categories, ⊕ is defined as follows:

s1 :: c→ c′⊕ s2 :: c = s1 ++ s2 :: c′

s1 :: c→ c′⊕ s2 :: c<= s2 ++ s1 :: c′

As an example, consider the VP Gilgamesh rejected Ishtar. The lexical items
involved are the following:

• (Gilgamesh :: NP, gilgamesh :: e)

• (Ishtar :: NP, ishtar :: e)

• (rejected :: NP→ (NP< → VP), reject :: e→ (e→ t))

First we merge the verb rejected with the object NP Ishtar, and then we merge
the resulting expression with the subject NP Gilgamesh. The derivation tree
looks like this:



3.4 Summary and limitations 47

(Gilgamesh rejected Ishtar :: VP,
((reject ishtar) gilgamesh) :: t)

(rejected Ishtar :: NP< → VP,
(reject ishtar) :: e→ t)

(rejected :: NP→ (NP< → VP),
reject :: e→ (e→ t))

(Ishtar :: NP,
ishtar :: e)

(Gilgamesh :: NP,
gilgamesh :: e)

Note that merge only succeeds if both string concatenation and functional
application succeed, thus if both the syntactic and the semantic types match. In
fact, presupposing the mapping ◦ from the previous section to hold for lexical
items ensures that every syntactically well-typed expression we can build is
paired with a denotation that is semantically well-typed. Or to state it more
precisely: For every expression (s :: c, E :: τ) consisting of a syntactic form s of
category c and a semantic expression E of type τ , it holds that if s is well-typed,
then so is E. Morover, it holds that c◦ = τ .

For lexical items this is a requirement we have to impose on the lexicon.
The rest then follows straightforwardly from the definition of merge.

That is, with respect to the core system that we considered in this chapter,
syntax and semantics work in tandem and never part company.

3.4 Summary and limitations

Up to this point we have a procedure for generating expressions that is very
much like context-free phrase structure grammars. We took expressions to be
form-meaning pairs, assuming a mapping ◦ between syntactic and semantic
types that ensures a close correspondence between the paired forms and mean-
ings. We then defined an operation merge for constructing more complex
form-meaning pairs by combining forms and combining meanings in parallel.
Forms were combined by string concatenation and meanings were combined by
functional application.

With the mechanism we have, we can generate expressions that do not
involve non-local dependencies. Figure ?? provides a lexicon that gives an idea
of a simple fragment we can handle. Here the syntactic categories are extended
with adverbial phrases AdvP for which ◦ is defined as AdvP◦ = e→ t. We can
use the example lexicon to generate expressions like the following:

• (Gilgamesh defeated Huwawa :: CP, ((defeat huwawa) gilgamesh) :: t)

• (Ishtar is almighty :: CP, (almighty ishtar))

• (Enki fought without fear :: CP, ((fight enki) ∧ ((without fear) enki)) :: t)



Figure 3.1: Example lexicon

(Gilgamesh :: NP, gilgamesh :: e)

(Enkidu :: NP, enkidu :: e)

(Ishtar :: NP, ishtar :: e)

(Huwawa :: NP, huwawa :: e)

(Enki :: NP, enki :: e)

(fear :: N, fear :: e→ t)

(wept :: NP< → VP,weep :: e→ t)

(fought :: NP< → VP,fight :: e→ t)

(defeated :: NP→ (NP< → VP), defeat :: e→ (e→ t))

(rejected :: NP→ (NP< → VP), reject :: e→ (e→ t))

(thought :: CP→ (NP< → VP), think :: t→ (e→ t))

(ε :: VP→ CP, λp.p :: t→ t)

(that :: VP→ CP, λp.p :: t→ t)

(is :: AdvP→ (NP< → VP), λPλx.(P x) :: (e→ t)→ (e→ t))

(almighty :: AdvP, almighty :: e→ t)

(without :: NP→ ((NP→ VP)< → (NP→ VP)),
λxλPλy.((P y) ∧ ((without x) y)) :: e→ ((e→ t)→ (e→ t)))



3.4 Summary and limitations 49

• (Ishtar thought that Enkidu wept :: CP, ((think (weep enkidu)) ishtar) :: t)

The fragment could not cover quantificational noun phrases or questions.
Since the operation merge works completely local and knows no means for
using one expression at two different points in the derivation, it cannot han-
dle displacement and scope construal. The task of the next two chapters is
to extend the available operations so we can account for discontinuous depen-
dencies. The most important feature of these extensions will be that syntax
and semantics go separate ways. I propose that the dependency between a
displaced expression and the corresponding gap is a purely syntactic one and
that the dependency between an operator and the variable it binds is a purely
semantic one. As a consequence, displacement will be handled by a syntac-
tic procedure and scope construal will be a matter of a semantic procedure.
Chapter 4 provides the syntactic procedure for displacement, and Chapter 5
provides the semantic procedure for scope construal.





4

A syntactic procedure
for displacement

This chapter will extend the core system of the previous chapter with a proce-
dure for displacement. The goal is to be able to generate questions like Who do
you think that Enkidu knows that Gilgamesh rejected. As mentioned in the first
chapter, who stands in a local relationship with the verb rejected. However in
the surface string it does not occur adjacent to the verb but in front position.
So we need a mechanism that can both relate who to the verb and derive its
displaced position.

Syntactic theories differ in how they meet the challenge posed by displace-
ment. The syntactic mechanism that I am going to outline in this chapter is
based on a proposal by Brosziewski [14], which combines characteristics of dif-
ferent approaches. It specifies syntactic derivations as compositional processes,
without referring to phrase structures, similar to categorial grammars [79]. But
unlike in categorial grammars, the displacement operation is not type-driven
but feature-driven, as assumed by the Minimalist Program [20]. It dislocates
an expression by passing information via a sequence of local steps, similar to
how Generalized Phrase Structure Grammar [43] envisaged displacement.

The main advantage of Brosziewski’s approach is that it allows us to disre-
gard all information that do not play a role. We will work with rudimentary
syntactic structures which encode only those information that are relevant for
establishing displacement dependencies. We can thus talk about the mech-
anism behind these dependencies without having to get specific about other



52 A syntactic procedure for displacement 4

processes or issues purely related to the theoretical framework.
Brosziewski’s proposal is a formalization of generative grammars that is,

in fact, very close to the tree-less version of Stabler’s Minimalist Grammars
[106]. It keeps only the information that are needed later, in particular ex-
pressions that are displaced. However, while tree-less Minimalist Grammars
keep displaced expressions in a flat list, Brosziewski recursively builds pairs of
expressions. This gives rise to some structure which those Minimalist Gram-
mars miss and which will play a crucial role in deriving remnant movement in
Section 4.5.

Throughout the present chapter, I will develop an extension of Brosziewski’s
proposal. It modifies his original definitions in favor of an even more rigorous
formalization suitable for implementation, while keeping the spirit of the orig-
inal. The main reason for departing from his formulations is to make it fit the
core system of the previous chapter. Most importantly, Brosziewski’s version
lacks semantic representations, which I will add.

In formulating displacement operations, I will disregard everything that is
not relevant, i.e. I will abstract away from all local dependencies like case assig-
ment and agreement. The displacement procedure will operate on rudimentary
syntactic structures which encode only those information that are needed. It
will discard all other information and thereby keep syntactic structure to a
minimum.

The chapter will proceed as follows. After explicating the operations that
displace an expression, we will look at how these operations can account for
the different patterns we find in multiple wh-questions across languages, and
how they derive some of their main properties. Then we will generalize the
employed operations to also handle remnant movement. Finally, we will put it
into perspective by comparing it to other syntactic frameworks.

4.1 Features

In order to trigger and control displacement we need somewhat richer informa-
tion than we have up to now. I follow Generative Grammars in assuming that
displacement is driven by features and therefore enrich the typed strings which
constituted the form dimension with an unordered list of features Feat. The
definition of forms then reads like this:

Definition 4.
Form ::= String :: Cat [Feat]

Features can be thought of as representing some property of an expression
that needs to be satisfied in a local configuration with a certain other expres-
sion. With respect to features, I follow Brosziewski in sticking to very simple



4.1 Features 53

assumptions. More specifically, I assume that features come in two varieties:
as goal features f and as probe features •f with a prefix that indicates that it
matches with a corresponding goal feature.

Definition 5. The set of syntactic features is given by:

Feat ::= Value | •Value

Value ::= wh | top

We will mainly look at features wh for question formation and only quickly
mention topicalization features top in passing. But in principle features in
Value can also comprise other features, like case features, agreement features,
and so on.

Adding features to typed strings does not have any effect on the type of
the string. This is because the features do not change with which other strings
a string can combine. Instead they will drive the operations that preserve
enough information to establish displacement dependencies. Before turning to
these operations, let us look at some examples of forms:

(4.1) a. Enkidu :: NP [ ]
b. who :: NP [wh]
c. ε :: VP→ CP [•wh]

The form in (4.1a) constitutes an already familiar noun phrase. It is of category
NP and its feature list is empty. The wh-expression in (4.1b) is also of category
NP and moreover it has a syntactic feature wh that needs to be checked and that
will be responsible for the displacement of the expression. The expression that
will check the wh-feature is a complementizer as given in (4.1c). It subcateorizes
for a VP and additionally contains a syntactic feature •wh which can be checked
by a corresponding feature wh. Its phonological content is empty, which is
represented by the empty string ε.

In the following, I will write features as superscripts. That is, I will write
who :: NP [wh] as whowh :: NP, and so on.

In the previous chapter, expressions were form-meaning pairs which were
ignorant about internal structure and derivational past. With features we now
introduced information that needs to be remembered, for a feature needs to be
accessible until it can be checked. We therefore need to allow some information
and structure to be kept when building expressions. To this end, we distinguish
between simple and complex expressions. Simple expressions will be form-
meaning pairs, just like so far. Complex expressions, on the other hand, will
be pairs of a form and an expression. (I use angled brackets for these pairs
and round brackets for form-meaning pairs so that both can be distinguished
better at first sight.)



54 A syntactic procedure for displacement 4

Definition 6. Expressions are defined as follows:

Expression ::= (Form,Meaning) (simple expressions)
| 〈Form,Expression〉 (complex expressions)

The forms in complex expressions constitute subexpressions that still have
features to check. If an expression still has features to check, it is called active,
if it does not, it is called inactive. Inactive expressions can be forgotten because
they do not play a role in the further derivation, but active expressions need
to stay accessible in order to establish syntactic dependencies.

In the previous chapter, derivations did not build phrase structures. Re-
call that when simple expressions were combined, the result was another sim-
ple expression. No structure was built and information about the expres-
sions that were combined as well as their structural configurations were for-
gotten. For example, when combining the two expressions from :: NP→ PP
and Uruk :: N (ignoring meanings for the moment), the resulting simple expres-
sion from Uruk :: PP contains all information relevant for the further derivation.
Since there is not need to look into the structure (4.2), the root is all informa-
tion that is kept.

(4.2) from Uruk :: PP

from :: NP→ PP Uruk :: NP

That is, although simple expressions can be the result of a long derivation,
their internal structure is not accessible to syntactic operations. In this respect
they behave like lexical items.

The same holds if a phrase like (4.3) is built. (Again, we leave out mean-
ings for the moment.) The expressions from which it was built and their
structural configurations will not play a role in the further derivation; they
can therefore be discarded. Everything that syntactic operations need to
care about is the root of the tree corresponding to the simple expression
Enki saw the undead :: VP.



4.1 Features 55

(4.3) Enki saw the undead :: VP

Enki :: NP saw the undead :: NP< → VP

saw :: NP→ (NP< → VP) the undead :: NP

the :: N→ NP undead :: N

Disregarding all information about the past of a derivation in this way comes
very close to removing the representational residue that causes Brody’s con-
ceptual problem with derivational approaches (see Brody [13]).

The situation is different, however, if expressions are involved that have to
check features at a later stage of the derivation, like the wh-pronoun in Who
did Enki see. The wh-expression (whowh :: NP,who) (with who a placeholder
for the meaning) carries a feature wh that requires the expression to enter a
relation with an expression that carries a corresponding feature •wh. When
combining the verb with the wh-pronoun, we thus cannot build another simple
expression forgetting about the subexpressions it was built from; who needs to
be accessible until it can check its feature.

The next section will explicate operations to keep syntactic information
that cannot be forgotten. The way to do this is to keep it accessible as the first
element of a complex expression. For example, combining the verb see and the
wh-expression whowh will yield the following pair:

〈whowh, (see :: NP< → VP, λy.((see who) y) :: e→ t)〉

It encodes that an expression of category NP< → VP was built and that this
had involved a wh-expression which still needs to check its wh-feature. The
form of the wh-expression is kept as separate information, which is ignored
when combining the complex expression above with other expressions, unless
it can be resolved. For example, the derivation would proceed and build:

〈whowh, (did Enkidu see :: VP, ((see who) enkidu) :: t)〉

When eventually a C-head carrying a feature •wh enters the derivation, who
can check its feature wh. Then both expressions of the pair can be combined
into a simple expression again, since there are no more features that need to
be checked. The result is:

(who did Enkidu see :: CP, ((see who) enkidu) :: t)

More generally, a complex expression 〈a1, 〈a2 . . . 〈an, x〉〉〉 can be seen as
having built a syntactic expression x together with a list (or stack) of forms



56 A syntactic procedure for displacement 4

a1, a2, . . . , an, that were extracted from x. They are carried along they can
check their features. If we read the expression as a tree, it corresponds to:

a1
a2 . . .

an x

Important is that the structure in complex expressions is the only structure
syntactic operations will have access to. It is also import that in a complex
expression 〈a1, 〈a2 . . . 〈an, x〉〉〉 only x is associated with a meaning and thus
determines the semantic behavior of the whole expression. All ai are forms
without meanings. This reflects that displacement is a purely syntactic issue
with no semantic counterpart.

4.2 Displacement operations

Let us start with some notational conventions. In the following I will always
use a, b as variables for forms, s for simple expressions and x, y, z as variables
for arbitrary syntactic expressions (simple or complex). Furthermore, I will
use f as a variable for single features, and F as a variable for feature lists. I
will write a form a that has a set F of features as aF . If F is empty, I will
write it as ∅ or drop it and only write a if the features do not play a role at all
(as is the case, for example, in the definition of nucleus below). If only one
feature f plays a role, I will write af . This expresses that a has the feature
f in its feature list but leaves open whether it also has other features or not.
Sometimes I will denote the feature list of an arbitrary expression x as (fs x).
The function fs can be defined as follows.

fs (aF , E) = F

fs 〈a, x〉 = fs x

That is, the features of a complex expression are the features of its second
element. Analogously, the type of a complex expression is set to be the type
of its second element. Thus an expression 〈a, x〉 has exactly those syntactic
properties that x has, except for the fact that it is complex. With respect
to syntactic and semantic operations it will therefore largely behave like x.
This reflects that a is preserved information that does not play a role until
its features can be checked. Since x, on the other hand, is an expression that
does play a role in the derivation, I introduce the notion of the nucleus of a
complex expression. It is the second element of the deepest embedded pair, i.e.
that simple expression that determines the properties of the whole complex



4.2 Displacement operations 57

expression.

nucleus (a,E) = (a,E)
nucleus 〈a, x〉 = nucleus x

For example, in a complex expression 〈a1, 〈a2 . . . 〈an, (b, E)〉〉〉, the simple ex-
pression (b, E) is the nucleus. Furthermore, I will refer to the forms a1, . . . , an
as being at the edge of the complex expression. Defining the set of forms at the
edge is straightforward:

edge (a,E) = ∅
edge 〈a, x〉 = {a} ∪ (edge x)

The edge of 〈a1, 〈a2 . . . 〈an, (b, E)〉〉〉, for example, is {a1, a2, . . . , an}.
The core of syntactic operations will be the function merge for combin-

ing two expressions into a third one. We already gave a definition for simple
expressions on page 46 of the previous chapter. Now we have to extend this
definition in order to also apply to complex expressions. The general idea is as
sketched in the previous section: we want to discard information about struc-
ture, derivational history, and so on, unless it is really necessary to keep this
information. Here is the definition of merge. It uses the function split, which
will be defined below. We will come to it in a minute.

Definition 7.

merge x y =

{
merge x (split y) if fs y 6= ∅
see (M1–M3) otherwise

(M1) merge (aF , E1) (b, E2) = ((a⊕ b)F , (E1 E2))
(M2) merge 〈a, x〉 s = 〈a, merge x y〉
(M3) merge x 〈a, y〉 = 〈a, merge x y〉

Where ⊕ is defined as concatenating two strings of matching categories, with
the order depending on the linearization diacritic:

a :: c1 → c2⊕ b :: c1= a++ b :: c2
a :: c<1 → c2⊕ b :: c1= b++ a :: c2

The former Definition 3.3 of merge on page 46 is contained in this new
definition as the case (M1). (M1) combines two simple expressions into another
simple expression by concatenating their strings, keeping the features of the
head (i.e. the subcategorizing expression), and applying the denotation of the
head to the denotation of the complement (i.e. the subcategorized expression).



58 A syntactic procedure for displacement 4

The order of the concatenation is determined by the presence or absence of the
linearization diacritic, as before.

As an example, consider merging the transitive verb meet with the noun
phrase Gilgamesh. According to (M1), merge proceeds as follows:

merge (meet :: NP→ (NP< → VP),meet :: e→ (e→ t))
(Gilgamesh :: NP, gilgamesh :: e)

= (meet Gilgamesh :: NP< → VP, (meet gilgamesh) :: e→ t)

(M1) is the base case of the recursive definition of merge: The other two
cases, (M2) and (M3), will eventually boil down to it. (M2) and (M3) spec-
ify those cases in which it is necessary to keep information because there are
features that still need to be checked. As an example, suppose merging meet
not with the inactive NP Gilgamesh but with the active NP whowh. It still has
features to check, so it cannot simply be concatenated with the verb because
that way, information about its features would be forgotten. Instead, we need
to make sure that it cannot only satisfy the subcategorization requirements
of the verb but is also able to check its wh-feature at some later point in the
derivation. In order to let it make these two contributions, we invoke a mecha-
nism that splits an expression’s form into two forms, one of which is kept at
the edge. It is called split and is defined as follows – where, again, a is a
variable ranging over forms, F is a feature set, c ranges over categories and E
over denotations, and ε denotes the empty string.

Definition 8.

split (aF , E) :: c = 〈aF , (ε :: c, E)〉 :: c
or 〈εF , (a :: c, E)〉 :: c

That is, splitting a simple expression (aF , E) amounts to creating a complex
expression. The nucleus inherits the type of a and its meaning component.
The features of a, on the other hand, are associated with the form at the
edge and will be carried along until they can be checked. The phonological
content of a is either also associated with the form at the edge and carried
along, or it is associated with the nucleus and thus stays in base position.
The string that ends up at the edge is assumed to be of the general type
String. The reason is that once the dependency is resolved at the top, the
edge will be concatenated with the rest of the expression (see the definition of
remerge below). Since string concatenation is a function of the general type
String→ (String→ String), the category of the strings does not matter.



4.2 Displacement operations 59

This approach of splitting an expression is close to the copy theory of move-
ment introduced by Chomsky [19]. There, a displacement dependency amounts
to a chain of copies of an expression. Usually exactly one of the copies is pro-
nounced (typically the structurally highest one) and exactly one of them is
interpreted (typically the structurally lowest one). Variations of this pattern
account for variations in languages. Spell out of the lowest copy, for example,
would instantiate covert movement in wh-in-situ languages (see e.g. Reintges
et al. [91]). Now, what split does is like copying, with the only difference that
it does not duplicate the parts of the expression but distributes it among the
copies.

Note that split is defined only for simple expressions. We will generalize it
to complex expressions in Section 4.5.

Now let us pick up our example of merging meet with who. As lexical for
who, we assume the following:

(whowh :: NP,who :: e)

The denotation who :: e is only a place holder, because the semantic dimension
of wh-expressions will be taken care of by a separate mechanism, which is
subject of the next chapter.

We can now specify how the derivation proceeds, namely by splitting who
(for conciseness, I leave out semantic type information):

merge (meet :: NP→ (NP< → VP),meet) (whowh :: NP,who)

= merge (meet :: NP→ (NP< → VP),meet) (split (whowh :: NP,who))

= merge (meet :: NP→ (NP< → VP),meet) 〈whowh :: String, (ε :: NP,who)〉

Before we can proceed, we need to know how to merge complex expres-
sions. This is what (M2) and (M3) tell us. The idea is very straightforward.
A complex expression behaves like its nucleus, so if a complex expression is
merged, this is because its nucleus has certain properties; the expressions at
the edge are only carried along. Thus the merge operation should affect the
nucleus and ignore the expressions at the edge. This is exactly what (M2) and
(M3) do: they pass s (or x, respectively) to the nucleus. So, merging complex
expressions amounts to merging their nuclei, while the edges are carried along
further.

Our derivation would proceed as follows (note that it turns out important
that the category of who was associated with the nucleus):

merge (meet :: NP→ (NP< → VP),meet) 〈whowh :: String, (ε :: NP,who)〉
= 〈whowh :: String,merge (meet :: NP→ (NP< → VP),meet) (ε :: NP,who)〉
= 〈whowh :: String, (meet :: NP< → VP, (meet who))〉

That is, whowh is kept at the edge, while ε serves to satisfy the verb’s subcat-
egorization requirements.



60 A syntactic procedure for displacement 4

Until now we can handle the bottom and middle of a dependency. But we
still miss an operation that resolves the dependency at the top. I will call it
remerge. It applies as soon as we have a configuration 〈a, x〉, where a has
a feature •f (or f) and the nucleus of x has the corresponding feature f (or
•f , respectively). I will give the definition only for one case; the other one is
completely parallel. In particular, remerge does two things. First, it checks
the matching features. The mechanism of feature checking will be subject of
the following section; here it can be understood simply as deletion. And second,
it concatenates a with the nucleus of x, unless a has more features to check
(then it has to be kept at the edge). For multiple wh-displacement we will have
to say more about what happens with other expressions at the edge of x, but
this will also be subject of the next section. So the definition of remerge is
still preliminary.

Definition 9 (preliminary).

remerge 〈af , x•f 〉 =

{
a+ x if a has no more features
〈a, x〉 otherwise

Where + is string concatenation with the form of the nucleus:

a+ (b, E) = (a++ b, E)
a+ 〈b, x〉 = 〈b, a+ x〉

There is an important thing to note about remerge. The way the defi-
nition is stated, only simple expressions can be remerged. This will turn out
to be important later, in Section 4.5, to obtain Freezing effects. Also note
that the definition is not completely general, since it does not cover cases like
〈a, 〈bf , 〈c, d•f 〉〉〉. To capture also those, we can simply specify remerge to
always apply to the outermost pair first and, if no features can be checked, to
percolate through the pair until it reaches the nucleus:

remerge 〈b, x〉 = 〈b, remerge x〉
remerge (a,E) = (a,E)

Furthermore, remerge is assumed to apply as soon as possible, following
the idea that operations in general have to be performed as soon as possible.
This has been stated in the form of the Earliness Principle by Pesetsky [86],
it was later adopted by Chomsky [22] in his condition Maximize Matching
Effects, and was also expressed in O’Grady’s Efficiency Requirement [84]. In
transformational terms, movement cannot skip a potential landing site.



4.3 Displacement operations 61

Let us come back to our example derivation. Assume that in the meanwhile
it proceeded by merging a subject NP and applying do-support (which we skip
over here). The resulting VP is the following:

〈whowh, (did Enkidu meet :: VP, ((meet who) enkidu))〉

Now it reached the point where a complementizer carrying a probe feature •wh
can be merged. The lexical entry for such a complementizer is the same as in
the example lexicon of last chapter (see Figure ?? on page 48) but with an
additional feature list containing the probe feature •wh:

(ε•wh :: VP→ CP, λp.p :: t→ t)

Merging it with the VP, we arrive at a configuration that will trigger remerge:

merge (ε•wh :: VP→ CP, λp.p)
〈whowh, (did Enkidu meet :: VP, ((meet who) enkidu))〉

= 〈whowh,merge (ε•wh :: VP→ CP, λp.p)
(did Enkidu meet :: VP, ((meet who) enkidu))〉

= 〈whowh, (did Enkidu meet •wh :: CP, ((meet who) enkidu))〉

Now remerge applies, that is, the features wh and •wh are deleted and who is
concatenated with the nucleus. The category and the denotation of the whole
expression stays unaffected.

remerge 〈whowh, (did Enkidu meet •wh :: CP, ((meet who) enkidu))〉
= who + (did Enkidu meet :: CP, ((meet who) enkidu))
= (who did Enkidu meet :: CP, ((meet who) enkidu))

We arrived at a form-meaning pair without any more features to check and
with the wh-phrase displaced in the final string. We say that a derivation
yielding such a simple expression converges, for it builds an expression without
unfinished business. The grammatical sentences of a language thus are all
simple expressions of category CP that our grammar generates.

To summarize this section, whenever we merge two expressions x and y, the
properties of x remain, while the properties of y are forgotten. If y still has
features to check, it is split in order to keep the relevant information accessible.
This approach to displacement is one where expressions move in order to satisfy
their own needs, blind of where this will happen and whether it is possible
at all. Thus the mechanism that triggers displacement is divorced from any
notion of landing site. In Chomskian terms, the approach is Greed-based and
not Attract-based. A challenge all those approaches have to face is the variety
observed in multiple wh-questions. It will be our next topic.



62 A syntactic procedure for displacement 4

4.3 Multiple wh-questions and feature checking

Now that we have the core of the syntactic mechanism at hand, let us look at
how we can capture the properties of wh-movement outlined in the first chapter.
In doing so, we will explicate the feature checking mechanism and introduce
two language-specific parameters that give rise to the variation we find across
languages. Recall that with respect to multiple wh-questions languages follow
one of the following three strategies (cf. Section 2.1):

• all wh-expressions stay in situ (e.g. Japanese)

• all wh-expressions are fronted (e.g. Bulgarian)

• exactly one wh-expression is fronted, the others stay in situ (e.g. English)

There are different ways to account for this variation. For example, Chomsky
[20] introduced a distinction between strong and weak features. Strong features
trigger movement, while weak features do not. In our implementation this
would correspond to specifying that strong features choose to associate the
phonological content of an expression with the edge when splitting it (i.e. to
carry it along), while weak features choose to associate the phonological content
with the nucleus (i.e. to leave it in base position). Although this would produce
the difference between Japanese-like and Bulgarian-like languages, we could
not give a straightforward treatment of English-like languages. In questions
with more than one wh-expression, one of them (in most cases the structurally
highest one) would have to carry a strong wh-feature, while all others would
need to carry weak wh-features. But since we have no look-ahead capabilities,
there is no way to decide which kind of feature a wh-expression should carry
when it is merged.

For this reason, I will not follow Chomsky’s proposal. Instead, I leave the
feature system as it is and assume that the feature setup of wh-expressions is
the same in all languages: all wh-expressions – whether Japanese, Bulgarian
or English – carry a feature wh, that needs to be checked.

It follows that all these wh-expressions are split and carried along in the
course of a derivation. So in all languages, the derivation of questions with two
wh-expressions will yield the following configuration at the top of the depen-
dency (assuming for now that the probe feature •wh is introduced at the CP
level in all languages, and that E stands for the meaning of the already built
expression):

(4.4) 〈awh, 〈bwh, (c•wh :: CP, E)〉〉

This configuration triggers remerge, so the features wh and •wh are checked
and the forms at the edge are concatenated with the nucleus. There are two
aspects here that need to be specified. First, which of the two wh-features at
the edge are checked? The answer we give below will be: all of them. And
second, which of the forms at the edge is concatenated with the nucleus? The



4.3 Multiple wh-questions and feature checking 63

answer to that will differ across languages; I will also come back to it a bit
later.

Let us first look at what we need to arrive at. We want to model the
effect of all, no or exactly one wh-expression being fronted. An important
difference between languages will therefore be whether the phonological content
is associated with the edge of the split expression and ends up in top position,
or with the nucleus and stays in bottom position. In wh-in situ languages like
Japanese we want all phonological content to stay in bottom position, so we
want to arrive at (4.5b). (Again, I do not specify the meaning of wh-expressions.
Since it does not play a role here, I typeset it in grey font.)

(4.5) a. Dare-ga ringo-o tabeta no?
who-nom apple-acc ate q

b. 〈εwh, 〈εwh, (darega ringoo tabeta no •wh, ((eat apple) who))〉〉

In languages that front all wh-expressions, like Bulgarian, all phonological con-
tent should be associated with the top position, so the general configuration
(4.4) should be instantiated like in (4.6b).

(4.6) a. Koj1 kogo2 [ 1 vižda 2 ]?
who whom sees

b. 〈kojwh, 〈kogowh, (vižda •wh, ((see whom) who))〉〉

In languages that front exactly one wh-expression, like English, one of the wh-
expressions should associate the phonological content with the top position and
the others should associate it with the bottom position, as in (4.7b).

(4.7) a. Who1 [ 1 saw whom]?
b. 〈whowh, 〈εwh, (saw whom •wh, ((see whom) who))〉〉

Let us first consider languages like English, that front exactly one wh-
expression. They pose a serious challenge for approaches like ours because
some wh-expression needs to associate its phonological content with the top
position and the others need to associate it with the bottom position. But
since the syntactic mechanism has no look-ahead capabilities, there is no way
to know which one is split in which way. All we can do is assume that it
is optional whether the phonological content is carried along or not. So for
English, split is defined as stated in the previous section:

split (aF , E) :: c = 〈aF , (ε :: c, E)〉 :: c
or 〈εF , (a :: c, E)〉 :: c

Consider again the simple example in (4.7a) above. Just like in all lan-
guages, both wh-expressions have to be split when they are merged, because
both carry a feature wh that needs to be checked later. When they are split, it
is now optional whether their phonological content is carried along at the edge
or stays at the nucleus. So there are four possible expressions that can arise
when building (4.7a). They are given in (4.8).



64 A syntactic procedure for displacement 4

(4.8) a. 〈whowh, 〈whomwh, (saw •wh, ((see whom) who))〉
b. 〈εwh, 〈whomwh, (who saw •wh, ((see whom) who))〉
c. 〈whowh, 〈εwh, (saw whom •wh, ((see whom) who))〉
d. 〈εwh, 〈εwh, (who saw whom •wh, ((see whom) who))〉

The respective order of whowh and whomwh is due to how (M2) and (M3)
distribute pairs over each other. To see this, suppose saw was already merged
with whomwh, resulting in 〈whomwh, saw〉. Now this expression is merged with
whowh. Since the wh-expression has to be split, this amounts to merging two
complex expressions:

merge 〈whomwh, (saw, (see whom))〉 〈whowh, (ε,who)〉

According to the definition of merge, (M3) applies first. This is because (M2)
requires the second argument to be a simple expression.1 So we get:

〈whowh,merge 〈whomwh, (saw, (see whom))〉 (ε,who)〉
= 〈whowh, 〈whomwh,merge (saw, (see whom)) (ε,who)〉〉
= 〈whowh, 〈whomwh, (saw, ((see whom) who))〉〉

Now let us look at the four possibilities in (4.8) in turn, to see how we
end up with the right result. Let us start by observing that (4.8c) and (4.8d)
will yield the string who saw whom, so these derivations should succeed, while
(4.8a) and (4.8b) would yield who whom saw and whom who saw, respectively,
so these derivations should not converge.

Let us first look at (4.8a), so let us assume that the phonological content of
all wh-expressions is carried to the top:

〈whowh, 〈whomwh, (saw •wh, ((see whom) who))〉

The wh-forms whowh and whomwh at the edge are of type String and the nucleus
saw•wh is of type CP. Now remerge applies and according to its definition on
page 67, it deletes the wh-feature of the outermost wh-form and concatenates
it with the rest of the expression. (Recall that we assumed remerge to first
apply to the whole pair and only when that fails to apply to the embedded
pair.)

Now let us refine the feature checking process. It will rely on the following
two assumptions:

1This is what introduces the order between (M2) and (M3). The opposite order would
result if the first argument, x, in (M3) would be required to be simple. If neither the second
argument in (M2) nor the first argument in (M3) were required to be simple, both (M2) and
(M3) would apply when merging two complex expressions. There seems to be no inherent
reason to choose one over the other, but I regard it as most natural and warranted to decide
for the order preserving option.



4.3 Multiple wh-questions and feature checking 65

(FC1) Feature checking checks all occurrences of a certain feature at the edge,
as well as the corresponding feature on the nucleus.

(FC2) When a feature is checked, it is deleted.

The first assumption, (FC1), expresses that feature checking applies blindly,
i.e. does not only apply to the features that trigger the checking but also to
all other features of the same kind. The second assumption, (FC2), says what
to do with checked features. Deleting them is an obvious choice here since we
do not want to keep information that is not needed anymore. And features
are not needed anymore because they fulfilled their role once they are checked,
regardless of whether they receive an interpretation at the interfaces or not.

Let us turn back to the first case (4.8a) of our English example. Applying
remerge deletes all wh-features (according to (FC1) and (FC2)) and concate-
nates the outermost wh-expression (who) with the nucleus of the expression
(saw):

remerge 〈whowh, 〈whomwh, (saw •wh, ((see whom) who))〉
= who + 〈whom, (saw, ((see whom) who))〉
= 〈whom, (who ++ saw, ((see whom) who))〉
= 〈whom, (who saw, ((see whom) who))〉

The result is a complex expression, so the derivation did not converge yet. In
fact, it is stuck. The wh-expression whom is still at the edge but it does not have
any features to check. It will therefore never be able to take part in a feature
checking configuration, so it will never get a chance to be concatenated with
the nucleus. This means whom will always stay at the edge and the derivation
is never going to converge, no matter what other operations apply.

The situation with (4.8b) is exactly parallel. Also there, the wh-feature of
whom is checked but whom cannot be concatenated. It will stay at the edge
and prevent the derivation from converging.

Now, what about (4.8c) and (4.8d)? Just like in the other two cases, ap-
plying remerge to (4.8c) deletes the wh-features and concatenates who with
the nucleus, resulting in:

remerge 〈whowh, 〈εwh, (saw whom •wh, ((see whom) who))〉
= who + 〈ε, (saw whom, ((see whom) who))〉
= 〈ε, (who saw whom, ((see whom) who))〉



66 A syntactic procedure for displacement 4

And analogously for (4.8d), which will result in exactly the same after
applying remerge:

remerge 〈εwh, 〈εwh, (who saw whom •wh, ((see whom) who))〉
= ε+ 〈ε, (who saw whom, ((see whom) who))〉
= 〈ε, (who saw whom, ((see whom) who))〉

Again, the derivation did not converge because it yields a complex expres-
sion with a form left at the edge. But let us look closer. This time the form
at the edge is ε∅, i.e. the empty string with an empty feature list. Now, an
empty string with an empty feature list will never have any effect on the deriva-
tion. So occurrences of them can be deleted without making any difference. In
this sense, we can consider the edge to be non-empty actually. Formally this
amounts to adding the following assumption:

〈ε∅, y〉 = y

That is, both (4.8c) and (4.8d) end up with an empty edge which can be
deleted. After deleting it, we arrive at the simple expression who saw whom.
The derivation thus converges. (Note that this option is not available for (4.8a)
and (4.8b), because the expression at the edge is not empty and we could not
possibly delete it.)

So both succeeding derivations (4.8c) and (4.8d) have the same result. How-
ever they arrive there in a sightly different way. Is there a difference between
both? The answer is yes. Their results do indeed differ in the case of ques-
tions with only one wh-expression. In this case, the derivation corresponding
to (4.8c), where the phonological content of the highest wh-phrase is fronted,
results in the following (again, ignoring do-support):

〈whomwh, (did Enkidu see •wh, ((see whom) enkidu))〉

After applying remerge, we get Whom did Enkidu see. Whereas the derivation
according to (4.8d), where all phonological content stays in situ, results in the
following expression:

〈εwh, (Enkidu saw whom •wh, ((see whom) enkidu))〉

After applying remerge, this yields the echo question Enkidu saw whom. That
is, for the syntactic mechanism outlined here, echo question are constructed
like any other questions (at least syntactically). This will make an interesting
prediction a bit later.

Next, consider the case of multiple fronting languages like Bulgarian. Recall
the simple example from above, repeated here as (4.9).



4.3 Multiple wh-questions and feature checking 67

(4.9) a. Koj1 kogo2 [ 1 vižda 2 ]?
who whom sees

b. 〈kojwh, 〈kogowh, (vižda •wh, ((see whom) who))〉〉
In order to arrive at (4.9a), where all wh-expressions are fronted, I assume
that for those languages split is defined by always associating the phonological
content with the edge of the split expression. This amounts to discarding the
optionality in the definition of split, i.e. to specify it as follows:

split (aF , E) :: c = 〈aF , (ε :: c, E)〉 :: c

This way, the phonological content of every displaced expression will be carried
along to the top of the dependency. Thus in our example, the configuration at
the top will be the desired (4.9b):

〈kojwh, 〈kogowh, (vižda •wh, ((see whom) who))〉〉

Applying remerge would proceed like in English:

(4.10) remerge 〈kojwh, 〈kogowh, (vižda •wh, ((see whom) who))〉〉
= koj + 〈kogo, ( vižda, (( see whom) who))〉
= 〈kogo, (koj ++ vižda, (( see whom) who))〉
= 〈kogo, ( koj vižda, (( see whom) who))〉

And like in English, we would be stuck with a non-empty form at the edge, that
prevents the derivation from converging. This is clearly not what we want. We
rather want to allow also kogo to be concatenated with the nucleus once its wh-
feature is checked. That is, the difference between Bulgarian and English seems
to be the following: In English only the outermost form that triggers remerge
can be concatenated, while in Bulgarian this is possible also for all other forms
that check the relevant feature. This can be thought of as the difference between
allowing multiple specifiers and allowing only uniquely filled specifiers. If only
one specifier is possible, only one wh-expression can be fronted. However, if
multiple specifiers are possible, all wh-expressions involved in a feature checking
relation can be fronted. That Bulgarian among other languages allows multiple
specifiers was proposed, e.g., by Richards [94] (based on a proposal by Koizumi
[66]). That English allows only one specifier is dicussed, e.g., in Bošković [121].

For languages that allow multiple specifiers, the definition of remerge has
to be extended slightly to also concatenate other forms at the edge that carry
a matching feature.

Definition 10 (final).

remerge 〈af , x•f 〉 =

{
a+ x if a has no more features
〈a, x〉 otherwise



68 A syntactic procedure for displacement 4

Where + is string concatenation with the form of the nucleus:

a+ (b, E) = (a++ b, E)
a+ 〈b, x〉 = 〈b, a+ x〉

And where x is defined as follows:

〈bf , y〉 =


b+ y if multiple specifiers are allowed

and b has no more features to check
〈b, y〉 otherwise

〈b, y〉 = 〈b, y〉

(b•f , E) = (b, E)

That is, for languages that allow only unique specifiers, x is like x except
that all occurrences of the feature f at the edge are deleted. For languages
that allow multiple specifiers, on the other hand, all forms at the edge of x
that carry the feature f are also concatenated with the form of the nucleus
(unless they have more features to check).

The Bulgarian derivation from above would thus not proceed like in (4.10)
but as follows:

(4.11) remerge 〈kojwh, 〈kogowh, (vižda •wh, ((see whom) who))〉〉
= koj + kogo + (vižda, ((see whom) who))
= (koj kogo vižda, ((see whom) who))

It is interesting to note that the order of concatenation of bs in x in the
definition of remerge is such that it reflects the order of the expressions in
base position. Multiple wh-displacement is thus an order-preserving operation.
In order to derive Minimal Compliance effects as we saw them on page 26 in
Chapter 2, one could assume a re-ordering of the wh-expressions by means of
a scrambling operation (Bulgarian indeed employs scrambling).

This treatment of multiple wh-questions makes non-trivial predictions. For
example, recall that in English we had two ways to derive a single wh-question.
One was building an expression like (4.12a), i.e. fronting the phonological
content, and the other one was building an expression like (4.12b), i.e. leaving
the phonological content in situ. The former is a usual wh-question while the
latter constitutes an echo-question.

(4.12) a. 〈whomwh, (did Enkidu see •wh, ((see whom) enkidu))〉
b. 〈εwh, (Enkidu saw whom •wh, ((see whom) enkidu))〉

Since in Bulgarian-like languages, split always associates the phonological con-
tent with the nucleus of the split expression, no wh-expression can be spelled



4.3 Multiple wh-questions and feature checking 69

out in situ. The syntactic mechanism thus predicts that there are no echo-
questions with in situ wh-expressions in Bulgarian-like languages. And this
is indeed borne out. As Bošković [123] observes, the following questions are
ungrammatical even when read as echo questions.

(4.13) Serbo-Croatian (Bošković [123])
?∗ Ivan kupuje šta?

Ivan buys what

(4.14) Bulgarian (ibid.)
?∗ Ivan e kupil kakvo?

Ivan is bought what

(4.15) Russian (ibid.)
?∗ Ivan kupil čto?

Ivan bought what

Let us finally also turn to languages like Japanese, where all wh-expressions
stay in situ. The way to achieve this pattern is parallel to that of Bulgarian:
by discarding the optionality of split. But it is done so in the opposite way.
Instead of always associating the phonological content of a split expression with
its edge, it is always associated with its nucleus. This corresponds to specifying
split as follows:

split (aF , E) :: c = 〈εF , (a :: c, E)〉 :: c

This way, the phonological content of all moving expressions stays in situ. The
above example, here repeated as (4.16a), thereby yields the desired configura-
tion (4.16b).

(4.16) a. Dare-ga ringo-o tabeta no?
who-nom apple-acc ate q

b. 〈εwh, 〈εwh, (darega ringoo tabeta no •wh, ((eat apple) who))〉〉

Then remerge applies and all wh-features are deleted. Also, the outermost
form at the edge is concatenated with the nucleus of the expression. The result
is:

〈ε, (darega ringoo tabetano, ((eat apple) who))〉

Now we can either assume that the empty expression at the edge is deleted,
like in English, or that it is concatenated with the nucleus, like in Bulgarian.
Both possibilities yield the simple string dare-ga ringo-o tabeta no of type CP.

This concludes the wh-patterns we wanted to cover. Let us briefly summa-
rize. This section introduced two language-specific parameters. The first one
is relevant at the bottom of the dependency. It specifies whether the phono-
logical content of a split expression is associated with its edge or its nucleus.



70 A syntactic procedure for displacement 4

This determines whether a wh-expression occurs fronted or in situ. The second
one is relevant at the top of the dependency. It specifies whether only the
outermost form that checks a feature can be concatenated or whether this is
possible for all forms that check the relevant feature. This was interpreted in
transformational terms as whether a language allows multiple or only uniquely
filled specifiers.

English sets these parameters such that split optionally associates the
phonological content either with the edge or with the nucleus. Furthermore,
English allows only uniquely filled specifiers. Bulgarian split differs in always
associating the phonological content with the edge. Furthermore, Bulgarian
allows multiple specifiers. Japanese split, on the other hand, always associates
the phonological content with the nucleus. Whether Japanese employs multiple
specifiers or not does not matter for the construction of wh-questions. Setting
the parameters in this way derives the three different wh-patterns we observe
with these three languages: all wh-expressions occur fronted in Bulgarian, all
wh-expressions occur in situ in Japanese, and exactly one wh-expression occurs
fronted in English while all others occur in situ.

4.4 Intervention effects

Chapter 2 gave an overview of locality restrictions on displacement. Now we
want to look at how to derive them from the operations we employed. We will
first look at wh-islands and the absence of wh-island effects, and then turn to
superiority effects.

4.4.1 Wh-islands

The main generalization behind wh-islands was that wh-expressions cannot be
extracted from a wh-domain. This is captured by the syntactic mechanism
carved out in the previous two sections in the same way it prevented the wrong
pattern for multiple wh-questions in English. I will demonstrate this with the
following example.

(4.17) ∗Whom1 did Enkidu wonder [ what Ishtar granted 1]?

For simplicity’s sake, I assume granted to be of the ditransitive syntactic type
NP → (NP → (NP< → VP)). But in fact it is also be possible to assume
a Larsonian VP shell structure (cf. Chomsky [17] and Larson [70]) or any
other structure. What is important here is that the result of constructing the
embedded CP what Ishtar granted is the following expression with two wh-forms
at the edge:

〈whatwh, 〈whomwh, (Ishtar granted•wh, (((grant whom) what) ishtar))〉



4.4 Intervention effects 71

This configuration triggers remerge and, analogously to the derivations of the
previous section, yields the following result:

〈whom, (what Ishtar granted, (((grant whom) what) ishtar))〉

As in the non-converging derivations of English multiple wh-questions, we end
up with a non-empty element at the edge (whom, in this case) that has no more
features to check and prevents the derivation from converging.

Note that this does not only hold for displacement triggered by a wh-feature.
It is exactly the same for every kind of extraction. So it holds in general that
there is no f -displacement out of an f -domain, with f being an arbitrary
feature.

If on the other hand there are two expressions that are displaced due to
two different features, these two extractions do not conflict. As an illustration,
consider the following sentence, where the NP the Bull of Heaven is topicalized
out of a wh-domain created by displacement of where.

(4.18) [The Bull of Heaven]1, Gilgamesh wondered [ where Ishtar got 1].

To see how it works, consider the embedded CP where Ishtar got. It corresponds
to the following expression with both extracting forms, where and the Bull of
Heaven, at the edge (I will skip over the semantic dimension):

〈the Bull of Heaventop, 〈wherewh, (Ishtar got•wh, . . .)〉〉

This is a configuration that triggers remerge, however not with the outermost
expression at the edge, because it has a feature that is different from the wh-
feature of the nucleus, but with where. The result is the following:

remerge 〈the Bull of Heaventop, 〈wherewh, (Ishtar got•wh, . . .)〉〉
= 〈the Bull of Heaventop, remerge 〈wherewh, (Ishtar got•wh, . . .)〉〉
= 〈the Bull of Heaventop, (where Ishtar got, . . .)〉

The form the Bull of Heaven is unaffected by this remerging process. It stays
at the edge until it can check its topicalization feature.

Recall from Chapter 2 that there are phenomena that can obviate islands.
One of them was D-linking. As we saw on page 24, a wh-expression can indeed
be extracted from a wh-domain if it is D-linked, that is, somehow anchored
in the context. Here are examples from Bulgarian and Swedish showing the
same pattern: D-linked wh-phrases can escape wh-islands, non-D-linked ones
cannot.

(4.19) Bulgarian (Bošković [125])

a. ∗ Kakvoi se čudǐs [koj znae koj prodava i ]?
‘What do you wonder who knows who sells?’



72 A syntactic procedure for displacement 4

b. Kojai ot tezi knigi se čudǐs [koj znae koj prodava i ]?
‘Which of these books do you wonder who knows who sells?’

(4.20) Swedish (Maling [73] and Engdahl [34], cited from Bošković [124])

a. ∗ Vadi fr̊agade Jan [vem som skrev i]?
what asked Jan who that wrote

‘What did Jan ask who wrote?’

b. [Vilken film]i var det du gärna ville veta
which film was it you gladly wanted know.inf

[vem som hade regisserat i]?
who that had directed

‘Which film did you want to know who had directed?’

There is a way to account for these facts within our account, namely by
assuming that D-linked wh-expressions do not carry a feature wh but a different
feature for D-linkedness. Here is why. A wh-island configuration for us occurs
with an expression 〈awh, 〈bwh, x•wh〉〉. In such a configuration, both a and b
check their wh-feature, and either both of them can be concatenated with x
or the derivation does not converge. But it is not possible for one of them
to move further and check its wh-feature somewhere else. If a D-linked wh-
expression now has a different feature, say DLink , the configuration would be
〈awh, 〈bDLink, x•wh〉〉. Then b is not part of the feature checking for wh anymore
and can thus be extracted further without a problem (analogous to topicalized
expressions that can extract from wh-domains in the same way).

In general, the only possibility for an expression to escape an island is to
have a feature setup different from the island creating expression. This account
of islands is very similar to the one in Stroik [111]. A problem that we face
is that all features are treated equal, so all islands should be equally strong.
Either an expression has the same feature as the island and is trapped, or it has
different features and can escape. However, this is not exactly what we observe
in natural languages. On page 23 in Chapter 2, we saw that topicalization
islands seem to be stronger than wh-islands. Being able to account for contrasts
like this would require a more fine-grained feature system à la Starke [108].

Looking at non-D-linked wh-expressions, we predict island sensitivity for
all instances of wh-extraction we saw so far. This is because overt and covert
displacement are all handled by the same operations. They differ only in where
the phonological content ends up. A consequence of this uniformity is that
all three wh-patterns we saw are expected to underlie the same restrictions,
in particular to all be island sensitive. We already saw that this holds for
languages like English and Bulgarian, where at least one wh-expression occurs
fronted. And it is indeed also true for Japanese. Japanese shows sensitivity
to wh-islands although all wh-expressions occur in situ, like in the following
example.



4.4 Intervention effects 73

(4.21) Japanese
∗ Kimi-wa [Taro-ga dare-o hometa kadooka] sitte-imasu ka?

you-top [Taro-nom whom-acc admired whether] know-polite q

‘Which person x is such that you know whether Taro admired x?’

This supports the claim that the same operations are involved like in languages
that overtly front wh-expressions.

However, it does not hold in general, for Japanese in situ wh-expressions
may obviate strong islands. An instance is the following example.

(4.22) Japanese (Tsai [117])

John-wa [[dare-o aisiteiru] onna-o] nagutta no
John-top who-acc loves woman-acc hit q

‘Who is the person x such that John hit the woman who loves x?’

This kind of island insensitive in situ wh-expression can also be observed in
Chinese:

(4.23) Mandarin Chinese

Ni xiang-zhidao [wo weishenme gei Akiu shenme]
you wonder I why give Akiu what

‘Which reason x is such that you wonder what I give to Akiu
because of x?’

And yet another example is Ancash Quechua, a language which employs both
fronted and in situ wh-phrases (cf. Cole & Hermon [24]). If a wh-expression
occurs fronted, it is subject to wh-islands, see (4.24a). If it occurs in situ, on
the other hand, it is not island sensitive, see (4.24b).

(4.24) Ancash Quechua (Cole & Hermon [24])

a. ∗ Ima-ta-taq qam kuya-nki suwaq nuna-ta
what-acc-q you love-2pl steal man-acc

‘Which x is such that you love the man who stole x?’

b. Qam kuya-nki ima-ta suwaq nuna-ta?
you love-2pl what-acc steal man-acc

‘You love the man who stole what?’

In general, languages know both island sensitive and island insensitive in
situ wh-expressions. This suggests that there are in fact two in situ strategies:
one which corresponds to the usual displacement operations, as we have seen
it in this section, and is thus subject to island constraints, and one that does
not correspond to displacement and is thus not subject to island constraints.

The questions that this usually raises is: How do wh-expressions that are
not displaced take scope? The answer here is very easy: the same way all
other operators take scope. As already advertised in the introduction, scope



74 A syntactic procedure for displacement 4

will be established by means of a semantic mechanism that is independent of
displacement. So once we know how to construct the scope of quantificational
noun phrases, in situ wh-phrases pose no additional problem. We will turn to
island insensitive wh-phrases in Chinese and Japanese in Section 5.4.3 of the
next chapter.

4.4.2 Superiority

Recall the contrast in (4.25).

(4.25) a. Who1 [ 1 saw whom]?

b. ∗Whom1 [did who see 1]?

We already came across this effect in Chapter 2. We ascribed it to the fact that
displacement operations target the structurally higher wh-phrase. Now let us
look at it from a slightly different point of view, that of intervention. In (4.25b),
extraction of the object wh-expression whom crosses another wh-expression.
This expression is said to intervene. In (4.25a), on the other hand, extraction
of the wh-expression who does not cross an intervening wh-expression.

This intervention effect has first been formulated by Chomsky [18] as the
Superiority Condition, stating that in a structure x . . . [. . . z . . . y . . .], an opera-
tion cannot involve x and y if it could also apply to x and z and y is superior to
z, that is if z intervenes. In his original formulation, Chomsky defined superior-
ity in a very general way: an expression x is superior to an expression y if every
expression of a major category (nouns, verbs, adjectives, and their projections)
that dominates x also dominates y but not conversely. Nowadays, intervention
is understood in terms of asymmetric c-command. For our considerations here,
it actually does not matter which one we adopt.

Let us recall how the syntactic mechanism of this chapter accounted for the
contrast between (4.25a) and (4.25b). The derivations of these sentences arrived
at the remerge configurations given in (4.26a) and (4.26b), respectively.

(4.26) a. 〈whowh, 〈εwh, (saw whom •wh, ((see whom) who))〉〉
b. 〈εwh, 〈whomwh, (did who see •wh, ((see whom) who))〉〉

The ordering of the forms at the edge resulted from the way (M2) and (M3)
distribute complex expression over each other, as we saw in Section 4.3 above.
Applying remerge to (4.26a) resulted in (4.27a), whereas applying remerge
to (4.26b) resulted in (4.27b).

(4.27) a. 〈ε,who saw whom〉
b. 〈whom, did who see〉

The crucial difference is that in (4.27a) the form that is left at the edge is
empty. We assumed that it can be deleted and thereby arrived at the simple
expression who saw whom. The form left at the edge in (4.27b), on the other



4.4 Intervention effects 75

hand, is not empty, thus cannot be deleted. Instead it prevents the derivation
from converging.

Note that the displacement operations in both cases proceed in exactly the
same way and on their own are licit. Things go right or wrong only depending
on whether the phonological content of the split expressions was carried along
or left in situ. And in fact, the pattern for English in (4.26) can be extended
to more than two wh-expressions. The relevant generalization is that only the
phonological content of the outermost form at the edge of a pair can be non-
empty. Every phonological content of deeper embedded forms will prevent the
derivation from converging. That is, only derivations of expressions of the gen-
eral form 〈af , 〈εf , 〈εf . . . 〈εf , x•f 〉〉〉〉 will converge after applying remerge. As
soon as some phonological content intervenes between a and x, the derivation
will not converge anymore.

In order to see to which extent this notion of intervention corresponds to
intervention defined in terms of dominance or c-command, we need to look at
whether the ordering of forms at the edge actually reflects such structural tree
relations.

First, the order among forms at the edge indeed reflects the order of their
base positions. Consider the example (4.25a) from above. A minimal tree
according to standard assumptions could look like in (4.28a). The expression
we would build before applying remerge has the structure given in (4.28b).

(4.28) a. CP

who1 VP

1 VP

saw whom

b. 〈who, 〈ε, (saw whom, ((saw whom) who))〉〉

At the edge of the expression in (4.28b), who is ‘higher’ than ε (corresponding
to whom). This matches the hierarchy of the base position of who (indicated
by the gap) and the position of whom in the tree.

In general, the order at the edge amounts to the order in which the expres-
sions entered the derivation. In a pair 〈a1, 〈a2 . . . 〈an, x〉〉〉, ai was merged after
ai+1. That is, the expression merged first will end up deepest in the pair (or:
closest to the nucleus), and the outermost forms are those that were merged
most recently. This is due to how (M2) and (M3) distribute complex expres-
sions: The forms of a newly merged expression are stacked on top of already
present forms.

Now can we also retrieve more complex structural relations from our pairs?
The answer is no. With respect to c-command, for example, the following holds.
Although it is the case that a structure in which a c-commands b corresponds
to a pair where a is nested deeper in the pair than b, this correspondence does



76 A syntactic procedure for displacement 4

not hold in the other direction. Consider the following structures, where a and
b are assumed to have features that force them to move:

x

a y

. . . b . . .

x

z

. . . a . . .

y

. . . b . . .
Although a c-commands b in the left tree whereas it does not in the right one,
the derivation of both will build an expression of the form 〈a, 〈b, . . .〉〉.

As a consequence, intervention effects in our approach cannot be bound to
c-command but only to derivational order. Moreover, we predict that interven-
tion without c-command is possible. And this is indeed the case, as observed
by Heck & Müller [47]. It is illustrated by the following contrast.

(4.29) a. ?∗Whom1 did [the man [that defeated what]] admire 1?

b. Who1 1 admired [the man [that defeated what]]?

c. Whom1 did [the man [that defeated Huwawa]] admire 1?

In (4.29a), the dependency between whom and the corresponding gap spans
a complex noun phrase that contains another wh-expression what. The sen-
tence is ungrammatical, thus what seems to intervene, although it does not
c-command the gap. If it does not intervene, like in (4.29b), the sentence
is fine. Also if the intervening wh-expression what is replaced by a non-wh-
expression, as in (4.29c), no intervention effect occurs. There are parallel cases
for intervening wh-expressions in adverbial clauses and also for long-distance
wh-movement, cf. Müller [80].

In our account, c-command does not play a role; only derivational order
matters. The facts in (4.29) therefore follow in a way completely parallel to
the other superiority cases. Let us briefly demonstrate this. First note that
(4.29c) does not cause any problems because it contains only one wh-expression.
The interesting cases are (4.29a) and (4.29b). Since all wh-expressions in En-
glish carry a wh-feature that needs to be checked, we can assume that the
complex noun phrase the man that defeated what corresponds to the expression
〈εwh, (the man that defeated what, . . .)〉. The sentence in (4.29a) then corre-
sponds to the expression (4.30a) and the sentence in (4.29b) corresponds to
the expression (4.30b).

(4.30) a. 〈εwh, 〈whomwh, (did the man that defeated what admire, . . .)〉〉
b. 〈whowh, 〈εwh, (admired the man that defeated what, . . .)〉〉

The order at the edge reflects the derivational order: In (4.29a), the verb is
first merged with whom and only afterwards with the complex noun phrase,
therefore ε is stacked higher than whom. In (4.29b), on the other hand, the verb
is first merged with the complex noun phrase and only afterwards with who,
the order at the edge is therefore the opposite one. We can already see that



4.5 Extension: Remnant movement and Freezing 77

we get an intervention effect in the first but not in the second case. Applying
remerge results in (4.31a) and (4.31b), respectively.

(4.31) a. 〈whom, (did the man that defeated what admire, . . .)〉
b. 〈ε, (who admired the man that defeated what, . . .)〉

The expression in (4.31b) has an empty expression at the edge, which can be
deleted, whereas the expression in (4.31a) has a non-empty expression at the
edge, which prevents the derivation from converging.

To conclude, the syntactic mechanism devised in this chapter can capture
intervention effects. It does so by relying on derivational order rather than
structural notions. Not surprisingly, this also causes problems; we will look at
them in Chapter 7. Now I want to turn to another case where the hierarchy
induced by derivational order can be used to straightforwardly account for
restrictions on displacement.

4.5 Extension:
Remnant movement and Freezing

So far, split is defined only for simple expressions. In this section I want to
generalize it to complex expressions. In order to see what this is useful for and
why one has to be careful when doing so, we start by looking at possible and
impossible displacement configurations, more specifically at remnant movement
and Freezing configurations. For these explorations always keep in mind that
complex expressions arise from splitting an expression that is displaced, and
that a phrase x from which an element a was extracted is a pair of the form
〈a, x〉 (possibly with more forms at the edge).

That split is only defined for simple expressions implies that displacement is
restricted to constituents without subextraction. For example, unproblematic
are the displacement structures in (4.32), where only simple expressions are
extracted.

(4.32) a. a2 . . . a1 . . . [x. . . 2 . . . 1 . . .]

b. [x. . . a1 . . . 1 . . .]2 . . . 2 . . .

In (4.32a), the constituent x corresponds to an expression of form 〈a1, 〈a2, x〉〉,
something we are quite familiar with already. The case in (4.32b) amounts to
extracting and remerging a while generating x. Then x itself is extracted from
some larger constituent. By that time, a has been remerged already and x thus
corresponds to a simple expression again.

Configurations like in (4.33), on the other hand, cannot be derived. In both
cases, a is extracted from x while x is extracted itself. That is, when x is split,
it corresponds to an expression of form 〈a, x〉, so split would have to apply to
a complex expression.



78 A syntactic procedure for displacement 4

(4.33) a. [x. . . 1 . . .]2 . . . [. . . a1 . . . [. . . 2 . . .]]

b. a2 . . . [[x. . . 2 . . .]1 . . . 1 . . .]

(4.33a) is a case of remnant movement, and (4.33b) is a Freezing configura-
tion. What differs is the derivational order of the two displacements involved.

• Remnant movement
First a is extracted from x, then (the rest of) x is displaced.

• Freezing configuration
First x is displaced, then a is extracted from x.

Freezing configurations, i.e. extraction from a displaced phrase, is generally
taken to be impossible in languages, whereas remnant movement is assumed to
be possible. To illustrate this, consider the following examples from German.
(4.34a) instantiates remnant movement: the NP das Buch scrambles out of the
VP, then the remnant VP is topicalized. (4.34b) on the other hand shows a
Freezing effect: first the NP ein Buch worüber is scrambled, and subsequently
the PP worüber is extracted from that NP.

(4.34) a. [VP 1 Gelesen]2 hat [NP das Buch]1 keiner 2

read has the book.acc no-one.nom

b. ∗ [PPWorüber]2 hat [NP ein Buch 2 ]1 keiner 1 gelesen?
about what has a book.acc no-one.nom read

Let us look at how these sentences would be generated with the syntactic
mechanism of this chapter. First consider the Freezing configuration (4.34b).
The NP corresponds to the following complex expression (ignoring the semantic
dimension):

〈worüberwh, (ein Buch :: NP, . . .)〉

When this NP is merged with the verb, it would have to be split in order to be
displaced itself. But since it is a complex expression, split cannot apply. This
seems desirable because (4.34b) is indeed excluded. But for the same reason
also remnant movement is impossible. Consider (4.34a). The VP corresponds
to the following expression (where I use Σ as the feature triggering scrambling):

〈das BuchΣ, (gelesen :: VP, . . .)〉

This is a complex expression that cannot be split, although it would need to
be split in order to be fronted.

Since we do not want to exclude the latter case, the definition of split has
to be extended to complex expressions. An obvious way to do so would be to
split the nucleus while keeping the edge:

split 〈a, x〉 = 〈a, split x〉



4.5 Extension: Remnant movement and Freezing 79

This indeed allows for remnant movement. The derivation for (4.34a), that
got stuck when having to split the expression 〈das BuchΣ, (gelesen :: VP, . . .)〉,
could now proceed. The result of applying split is:

〈das BuchΣ, 〈gelesentop, (ε :: VP, . . .)〉〉

The derivation proceeds without further complications, with the two forms at
the edge being remerged when they can check their features.

But in the same way, the derivation of (4.34b) converges and Freezing effects
are no longer obtained. The expression 〈worüberwh, (ein Buch :: NP, . . .)〉 can
now be split, resulting in:

〈worüberwh, 〈ein BuchΣ, (gelesen, . . .)〉

Again, the derivation proceeds without further complications and the two forms
at the edge are remerged when their features can be checked.

So, the derivations involving Freezing configurations proceed in exactly the
same way derivations involving remnant movement do. The reason is the fol-
lowing: We decided to split a complex expression 〈a, x〉 such that the result is
〈a, 〈x, ε〉〉. Above we observed that the difference between Freezing and rem-
nant movement is the order in which a and x are extracted, most importantly
in which order a and x are remerged. However, this is a difference we cannot
capture. Keeping both a and x as separate elements at the edge does not give
us a way to tell in which order the two will be remerged, and especially it does
not give us a way to allow one order and disallow the other.

What to do about it? We need to distinguish the case of a being remerged
before x (remnant movement) from the case of x being remerged first (Freezing).
This is actually possible without much ado. The trick is to not split 〈a, x〉 such
that a and x are kept as separate forms at the edge but instead such that 〈a, x〉
is kept as what it is: one constituent, a complex expression. That is, split
should result in the expression 〈〈a, x〉, ε〉. Once we adapt remerge in order
to reach a in this configuration, we are done. What does the job of allowing
remerge of a before x (remnant movement) but not vice versa (Freezing) is
the fact that remerge is defined only for simple forms. Here is why. If we
first remerge a, this is unproblematic because it is a simple form. Then x
remains at the edge; if it is a simple form as well, it can also be remerged
without a problem. If we, however, tried to first remerge x, it still amounts to
the complex form 〈a, x〉 for which remerge is not defined. This possibility is
therefore blocked.

In a nutshell, we exploit the derivational difference between remnant move-
ment and Freezing configurations by extracting 〈a, x〉 as one constituent and
therefore causing a difference in the order of remerging a and x.

Let us look at how this works for our examples above. Recall that the
complex expressions we needed to split were (4.35a) in the case of Freezing and
(4.35b) for remnant movement.



80 A syntactic procedure for displacement 4

(4.35) a. 〈worüberwh, (ein Buch :: NP, . . .)〉
b. 〈das BuchΣ, (gelesen :: VP, . . .)〉

Applying split in the way just described now yields (4.36a) and (4.36b), re-
spectively.

(4.36) a. 〈〈worüberwh, ein BuchΣ〉, (ε :: NP, . . .)〉
b. 〈〈das BuchΣ, gelesentop〉, (ε :: VP, . . .)〉

In the first case, the scrambling feature can be checked first, thus the whole
complex edge at the edge would need to be remerged. (This is something about
the understanding of complex expressions and forms in this thesis: the nucleus
is the core. It can have an edge or not. However, there can be no edge without
a nucleus. So remerging the nucleus always involves the nucleus and its edge.)
This remerging fails because remerge is not defined for complex forms.

Also in the second case, (4.36b), the scrambling feature can be checked first.
This leads to das Buch being remerged. Since it is a simple form, this is unprob-
lematic. The result is the expression 〈gelesentop, (das Buch keiner :: VP, . . .)〉
(the form of the nucleus depends on the exact stage of the derivation, which
does not play a role here). At some later point in the derivation, the topi-
calization feature can be checked. Since gelesen is also a simple form, it can
be remerged as well without any problem. The remnant movement derivation
hence is perfectly fine.

There is a nice consequence of this derivational approach. It concerns a
restriction on remnant movement that Müller [82] formulated as the principle
of Unambiguous Domination.

(4.37) Unambiguous Domination
In a structure . . . [x. . . y . . .] . . ., x and y may not undergo the same kind
of movement.

Within Müller’s representational approach, it is necessary to define a local
domain in which this condition applies, because otherwise sentences like (4.38)
would wrongly be predicted to be out, for the embedded CP and the more
inclusive NP undergo the same kind of movement.

(4.38) [NP Wessen Frage [CP was1 du magst 1]]2 hat 2 dich geärgert?
whose question what you like has you annoyed

For us, this problem does not arise. The displaced wh-expression was1 is split,
percolated and remerged upon constructing the embedded CP. And since it
is remerged already when the CP is finished, the CP corresponds to a simple
expression. Thus when the NP is constructed and extracted, it will be a simple
expression itself. At no point of the derivation does a problematic configuration
arise. In fact, the structure in (4.38) is as depicted in (4.32b) at the beginning
of this section – a structure that we could already handle without being able
to split complex expressions.



4.5 Extension: Remnant movement and Freezing 81

Now I want to extend our formal definitions so they can capture what we
just sketched informally. First of all we need to allow pairs of forms at the
edge, in other words, allow forms to be recursive.

Form ::= String :: Cat [Feat]
| 〈Form,Form〉

The definition of merge stays like it is. But we have to extend the definition
of split. For the simplest case it should look like this:

split 〈a, (b, E)〉 = 〈〈a, b〉, (ε, E)〉

And we want to allow this to be recursive and also work if the edge is already
a pair:

split 〈〈a, b〉, (c, E)〉 = 〈〈〈a, b〉, c〉, (ε, E)〉

The general definition comprising these cases and also taking optionality into
account is the following:

split 〈x, 〈. . . , (aF , E)〉〉 = 〈〈x, aF 〉, 〈. . . , (ε, E)〉〉
or 〈〈x, εF 〉, 〈. . . , (a,E)〉〉

Since we can now have nested forms at the edge, we need to extend what
counts as being at the edge. We say that a form x is at the edge of a complex
expression 〈y, z〉 if one of the following three conditions holds:

(i) x is equal to y

(ii) x is at the edge of y

(iii) x is at the edge of z

Clauses (i) and (iii) capture the cases we already encountered. For example (i)
reaches what in 〈what, z〉 and (iii) reaches who in 〈what, 〈who, z〉〉. Up to now
(ii) would have been equivalent to (i), because y was always simple. Now (ii)
captures the new case of reaching what in 〈〈what, x〉, z〉. The definition for the
function edge thus now goes as follows:



82 A syntactic procedure for displacement 4

edge (a,E) = ∅
edge 〈x, y〉 = {x} ∪ (edge x) ∪ (edge y)

We also need to generalize the definition of remerge, in order to consider
all new cases of edges, i.e. to be able to not only remerge the first element of
a pair but also the edge of this element. It has to capture, for example, cases
of the following forms:

• 〈〈af , x〉, y•f 〉

• 〈〈〈af , x〉, z〉, y•f 〉

• 〈〈x, 〈af , z〉〉, y•f 〉

Let x[a] denote an expression x in which a occurs, and let x[ ] stand for x
where a is removed, and x[b] for x where a is replaced by b. Then we can give
a general definition of remerge along the following lines:

remerge x•f [af ] =

{
x[ ] + a if a has no more features
x[a] otherwise

For the outermost a ∈ (edge x), and where x is as before (see Definition 10
on page 67).

What we keep, most importantly, is the restriction that only simple expressions
can be remerged.

This concludes how to generalize the syntactic mechanism in order to in-
corporate remnant movement while still capturing Freezing effects. This gen-
eralization shows one of the possibilities the syntactic mechanism offers due to
assuming a recursive structure with respect to displaced elements.

Since we will not need remnant movement in the further course of the thesis,
we will consider this section a digression and for reasons of simplicity stick to
the less general mechanism of the previous sections.

4.6 Summary

In the previous chapter we started from expressions being form-meaning pairs,
where meaning is represented by terms of a lambda calculus and form is rep-
resented by typed strings. The present chapter was about carving out a mech-
anism operating on the form dimension that can account for displacement de-
pendencies. To this end, typed strings were extended with an unordered list



4.6 Summary 83

Figure 4.1: Summary of the form dimension.

Cat ::= NP | N | VP | CP | Cat< | Cat→ Cat | String
Feat ::= Value | •Value

Value ::= wh | top | Σ

Form ::= String :: Cat [Feat]
Expression ::= (Form,Meaning) | 〈Form,Expression〉

of features. These features express properties that need to be satisfied upon
presence of a matching feature. If a feature cannot be satisfied immediately, it
needs to stay accessible while the derivation proceeds. This was taken care of
by operations that split the form of an expression and carry it along until its
features can be checked. A summary of the definition of expressions is given
in Figure 4.1, and a summary of the syntactic operations merge, split and
remerge is given in Figure 4.2.

We saw how the operations employed are able to derive the patterns of
wh-displacement we find across languages (multiple fronting, single fronting,
and wh-in-situ) without much further stipulation. We also saw how a range of
locality conditions such as wh-islands and superiority already follow from the
mechanism.

The main characteristics of the approach are the following:

• Strict locality
Syntactic operations depend only on the properties of the expressions to
which they apply.

• Accessibility of active expressions
Accessible for syntactic operations are exactly those expressions that still
have unchecked features. Once they entered the derivation, their form
side is kept at the edge of a complex expression and remains accessible
until all their features are checked.

• Forgetfulness
No other information (the past of the derivation, structural configura-
tions, and so on) is preserved.

• Order preservation
The order in which forms appear at the edge corresponds to the order in
which they entered the derivation. The order in which they are remerged
in the case of multiple displacement reflects the order in which they would
appear in base position.



Figure 4.2: Summary of the syntactic operations.

merge x y =

{
merge x (split y) if fs y 6= ∅
see (M1–M3) otherwise

(M1) merge (aF , E1) (b, E2) = ((a⊕ b)F , (E1 E2))
(M2) merge 〈a, x〉 s = 〈a, merge x y〉
(M3) merge x 〈a, y〉 = 〈a, merge x y〉

Where ⊕ is defined as concatenating two strings of matching categories, with
the order depending on the linearization diacritic:

a :: c1 → c2⊕ b :: c1= a++ b :: c2
a :: c<1 → c2⊕ b :: c = b++ a :: c2

split (aF , E) :: c =

{
〈aF , (ε :: c, E)〉 :: c in wh-fronting languages
〈εF , (a :: c, E)〉 :: c in wh-in-situ languages

In mixed languages, this choice is optional:

split (aF , E) :: c = 〈aF , (ε :: c, E)〉 :: c or 〈εF , (a :: c, E)〉 :: c

remerge 〈af , x•f 〉 =

{
a+ x if a has no more features
〈a, x〉 otherwise

remerge 〈a, x〉 = 〈a, remerge x〉
remerge (a,E) = (a,E)

Where + is string concatenation with the form of the nucleus:

a+ (b, E) = (a++ b, E)
a+ 〈b, x〉 = 〈b, a+ x〉

And where x is defined as follows:

〈bf , y〉 =


b+ y if multiple specifiers are allowed

and b has no more features to check
〈b, y〉 otherwise

〈b, y〉 = 〈b, y〉

(b•f , E) = (b, E)



4.7 Comparison with other approaches 85

In the following section I will point out in how far the present set-up differs
from its predecessor (Brosziewski [14]) and how it compares to other approaches
to the local modeling of non-local dependencies.

4.7 Comparison with other approaches

The radically local approach to displacement developed in this chapter is based
on Brosziewski’s Derivational Theory [14] and thus draws heavily on his work.
Below, I will point out the differences in design, focus, and coverage. Since
the ideas behind it are quite general, it shares characteristics with a range
of other approaches, such as feature-enriched categorial grammars, Minimalist
Grammars, phase theory, and Tree Adjoining Grammar. This section will give
a brief comparison.

4.7.1 Brosziewski’s Derivational Theory

My refined and extended version of Brosziewski’s displacement mechanism
keeps the core concepts and ideas of the original, however differs in two major
points. The first difference concerns the treatment of islands. Brosziewski does
in fact anticipate the possibility of the treatment I give in Section 4.4.1 above,
but he rejects it as implausible and argues for an approach that shifts the res-
ponsibility ‘onto semantics and a theory of selection’ [14, p. 65], unfortunately
without giving more than a sketch of it. I hope to have shown that an approach
in terms of syntactic features can indeed be adopted and is not that implausible
after all.

The second difference concerns the conception of remerge. In Brosziewski’s
version, remerge amounts to an application of merge. In general, for him
merge comprises all possible combinations of expressions, be it induced by
subcategorization, by matching features, or by neither (as in the case of ad-
junction). I chose to not keep this conception but rather introduce a clear
distinction between merge, triggered by subcategorization, and split and re-
merge, triggered by syntactic features. This is a design issue more than an
empirical one, but it has important consequences. My approach cleanly sepa-
rates the operation for establishing local dependencies from the operations for
establishing non-local dependencies. This plays a crucial role with respect to
the general design of the syntax/semantics interface, since I take the former,
but not the latter, to be paired with meaning assembly.

Additional to the basic mechanism for phrasal displacement, Brosziewski
considers head movement. I discarded this direction because it is not relevant
here. Nevertheless, it might be interesting to note that his approach to head
movement could easily be adopted in my version as well.

Moreover, there is a number of issues treated in the present chapter that
constitute a genuine extension of Brosziewski’s work. One is the generalization
of the split operation to complex expressions, which allowed us to capture



86 A syntactic procedure for displacement 4

remnant movement. Another one is the detailed treatment of the patterns
occurring with multiple wh-displacement and the according explication of the
feature checking mechanism. And yet another issue, presumably the most
important one, concerns the meaning dimension. Brosziewski does not consider
semantic issues beyond some basic mention; his work is syntactic in nature. The
present thesis extends his work with a semantic dimension and thereby develops
it into a full-fledged syntax/semantics interface.

In the remainder of the section, let us consider how my extension of Brosziews-
ki’s approach to displacement compares with other approaches.

4.7.2 Movement-based approaches

One of the main points behind Brosziewski’s proposal, that I adopted as an
important motivation, is the idea of not remembering whole derivations but
preserving only those information that are necessary to establish non-local de-
pendencies. This general idea can also be found in some recent movement-based
approaches to displacement like phase theory (see Chomsky [21],[22]). In phase
theory, only small chunks of structure are built; they are sent to phonology and
semantics for interpretation as soon as possible. An expression that still has
features to check can stay accessible by means of movement to the phase edge
(usually the specifier of a designated head), which is not sent to the interfaces
immediately but is kept until the next phase is finished.

It is possible to read expressions as we encountered them in this chapter in
phase theoretic terms: The ai in a complex expression 〈a1, 〈a2 . . . 〈an, x〉〉〉 can
be seen as being at the edge of a phase, while everything contained in x was
already sent to the interfaces.

This analogy, however, breaks down at second sight. The first important
point with respect to which complex expressions differ from phases is that,
although the extracted expressions ai are percolated through every step of the
derivation, keeping them accessible does not require additional movement steps
triggered by edge features (cf. Chomsky [23]) or local optimization (cf. Heck
& Müller [47]). It suffices that they are copied once, when they enter the
derivation. After that, they simply stay at the edge of a complex expression,
being pushed up higher and higher in the structure as more and more material
is merged with the nucleus below them. The fact that no record of the forms
at the edge are kept on the intervening nodes distinguishes my approach also
from approaches relying on Slash feature percolation, for example GPSG [43],
its successor HPSG [87], and proposals by Koster [67] and Neeleman & Koot
[83].

With respect to structure expansion, my approach is actually very close to
Tree Adjoining Grammar (see e.g. Joshi et al. [57], Kroch & Joshi [69], Kroch
[68], and Frank [41]). In Tree Adjoining Grammar (TAG), all dependencies are
established locally in elementary trees. These structures can then be expanded
by inserting recursive structures between the extracted element and its corre-
sponding gap – very much like in my approach additional material is merged



4.7 Comparison with other approaches 87

between the two parts of a split expression. However, TAG still employs a step
of local movement in the initial elementary tree. My approach is much more
radical in not employing any movement step at all, not even a local one.

The probably most important property of the forms that are kept at the
edge is that they are kept in the order in which they were merged. This
has an order preserving effect in the case of multiple wh-displacement: When
the extracted expressions reach their target position, they are concatenated
according to the order in which they appear at the edge, which reflects the order
in which they would appear in base position. This offers a maximally simple
account of order preservation, which is not possible without some stipulation
in approaches relying on movement steps (including TAG). Moreover, it can
be generalized to virtually all cases of multiple displacement that exhibit order
preserving effects.

And finally, my approach sets itself apart in yet another way, the way of
reducing the part of the structure that is accessible for syntactic operations.
Instead of restricting accessibility to a certain domain (verb shells and clauses,
or every phrase XP) like in phase theory, the model of derivations proposed in
this chapter restricts the available expressions to those that carry yet unchecked
features – independently of how deep in the structure (or how long ago) they
were introduced.

This idea can also be found in the very recent approach of Stroik [111],
where only those expressions are accessible for further operations that are in-
compatible with the currently active head (which largely coincides with having
unchecked features). He employs a survival principle that copies those expres-
sions into the numeration (or the workspace, if you want), from where they can
then be imported back into the derivation. This exporting and re-importing
applies at every step of the derivation, as long as the expression is compatible
with the active head and can be incorporated into the structure. We can read
our complex expressions 〈a1, 〈a2 . . . 〈an, x〉〉〉 in Stroik’s terms by assuming that
the ai correspond to those expressions that were exported due to still having
unsatisfied properties. The difference is that we do not need a mechanism for
copying expressions into the numeration and later re-importing them into the
derivation; rather our complex expressions are the workspace themselves.

4.7.3 Feature-enriched categorial grammar and
Minimalist Grammars

As mentioned above, one of the characteristics of Brosziewski’s approach to
displacement is the total lack of movement. This lack of movement also lies at
the core of categorial grammars, a lexicalized grammar formalism based on di-
rectional type logic. The assembly of form is determined by the types that are
assigned to lexical expressions and by general inference rules for these types.
Instructions for the assembly of meaning, on the other hand, can simply be read
off from syntactic derivations. The base grammar we developed in Chapter 3



88 A syntactic procedure for displacement 4

is, in fact, very similar to the base logic of a categorial grammar, to the point of
sharing the limitation of not being able to capture non-local dependencies. One
possibility to overcome this limitation in categorial grammars is the introduc-
tion of structural reasoning controlled by unary modalities (corresponding to
our features) that license the re-ordering of expressions and thereby determine
which positions are accessible for semantic manipulation (e.g. for binding by an
operator). These facilities allow to account for a range of cross-linguistic varia-
tion, which was comprehensively shown for wh-question formation by Vermaat
[119].

The main point in which my account for displacement differs from the cate-
gorial approach (besides taking a generative and not a deductive perspective) is
that categorial grammars inherently comprise a strict correspondence between
syntax and semantics (due to the Curry-Howard correspondence, see e.g. Gi-
rard et al. [44]), whereas I opt for loosening that tie. Which approach will
prove more successful in accounting for natural language phenomena at the
syntax/semantics interface is a matter of future research. I will point to some
directions in the last chapter.

Loosening the tie between syntax and semantics in the present chapter
meant that displacement is a purely syntactic process that neither receives a
semantic interpretation nor builds structures that could feed semantics. Note
that extraction was not even encoded in the syntactic types: An expression
〈a, x〉 inherits its type from x. The fact that there is an element that still needs
to check features is encoded only by keeping it at the edge. The edge thus
plays a role very similar to a stack. In this respect, my approach converges
with Stabler & Keenan’s recent version of Minimalist Grammars (see Stabler
& Keenan [107]). Minimalist Grammars are an algebraic formulation of the
principles of Chomsky’s Minimalist Program [20], developed by Stabler [106]
and equiped with a semantic interpretation procedure by Kobele [65]. Stabler &
Keenan’s version interestingly dispenses with tree structures and instead resorts
to lists of extracted expressions as the only information that is kept in the course
of a derivation, very much like our edge of complex expressions. This makes it
a very close relative of the approach developed in the present chapter, possibly
they would even turn out to be largely equivalent. The difference, however,
is that Stabler & Keenan employ flat lists of extracted expressions, while I
introduced a recursive structure at the edge, allowing to extract expressions
which itself contain extracted expressions. In Section 4.5 above, we saw that
this additional structure can be exploited to capture remnant movement while
at the same time obtaining Freezing effects.

4.8 Concluding remark: Why displacement?

The present chapter gives rise to an important question: If the procedure for
displacement does not have a semantic effect and moreover does not build
structures that are input to semantics, then what purpose does it serve?



4.8 Concluding remark: Why displacement? 89

One possible answer lies in the realm of information structure. Information
structure encodes distinctions such as givenness and aboutness of information
in a sentence. These notions are argued to be not directly encoded by grammar
but marked by prosody and word order, for example. In case of word order
this would mean that information structural notions are derived from config-
urations that, in turn, are created by displacement. Such a proposal can be
found, e.g., in Slioussar [104]. On the basis of Russian data, she argues for
an information structure model that encodes relative accessibility and salience
based on syntactic configurations. Such a model could rely on a very general
assumption like the following: An expression x is interpreted as more accessible
or more salient than an expression y if x is higher in the syntactic hierarchy
than y (e.g. moved over it). This picture fits very well with my approach to
displacement because the displacement operations developed here change the
relative order of expressions (whereas absolute information about structure and
projection labels is lost).

Displacement therefore can have an interpretative effect without directly
receiving a semantic interpretation.





5

A semantic procedure
for scope construal

This chapter focuses on the meaning dimension of expressions. The goal is to
equip the grammar developed so far with a procedure for establishing operator
scope. The starting point is the assumption that such a procedure is not about
interpreting displacement. Thus, the operations introduced in the previous
chapter will not receive an interpretation. Instead, expressions are interpreted
upon entering the derivation, that is when they are first merged. Scope con-
strual will then take place in their meaning component alone. The means to do
so will be delimited control. The main idea is to extend the lambda calculus
employed in Chapter 3 with control operators that allow to establish non-local
scope. Quantificational noun phrases and wh-expressions will be assigned a
denotation that exploits this means.

This chapter follows the recent line of research that utilizes control flow
mechanisms for natural language semantics, see, e.g., de Groote ([32],[33]),
Barker [5], Shan [102], Barker & Shan [103], as well as Bernardi & Moortgat
[9] and Kiselyov [63].

First, we will look at the standard way to treat quantificational noun phrases
and the problems it poses for the syntax/semantics interface. Then we will be-
come acquainted with the notions of evaluation order and delimited control
and show how they can be used to establish non-local scope. This will in-
clude an account of different scope behaviors as well as scope ambiguities. The
same mechanism can then be used for the scope of displaced and in situ wh-



92 A semantic procedure for scope construal 5

expressions. In the end, we will look at predictions this makes with respect to
scope islands and scopal interactions.

Since we take wh-expressions and quantificational noun phrases to denote
operators, we start by adding operators to our calculus.

5.1 Operator scope

So far we only considered noun phrases that denote individuals, i.e. entities of
type e. But for quantificational noun phrases like someone, every goddess and
no human, we cannot use denotations of type e, for those expressions do not
denote particular individuals. Instead, we will follow the Montagovian tradition
of assuming them to denote generalized quantifiers of type (e → t) → t, i.e.
functions that take a predicate as argument and state that this predicate is
true for some human, for every goddess, or the like.

For representing the denotation of quantificational noun phrases, we use the
well-known operators ∃ and ∀ from predicate logic. For wh-phrases like who
and which king, on the other hand, we introduce a new operator that we write
as W. These operators are added as second-order predicate constants to our
language. We therefor define the following abbreviations:

• ∃x.E is shorthand for (∃ λx.E).

• ∀x.E is shorthand for (∀ λx.E).

• Wx.E is shorthand for (W λx.E).

All these operators are treated as variable binding operators. We say, for
example, that in ∃x.(immortal x), the variable x is bound by ∃. The role of
these operators is to express quantificational force. For the familiar ∃ and ∀
this is existential and universal force, respectively. That is, an expression like
∃x.(immortal x) is to be understood as stating that filling the position named
by x with all possible instantiations will yield at least once a true statement.
So ∃ applies to a first-order predicate and states that for some entity in the
universe, this predicate is true. The expression ∀x.(immortal x) states that
filling the position named by x with all possible instantiations will always yield
a true statement. So ∀ applies to a first-order predicate and states that it is
true for all entities of the universe. Both operators differ with respect to the
way in which the final truth-value depends on filling the argument position x,
but the way they bind this variable is the same.

Now what about the interpretation of the operator W? While ∀x.E and
∃x.E are of type t, we want Wx.E to have a different type, for questions
are not true or false. Rather, a formula of form Wx.E is intended to ask
for all instantiations of x for which E is true. This complies with the most
well-known approaches to the semantics of interrogatives. One of them, going
back to Hamblin [46] and Karttunen [58], assumes that a question denotes the
set of all possible (or true) answers. Another one goes back to Higginbotham



5.1 Operator scope 93

& May [52] and Groenendijk & Stokhof [45] and is based on the intuition
that the meaning of a question is a partition of the logical space into those
possibilities that can serve as an answer. Questions would then, for example,
be equivalence classes of possible worlds. For our explorations, however, the
actual denotation of a question does not matter. Since we are only interested in
how the scope of a wh-operator is established, we will therefore not subscribe
to a particular theory of question semantics but rather use an unanalyzed type
q as the type of expressions of the form Wx.E. You can imagine this type q to
be an abbreviation for your favorite question type.

Now that we introduced the scope-taking operators, let us specify the notion
of logical scope. It is actually analogous to the notion we had in Section 2.3.
The scope of an operator is that part of an expression over which the operator
can have a semantic effect. In ∀x.E (and ∃x.E and Wx.E analogously), the
operator ∀ takes scope over E. For example, in the expression

(angry enki) ∧ ∀x.(doomed x),

the scope of the operator ∀ is (doomed x). In this subexpression, it binds x.
Now let us put the operators to use and turn to meaning assignments for

noun phrases that do not denote simple individuals. For example, we want to
assign the meaning in (5.39b) to the sentence (5.39a).

(5.39) a. Gilgamesh rejected every goddess.

b. ∀x.(goddess x)⇒ ((reject x) gilgamesh)

Let us first look at the generalized quantifier denotations that determiners and
quantificational noun phrases are usually associated with:

Form Meaning

everyone :: NP λQ.∀x.(person x)⇒ (Q x) :: (e→ t)→ t
someone :: NP λQ.∃x.(person x) ∧ (Q x) :: (e→ t)→ t
every :: N→ NP λPλQ.∀x.(P x)⇒ (Q x) :: (e→ t)→ ((e→ t)→ t)
some :: N→ NP λPλQ.∃x.(P x) ∧ (Q x) :: (e→ t)→ ((e→ t)→ t)

The first problem we encounter is that these denotations do not satisfy the
mapping ◦ from syntactic to semantic types specified in Definition 2 on page
45. According to this mapping, a syntactic expression of type NP should be
paired with a semantic expression of type e, and a syntactic expression of type
N → NP should be paired with a semantic expression of type (e → t) → t.
The mapping ◦ ensured that if the syntactic combination of two expressions is
well-typed, then their semantic combination is well-typed too. With the above
denotations for determiners and quantificational noun phrases we give up ◦ and
instantly lose this well-typedness result. For example, building the derivation
tree for (5.39a) succeeds syntactically but fails on the semantic side.



94 A semantic procedure for scope construal 5

(5.40) Gilgamesh rejected every goddess :: VP

rejected every goddess :: NP< → VP

rejected :: NP→ (NP< → VP)
reject :: e→ (e→ t)

every goddess :: NP
λQ.∀x.(goddess x)⇒ (Q x) :: (e→ t)→ t

every :: N→ NP
λPλQ.∀x.(P x)⇒ (Q x)
:: (e→ t)→ ((e→ t)→ t)

goddess :: N
goddess :: e→ t

Gilgamesh :: NP
gilgamesh :: e

Building the semantic expression for rejected every goddess does not succeed
because a type error occurs when merging the verb with its object. The latter
is a quantificational noun phrase of type (e → t) → t (the usual type of a
generalized quantifier), while the verb is of type e → (e → t), i.e. wants an
argument of type e, not of type (e→ t)→ t. This clash is due to the two roles
that quantificational noun phrases play in a derivation. First, they contribute
to the argument structure of the verb they are merged with by filling one of its
argument positions. That is, locally they behave like an individual of type e.
And second, they take logical scope over the bigger constituent they occur in.
That is, non-locally they behave like quantifiers of type (e→ t)→ t.

There are several ways to reconcile the local contribution of quantifictional
noun phrases with their non-local scope assignment. We already mentioned
some of them in Chapter 2. Another very straightforward one is the flexible
types approach by Hendriks ([50],[51]), which offers type-shifting operations
that can, for example, shift the type of the verb in order to make it fit its
arguments. In our example Gilgamesh rejected every goddess, the verb rejected
would be lifted to type ((e→ t)→ t)→ (e→ t) in order to take a generalized
quantifiers as its first argument and an entity denoting noun phrase as its second
argument. The Montagovian tradition usually goes a less flexible way refered
to as ‘generalization to the worst case’: All noun phrases are uniformly assigned
one type, and since this cannot be e, they are all assumed to be generalized
quantifiers of type (e → t) → t. The most prominent approach in this vein
involves LF movement of the quantifiers to their scope position (recall Section
2.5.3). For our example, this can be depicted as in (5.41). The quantificational
noun phrase every goddess is extracted from its original position, leaving behind
a gap that is interpreted as a variable, which is then abstracted over when the
noun phrase is remerged at the top (the details do not need to concern us here).
There it has the right type to take the verb phrase denotation as an argument.



5.2 Delimited control 95

(5.41) ∀x.(goddess x)⇒ ((reject x) gilgamesh) :: t

every goddess
λQ.∀x.(goddess x)⇒ (Q x)

:: (e→ t)→ t

λz.((reject z) gilgamesh) :: e→ t

1
λz

Gilgamesh rejected 1 :: VP
((reject z) gilgamesh) :: t

rejected 1 :: NP< → VP
(reject z) :: e→ t

rejected :: NP→ (NP< → VP)
reject :: e→ (e→ t)

1

z

Gilgamesh :: NP
gilgamesh :: e

The very same effect is achieved by Montague’s rule of Quantifying In and
the storage mechanisms we mentioned in Chapter 2. They all share the general
idea that an operator expression takes scope by being applied to the sentence
denotation where its original argument position is abstracted over. In the
next section, we will look at this strategy from the perspective of evaluating
expressions. This will pave the way for introducing the tools relevant in the
rest of the chapter.

5.2 Delimited control

Recall the lambda calculus from Chapter 3 employed for the meaning dimension
of expressions. The main rewriting rule of the operational semantics was beta-
reduction. Its application was not restricted in any way, that is, when there
is more than one possible beta-reduction that can be performed on a given
expression, all of them are allowed. Consider the following example:

(5.42) (λp.((know p) enki) (λP.∃x.(P x) unicorn))

There are two possibilities to reduce this expression. We can start by applying
λP.∃x.(P x) to unicorn, and then feed the result to λp.((know p) enki). We
can also start by applying λp.((know p) enki) to the unreduced expression
(λP.∃x.(P x) unicorn). Which order we chose does not make a difference; both
result in ((know ∃x.(unicorn x)) enki).

We can be more explicit about which reduction is applied by talking about
the contexts in which we apply a certain rule, so-called evaluation contexts. An
evaluation context is a meta expression representing a family of expression with
a special variable called hole, usually written as [ ]. The hole indicates the part



96 A semantic procedure for scope construal 5

of an expression that may be subject to rule application. So the context can be
seen as the focus of the rule that is going to be performed next. For example,
in the expression (5.42) above, the reduction of (λP.∃x.(P x) unicorn) takes
place in following context:

(λp.((know p) enki) [ ])

Why is it useful to be able to express this? There are two things we can
do with evaluation contexts once we can talk about them explicitly. First, we
can restrict them as to allow rule applications only in some contexts but not in
others. And second, we can manipulate them. We will need both in the next
section, so let us look at them in turn.

Let us start with restricting rule applications to certain evaluation contexts.
As an example, recall the rule for beta-reduction:

((λx.E1) E2) B E1{x 7→ E2}

It describes the computation step of reducing an expression, independent of
any context. That is, wherever the expression ((λx.E1) E2) occurs in another
expression, we can rewrite it as E1{x 7→ E2}. Now consider we do not want to
allow beta-reduction in all contexts. One way to restrict it is, for example, by
specifying it as follows, where V stands for values of the language (constants,
variables, and abstractions, but no applications):

((λx.E) V ) B E{x 7→ V }

This rule now only applies to applications where the argument is a value, i.e.
an unreducible expression. So in our example,

(λp.((know p) enki) (λP.∃x.(P x) unicorn)),

we can no longer substitute the unreduced expression (λP.∃x.(P x) unicorn)
for p. This we can do only once we reduced it to the value ∃x.(unicorn x). We
therefore enforce an order of reductions. This particular one is called call-by-
value, because functions can be applied only to values.

And there is another way to restrict evaluation contexts. Consider the
following expression:

((λP.P wise) (λx.x enki))

Although we specified call-by-value evaluation, we have two possibilities to
proceed here: either first reduce (λP.P wise), or first reduce (λx.x enki). Let
us say we want to fix the order of reductions such that they operate from left
to right. We can do so by means of context rules, which have the general form:

If E B E′, then C[E] B C[E′].

This expresses that if E reduces to E′, then we can rewrite E as E′ in context
C. For instance, specifying the context as application, we could have a context
rule of the following form:

If E B E′, then (V E) B (V E′).



5.2 Delimited control 97

It expresses that if an expression E reduces to E′, then we may rewrite the
former as the latter in the argument of an application if the applicand is already
a value (i.e. a non-reducible expression). A more compact way of representing
this rule is by means of the evaluation context (V [ ]). Thus, imagine we want
to allow beta-reduction for arguments only if the applicand is non-reducible,
then we would specify the rule for beta-reduction like this:

(V (λx.E1 E2)) B (V E1{x 7→ E2})

Since this is not very clear and since we would have to define a separate rule
for all contexts we want to allow, we rather specify the admissible evaluation
contexts C by means of a grammar like the following:

C ::= [ ] | (V C) | (C E)

It specifies that holes can occur as arguments of applications when the appli-
cand is a value, and as applicands of applications regardless of the argument.
Now we formulate the rule for beta-reduction with respect to such contexts C:

C[(λx.E1 E2)] B C[E1{x 7→ E2}]

This way we not only provide a computational rule that specifies how to rewrite
expressions but we also fix the contexts in which this rule can be applied.
This determines that ([ ] (λx.x enki)) is a valid evaluation context for beta-
reduction (because we can generate it with the grammar for C), therefore we
can beta-reduce whatever expression occurs in the position indicated by the
hole, whereas ((λP.P wise) [ ])) is not a valid evaluation context for beta-
reduction, because the hole occurs in the applicand of an application (i.e. we
cannot generate the context with the grammar for C). So when reducing the
expression ((λP.P wise) (λx.x enki)), we first have to reduce the left applica-
tion, because the right one would take place in an illicit context. We succeeded
in fixing a left-to-right order of evaluation.

Now let us turn to the possibility of manipulating evaluation contexts. To
see why this is useful and how it can be done, recall the example in (5.40) above:
Gilgamesh rejected every goddess. We encountered a type mismatch when trying
to apply the verb denotation of type e → (e → t) to the object noun phrase
denotation of type (e→ t)→ t. The corresponding semantic expression is the
following:

(reject λP.∀x.(goddess x)⇒ (P x))

The idea of Quantifying In amounts to transforming this expression into the
following one:

(λP.∀x.(goddess x)⇒ (P x) λz.(reject z))

To see how to get there, let us first look at the original term from the perspective
of the object noun phrase. The evaluation context of that noun phrase is



98 A semantic procedure for scope construal 5

(reject [ ]). If we write it as a lambda expression, it corresponds to λz.(reject z).
The next step then is to apply the denotation of the object noun phrase to this
reified evaluation context. So the gist of the Quantifying In strategy is to pull
the noun phrase denotation out of its context and apply it to it. Note that this
manipulates the evaluation context of the noun phrase because it no longer is
the initial (reject [ ]) but a new one, namely ([ ] λz.(reject z)). In a way, we
endow the noun phrase with control over its evaluation context, for it is now
able to take scope over it.

In order to make this manipulation of the evaluation context explicit, two
things need to be specified. First, we need to formulate the computational
rule that allows an expression to take control over its context. And second, we
need to delimit the context it can control. This is important for imagine an
expression E (e.g. a generalized quantifier) occurs in the following expression:

((know (die E)) gilgamesh)

There are several evaluation contexts that can be considered:

• (die [ ])

• (know (die [ ]))

• ((know (die [ ])) gilgamesh)

The next section will be dedicated to explicating the mechanism that en-
ables expressions to take control over a delimited context, for short: the mech-
anism of delimited control, and to incorporate it into the meaning dimension of
the grammar. The tool that theoretical computer science knows for accessing
and manipulating evaluation contexts are control operators, such as control
(cf. Feilleisen [39]) and shift (cf. Danvy & Filinski [30]). They are members
of a family of delimited control operators and have, in fact, the same expressive
power (see the interdefinability results of Shan [101] and Kiselyov [62]). They
come with delimiters called prompt and reset, that delimit the context that
is accessed.

In this chapter, I will employ shift as a meaning component of quantifica-
tional noun phrases and wh-phrases, in order to let them capture and modify
(in particular take scope over) their evaluation contexts. This builds mainly on
work by Barker and Shan; I will draw connections in Section 5.7 below. The
reason to chose shift over control is its static scoping (as opposed to the
dynamic scoping of control). We will see what this means in the next section.

Let us first have a look at how delimited control works in general. We will
write shift as ξ and reset as 〈 〉. More specifically, we will employ expres-
sions of the form ξk.E and 〈E〉. The reduction rule for expressions ξk.E will
specify an operation over the evaluation context: The context up to the nearest
enclosing reset is captured, reified as a function and bound to k. To illustrate
this, consider the following arithmetic expression:

6 + 〈4 + ξk.((k 2)× (k 7))〉



5.3 Extending the meaning dimension 99

The context that will be captured is the one enclosing the ξ-expression up to
the reset, i.e. 4 + [ ]. This is reified as a function, λx.4 +x, and substituted for
all occurrences of the variable k. The binder ξk is removed and the result is:

6 + ((λx.4 + x) 2)× ((λx.4 + x) 7)

Applying beta-reduction, it evaluates to:

6 + (4 + 2)× (4 + 7)

We can treat our type mismatch example from above in the same way. So
consider again applying the denotation of the verb rejected to the generalized
quantifier denotation of the object noun phrase every goddess, this time with
shift and reset inserted:

〈(reject ξk.∀x.(goddess x)⇒ (k x))〉

The context that shift captures is the evaluation context of the generalized
quantifier, i.e. (reject [ ]). This is abstracted as a function and substituted
for all occurrences of k. The result is 〈∀x.(goddess x) ⇒ (λz.(reject z) x)〉.
Finally, we apply beta-reduction, remove the outermost reset, and arrive at the
expression ∀x.(goddess x)⇒ (reject x). So, although the generalized quantifier
started out as the argument of the predicate reject , it ended up taking scope
over it. For that it is crucial that k occurred below ∀, i.e. inside its scope. This
way the context is plugged into the scope of the operator.

5.3 Extending the meaning dimension

Now we make the mechanism of control transfer fully explicit. To this end,
the lambda calculus for semantic expressions from Chapter 3 is extended with
a control operator ξ (shift) and a corresponding delimiter 〈 〉 (reset). In order
to encode control transfers in the type of expressions, the type inventory is
enriched with a type τβα . It will be explained shortly. Furthermore, another
basic type q for questions is added.

Definition 11. The set of semantic types is given as follows:

Type ::= e (entities)
| t (truth-values)
| q (questions)
| Type→ Type (functions)
| TypeType

Type (impure expressions)



100 A semantic procedure for scope construal 5

We call e, t atomic types, and t, q result types. In the course of this chapter,
we will use Greek letters τ, α, β, γ, δ as variables ranging over arbitrary types,
and the variable r to range over result types.

In place of the typed expressions Meaning from Chapter 3, we now de-
fine typed expressions E, which additionally comprise logical constants like
negation, conjunction and the second-order predicates ∃,W, as well as control
operators shift and reset.

Definition 12. Typed expressions E are defined as follows, where c is a variable
ranging over the non-logical constants of the language.

E ::= c :: τ (non-logical constants)
| x :: τ (variables)
| ∃ :: (e→ t)→ t (existential quantification)
| W :: (e→ t)→ q (question operator)
| ¬ :: t→ t (negation)
| ∧ :: t→ (t→ t) (conjunction)
| (λx :: τ ′.E :: τ) :: τ ′ → τ (abstraction)
| (E :: τ ′ → τ E :: τ ′) :: τ (application)
| (ξk :: τ → α.E :: β) :: τβα (shift)
| 〈E :: τ〉 :: τ (reset)

The non-logical constants c include predicate constants such as gilgamesh :: e,
king :: e→ t, brave :: e→ t, suffer :: e→ t, like :: e→ (e→ t), and so on. Logi-
cal constants comprise the operators ∃ and W, the connectives ¬ and ∧, and
the control operator ξ (more on it in a minute). With respect to types, we
specified ∃ and W to be second-order predicates, ¬ to be a unary predicate
over type t and ∧ to be a binary predicate over type t. As already mentioned
in the beginning of the chapter, we will abbreviate (∃ λx.E) as ∃x.E (and
analogously for W). Furthermore, we write (¬ E) as ¬E and use the conjunc-
tion connective as an infix operator, i.e. we will not write ((∧ E1) E2) but
the familiar E1 ∧ E2. Furthermore, it is convenient to define implication and
universal quantification in the usual way:

E1 ⇒ E2 =def ¬(E1 ∧ ¬E2)
∀x.E =def ¬∃x.¬E

We will call expressions in E impure if they contain one or more shifts, and
we will call them pure if they do not.

Now let us examine the shift a bit closer. It is a variable binding operator
that binds a function variable of type (τ → α) (for which we use k, in order to
distinguish it from other variables) in an expression of type β, thereby yielding
an expression of type τβα . This new type τβα (taken from Shan [99]) expresses



5.3 Extending the meaning dimension 101

that the expression carrying this type occurs in a position of type τ , thus locally
it behaves like an expression of type τ . Moreover it induces a control transfer,
which requires the captured context to be of type α (so that abstracting over
the expression’s original position forms a reified context of type τ → α). Once
this context is captured, an expression of type β is created.

For example, a generalized quantifier, standardly assumed to be of type
(e → t) → t, will have the type ett. This means that it locally behaves like
an e and moreover captures a context of type t (e.g. a sentence), yielding an
expression of type t again. Similarly for wh-phrases: They will be of type eqt .
Thus they locally also behave like an e and capture a context of type t. The
difference is that they do not return an expression of type t again but one of
type q. That is, they transform a declarative sentence into an interrogative
sentence. How exactly this works, we will see soon.

To complete the type system, we finally specify how impure types distribute
over pure types. The two typing rules express that application can happen in-
dependent of whether the involved expressions are pure or impure; the encoding
of the control effect is simply inherited.

E1 :: τ → τ ′ E2 :: τβα
(E1 E2) :: τ ′βα

E1 :: (τ → τ ′)βα E2 :: τ

(E1 E2) :: τ ′βα

Next we define evaluation contexts. As informally explained in the previous
section, they are expressions with a hole [ ]. Actually, for the fragment we will
build, it suffices to consider applications.

Definition 13. Evaluation contexts D and C are defined as follows:

D ::= [ ] | (E D) | (D E)
C ::= D | 〈C〉

This definition distinguishes two kinds of contexts: A context D does not
contain any resets and is called subcontext or delimited evaluation context. A
context C, on the other hand, is an arbitrary evaluation context in the sense
that it can contain any number of resets. In the following, I will write C[E] for
the context C where the expression E was plugged in the hole.

The operational semantics for the calculus given in Definition 12 is now
assumed to specify the usual eta- and beta-reduction as given on page 45 of
Chapter 3. They are not repeated here; important is only that since they do not
mention any evaluation contexts, they are not restricted, thus can be applied



102 A semantic procedure for scope construal 5

in any context. Additionally, the operational semantics specifies the following
reduction rules for the control operators, where E,E1, E2 are variables for ar-
bitrary expressions E, and F is a variable for pure expressions (i.e. expressions
not containing any shift).

C[〈D[ξk.E]〉] B C[〈E{k 7→ λx.〈D[x]〉}〉]
〈F 〉B F

Let us start with the second rule for reset. It states that a reset can be
deleted if it surrounds a pure expression, i.e. an expression without any shifts.
This is obvious because in that case the delimiter is not needed anymore. The
rule does not specify an evaluation context, thus can be applied in all contexts.
The first rule for shift, on the other hand, does mention an evaluation context.
It may be applied in any context C that contains some subcontext enclosed
by a reset. This is the context required for reduction of the ξ-expression as we
described it informally in the last section. It proceeds as follows. The context
up to the nearest enclosing reset, which is D, is captured, reified as a function,
namely λx.D[x], and substituted for all occurrences of k in E.

The rewriting rule for shift thus provides expressions with access to their
evaluation context. The expressions of our fragment that will be granted such
access are noun phrase denotations. By assuming these denotations to be
impure expressions, they will be able to take scope over the expression in which
they occur. As a consequence, an expression does not need to be displaced in
order to establish non-local scope; delimited control does the work for us.

There are a few important things to note about the reduction rule for shift.
First, note that if ξk.E is of type τβα , then the captured context D has to be
of type α. Otherwise substitution of the reified context λx.〈D[x]〉 yields an
expression that is not well-typed. Also note that the reduction rule rewrites
the whole expression of some type τ ′βα into an expression of type β.

Second, the enclosing delimiter gets reinstalled instead of being deleted.
Why is that necessary? Suppose we have another shift inside E, which is
delimited by exactly the same reset. If we deleted the reset upon reducing one
shift, we would thereby remove the delimiter of the other shift, which could
then capture a much wider context than it is supposed to.

Third, the continuation D[x] gets wrapped in an additional delimiter. This
serves to prevent another shift inside D to capture a context spanning wider
than D, for example also capturing E. This scoping is called static, as opposed
to dynamic scoping , which differs in not introducing a new delimiter around
D[x]. We will rely on this for preventing certain quantifiers from outscoping
others.

Before turning to the treatment of quantificational noun phrases, let us
reconsider the mapping ◦ between syntactic and semantic types from Chapter



5.4 Extending the meaning dimension 103

3 (defined in Definition 2 on page 45) in the light of the new semantic types
that were introduced in this section. The main point is that ◦ cannot relate
anymore one syntactic type to exactly one semantic type. This is because
semantic types encode information that are not present in the syntactic types,
namely control effects in the meaning dimension, which have no counterpart
in the form dimension. For example, in Chapter 2, the syntactic category NP
was mapped to the semantic type e. Now it could also be mapped to type ett,
since the noun phrase denotation could induce a control transfer. Therefore,
we now take ◦ to be a mapping from categories to sets of semantic types. Its
core idea, however, stays exactly the same.

Here is some new notation we need: I will write [τ ] for the set of types τ
with an arbitrary amount of control effects encoded. That is, formally, [τ ] is
the minimal set of types satisfying the following two conditions:

• τ ∈ [τ ]

• If τ ′ ∈ [τ ], then also τ ′βα ∈ [τ ].

Now let us turn to the revised definition of the mapping ◦.

Definition 14. We assume a mapping ◦ from syntactic types to sets of se-
mantic types, such that:

NP ◦ = [e]
N ◦ = [[e]→ [t]]

VP ◦ = [t]
CP ◦ = [r]

(c<)◦ = [c◦]
(c1 → c2)◦ = [c◦1 → c◦2]

For example, the category NP is related to the set containing e, ett, and so
on, the category CP is related to the set of result types t and q, possibly with
control effects (i.e. ttt, t

q
t , and so on), and the category N is related to the set

containing e→ t, (e→ t)tt, e→ tqt , and the like.
Note that if we disregarded all control effects, the mapping ◦ would be

exactly like it was defined in Chapter 3. This reflects the way impure types τβα
are devised. The information encoded by β

α determines the expression’s non-
local behaviour, i.e. its behavior with respect to the reduction rule for shift.
The information encoded by τ , on the other hand, encodes the expression’s
local behavior, i.e. its behavior with respect to functional application. Thus
for the operation of the base grammar (merging expressions) only τ matters.



104 A semantic procedure for scope construal 5

5.4 Quantificational noun phrases

Now let us look at how to use the control operator ξ to establish non-local
scope of quantificational noun phrases. We will start with strong quantifiers
like every and the scope ambiguities they give rise to, and after that, turn
to weak quantifiers, which seem to not allow ambiguities (cf. Section 2.3).
I show how the delimited control mechanism can account for their behavior
by adjusting the evaluation contexts in which the reduction rule for shift can
apply. After that, I demonstrate how the same strategy can be used to capture
exceptional wide scope as well.

5.4.1 Strong quantifiers

Let us start with a particular example, say the quantificational noun phrase
everyone. It will be assigned the following denotation:

ξk.∀x.(person x)⇒ (k x)

Recall the generalized quantifier denotation that is usually assumed:

λP.∀x.(person x)⇒ (P x)

So we changed only a small yet important detail: replacing the binder λ by
ξ. As a consequence, the operator ∀ is provided with access to its evaluation
context, while the generalized quantifier denotation itself is in fact retained.

Let us look at the types. The generalized quantifier is of type (e→ t)→ t.
It expects a predicate into which it can be inserted as argument. In the case of
everyone, it expects a predicate and fills its argument position with a universally
bound variable, thereby yielding a sentence of type t. So if we have a sentence
like The flood killed everyone, due to a type mismatch, the verb denotation
cannot be applied to the denotation of everyone, nor the other way around.
(We saw that in Section 5.1 above.) Rather we would need to apply everyone
to the whole sentence denotation, where the argument position of everyone was
abstracted over:

∀x.(person x)⇒ ((kill x) the flood) :: t

everyone1

λP.∀x.(person x)⇒ (P x)
:: (e→ t)→ t

the flood killed 1

λz.((kill z) the flood)
:: e→ t

Our new denotation using ξ instead of λ, on the other hand, is of type ett. It will
locally behave like an expression of type e, i.e. the verb denotation can take it
as an argument just like every other noun phrase of type e. This is because the
variable x is actually all that will remain in that argument position once the



5.4 Quantificational noun phrases 105

reduction rule for shift was applied. The rest, i.e. the quantificational part, will
be enabled to take scope over the rest of the expression. There it will behave
like a generalized quantifier of type (e→ t)→ t.

A derivation for the sentence The flood killed everyone will proceed by simply
merging the verb killed with the object noun phrase everyone and after that
with the subject noun phrase the flood. No displacement is involved and the
semantic dimension will simply amount to functional application. Assume, for
the sake of simplicity, that the denotation of the flood is some entity of type e.
Then the derivation tree looks as follows:

the flood killed everyone :: VP
((kill (ξk.∀x.(person x)⇒ (k x))) the flood) :: ttt

the flood :: NP
the flood :: e

killed everyone :: NP< → VP
(kill (ξk.∀x.(person x)⇒ (k x))) :: (e→ t)tt

killed :: NP→ (NP< → VP)
kill :: e→ (e→ t)

everyone :: NP
ξk.∀x.(person x)⇒ (k x) :: ett

Suppose we wrap the semantic expression at the top in a delimiter:

〈 ((kill (ξk.∀x.(person x)⇒ (k x))) the flood) 〉

Then we can apply the reduction rules for shift and reset and arrive at the
desired expression of type t:

∀x.(person x)⇒ ((kill x) the flood)

This way, the two roles everyone has to play are reconciled: upon merge it
serves as an argument of type e, and upon evaluating the resulting semantic
expression it takes logical scope over the whole expression.

And this is exactly how derivations will proceed in this chapter.
Figure 5.1 gives the denotations we assume for everyone and someone and the

corresponding determiners every and some. They are exactly like the familiar
denotations on page 93, with the only difference that we use ξ instead of λ
as the variable binder. Also note that they satisfy the mapping ◦ between
syntactic and semantic types from Definition 14 on page 103 above.

Now we still need to introduce a reset into the derivation, that delimits
the context that noun phrases can take scope over. Here I assume that the
complementizer introduces this reset, because since CP is the designated cat-
egory, it should be associated with an interpretation that has no unfinished
business like not yet executed control transfers. (In Section 5.6, we will look at
alternatives.) Furthermore, this ensures that scope construal takes place at the



106 A semantic procedure for scope construal 5

Form Meaning

everyone :: NP ξk.∀x.(person x)→ (k x) :: ett
someone :: NP ξk.∃x.(person x) ∧ (k x) :: ett
every :: N→ NP λPξk.∀x.(P x)→ (k x) :: (e→ t)→ ett
some :: N→ NP λPξk.∃x.(P x) ∧ (k x) :: (e→ t)→ ett

Figure 5.1: Lexical entries for the quantificational noun phrases everyone and
someone, and the corresponding determiners every and some.

sentence level. An immediate consequence of the fact that a shift always cap-
tures the context up to the nearest enclosing delimiter is that quantificational
noun phrases occurring in some clause can take scope only over this clause. We
will see this later in this section. (I will consider indefinites, which are known
to be able to take much wider scope, in Section 5.4.3 below.)

Complementizers are of category VP → CP, like in our example grammar
at the end of Chapter 3. The corresponding type is t → t. For the sake
of completeness, we do not only include that and the empty complementizer,
which return a declarative sentence of type t, but also add a complementizer
whether returning an interrogative sentence. However, we will not use it before
Section 5.5.

Form Meaning

that :: VP→ CP λp.〈p〉 :: t→ t
ε :: VP→ CP λp.〈p〉 :: t→ t
whether :: VP→ CP λp.〈p〉 :: t→ q

Figure 5.2: Lexical entries for the complementizers that and whether.

Let us walk through some examples. First consider a simple sentence con-
taining only one quantificational noun phrase:

(5.43) Ishtar admires some human.

The derivation tree is given in Figure 5.3. The semantic expression that is
constructed is the following:

〈 ((admire ξk.∃x.(human x) ∧ (k x)) ishtar) 〉

According to our operational semantics, it reduces like follows. First, the shift
captures the context up to the nearest enclosing reset, which is:

((admire [ ]) ishtar)



Figure 5.3: Derivation tree for Ishtar admires some human.

Ishtar admires some human :: CP
〈 ((admire ξk.∃x.(human x) ∧ (k x)) ishtar) 〉 :: ttt

ε :: VP→ CP
λp.〈p〉 :: t→ t

Ishtar admires some human :: VP
((admire ξk.∃x.(human x) ∧ (k x)) ishtar) :: ttt

admires some human :: NP< → VP
(admire ξk.∃x.(human x) ∧ (k x)) :: (e→ t)tt

admires :: NP→ (NP< → VP)
admire :: e→ (e→ t)

some human :: NP
ξk.∃x.(human x) ∧ (k x) :: ett

some :: N→ NP
λP.ξk.∃x.(P x) ∧ (k x) :: (e→ t)→ ett

human :: N
human :: e→ t

Ishtar :: NP
ishtar :: e



108 A semantic procedure for scope construal 5

Then this context is enclosed by an additional reset and reified as a function,
which amounts to λz.〈 ((admire z) ishtar) 〉. Next, this function is substituted
for k in the expression ∃x.(human x) ∧ (k x). We thus arrive at:

〈 ∃x.(human x) ∧ (λz.〈 ((admire z) ishtar) 〉 x) 〉

Applying beta-reduction, this reduces to 〈 ∃x.(human x)∧〈 ((admire x) ishtar) 〉〉.
Finally we can get rid of the resets because they enclose pure expressions with-
out any further shifts. We thereby arrive at the semantic expression for (5.43)
that we aimed for: ∃x.(human x) ∧ ((admire x) ishtar).

Next, let us consider an example with two quantificational noun phrases:

(5.44) Every goddess admires some human.

The NP every goddess is built by merging the determiner with the noun:

every goddess :: NP
ξk.∀y.(goddess y)⇒ (k y) :: ett

every :: N→ NP
λP.ξk.∀y.(P y)⇒ (k y) :: (e→ t)→ ett

goddess :: N
goddess :: e→ t

The NP some human is built analogously:

some human :: NP
ξk.∃x.(human x) ∧ (k x) :: ett

some :: N→ NP
λP.ξk.∃x.(P x) ∧ (k x) :: (e→ t)→ ett

human :: N
human :: e→ t

The derivation tree for the whole sentence is given in Figure 5.4. The final
semantic expression at the top node is the application of the predicate admire
to the denotation of some human and the denotation of every goddess, enclosed
by a reset:

〈 ((admire ξk.∃x.(human x) ∧ (k x)) ξk.∀x.(goddess x)⇒ (k x)) 〉

Since we did not restrict the application of the reduction rule for shift in appli-
cations, there are two ways to reduce this expression. One is to first reduce the
shift introduced by every goddess and only afterwards reduce the shift intro-
duced by some human. This way, the universal quantifier captures the context
first and takes scope over it, enclosing this context with a new reset. Inside that
context we still have the existential quantifier. It then captures that context
up to the new delimiter and thus takes scope below the universal quantifier.



F
ig

ur
e

5.
4:

D
er

iv
at

io
n

tr
ee

fo
r

E
ve

ry
go

d
d

es
s

ad
m

ir
es

so
m

e
h

u
m

an
.

ev
er

y
go

d
d

es
s

ad
m

ir
es

so
m

e
h

u
m

an
::

C
P

〈(
(a

dm
ir

e
ξk
.∃
x
.(

hu
m

an
x

)
∧

(k
x

))
ξk
.∀
x
.(

go
dd

es
s
x

)
⇒

(k
x

))
〉:

:(
tt t

)t t

ε
::

V
P
→

C
P

λ
p
.〈p
〉:

:t
→
t

ev
er

y
go

d
d

es
s

ad
m

ir
es

so
m

e
h

u
m

an
::

V
P

((
ad

m
ir

e
ξk
.∃
x
.(

hu
m

an
x

)
∧

(k
x

))
ξk
.∀
y
.(

go
dd

es
s
y
)
⇒

(k
y
))

::
(t
t t
)t t

ad
m

ir
es

so
m

e
h

u
m

an
::

N
P
<
→

V
P

(a
dm

ir
e
ξk
.∃
x
.(

hu
m

an
x

)
∧

(k
x

))
::

(e
→
t)
t t

ad
m

ir
es

::
N

P
→

(N
P
<
→

V
P

)
ad

m
ir

e
::
e
→

(e
→
t)

so
m

e
h

u
m

an
::

N
P

ξk
.∃
x
.(

hu
m

an
x

)
∧

(k
x

):
:e
t t

ev
er

y
go

d
d

es
s
::

N
P

ξk
.∀
y
.(

go
dd

es
s
y
)
⇒

(k
y
):

:e
t t



110 A semantic procedure for scope construal 5

Thereby we derive the linear scope reading where the every goddess takes scope
over some human. Here is how the reduction proceeds:

〈 ((admire ξk.∃x.(human x) ∧ (k x)) ξk.∀y.(goddess y)⇒ (k y)) 〉
B 〈 ∀y.(goddess y)⇒ (λz.〈 ((admire ξk.∃x.(human x) ∧ (k x)) z) 〉 y) 〉
B 〈 ∀y.(goddess y)⇒ 〈 ((admire ξk.∃x.(human x) ∧ (k x)) y) 〉〉
B 〈 ∀y.(goddess y)⇒ 〈∃x.(human x) ∧ (λz.〈 ((admire z) y) 〉 x) 〉〉
B 〈 ∀y.(goddess y)⇒ 〈∃x.(human x) ∧ 〈 ((admire x) y) 〉〉〉
B ∀y.(goddess y)⇒ ∃x.(human x) ∧ ((admire x) y)

The second possibility is to reduce the quantifiers in the opposite order: first
reduce the shift expression introduced by some human, and after that reduce
the shift expression introduced by every goddess. This way, the existential
quantifier is the first to capture the context and the universal quantifier will
eventually be assigned scope below it. The result is the inverse scope reading,
where some human takes scope over every goddess. Here is how the reduction
proceeds:

〈 ((admire ξk.∃x.(human x) ∧ (k x)) ξk.∀y.(goddess y)⇒ (k y)) 〉
B 〈 ∃x.(human x) ∧ (λz.〈 ((admire z) ξk.∀y.(goddess y)⇒ (k y)) 〉 x) 〉
B 〈 ∃x.(human x) ∧ 〈 ((admire x) ξk.∀y.(goddess y)⇒ (k y)) 〉〉
B 〈 ∃x.(human x) ∧ 〈 ∀y.(goddess y)⇒ (λz.〈 ((admire x) z)) 〉 y) 〉〉
B 〈 ∃x.(human x) ∧ 〈 ∀y.(goddess y)⇒ 〈 ((admire x) y) 〉〉〉
B ∃x.(human x) ∧ ∀y.(goddess y)⇒ ((admire x) y)

So as long as no particular order of evaluation is fixed, all orders are licit.
For two quantifiers this leads to two possible orders which result in two differ-
ent scope readings. This correctly derives the observed scope ambiguity. And
of course this does not only work for a verb with two quantificational noun
phrases as arguments but more generally in all kinds of cases. Most impor-
tantly, quantifiers can take scope independent of the syntactic position they
occur in. (We will turn to restrictions on this below.) Let us consider one more
example, the sentence in (5.45).

(5.45) Someone from every city hates Gilgamesh.

Just like before, we have two quantifiers that take scope over the whole sentence,
and within this sentence both linear and inverse scope readings can be derived,
depending on which quantifier we evaluate first. The derivation proceeds like
in the examples above. To understand this, let us first assume a lexical entry
for the preposition from:

(from :: NP→ (NP< → NP), from :: e→ (e→ e))

It is merged with the NP every city, and the result is merged with the NP
someone. Both combinations are given in Figure 5.5. The resulting semantic



5.4 Quantificational noun phrases 111

from every city :: NP< → NP
(from ξk.∀x.(city x)→ (k x)) :: (e→ e)tt

from :: NP→ (NP< → NP)
from :: e→ (e→ e)

every city :: NP
ξk.∀x.(city x)→ (k x) :: ett

someone from every city :: NP
((from ξk.∀x.(city x)→ (k x)) ξk′.∃y.(person y) ∧ (k′ y)) :: ett

from every city :: NP< → NP
(from ξk.∀x.(city x)→ (k x)) :: (e→ e)tt

someone :: NP
ξk′.∃y.(person y) ∧ (k′ y) :: ett

Figure 5.5: Derivation trees for someone from every city.

expression is the following:

((from ξk.∀x.(city x)→ (k x)) ξk′.∃y.(person y) ∧ (k′ y)) :: ett

For better readability, I will abbreviate the bodies of the quantificational noun
phrases as Eperson and Ecity. The expression then reads like this:

((from ξk.∀x.Ecity) ξk′.∃y.Eperson) :: ett

The rest of the derivation tree, combining someone from every city with hates
Gilgamesh, is given in Figure 5.6. The resulting semantic expression is:

〈 ((hate gilgamesh) ((from ξk.∀x.Ecity) ξk′.∃y.Eperson)) 〉

It contains two ξ-expressions, so there are two possible ways to reduce the ex-
pression, depending on the order in which we reduce the two subexpressions.
The two possibilities result in two scope readings. If we first reduce the exis-
tential quantifier, then the existential quantifier will have wide scope, we thus
arrive at the linear scope reading (5.46a). If we first reduce the universal quan-
tifier, then the universal quantifier will have wide scope, i.e. we arrive at the
inverse scope reading (5.46b). I refrain from spelling out the reductions; they
proceed exactly parallel to the ones for (5.44) above.

(5.46) a. ∃y.(person y) ∧ ∀x.(city x)⇒ ((hate gilgamesh) ((from x) y))

b. ∀x.(city x)⇒ ∃y.(person y) ∧ ((hate gilgamesh) ((from x) y))



F
igure

5.6:
D

erivation
trees

for
S

om
eon

e
from

every
city

h
ates

G
ilgam

esh.

som
eon

e
from

every
city

h
ates

G
ilgam

esh
::C

P
〈((hate

gilgam
esh)

((from
ξk
.∀
x
.E

city )
ξk
′.∃
y
.E

p
erso

n ))〉
::(t

tt )
tt

ε::V
P
→

C
P

λ
p
.〈p〉::

t→
t

som
eon

e
from

every
city

h
ates

G
ilgam

esh
::V

P
((hate

gilgam
esh)

((from
ξk
.∀
x
.E

city )
ξk
′.∃
y
.E

p
erso

n ))::(t
tt )
tt

som
eon

e
from

every
city

::N
P

((from
ξk
.∀
x
.E

city )
ξk
′.∃
y
.E

p
erso

n )::(e
tt )
tt

h
ates

G
ilgam

esh
::N

P
<
→

V
P

λ
y
.((hate

gilgam
esh)

y)))::
e
→
t

h
ates::N

P
→

(N
P
<
→

V
P

)
hate

::
e
→

(e
→
t)

G
ilgam

esh
::N

P
gilgam

esh
::
e



5.4 Quantificational noun phrases 113

How would an approach using Quantifier Raising treat examples like (5.45)?
In order to derive the linear scope reading (5.46a), first the noun phrase every
city would have to be raised and then the remnant noun phrase someone from

1 would have to be raised to a higher position in order to take wide scope.
This, however, would leave the gap 1 unbound:

CP

[someone from 1]2

2

[every city]1
1 CP

2 hates Gilgamesh

May’s solution [75] is to conclude that noun phrases are scope islands, that is,
that the noun phrase every city can only raise inside the containing NP but not
any higher:

CP

NP2

every city1

1 someone from 1

2 CP

2 hates Gilgamesh

This requires some additional work to get the types right, but it seems natural
given that Quantifier Raising is extraction and NPs are usually extraction
islands (see (5.47)).

(5.47) a. ∗ [From where]1 did [someone 1] hate Gilgamesh?

b. ∗Where1 did [someone from 1] hate Gilgamesh?

The advantage of our approach (and similar approaches like Barker’s [5]) is
that it does not need any further assumptions or type shifting rules. Scope in
(5.45) is established exactly like in other sentences. This also extends to other
examples. For example, pied piping constructions like (5.48) can straightfor-
wardly get an interpretation in the same way as every other sentence containing
wh-phrases. (We did not yet see the denotation of wh-phrases but they will be
interpreted similar to quantificational noun phrases). Like with all other ex-
amples so far, the wh-expression does not need to escape its syntactic domain
in order to take semantic scope.



114 A semantic procedure for scope construal 5

(5.48) [The god of whose ancestors] did Shamhat pray to?

With all this freedom to establish scope, let us now look at restrictions.
First, we return to the clause boundedness of quantifiers, that we briefly men-
tioned when introducing the complementizer denotations. The quite robust
observation from Section 2.3 is that quantifiers can take scope only over the
clause they occur in, especially they cannot outscope quantifiers occurring in
a higher clause. This is illustrated in (5.49), which only has the linear scope
reading (5.49a) but not the inverse scope reading (5.49b).

(5.49) [CP1 Everyone knows [CP2 that Ishtar is angry with most humans]].

a. Every x knows that for most humans y, Ishtar is angry with y.

b. For most humans y, every x knows that Ishtar is angry with y.

In the account of scope construal sketched so far, this follows directly from
the fact that the complementizers involved in building both CPs introduce a
delimiter. For example in (5.49), most humans can capture the context only up
to the nearest enclosing reset, which is introduced by the embedded that. The
way we specified the evaluation contexts used in the reduction rule for shift,
there is no way to skip this reset. Hence most humans can take scope only
over CP2 but not over CP1. This captures that (5.49) does not have a reading
where most humans outscopes everyone.

Also, scope islands like relative clauses and complex NPs, as in (5.50a) and
(5.50b) respectively, are straightforward, because in both cases the quantifica-
tional noun phrase occurs inside a CP which delimits its scope.

(5.50) a. A beast [which slaughtered every sheep] was hunted down.

b. Anu heard the rumor [that every beast died].

Nevertheless, the theory of scope we have right now is both too permissive
and too restrictive. First, it is too permissive, because scope ambiguities do
not arise with all quantifiers. Recall from Chapter 2 that weak quantifiers such
as no human cannot outscope other quantifiers. And second, our treatment of
scope is too restrictive, because indefinites are extremely free in taking scope
at an arbitrarily high point in the structure. We will first focus on modelling
the behavior of weak quantifiers and turn to indefinites only in Section 5.4.3.

5.4.2 Weak quantifiers

Let us look at how we could restrict scope amibguities, such that weak quan-
tifiers cannot outscope other quantifiers but only derive linear scope readings.
What allowed us to derive scope amibiguities in the last section was that we did
not restrict evaluation contexts, i.e. we did not specify a certain order of evalu-
ation. For sentences with two quantifiers, there were two possibilities to reduce
it, depending on which quantifie is evaluated first. Those two possibilities gave



5.4 Quantificational noun phrases 115

rise to two readings. So fixing an evaluation order would leave only one of the
possibilities and rule out the other one. This is done by specifying a slightly
different version D′ of subcontexts D, where F ranges over pure expressions:

D′ ::= [ ] | (E D′) | (D′ F)

I will call such contexts weak delimited evaluation contexts, or weak contexts
for short.

The way D′ is defined now, an applicand can be reduced only when the
argument is a pure expression, i.e. does not contain any shifts. That is, the
reduction of impure expressions in an application has to proceed from outside
to inside. Suppose we have the application of a two-place predicate pred to two
ξ-expressions:

〈 ((pred ξk1.E1) ξk2.E2) 〉
Changing the context a shift can capture to D′ leaves only one possibility to
reduce this expression: First ξk2.E2 has to be evaluated and only then ξk1.E1

can also be evaluated. This is because if ξk1.E1 was evaluated first, it would
capture the context ((pred [ ]) ξk2.E2), which is not a licit weak context D′.
If you consider pred as a verb denotation, ξk1.E1 as the object noun phrase
of the verb and ξk2.E2 as the subject noun phrase, then the fixed evaluation
order amounts to E2 taking scope over E1, i.e. derives the linear scope reading
if E1 and E2 contain scope taking operators. We will see an explicit example
in more detail a bit later.

Now we have two subcontexts that we could use in the reduction rule for
shifts. Accordingly, we want to have two shifts at our disposal: one that
captures contexts D, and one that captures weak contexts D′. To this end,
the definition of ξ-expressions is changed such that it encodes which context is
captured. We do this by means of a superscript Mode.

E ::= . . . | (ξModek :: τ → α.E :: β) :: τβα
Mode ::= weak | strong

Now we need two reduction rules, one for ξstrong using D, and one for ξweak

using D′:

C [〈D [ξstrongk.E]〉] B C [〈E{k 7→ λx.〈D[x]〉}〉]
C [〈D′[ξweakk.E]〉] B C [〈E{k 7→ λx.〈D′[x]〉}〉]

Note that the reduction rule itself is exactly the same; the only difference is
which kind of context is captured. In the following, I will often write ξ as short



116 A semantic procedure for scope construal 5

for ξstrong. This way, all instances of ξ from the last section rightly correspond
to the ξstrong of this section. Furthermore, I will usually write ξweak as ξ′. This
is a form that is slightly better readable and corresponds to the use of the
apostrophe in the definition of contexts D and D′.

The main consequence for the semantics of our grammar fragment is the
following: For quantifier denotations using ξweak, the evaluation order is fixed,
for quantifier denotations using ξstrong, the evaluation order is free. That is, the
former derive only linear readings, while the latter allow for scope ambiguities.

To see weak quantifiers in action, consider example (5.51a), which has a
linear reading (for most gods there is no human they admire) and does not
have an inverse scope reading (no human is such that most gods admire him).
When deriving the corresponding semantic interpretation, we arrive at (5.51b),
using ξweak. The denotation of no is given by ¬∃ and the denotation of most P
are Q is represented as Mostx:(P x).(Q x). Thus most can be seen as relating
two sets; the exact modeltheoretic interpretation, however, is not of concern
here.

(5.51) a. Most gods admire no human.

b. 〈 ((admire ξ′k.¬∃x.(human x)∧ (k x)) ξ′k.Most y :(god y).(k y)) 〉

There is only one possibility to reduce the expression in (5.51b): First, the
denotation of most gods has to be evaluated. This is because reducing the
denotation of no human first would capture the following illicit weak context:

((admire [ ]) ξk.Most y :(god y). ∧ (k y))

The reduction proceeds as follows, according to the reduction rule for ξweak:

〈 ((admire ξ′k.¬∃x.(human x) ∧ (k x)) ξ′k.Most y :(god y).(k y)) 〉
B 〈Most y :(god y).(λz. 〈((admire ξ′k.¬∃x.(human x) ∧ (k x)) z) 〉 y) 〉
B 〈Most y :(god y).〈 ((admire ξ′k.¬∃x.(human x) ∧ (k x)) y) 〉〉

Note the role of static scoping here: The reduction rule introduces a new reset
around the captured context. This limits the context the yet unreduced ξ-
expression will capture to the context below the operator Most. Hence, no
human is not able to outscope most gods. The reduction proceeds as follows:

〈Most y :(god y).〈 ((admire ξ′k.¬∃x.(human x) ∧ (k x)) y) 〉〉
B 〈Most y :(god y).〈 ¬∃x.(human x) ∧ (λz.〈 ((admire z) y) 〉 x) 〉〉
B 〈Most y :(god y).〈 ¬∃x.(human x) ∧ 〈 ((admire x) y) 〉〉〉

Finally the resets can be deleted and the result is:

Most y :(god y).¬∃x.(human x) ∧ ((admire x) y)



5.4 Quantificational noun phrases 117

This is the linear scope reading and it is the only reading that can be derived
with the evaluation order fixed like above.

The results are accordingly when considering sentences with a strong quan-
tifier and a weak quantifier: the strong one can outscope the weak one but not
vice versa.

Let me finally note that the approach to modeling different scope behavior
demonstrated here is similar to one that Shan ([99],[100]) proposed. He employs
a hierarchy of generalized shifts and resets superscripted with strength levels.
Quantifiers can take control at different levels and depending on the level, they
can or cannot outscope each other. Only if they take control at the same level,
scope ambiguities occur. Shan’s approach thus differs from ours in maintaining
a fixed evaluation order and relying on the hierarchy of quantifiers to determine
scope behavior. My approach in this chapter, on the other hand, invokes two
different shifts (for weak and strong quantifiers) together with one delimiter
for both of them, and enforced an evaluation order for weak quantifiers which
prevents them from outscoping other quantifiers.

A yet different possibility was proposed by Stabler [105], who adopted the
idea that different quantifiers check features in different functional domains. In
our terms, this can be modeled by introducing a different shifts and resets for
all those domains. We would then derive that quantifiers can take scope only
in their specific domain and cannot outscope quantifiers in higher domains.

Now, before moving on, let us turn to the exceptional wide scope behavior
of indefinites. I will sketch how the mechanism employed for strong and weak
quantifiers can be extended to also capture those cases. The strategy should
be familiar by now: leave the reduction rule for shift as it is but change the
context that the shift captures.

5.4.3 Free scope

Existential noun phrases like indefinites are known for being able to take un-
restricted wide scope, as already mentioned in Section 2.4. This is illustrated
again in (5.52), which arguably has the reading that there is a specific zombie
for which everyone knows that no-one believes the rumor that this zombie is
in the garden. That is, although embedded inside a complex noun phrase that
occurs itself in an embedded clause, the indefinite seems to be able take scope
over the matrix clause.

(5.52) Everyone knows [CP1that no-one believes [the claim [CP2that some zombie
is in the garden]]].

Note that the mechanism of the previous two sections does not allow this
possibility: since already the embedded clause CP2 introduces a delimiter,
all ξ-expressions inside that clause can capture only the context up to that
delimiter. What existential noun phrases are able to do amounts in our terms
to capturing an arbitrary context, i.e. a context up to any enclosing delimiter,
not necessarily the closest one.



118 A semantic procedure for scope construal 5

As already anticipated, this can be achieved by changing the context that
the shift can capture, more specifically by specifying the reduction rule not by
of using D or D′, which both do not contain any resets, but using C, which was
defined as being arbitrary contexts containing any number of resets. In order
to keep the shift operator with this exceptional wide scope behavior apart from
the shift operators ξweak and ξstrong from above, we add a new mode that we
call free.

Mode ::= . . . | free

We therefore have a new operator ξfree with the following reduction rule:

C[〈C[ξfreek.E]〉] B C[〈E{k 7→ λx.〈C[x]〉}〉]

This way, an expression of form ξfreek.E is not restricted to capturing the
context up to the nearest enclosing reset, but can capture the context up to an
arbitrary reset.

Let us illustrate this with an example. Consider (5.53a). The existential
some zombie can either take narrow scope, yielding a reading where everyone
takes scope over the existential, or wide scope, yielding the reading that there
is some specific zombie that everyone believes to be able to run. That is, the
intermediate clause boundary does not restrict the scope of the existential,
although it would, in contrast, restrict the scope of the universal (see (5.53b),
which only has a linear scope reading).

(5.53) a. Everyone believes [that some zombie is able to run].

b. Someone believes [that every zombie is able to run].

The denotation of the noun phrase will be an impure generalized quantifier
denotation as familiar from the previous sections, using the operator ξfree:

ξfreek.∃x.(zombie x) ∧ (k x)

Let us assume that the denotation of is able to can be represented as a predicate
isAbleTo of type (e→ t)→ (e→ t), i.e. that applies to a property (presumably
expressing some action like running or hunting bears) as well as to an individual,
and predicates of this individual that it is able to do the specified action. Then
the denotation of the embedded clause that some zombie is able to run amounts
to the following expression:

〈 ((isAbleTo run) ξfreek.∃x.(zombie x) ∧ (k x)) 〉



5.4 Quantificational noun phrases 119

I abbreviate the denotation of some zombie as ξfreek.Ezombie. And analogously, I
abbreviate the denotation of everyone, ξk.∀y.(person y)⇒ (k y), as ξk.Eperson.The
semantic expression corresponding to the whole sentence then is:

〈 ((believe 〈 ((isAbleTo run) ξfreek.Ezombie) 〉 ) ξk.Eperson) 〉

The expression ξk.Eperson captures the context up to the nearest enclosing de-
limiter, which is the outer reset. The existential ξfreek.Ezombie, on the other
hand, captures the context up to an arbitrary enclosing delimiter, which hence
can either be the inner reset or the outer reset. Capturing the inner reset leads
to the narrow scope reading (5.54a), and capturing the outer reset leads to the
wide scope reading in (5.54b).

(5.54) a. ∀y.(person y)⇒ ((believe ∃x.(zombie x) ∧ ((isAbleTo run) x)) y)

b. ∃x.(zombie x) ∧ ∀y.(person y)⇒ ((believe ((isAbleTo run) x)) y)

For the unambiguous sentence (5.53b), however, we would derive only one
reading. The sentence denotation would be like above with the difference that
the strong quantifier resides in the embedded clause and the existential resides
in the matrix clause. Abbreviating the denotation of the universal every zombie
as ξk.Ezombie and the existential someone as ξfreek.Eperson, it amounts to:

〈 ((believe 〈 ((isAbleTo run) ξk.Ezombie) 〉 ) ξkfree.Eperson) 〉

Again, the universal (here ξk.Ezombie) captures the context up to the nearest
enclosing delimiter, which is the inner reset. The existential, on the other hand,
captures a context up to an arbitrary delimiter. Since there is only one in this
case, namely the outer reset, only one reading, given in (5.55), is derived.

(5.55) ∃y.(person y) ∧ ((believe ∀x.(zombie x)⇒ ((isAbleTo run) x)) y)

A desirable consequence of the treatment of indefinites sketched here is that
it automatically derives the right truth conditions for sentences like (5.56),
which prove problematic for unselective binding approaches.

(5.56) If some human is sacrificed, Cthulhu will awake.

First note that (5.56) has two readings, depending on whether the existential a
human takes narrow scope over the if-clause, which is schematically presented in
(5.57a), or wide scope over the whole sentence, which is represented in (5.57b).

(5.57) a. (∃x. x is a human and x is sacrificed) ⇒ Cthulhu will awake

b. ∃x. x is a human and (x is sacrificed ⇒ Cthulhu will awake)

c. ∃x.((x is a human and x is sacrificed)⇒ Cthulhu will awake)

The interpretation that unselective binding approaches usually derive is the
one in (5.57c). However, this is not correct because it would already be true in
case there is an x which is either not a human or is not sacrificed.



120 A semantic procedure for scope construal 5

Let us look at what happens in our approach. The denotation for some hu-
man is the expected impure generalized quantifier using the free shift operator:

ξfreek.∃x.(human x) ∧ (k x)

An important fact here is that k occurs only in the second conjunct. That is,
whatever context is captured, it will be plugged into that second conjunct and
not affect the restriction (human x). Let us see what this means for the con-
struction of the sentence denotation. Assume that if. . . then subcategorizes two
CPs, i.e. there are three resets introduced: one enclosing the whole sentence,
one enclosing the if-clause, and one enclosing the then-clause. Then we derive
the following denotation for the whole sentence:

〈 〈 (sacrificed ξfreek.∃x.(human x) ∧ (k x)) 〉 ⇒ 〈 (awake Cthulhu) 〉

The ξfree-expression now captures a context up to some enclosing delimiter.
This is either the reset enclosing the if-clause or the reset enclosing the whole
sentence. The former gives (5.58a) corresponding to the narrow reading (5.57a)
and the latter gives (5.58b) corresponding to the wide scope reading (5.57b).

(5.58) a. (∃x.(human x) ∧ (sacrificed x))⇒ (awake Cthulhu)

b. ∃x.(human x) ∧ ((sacrificed x)⇒ (awake Cthulhu))

Thus, the restriction (human x) ends up in the right place in both cases. This is
due to the above mentioned fact that the captured context is plugged into the
second conjunct in the noun phrase denotation, separate from the restriction.
Something like in (5.57c) could therefore not happen.

Let me end this subsection with a remark concerning the intention of this
subsection. I do not want to make a claim with respect to the question whether
wide scope existentials are in fact quantifiers or rather referential expressions.
This subsection rather served to demonstrate how exceptional wide scope be-
havior can in principle be modeled in the advocated approach to quantifiers.
Whether one wants to adopt this mechanism or rather rely on different tools is
a matter of taste and conviction. In either case, the free scope account of this
subsection will become useful again in the next section, when we treat in situ
wh-phrases.

So let us now concentrate on yet another kind of scope-taking operators:
wh-expressions.

5.5 Wh-phrases

This section sets out to account for the interpretation of the following three
types of wh-phrases:

• displaced wh-phrases taking scope at the top of the displacement depen-
dency (e.g. English)



5.5 Wh-phrases 121

• in situ wh-phrases with a corresponding scope marker in the clause they
take scope over (e.g. Japanese)

• true in situ wh-phrases taking scope independent of displacement and
scope marking (e.g. Chinese and Hindi)

We will start by looking at displaced wh-phrases. This will require the in-
troduction of indices on control operators, which determine their scope domain
in accordance with the syntactic features that are involved in displacement.
This approach then straightforwardly extends to wh-phrases in languages with
scope markers. Next, we will turn to true in situ wh-phrases, which can ac-
tually already be accounted for with the tools introduced so far. In doing so,
two kinds of wh-phrases have to be distinguished: wh-phrase whose scope is
clause-bound, as in Hindi, and wh-phrases whose scope is free, as in Mandarin
Chinese. These two possibilities already suggest the use of the shift operators
introduced in the previous section (ξstrong or ξweak for clause-bound scope and
ξfree for free scope).

In the end we will see that the interpretation of wh-phrases can be accounted
for in the same line as the interpretation of quantificational noun phrases. That
is, we can use one and the same scope mechanism for all operator expressions.

5.5.1 Displaced wh-phrases

Displaced wh-phrases behave differently from quantificational noun phrases in
that their scope is determined neither at the closest nor at an arbitrary clause
level. Rather it depends on where the wh-phrase is displaced to. In our terms,
the scope of the wh-operator is determined by the clausal head that checks its
wh-feature. Consider the following examples (5.59) and (5.62). In both cases,
the wh-phrase which fight originates in the embedded clause. In (5.59), it is
moved to the clause-initial position of CP1 and the corresponding wh-operator
accordingly takes scope over the whole sentence. In (5.62), on the other hand,
the wh-phrase is fronted only inside CP2 and the corresponding wh-operator
accordingly takes scope only over the embedded clause.

(5.59) [CP1 [Which fight]1 did Inana know [CP2 every brave warrior feared 1]]?

(5.60) Inana knew [CP [which fight]1 every brave warrior feared 1].

In order to account for this behavior, we need to be able to capture the feature
domain in the semantic dimension as well. To this end, we introduce subscripts
to the control operators. The idea is that just like a syntactic feature determines
the syntactic domain into which a wh-phrase is displaced, a semantic subscript
determines the semantic domain over which a wh-operator takes scope.

The language is extended as follows. First, the definition of semantic ex-
pressions E is slightly changed. Instead of defining ξ-expressions as being of
form ξModek.E, they are now defined as being of form ξMode

Flavork.E, where Fla-
vor is a feature value (in the case of displaced expressions) or Q (in the case



122 A semantic procedure for scope construal 5

of quantificational noun phrases). Furthermore, this flavor is also encoded in
the type of an impure expression. Impure types are thus not anymore τβα but
τf :β
f :α , with f being some flavor.

E ::= . . . | (ξMode
Flavork :: τ → α.E :: β) :: τFlavor:β

Flavor:α

| 〈E :: τ〉Flavor :: τ

Flavor ::= Value | Q

The type of ξ-expressions is restricted such that the encoded flavor corresponds
to the flavor subscript of the shift, according to the following rule:

k :: τ → α E :: β

ξmf k.E :: τf :β
f :α

Since, for now, only wh-features are relevant, we will consider only three
new shifts ξwh, ξ′wh, and ξfree

wh together with the corresponding new reset 〈 〉wh.
But of course we could have more, for the flavor comprise all feature values
of the language. This could be useful, for example, for the scope of focus
operators. The only flavor that is not a feature value is Q. It will be used
for quantificational noun phrases, which we assumed to not be involved in
displacement, thus not carry a feature. When talking about quantificational
noun phrases of flavor Q, I will drop the subscript, i.e. I will write ξmQ as ξm

(where m is some mode) and 〈 〉Q as 〈 〉. This way, the abbreviated expressions
correspond to the impure expressions we used in the previous sections.

The reduction rule for shifts should then specify that the evaluation context
up to a certain matching delimiter is captured. That is, ξwh-expressions are
supposed to capture the context up to some delimiter 〈 〉wh. Once the wh-
domain and the Q-domain are thus separated, the scope of wh-operators will
not interfere with the scope of quantifiers. (We will see this with an example
at the end of the section.) So evaluation contexts need to be refined in order
to encode the flavor of the domain.

Definition 15. Let f, f ′ range over Flavor. Then a family of evaluation
contexts Df , D

′
f , Cf , C is defined as follows:

Df ::= [ ] | (E Df ) | (Df E) | Cf ′

D′f ::= [ ] | (E D′f ) | (D′f F) | Cf ′

Cf ::= Df ′ | 〈C〉f
C ::= Cf



5.5 Wh-phrases 123

Note that we added some clauses compared to the original definition of those
contexts. For example, originally, a subcontext D did not contain any resets.
Now, a subcontext Df can contain resets, however no f -resets. This is because
we want a ξf -expression to capture the context up to the nearest matching
delimiter 〈 〉f , however want to allow that this context contains delimiters of
another flavor. For example, a wh-denotation will capture a delimiter 〈 〉wh and
in doing so can skip arbitrarily many delimiters 〈 〉Q, that in fact do not play
a role for its scope construal.

The reduction rules for the control operators now specify that the context
up to a matching delimiter is captured. Besides the subscripts, the rules are
exactly like before.

C[〈Df [ξweak
f k.E]〉f ] B C[〈E{k 7→ λx.〈Df [x]〉f}〉f ]

C[〈D′f [ξstrong
f k.E]〉f ] B C[〈E{k 7→ λx.〈D′f [x]〉f}〉f ]

C[〈Cf [ξfree
f k.E]〉f ] B C[〈E{k 7→ λx.〈Cf [x]〉f}〉f ]

〈F 〉f B F

Now let us turn to some concrete examples. We start with the denotation
of wh-noun phrases like who and wh-determiners like which. They are actually
parallel to those of quantificational noun phrases and the according determin-
ers. The only two differences are that they do not use the control operator ξ
but ξwh, and that they change the result type t of the context they capture to
q (the type we assumed for questions).

Form Meaning

whowh :: NP ξwhk.Wx.(person x) ∧ (k x) :: ewh:q
wh:t

whichwh :: N→ NP λP.ξwhk.Wx.(P x) ∧ (k x) :: (e→ t)→ ewh:q
wh:t

Figure 5.7: Lexical entries for the wh-noun phrase who and the wh-determiner
which.

These denotations employ shifts of the strong mode, because this captures the
behavior of wh-phrases adequately. First of all, wh-phrases are displaced to
the closest matching feature, thus they should take scope with respect to the
closest matching delimiter. And second, no evaluation order needs to be fixed.

Additionally, we need the denotation of a clausal head with a •wh-feature
that introduces the matching delimiter 〈 〉wh. Recall the complementizer de-



124 A semantic procedure for scope construal 5

notation assumed in the previous sections: λp.〈p〉. If the complementizer now
carries a probe feature •wh, it should introduce not only a Q-flavored delimiter
but also a wh-flavored one. The denotation should thus be: λp.〈〈p〉〉wh. To
arrive there in a systematic way, I assume that the original denotation of the
complementizer is kept and that, additionally, the probe feature receives an in-
terpretation that introduces the wh-flavored reset. Moreover, a form stringf is
interpreted compositionally as the application of the denotation of the feature
f to the denotation of string. Here is how the denotations would like for the
empty complementizer ε carrying a probe feature •wh (where J K represents a
function mapping forms to meanings):

JεK = λp.〈p〉 :: t→ t

J•whK = λPλp.〈(P p)〉wh :: (t→ t)→ (t→ q)

Jε•whK = (J•whK JCK) = λp.〈〈p〉〉wh :: t→ t

Let us first consider an easy example, say the derivation of (5.61):

(5.61) What1 did Gilgamesh think [CP that Ishtar wanted 1 ]?

Here are the lexical items involved:

Form Meaning

Gilgamesh :: NP gilgamesh :: e
Ishtar :: NP ishtar :: e
whatwh :: NP ξwhk.Wx.(k x) :: ewh:q

wh:t

think :: CP→ (NP< → VP) think :: t→ (e→ t)
wanted :: NP→ (NP< → VP) want :: e→ (e→ t)
that :: VP→ CP λp.〈p〉 :: t→ t
ε•wh :: VP→ CP λp.〈〈p〉〉wh :: t→ t

The first step of the derivation is to merge the embedded verb wanted and
the wh-expression what, which thereupon is split. Then the derivation proceeds
until the embedded VP is built. I skip these steps, since nothing new or exciting
happens. The result is:〈

whatwh,
(
Ishtar wanted :: VP, ((want ξwhk.Wx.(k x)) ishtar) :: twh:q

wh:t

)〉
Next the embedded complementizer that is merged, which gives:〈

whatwh,
(
Ishtar wanted :: VP, 〈 ((want ξwhk.Wx.(k x)) ishtar) 〉 :: twh:q

wh:t )
)〉

Since that does not carry a wh-feature, remerge is not triggered. Also, the
reduction rule for shift does not yet apply, because the flavors of ξwh and 〈 〉 do
not match. The derivation thus proceeds by passing the whole expression to



5.5 Wh-phrases 125

the matrix verb think, followed by the subject noun phrase Gilgamesh. Ignoring
how do-support comes about, the result is the following:〈

whatwh,
(
did Gilgamesh think that Ishtar wanted :: VP,

((think 〈((want ξwhk.Wx.(k x)) ishtar) 〉 gilgamesh) :: twh:q
wh:t

)〉
Now the clausal head carrying the •wh-feature is merged.〈

whatwh,
(
did Gilgamesh think that Ishtar wanted •wh :: CP,

〈 ((think 〈((want ξwhk.Wx.(k x)) ishtar) 〉 gilgamesh) 〉wh :: twh:q
wh:t

)〉
On the syntactic side, this is a configuration in which remerge applies. The
matching wh-features are checked and the form what at the edge is concatenated
with the form of the nucleus. On the semantic side, the reduction rule for shift
applies, since the denotation of the clausal head had introduced a matching
delimiter 〈 〉wh. The reduction of the semantic expression proceeds by capturing
the context up to the outermost reset and substituting it for k. The type
thereby changes to the result type q. Finally, the resets can be deleted. The
resulting expression if the following:(

what did Gilgamesh think that Ishtar wanted :: CP,

Wx.((think ((want x) ishtar) gilgamesh) :: q
)

This derivation already showed that the Q-delimiter of the embedded clause
does not interfere with the scope construal of the wh-expression. Still, let us
walk through one more example, containing both a wh-expression and a quan-
tificational noun phrase, to see that different flavors create different, indepen-
dent domains. Consider the question (5.62):

(5.62) [CP2 [Which fight]1 did someone think [CP1 every brave man feared 1]?

Here are the lexical items involved:

Form Meaning

someone :: NP ξk.∀x.(person x)⇒ (k x) :: et
t

every :: N→ NP λP.ξk.∀x.(P x)⇒ (k x) :: (e→ t)→ et
t

man :: N man :: e→ t

fight :: N fight :: e→ t

brave :: N→ N λP.λx.(P x) ∧ (brave x) :: (e→ t)→ (e→ t)

whichwh :: N→ NP λP.ξwhk.Wx.(P x) ∧ (k x) :: (e→ t)→ ewh:q
wh:t

feared :: NP→ (NP< → VP) fear :: e→ (e→ t)

think :: CP→ (NP< → VP) think :: t→ (e→ t)

ε :: VP→ CP λp.〈p〉 :: t→ t

ε•wh :: VP→ CP λp.〈〈p〉〉wh :: t→ t



126 A semantic procedure for scope construal 5

Here is a schematic derivation tree that shows the order of merging those
lexical items:

CP2

ε•wh

someone
think CP1

ε

every
brave man

feared
whichwh fight

I will skip over most parts of the derivation, since it proceeds as expected, and
only highlight the important points. We start by constructing the NP which
fight and merging it with the embedded verb feared. Note that when merging
whichwh and fight, the wh-feature projects because the determiner is the head:

merge (whichwh :: N→ NP, . . .) (fight :: N, . . .)

= (which fightwh :: NP, ξwhk.Wx.(fight x) ∧ (k x) :: ewh:q
wh:t )

When the NP is merged with the verb, it is split. Again, I leave out the lexical
semantics, because it is given in the table above, and the semantic expression
we already derived. Furthermore, I abbreviate ξwhk.Wx.(fight x) ∧ (k x) as
ξwhk.Efight.

merge (feared :: NP→ (NP< → VP), . . .) (which fightwh :: NP, . . .)

=
〈
which fightwh,

(
feared :: NP< → VP, (fear ξwhk.Efight) :: e→ twh:q

wh:t

)〉
The derivation proceeds by constructing and merging the subject NP every
brave man. The result has the denotation is ξk.∀x.(man x)∧ (brave x)⇒ (k x),
which I will abbreviate as ξk.Eman. It is fed to the complementizer, which does
not introduce a probe feature but a Q-flavored delimiter. The result is the
embedded clause CP1:〈

which fightwh,
(
every brave man feared :: CP,

〈 ((fear ξwhk.Efight) ξk.Eman) 〉 :: twh:q
wh:t

)〉
On the semantic side, the shift rule for the Q-flavored quantificational noun
phrase applies. The resulting semantic expression is:

〈 ∀x.(man x) ∧ (brave x)⇒ ((fear (ξwhk.Efight) x) 〉 :: twh:q
wh:t



5.5 Wh-phrases 127

Whether we delete the reset now or later does not play a role because in either
case it will not interfere with the scope taking of the wh-operator. The deriva-
tion proceeds constructing the matrix CP. We skip these steps (and again ignore
do-support). The resulting expression corresponding to the whole sentence is〈

which fightwh,
(
did someone think every brave man feared •wh :: CP, . . .

)〉
with the following semantic expression of type (ttt)

wh:q
wh:t , where the denotation

of someone is abbreviated as ξk.Eperson:

〈〈 ((think 〈 ∀x.(man x) ∧ (brave x)⇒ ((fear ξwhk.Efight) x) 〉 ξk.Eperson) 〉〉wh

On the syntactic side, the configuration triggers remerge, which checks the
features, concatenates the form at the edge with the form of the nucleus and
eventually yields the final string which fight did someone think every brave man
feared. On the semantic side, we still have two control transfers to execute.
First observe that the order in which we do this is not free. Suppose we first
applied the reduction rule to the ξwh-expression corresponding to which fight.
It captures a context of type t and changes its type to q. If we then wanted
to apply the reduction rule to the ξ-expression corresponding to someone, we
would fail, because it requires to capture a context of type t, however finds only
one of type q. Therefore, the reduction rule first has to apply to the denotation
of someone (which does not change the result type but returns an expression
of type t) and only after that to the denotation of which fight. The result of
applying the reduction rule first to the denotation of someone is the following
(where I abbreviate (brave x) ∧ (man x) as (braveMan x)):

〈〈 ∃y.(person y) ∧ ((think 〈 ∀x.(braveMan x)⇒ (fear ξwhk.Efight) x) 〉) y) 〉〉wh

The remaining control transfer then yields the final result:

W z.(fight z) ∧ ∃y.(person y) ∧ ((think (∀x.(braveMan x)⇒ ((fear x) z))) y)

In prose it says: For which fight is it the case that there is someone who thought
that every brave man feared it? (Ignoring tense, that is.)

This concludes the general mechanism for scope construal of displaced wh-
phrases. Note that it works independently of whether the wh-phrase is dis-
placed overtly or covertly. As long as it checks its wh-feature with a head
carrying a corresponding probe feature, its scope will be construed in that do-
main. Let us now look at how this mechanism naturally extends to the scope of
wh-phrases in scope marking languages, although no displacement is involved.

5.5.2 Scope marking

In Section 4.4.1 of Chapter 4 we observed that Japanese wh-phrases can obviate
islands. Here is one of the examples we saw:



128 A semantic procedure for scope construal 5

(5.63) Japanese (Tsai [117])

John-wa [[dare-o aisiteiru] onna-o] nagutta no
John-top who-acc loves woman-acc hit q

‘Who is the person x such that John hit the woman who loves x?’

From the island insensitivity we concluded that those wh-expressions are not
displaced, not even covertly. That is, they do not check features with a clausal
head and, as a consequence, have to be assumed to not carry a wh-feature.
(If they did carry a wh-feature, they would automatically be split and carried
along until the feature can be checked.)

Recall the observation from Chapter 2 that the scope of a Japanese in
situ wh-phrase is determined by the occurrence of a question particle, here
ka. The examples we saw were the following: In (5.64a), the particle occurs
in the embedded clause, the wh-phrase thus takes scope over the embedded
clause only. In (5.64b), on the other hand, the particle occurs in the matrix
clause, the wh-phrase thus takes scope over the whole sentence. Moreover, in
the presence of two question particles (in the embedded as well as the matrix
clause) as in (5.64c), each of them can be taken to determine the scope, the
sentence is thus ambiguous between a narrow and a wide scope reading of the
wh-phrase.

(5.64) Japanese (Bošković [122], Cresti [29])

a. Peter-wa [anata-ga dare-o mita-ka] tazuneta.
Peter-top you-nom who-acc saw-q asked

‘Peter asked whom you saw.’

b. Kimi-wa [dare-ga kai-ta hon-o yomi-masi-ta]-ka?
you-top who-nom wrote book-acc read q

‘Which person x is such that you read a book that x wrote?’

c. Hikaru-wa [Akira-ga dare-o hometa-ka] siri-tagatte-imasu-ka?
Hikaru-top Akira-nom who-acc praised-q know-want-be-q

‘Does Hikaru want to know whom Akira praised?’
‘Which person x is such that Hikaru wants to know whether
Akira praised x?’

Let us look at how to specify lexical entries for the wh-expressions and the
question particle in order to derive the correct scope effects.

Concerning the wh-phrase dare (‘who’), we need to decide on the mode and
the flavor of the involved shift operator. The flavor will be assumed to be wh,
because the captured context depends not so much on the presence of a clause
boundary but rather on its being question marked. As to the mode, Tanaka
[116] proposes that a Japanese wh-phrase must take scope according to the
closest question marker. (He assumes this to be an LF principle but that does
not matter here.) We would therefore assume the mode to be strong or weak,
but not free. Let us assume a strong mode. Here is a lexical entry that takes



5.5 Wh-phrases 129

this into account and is, in fact, completely parallel to the entries for English
wh-expressions:

(dare :: NP, ξwhk.Wx.(person x) ∧ (k x) :: eqt )

Now, what provides the delimiter for the scope of dare? In the previous
subsection, it was assumed that the probe feature •wh of the clausal head plays
this role. Here we do not have such a feature. However, the clausal head is
the question particle ka (according to Takahashi [115]). Since it determines the
scope of the wh-expression, it seems straightforward to connect the delimiter
to its denotation. In specifying that denotation, I follow Takahashi in taking ka
to be ambiguous between a yes/no-question marker and a wh-question marker.
He argues for this ambiguity on the basis of different requirements they have:
both have to be governed by a tense feature, and the wh-particle ka has to
be additionally governed by a politeness feature, whereas the yes/no-particle
ka does not. From this point of view, the two readings of (5.64c) are due to
the different nature of the two occurrences of ka. If the embedded ka is the
wh-particle and the matrix one is the yes/no-particle, the first, direct question
reading comes about. If the distribution is vice versa, i.e. the embedded ka
is the yes/no-particle and the matrix one is the wh-particle, then the second,
wh-question reading comes about.

The tense requirement of both can be captured by assuming an additional
projection TP that constitutes the level at which tense features are checked.
The politeness requirement, on the other hand, I will omit. Then the following
two lexical entries can be specified for ka: (5.65a) for the wh-particle, introduc-
ing a wh-flavored delimiter, and (5.65b) for the yes/no-particle, introducing a
question operator ? that turns a declarative clause into an interrogative one
(the exact modeltheoretic interpretation is again of no concern here).

(5.65) a. (ka :: TP< → CP, λp.〈p〉wh :: t→ t)

b. (ka :: TP< → CP, λp.?p :: t→ q)

I will not give any details of the derivation of (5.64c) because it proceeds
pretty much like all derivations we saw in this chapter. But I will specify the
lexical entries of the expressions involved (see the table below) and show the
result they lead to. I ignore case, simplify the denotation of siri-tagatte-imasu,
and abbreviate the types e→ (e→ t) and q → (e→ t) as e(et) and q(et).

Form Meaning

Hikaru-wa :: NP hikaru :: e

Akira-ga :: NP akira :: e

dare-o :: NP ξfree
wh k.Wx.(person x) ∧ (k x) :: eq

t

hometa :: NP< → (NP< → VP) admire :: e(et)

siri-tagatte-imasu :: CP< → (NP< → VP) wantToKnow :: q(et)



130 A semantic procedure for scope construal 5

Note that wantToKnow is assumed to expect a question denotation. This is
mainly because it is applied to a question denotation in the considered example.
If we wanted to be more general, we would assume it to have a polymorphic
type r → (e → t), where r can be instantiated by any result type, in our case
t or q. This is what we will in fact do for the predicate know in the next
subsection.

The semantic expression that results from generating (5.64c) by using the
wh-particle (5.65a) in the embedded clause and the yes/no-particle (5.65b) in
the matrix clause is the following expression of type qqt :

? ((wantToKnow 〈 ((admire ξwhk.Wx.(person x) ∧ (k x)) akira) 〉wh) hikaru)

Reducing it yields an expression corresponding to the direct question reading
of (5.64c):

? ((wantToKnow Wx.(person x) ∧ ((admire x) akira)) hikaru)

Generating (5.64c) by using the yes/no-particle in the embedded clause and
the wh-particle in the matrix clause, on the other hand, results in the following
semantic expression of type tqt :

〈 ((wantToKnow ? ((admire ξwhk.Wx.(person x) ∧ (k x)) akira)) hikaru) 〉wh

Reducing it yields an expression corresponding to the wh-question reading of
(5.64c):

Wx.(person x) ∧ ((wantToKnow ? ((admire x) akira)) hikaru)

So we can treat in situ wh-phrases in scope marking languages along the
same lines as wh-phrases in languages invoking displacement, the only differ-
ence being that the delimiter is not introduced by a probe feature but by a
specific lexical item, usually a question particle.

5.5.3 In situ wh-phrases

Now we want to look at in situ wh-phrases in languages that do not invoke
scope markers, at least no obligatory ones. We will consider Chinese and Hindi,
because they show two different possibilities to determine in situ wh-scope. In
Chinese, a wh-phrase can take scope at an arbitrary clause level, as long as it
does not lead to type clashes, see e.g. (5.66).

(5.66) Mandarin Chinese

Zhangsan zhidao shei du-le shu (ma)?
Zhangsan knows who read-asp books (q)

‘Who does Zhangsan know read books?’
‘Zhangsan knows who read books.’



5.5 Wh-phrases 131

In Hindi, on the other hand, in situ wh-phrases can have scope only over the
clause they appear in (cf. Bhatt [10]), as (5.67) illustrates.1

(5.67) Hindi (Bhatt [10])

Wajahat jaan-taa hai [ki Rima kis-ko pasand kar-tii hai]
Wajahat know-m.sg be that Rima who-acc like do-f be.prs.sg

‘Wahajat knows who Rima likes.’
∗ ‘Who does Wahajat know Rima likes?’

Both strategies are already familiar to us, because they amount to the distinc-
tion between existential wide scope quantifiers on the one hand, and weak and
strong quantifiers on the other hand. So we can, in fact, simply employ the
quantifier denotations from the previous section for true in situ wh-phrases.
For example, the Hindi wh-expression kis (‘who’) can be assumed to denote:

ξk.Wx.(person x) ∧ (k x)

Since it uses a Q-flavored shift operator, it will behave like a strong quantifier
in capturing the context up to the nearest enclosing Q-flavored delimiter. In
the example above this is introduced by the complementizer ki (‘that’). Since
ki is the head of the embedded clause, the wh-operator can end up taking scope
over the embedded clause only.

In Chinese, a true in situ wh-phrase is not clause-bound but may take scope
over any clause that allows an interrogative interpretation. To see what this
means, let us consider the example from above, here repeated in (5.68a) without
the optional question particle, and another simple example given in (5.68b).

(5.68) Mandarin Chinese

a. Zhangsan zhidao [shei du-le shu]?
Zhangsan knows who read-asp books

‘Who does Zhangsan know read books?’
‘Zhangsan knows who read books.’

b. Zhangsan yiwei [CP Lisi du-le shenme]
Zhangsan think Lisi read-asp what

‘What does Zhangsan think Lisi read?’

The difference is that the matrix verb in (5.68a) is zhidao (‘know’), which allows
declarative as well as interrogative complements, whereas the matrix verb in
(5.68b) is yiwei (‘think’), which allows only for declarative complements. Here
are the lexical entries we need for the two examples:

1Hindi in fact knows several strategies for question formation. Besides the in situ strategy,
it is also invokes displacement and a scope marking strategy, which however are not of concern
here.



132 A semantic procedure for scope construal 5

Form Meaning

Zhangsan :: NP zhangsan :: e
Lisi :: NP lisi :: e
shu :: NP books :: e
shei :: NP ξfreek.Wx.(person x) ∧ (k x) :: eqt
shenme :: NP ξfreek.Wx.(k x) :: eqt
du-le :: NP→ (NP< → VP) read :: e→ (e→ t)
zhidao :: CP→ (NP< → VP) know :: r → (e→ t)
yiwei :: CP→ (NP< → VP) think :: t→ (e→ t)
ε :: VP→ CP λp.〈p〉 :: t→ t

Note that know has the polymorphic type r → (e → t), i.e. allows two in-
stances: t → (e → t) and q → (e → t). The wh-phrases use ξfree and will
therefore take scope in the same way an existential quantifier would.

Now, generating the first sentence, (5.68a), constructs the following seman-
tic expression as sentence denotation:

〈 ((know 〈 ((read books) ξfreek.Wx.(person x) ∧ (k x)) 〉) zhangsan) 〉

When the reduction rule for shift applies, there are two contexts that can be
captured: first, the one up to the inner reset, which results in the expression
(5.69a) and second, the one up to the outer reset, which results in the expression
(5.69b). They correspond to the two readings that (5.68a) has. Note that in
the first case know is applied to an interrogative argument of type q, and in
the second case it is applied to a declarative argument of type t. Since it allows
both, both cases are well-typed.

(5.69) a. ((know Wx.(person x) ∧ ((read books) x)) zhangsan)

b. Wx.(person x) ∧ ((know (read books)) zhangsan)

Now assume (5.68b). Its denotation corresponds to the following expression:

〈 ((think 〈 ((read ξfreek.Wx.(k x)) lisi) 〉) zhangsan) 〉

We can do exactly the same: the shift expression either captures the context up
to the inner reset or the context up to the outer reset. These two possibilities
result in the following two expressions respectively:

(5.70) a. ((think Wx.((read x) lisi)) zhangsan)

b. Wx.((think ((read x) lisi)) zhangsan)

Note that only the second one, (5.70b), is well-typed. In (5.70a), on the other
hand, think is applied to an expression of type q, although it does not allow
interrogative arguments. This type mismatch prevents the wh-expression to
take scope over the embedded clause and forces it to take scope over the whole



5.6 A note on the source of the delimiter 133

sentence. And the opposite happens, in fact, if we consider (5.71). It allows
only an embedded question reading, because xiang-zhidao (‘wonder’) allows only
interrogative complements.

(5.71) Mandarin Chinese (Watanabe [127])

Zhangsan xiang-zhidao [Lisi du-le shenme]?
Zhangsan wonders Lisi read-asp what

‘Zhangsan wonders what Lisi read.’

Before summing up, let us take a digression on the exact source of the
delimiter.

5.6 A note on the source of the delimiter

In all examples above, we assumed that the clausal head introduces the Q-
flavored delimiter for quantifiers, which straightforwardly accounted for the
clause-boundedness of quantifiers. Let us look at whether this is justified or
only a simplification of what is really going on.

Hindi seems to support the hypothesis that it is the head of CP that in-
troduces the delimiter. Recall from the previous section that a Hindi in situ
wh-phrase without a scope marker can take scope only over the clause it oc-
curs in. Now, Dayal [31] (following Butt [15]) argues that infinitival clauses
in Hindi are not CPs but TPs. The CP hypothesis would therefore predict
that infinitival clauses do not introduce a delimiter and therefore do not con-
stitute a context that can be captured by an operator. That is, they should be
transparent with respect to scope. And this is indeed the case: If an in situ
wh-phrase occurs in an infinitival complement clause, it can take wide scope
over the matrix clause, see (5.72a). In fact, it has to, for infinitival clauses in
Hindi are not a domain for question formation, see (5.72b).

(5.72) Hindi (Mahajan [72], Dayal [31])

a. Ram-ne [kis-ko dekh-naa] chaah-aa
Ram-erg who-acc see-inf want-pfv

‘Who did Ram want to see?’

b. Tum [kyaa kar-naa] jaan-te ho
you.pl what do-inf know-hab.m.pl be.prs.2pl

‘What do you know to do?’
∗ ‘You know what to do.’

So being a CP seems necessary for delimiting scope. But is it also sufficient?
Does every CP restrict the scope of non-existential quantifiers? The answer
is not so clearly yes. Consider the English control construction (5.73). The
embedded infinitival clause is commonly assumed to be a full clause, i.e. a CP.
Nevertheless it is transparent for scope: the quantifier every god can take scope



134 A semantic procedure for scope construal 5

over the whole sentence, thus scope out of the embedded CP, giving rise to an
inverse scope reading.

(5.73) Someone promised to worship every god.

It thus seems that not the categorial status of the CP but rather one of its
finiteness plays a crucial role in delimiting scope. How could this be captured?
Recall that we modeled syntactic properties that are not connected to simple
subcategorization with the help of syntactic features. So a straightforward way
to introduce a distinction between finite and infinite CPs would be to consider a
feature fin which finite CPs carry while infinite CPs do not, and let this feature
be interpreted as introducing the delimiter 〈 〉 – just like the probe feature •wh
was assumed to denote the delimiter 〈 〉wh. Then, finite CPs would introduce
a delimiter and restrict quantifier scope, and infinite CPs would not. The
general picture emerging would be that it is in general features that introduce
delimiters, i.e. that restricting scope is a property of lexical items and not of
categories or structures.

Whether this picture is indeed the right one is not that easy to decide,
though. Assuming a structure like (5.74) for the example above, it could also
be that the infinitival CP indeed is a scope domain but that is enough for the
universal to outscope the PRO in order to derive inverse scope. Also, the data
is not conclusive. Hornstein [54] notes that all speakers of English seem to get
inverse scope readings for at least some control verbs. The examples in (5.75),
for instance, do in fact allow for the universal to outscope the existential.

(5.74) Someone promised [PRO to worship every god].

(5.75) a. Someone tried to solve every problem.

b. The king asked a guard to escort every perturbator out of the palace.

c. Enlil persuaded a boy to dance with every girl.

I leave the issue of scope in control constructions to further research.

5.7 Summary

The starting point of this chapter was that all expressions are interpreted in
their original syntactic position, i.e. where they are merged first, without re-
course to displacement or storage mechanisms. This assumption is shared with
other ‘in situ’ theories like Barker’s continuation account of quantifier scope
[5] and Park’s and Steedman’s accounts within Combinatory Categorial Gram-
mar ([85],[109]). However, the approach in this chapter differs from Barker,
Park and Steedman in what ‘in situ’ means. They take the syntactic position
of an expression to be the surface position, while here it means the position
where it originally enters the derivation, independent of whether it is displaced
afterwards or not.



5.7 Summary 135

The semantic procedure devised for scope construal in this chapter consisted
in adding the control operator shift and the corresponding delimiter reset to
the language of semantic expressions, together with a reduction rule that allows
shift to capture the evaluation context up to an enclosing reset. The shift was
assumed to be a crucial part of the denotation of operator expressions, while
the delimiter was assumed to be introduced by some feature of a clausal head
(a probe feature •wh or possibly a finiteness feature fin).

Since an impure expression can only be reduced when it contains both a
shift and a reset, shift and reset can be imagined as being a lock and a key: Shift
locks an expression by preventing it from being evaluated until a matching reset
occurs that unlocks it. In terms of derivations: the evaluation (and thereby the
scope construal) of an operator expression is delayed until its scope domain is
constructed.

The main part of this chapter was about deriving different scope behavior.
To this end, two parameters were introduced: the mode and the flavor of a
shift. The mode (weak, strong, or free) determined the evaluation context that
can be captured by shift. This allowed to derive the difference between clause-
boundedness and free scope, as well as the ability or inability to outscope other
operators. The flavor (Q or some feature value) served to keep apart the scope
domain of different kinds of operators (quantifiers vs wh-operators, possibly
also vs focus operators and the like). Most importantly, the parametrization
only concerned evaluation contexts. The rewriting rule for establishing scope
itself was the same for all operator expressions.

A summary of the operational semantics responsible for establishing oper-
ator scope is given in Figure 5.8.

Here is an overview of the operator expressions that were considered and
the control operators that accounted for them.

• strong quantifiers, true in situ wh-phrases (Hindi): ξstrong
Q

• weak quantifiers: ξweak
Q

• indefinites, true in situ wh-phrases (Chinese): ξfree
Q

• displaced wh-phrases: ξstrong
wh (possibly also ξweak

wh )

• in situ wh-phrases with a scope marker (Japanese): ξfree
wh

One remarkable thing to notice here is that quantifiers on the one hand and
wh-phrases on the other hand do not form a natural class. All of them are
handled by the same procedure of scope construal and the parametrization of
this procedure does not provide a clear cut between quantifiers and wh-phrases.
What the two kind of parameters in fact separate is the scope domain (e.g. Q vs
wh) and the scope behavior inside this domain (e.g. the (in)ability to outscope
other operators). This allows for several ways to cut the operator cake. While
operators can differ in the domain they scope over, they can show the same



Figure 5.8: Summary of the operational semantics

Semantic expressions:

E ::= . . . | (ξMode
Flavork :: τ → α.E :: β) :: τFlavor:β

Flavor:α

| 〈E :: τ〉Flavor :: τ

Mode ::= weak | strong | free
Flavor ::= Q | Value

Evaluation contexts (where f, f ′ range over Flavor, and F ranges over pure
expressions):

Df ::= [ ] | (E Df ) | (Df E) | Cf ′

D′f ::= [ ] | (E D′f ) | (D′f F) | Cf ′

Cf ::= Df ′ | 〈C〉f
C ::= Cf

Reduction rules:

C[〈Df [ξweak
f k.E]〉f ] B C[〈E{k 7→ λx.〈Df [x]〉f}〉f ]

C[〈D′f [ξstrong
f k.E]〉f ] B C[〈E{k 7→ λx.〈D′f [x]〉f}〉f ]

C[〈Cf [ξfree
f k.E]〉f ] B C[〈E{k 7→ λx.〈Cf [x]〉f}〉f ]

〈F 〉f B F



5.7 Summary 137

behavior with respect to these domains. This is case for strong quantifiers and
displaced wh-phrases, for example. Also, operators can scope over the same
domain while showing different behavior with respect to it. This is the case for
weak and strong quantifiers, for example.

This still leaves aside a great deal of issues, for quantifier scope is connected
to a wide range of other phenomena that receive no discussion in this thesis,
such as topicality, polarity, the scope of negation and adverbials, and also
processing issues as soon as sentences contain more than two quantifiers. Since
all these discussions lie outside the scope of the thesis, they did not concern
us. The approach of this chapter is a purely structural one, demonstrating
how we can model different scopal behavior in a simple and systematic way,
without making any claims about the semantic properties that might cause this
behavior.





6

Implementation

In this chapter I give an implementation of the proposed syntactic and semantic
procedures. However, it does not cover is the extension for remnant movement
in Section 4.5, in order to keep definitions of data types and functions according
to how they are used throughout the dissertation.

The language of choice is the purely functional programming language
Haskell, because this way the step from formal definition to implementation
is particularly small. The interested reader will see that the implementation
indeed follows the definitions almost to the letter. For a documentation of
Haskell, see the Haskell homepage www.haskell.org. For a textbook introduc-
tion to Haskell in a linguistic context and its use in natural language semantics,
see van Eijck & Unger [118].

Code will be typeset in typewriter font. It is available for download at
http://code.google.com/p/synseminterface/.

6.1 Data types

First I declare a module that defines data types for categories, semantic types,
features, and expressions, along with show functions that print them on the
screen in a readable form.

module Datatypes where

Expressions Exp are recursively defined as being either simple (pairs of
form and meaning) or complex (pairs of a form and another expression). The



140 Implementation 6

only difference to Definition 6 on page 54 is that the meaning dimension is
implemented here not as a single meaning but a list of meanings. The list is
an easy way to capture non-determinism. This will not play a role for lexical
entries, but when constructing denotations containing operators that give rise
to more than one scope reading, then all possible readings will be collected in
that list of meanings.

data Exp = Simple Form [Meaning]

| Complex Form Exp

deriving Eq

instance Show Exp where

show (Simple f ms) = "("++ show f ++","++ show ms ++")"

show (Complex e1 e2) = "<"++ show e1 ++","++ show e2 ++">"

A form is defined as a string together with a category Cat and a list of
features Feat, according to Definition 4 on page 52, and a meaning is defined
as a semantic expression Term together with a semantic type.

data Form = Syn String Cat [Feat] deriving Eq

data Meaning = Sem Term Type deriving Eq

instance Show Form where

show (Syn s c fs) = s ++ "::" ++ show c ++" "++ show fs

instance Show Meaning where

show (Sem t tau) = show t ++ "::" ++ show tau

Syntactic categories Cat are given as defined in Definition 1 on page 41.
Functional categories c → c′ are represented as Slash c c’. For the diacritic
< marking linearization to the left, I use the data constructor L. I also add an
additional category Str, that stands for strings and is used for forms at the
edge of a complex expression (cf. page 58).

data Cat = NP

| N

| VP

| CP

| L Cat

| Slash Cat Cat

| Str

deriving Eq

instance Show Cat where

show NP = "NP"

show N = "N"

show VP = "VP"

show CP = "CP"

show (L c) = (show c) ++ "<"

show (Slash c c’) = "("++( show c)++" -> "++( show c’)++")"

show Str = "String"



6.1 Data types 141

The feature inventory comprises two classes of features: goal features f and
probe features •f (see Definition 5 on page 53), implemented as values with an
according data constructor Goal or Probe. As values I assume Wh and Top; this
can be extended if other features are to be considered as well. Additionally, I
add a value Q, which corresponds to the flavor Q used in Chapter 5.

data Feat = Goal Value

| Probe Value

deriving (Eq,Show)

data Value = Wh

| Top

| Q

deriving (Eq,Show)

Semantic types are given according to Definition 11 on page 99. The case
Cont Type Value Type Type captures impure types and can, for example, be
instantiated as Cont Entity Wh Bool Question, representing the type ewh:t

wh:q.

data Type = Entity

| Bool

| Question

| Type :->: Type

| Cont Type Value Type Type

deriving Eq

instance Show Type where

show Entity = "e"

show Bool = "t"

show Question = "q"

show (t1 :->: t2) = "("++ show t1 ++" -> "++ show t2 ++")"

show (Cont t1 v t2 t3) = show t1

++ "_(" ++ show v ++ ":" ++ show t2 ++ ")"

++ "^(" ++ show v ++ ":" ++ show t3 ++ ")"

Finally, I specify semantic expressions. Here, constants are implemented as
strings and variables are implemented as integers. Expressions with operators
are applications of a second-order predicate to a function, cf. Section 5.1.

data Term = Const String

| Var Int

| Lambda Int Term

| Term :@: Term

| Op Operator

| Not Term

| Term :/\: Term

| Shift Mode Flavor Int Term

| Reset Flavor Term

deriving Eq



142 Implementation 6

data Operator = Exists

| ForAll

| Most

| W

deriving (Eq,Show)

The expression (∃ λx.(P x)), for example, will correspond to the term:

((Op Exists) :@: Lambda 1 ((Const "P") :@: (Var 1)))

The construct Shift Mode Flavor Int Term represents a semantic expression
ξmf x.E, and Reset Flavor Term represents an expression 〈E〉f . Mode specifies
the mode of the shift (weak, strong, or free), and Flavor is defined to be a
feature value.

data Mode = Weak

| Strong

| Free

deriving Eq

type Flavor = Value

Here is a show function for semantic expressions that displays them in a
way close to how they were displayed in the previous chapters. E.g. the term
Reset Wh (Shift Weak Q 2 ((Op Exists) :@: Lambda 1 ((Var 1):@:(Var 2))))

is displayed as <Shift’ 2.Exists 1.(1 2)>_Wh.

instance Show Mode where

show Weak = "’"

show Strong = ""

show Free = "^free"

instance Show Term where

show (Const s) = s

show (Var n) = show n

show ((Op o) :@: Lambda n t) = show o ++

" "++ show n ++ "." ++ show t

show (Lambda n t) = "Lambda "++ show n ++ "." ++ show t

show (t1 :@: t2) = "("++ show t1 ++" "++ show t2 ++")"

show (Not (t1 :/\: (Not t2))) = show t1 ++" => "++ show t2

show (Not t) = "(Not " ++ show t ++ ")"

show (t1 :/\: t2) = "("++show t1++" And "++show t2++")"

show (Shift m Q n t) = "Shift" ++ show m ++

" " ++ show n ++ "." ++ show t

show (Shift m f n t) = "Shift" ++ show m ++ "_" ++ show f

++" " ++ show n ++ "." ++ show t

show (Reset Q t) = "<" ++ show t ++ ">"

show (Reset f t) = "<" ++ show t ++ ">_" ++ show f

For convenience, I define implication, as on page 100:



6.2 Lexicon 143

impl :: Term -> Term -> Term

impl t1 t2 = Not (t1 :/\: (Not t2))

Now that all data types are in place, we can define a lexicon.

6.2 Lexicon

module Lexicon where

import Datatypes

Lexical entries are simple expressions, i.e. pairs consisting of a syntactic
form (Syn String Cat [Feat]) and a list of meanings (Sem Term Type).

Let us start with noun phrases. Proper names are strings of category NP.
They do not carry any features that require checking and their meaning corre-
sponds to a nullary constant of type Entity.

enkidu ,gilgamesh ,ishtar :: Exp

enkidu = Simple (Syn "Enkidu" NP [])

[Sem (Const "enkidu") Entity]

gilgamesh = Simple (Syn "Gilgamesh" NP [])

[Sem (Const "gilgamesh") Entity]

ishtar = Simple (Syn "Ishtar" NP [])

[Sem (Const "ishtar") Entity]

Quantifier expressions are the same with respect to the form dimension but
they differ with respect to meaning. They are associated with a denotation
of type Cont Entity Bool Bool representing ett, which is abbreviated as gq
(reminiscent of generalized quantifier).

everyone ,everything ,someone ,something :: Exp

everyone = Simple (Syn "everyone" NP [])

[Sem everyone ’ gq]

everything = Simple (Syn "everything" NP [])

[Sem everything ’ gq]

someone = Simple (Syn "someone" NP [])

[Sem someone ’ gq]

something = Simple (Syn "something" NP [])

[Sem something ’ gq]

gq = Cont Entity Q Bool Bool

Now the denotations are specified as follows (cf. Figure 5.1 on page 106).

someone ’ = Shift Free Q 1 ((Op Exists) :@: Lambda 2

((( Const "person") :@: (Var 2))

:/\: ((Var 1) :@: (Var 2))))



144 Implementation 6

something ’ = Shift Free Q 1 ((Op Exists) :@: Lambda 2

((( Const "thing") :@: (Var 2))

:/\: ((Var 1) :@: (Var 2))))

everyone ’ = Shift Strong Q 1 ((Op ForAll) :@: Lambda 2

(impl (( Const "person") :@: (Var 2))

((Var 1) :@: (Var 2))))

everything ’ = Shift Strong Q 1 ((Op ForAll) :@: Lambda 2

(impl (( Const "thing") :@: (Var 2))

((Var 1) :@: (Var 2))))

Furthermore, I specify wh-noun phrases, which are of category NP and carry
a goal feature Wh. Their denotation is given below and is of type Cont Entity
Bool Question, which corresponds to eqt . They thus behave like quantifica-
tional noun phrases, with the only difference that they change the result type
of the context they capture to q (the type we assumed for questions).

who ,whom ,what ::Exp

who = Simple (Syn "who" NP [Goal Wh])

[Sem who ’ (Cont Entity Wh Bool Question )]

whom = Simple (Syn "whom" NP [Goal Wh])

[Sem who ’ (Cont Entity Wh Bool Question )]

what = Simple (Syn "what" NP [Goal Wh])

[Sem what ’ (Cont Entity Wh Bool Question )]

who ’ = Shift Strong Wh 1 ((Op W) :@: Lambda 2

((( Const "person") :@: (Var 2))

:/\: ((Var 1) :@: (Var 2))))

what ’ = Shift Strong Wh 1 ((Op W) :@: Lambda 2

((( Const "thing") :@: (Var 2))

:/\: ((Var 1) :@: (Var 2))))

For the implementation of verbs, I first introduce abbreviations for their
syntactic categories and their semantic types.

intransVerb = Slash (L NP) VP

transVerb = Slash NP (Slash (L NP) VP)

et = Entity :->: Bool

eet = Entity :->: (Entity :->: Bool)

Now, transitive verbs subcategorize for two NPs and denote a two-place
predicate constant.

sought ,liked ,met ,fought :: Exp

sought = Simple (Syn "sought" transVerb [])

[Sem (Const "seek") eet]



6.2 Lexicon 145

liked = Simple (Syn "liked" transVerb [])

[Sem (Const "like") eet]

met = Simple (Syn "met" transVerb [])

[Sem (Const "meet") eet]

fought = Simple (Syn "fought" transVerb [])

[Sem (Const "fight") eet]

Intransitive verbs similarly subcategorize for one NP and denote a one-place
predicate constant.

left ,died :: Exp

left = Simple (Syn "left" intransVerb [])

[Sem (Const "leave") et]

died = Simple (Syn "died" intransVerb [])

[Sem (Const "die") et]

Next, I specify lexical entries for determiners (cf. Figure 5.1 on page 106 for
some and every, and Figure 5.7 on page 123 for which). They subcategorize
for a noun and return a noun phrase. Their semantic type expresses that they
require a one-place predicate (a noun denotation) and return a noun phrase
denotation with control effects.

some ,every ,which :: Exp

some = Simple

(Syn "some" (Slash N NP) [])

[Sem some ’ (et :->: Cont Entity Q Bool Bool)]

every = Simple

(Syn "every" (Slash N NP) [])

[Sem every ’ (et :->: Cont Entity Q Bool Bool)]

most = Simple

(Syn "most" (Slash N NP) [])

[Sem most ’ (et :->: Cont Entity Q Bool Bool)]

which = Simple

(Syn "which" (Slash N NP) [Goal Wh])

[Sem which ’ (et :->: Cont Entity Wh Bool Question )]

some ’ = Lambda 3 (Shift Strong Q 1 ((Op Exists ):@: Lambda 2

((( Var 3) :@: (Var 2))

:/\: ((Var 1) :@: (Var 2)))))

every ’ = Lambda 3 (Shift Strong Q 1 ((Op ForAll ):@: Lambda 2

(impl ((Var 3) :@: (Var 2))

((Var 1) :@: (Var 2)))))

most ’ = Lambda 3 (Shift Strong Q 1 ((Op Most) :@: Lambda 2

((( Var 3) :@: (Var 2))

:/\: ((Var 1) :@: (Var 2)))))



146 Implementation 6

which ’ = Lambda 3 (Shift Strong Wh 1 ((Op W) :@: Lambda 2

((( Var 3) :@: (Var 2))

:/\: ((Var 1) :@: (Var 2)))))

Nouns are of category N and denote one-place predicate constants.

king ,beast ,man ,citizen ,goddess :: Exp

king = Simple (Syn "king" N [])

[Sem (Const "king") et]

beast = Simple (Syn "beast" N [])

[Sem (Const "beast") et]

man = Simple (Syn "man" N [])

[Sem (Const "man") et]

citizen = Simple (Syn "citizen" N [])

[Sem (Const "citizen") et]

goddess = Simple (Syn "goddess" N [])

[Sem (Const "goddess") et]

Additionally, I specify lexical entries for adjectives. They are of syntactic
category Slash N N, i.e. subcategorize for a noun and return a noun. Their
denotation modifies the denotation of the noun – for the sake of simplicity I
assume only intersective adjectives. I start by abbreviating their denotation
and semantic type.

adjType = (Entity :->: Bool) :->: (Entity :->: Bool)

adjMeaning :: String -> Term

adjMeaning s = Lambda 1 (Lambda 2 (((Var 1) :@: (Var 2))

:/\: (( Const s) :@: (Var 2))))

wild ,great ,brave :: Exp

wild = Simple (Syn "wild" (Slash N N) [])

[Sem (adjMeaning "wild") adjType]

great = Simple (Syn "great" (Slash N N) [])

[Sem (adjMeaning "great") adjType]

brave = Simple (Syn "brave" (Slash N N) [])

[Sem (adjMeaning "brave") adjType]

Finally, I also implement lexical entries for complementizers (cf. Figure 5.2
on page 106).

that ,epsilon ,epsilonWh ,whether :: Exp

tt = Bool :->: Bool

tq = Bool :->: Question

that = Simple

(Syn "that" (Slash VP CP) [])

[Sem (Lambda 1 (Reset Q (Var 1))) tt]



6.3 Displacement 147

epsilon = Simple

(Syn "" (Slash VP CP) [])

[Sem (Lambda 1 (Reset Q (Var 1))) tt]

epsilonWh = Simple

(Syn "" (Slash VP CP) [Probe Wh])

[Sem (Lambda 1 (Reset Wh (Reset Q (Var 1)))) tt]

whether = Simple

(Syn "whether" (Slash VP CP) [])

[Sem (Lambda 1 (Reset Wh (Reset Q (Var 1)))) tq]

6.3 Displacement

module Displacement where

import Datatypes

import Eval

import Data.List ((\\), intersect)

I start by defining some simple auxiliary functions that will be needed later
on: feats and featsForm for accessing the feature list of an expression and a
form, and edge that collects the forms at the edge of an expression.

feats :: Exp -> [Feat]

feats (Simple f _) = featsForm f

feats (Complex _ e) = feats e

featsForm :: Form -> [Feat]

featsForm (Syn _ _ fs) = fs

edge :: Exp -> [Form]

edge (Simple _ _) = []

edge (Complex e1 e2) = e1 : (edge e2)

In the following, two parameters will be needed. SpecPar specifies whether
all forms that check a feature can be concatenated (Multiple) or whether this
is possible only for one (Single). On page 67 of Chapter 4 this was interpreted
as whether a language allows multiple specifiers or uniquely filled specifiers
only. The second parameter, WhPar, specifies whether a language leaves all
wh-phrases in situ like Japanese (InSitu), requires to front all wh-phrases like
Bulgarian (Fronting), or fronts one wh-phrase and leaves other wh-phrases in
situ like English (Mixed).

data SpecPar = Single | Multiple

data WhPar = InSitu | Fronting | Mixed

The function split splits a simple expression into a complex one, according
to its definition on page 58. Its exact outcome depends on the parameter WhPar:



148 Implementation 6

it associates the phonological content of the expression with the edge in the
case of Fronting (cf. page 67), with the nucleus in the case of InSitu (cf.
page 69), and it allows both possibilities in the case of Mixed (cf. page 63).
The indeterminism in the mixed case is captured by returning a list of all
possibilities.

split :: WhPar -> Exp -> [Exp]

split Fronting (Simple (Syn s c fs) sem) =

[Complex (Syn s Str fs) (Simple (Syn "" c []) sem)]

split InSitu (Simple (Syn s c fs) sem) =

[Complex (Syn "" Str fs) (Simple (Syn s c []) sem)]

split Mixed (Simple (Syn s c fs) sem) =

[Complex (Syn s Str fs) (Simple (Syn "" c []) sem),

Complex (Syn "" Str fs) (Simple (Syn s c []) sem)]

The function merge implements Definition 7 on page 57. It takes an in-
stantiation of the parameter WhPar as input because it needs to hand it to the
function split in case splitting is necessary.

merge :: WhPar -> Exp -> Exp -> [Exp]

merge p e1@(Simple form1 ms1) e2@(Simple form2 ms2)

| feats e2 /= [] = concat $ map (merge p e1) (split p e2)

| otherwise = [Simple form (funcapp ms1 ms2) |

form <- (form1 ‘oplus ‘ form2 )]

merge p e1@(Complex form exp) e2@(Simple _ _)

| feats e2 /= [] = concat $ map (merge p e1) (split p e2)

| otherwise = [Complex form e | e <- merge p exp e2]

merge p e1 (Complex form exp)

= [Complex form e | e <- merge p e1 exp]

Next I give the auxiliary functions that merge uses: oplus, an implemen-
tation of ⊕, and funcapp, an implementation of functional application.

oplus :: Form -> Form -> [Form]

oplus (Syn s1 (Slash (L c) c’) fs1) (Syn s2 c2 _)

| c == c2 = [Syn (s2++" "++s1) c’ fs1]

| otherwise = []

oplus (Syn s1 (Slash c c’) fs1) (Syn s2 c2 _)

| c == c2 = [Syn (s1++" "++s2) c’ fs1]

| otherwise = []

oplus _ _ = []

funcapp :: [Meaning] -> [Meaning] -> [Meaning]

funcapp ms1 ms2 = concat $ map (uncurry fa) (zip ms1 ms2)



6.3 Displacement 149

where

fa :: Meaning -> Meaning -> [Meaning]

fa (Sem t1 tau1) (Sem t2 tau2) =

[Sem t (infer tau t) | t <- evaluate (t1 :@: t2),

tau <- tau1 ‘at ‘ tau2 ]

In the definition of funcapp, at is a function that determines the type of
the result of functional application, in the case of control effects according to
the typing rules on page 101. If the input types do not match, it returns the
empty list and as a consequences funcapp will also not return a result. The
function infer removes encoded control effects in the type in case the control
transfer was already performed. It uses an auxiliary test hasShift, which will
make sense only after we have seen the implementation of the semantics in the
next section.

at :: Type -> Type -> [Type]

at t (Cont t’ f a b) = [ Cont tau f a b | tau <- t ‘at‘ t’ ]

at (Cont t’ f a b) t = [ Cont tau f a b | tau <- t’ ‘at‘ t ]

at (t1 :->: t2) t | t1 == t = [t2]

| otherwise = []

infer :: Type -> Term -> Type

infer tau@(Cont t1 v t2 t3) term

| hasShift v term = Cont (infer t1 term) v t2 t3

| otherwise = infer t1 term

infer tau ((Op W) :@: _) = Question

infer tau _ = tau

hasShift :: Flavor -> Term -> Bool

hasShift v (Shift _ f _ t) | f == v = True

| otherwise = hasShift v t

hasShift v (Lambda _ t) = hasShift v t

hasShift v (t1 :@: t2) = hasShift v t1 || hasShift v t2

hasShift v (t1 :/\: t2) = hasShift v t1 || hasShift v t2

hasShift v (Not t) = hasShift v t

hasShift v (Reset _ t) = hasShift v t

hasShift _ _ = False

The following function remerge implements Definition 9 on page 60. It uses
additional auxiliary functions that are defined below.

remerge :: SpecPar -> Exp -> Exp

remerge _ e@(Simple _ _) = e

remerge p e@(Complex _ _) = deleteEmpty $

(a ‘without ‘ cs)

‘plus ‘

(check p cs (e ‘minus ‘ a))

where a = head (edge e)

cs = (featsForm a) ‘intersect ‘ (mirror $ feats e)



150 Implementation 6

The auxiliary function minus removes a form from the edge of an expression,
and without removes features from a form.

minus :: Exp -> Form -> Exp

minus e@(Simple _ _) f = e

minus (Complex f e) f’ | f == f’ = e

| otherwise = Complex f (e ‘minus ‘ f’)

without :: Form -> [Feat] -> Form

without (Syn s c fs) fs ’ = Syn s c (fs \\ fs ’)

The function plus concatenates a form with the form of the nucleus of an
expression, just like + in the definition of remerge.

plus :: Form -> Exp -> Exp

plus (Syn s _ _) (Simple (Syn s’ c’ fs ’) sem) =

Simple (Syn (s++" "++s’) c’ fs ’) sem

plus form (Complex f exp) = Complex f (form ‘plus ‘ exp)

The function check takes an expression and the relevant features, and plays
the role of checking all instances of these features at its edge, concatenating
the edge expressions if possible and dependening on the parameter SpecPar. It
uses an auxiliary function mirror for turning goal features into probe features
and vice versa.

check :: SpecPar -> [Feat] -> Exp -> Exp

check Single cs (Simple (Syn s c fs) sem) =

Simple (Syn s c (fs \\ mirror cs)) sem

check Single cs (Complex f e) = Complex (f ‘without ‘ cs)

(check Single cs e)

check Multiple cs (Simple (Syn s c fs) sem) =

Simple (Syn s c (fs \\ mirror cs)) sem

check Multiple cs (Complex f e)

| fcs == [] = Complex f (check Multiple cs e)

| otherwise = if all (‘elem ‘ cs) fs

then f ‘plus ‘ (check Multiple cs e)

else Complex (f ‘without ‘ cs)

(check Multiple cs e)

where fs = featsForm f

fcs = cs ‘intersect ‘ fs

mirror :: [Feat] -> [Feat]

mirror [] = []

mirror ((Probe v):fs) = (Goal v):( mirror fs)

mirror ((Goal v):fs) = (Probe v):( mirror fs)

Finally, deleteEmpty deletes empty forms at the edge.



6.4 Operator scope 151

deleteEmpty :: Exp -> Exp

deleteEmpty e@(Simple _ _) = e

deleteEmpty (Complex form e)

| empty form = deleteEmpty e

| otherwise = Complex form (deleteEmpty e)

empty :: Form -> Bool

empty (Syn "" _ []) = True

empty _ = False

6.4 Operator scope

Now we turn to an implementation of the operational semantics. The main goal
is to have an evaluation function that takes a term and reduces it according to
the reduction rules specified in Chapter 5.

module Eval where

import Datatypes

import Data.List ((\\), nub)

The evaluation function will be based on Oleg Kiselyov’s lambda calcu-
lator algorithm in the rewritten form proposed by Chung-Chieh Shan, see
http://okmij.org/ftp/Haskell/Lambda_calc.lhs. Ignoring control oper-
ators for the moment, the evaluation function could be implemented as eval’.

eval ’ :: Term -> Term

eval ’ c@(Const _) = c

eval ’ v@(Var _) = v

eval ’ (Not t) = Not (eval ’ t)

eval ’ (t1 :/\: t2) = (eval ’ t1) :/\: (eval ’ t2)

eval ’ (Lambda n t) = etaReduce $ Lambda n (eval ’ t)

eval ’ (( Lambda n t1) :@: t2) = eval ’ $ substitute t1 n t2

eval ’ (t1@(_:@:_):@:t2) = case eval ’ t1 of

t@(Lambda _ _) -> eval ’ (t:@:t2)

t -> t:@:(eval ’ t2)

eval ’ (t1 :@: t2) = t1 :@: (eval ’ t2)

eval ’ t = t

Where substitute implements capture avoiding substitution (as given later)
and etaReduce implements eta-reduction as follows. It uses a test notFree,
which returns true if there are no free occurrences of a particular variable in a
particular term.

etaReduce :: Term -> Term

etaReduce t@(Lambda n (t’ :@: (Var n’)))

| n == n’ && notFree n t’ = t’

| otherwise = t

etaReduce t = t



152 Implementation 6

notFree :: Int -> Term -> Bool

notFree n (Var n’) = n /= n’

notFree n (Not t) = notFree n t

notFree n (Lambda n’ t) | n == n’ = True

| otherwise = notFree n t

notFree n (t1 :/\: t2) = notFree n t1 && notFree n t2

notFree n (t1 :@: t2) = notFree n t1 && notFree n t2

notFree _ _ = True

I will explain the details of the evaluation later when giving the final eval-
uation fuction we will use.

The function eval’ works fine for pure expression but we cannot simply
add a case for impure ones. The reason is that the evaluation rule for impure
expressions, i.e. expressions containing shifts, is not so much about manipu-
lating the content in our data structure Term but rather about manipulating
the location of a subexpression. (Recall how the reduction rule for shift cap-
tured the context and plugged it into the ξ-expression, thereby transfering a
part of the expression to a position above the captured context.) In order to
manipulate locations, I make use of Huet’s idea of a zipper (cf. [56]) and let
our evaluation function not operate on expression but on expressions with zip-
per. The zipper is an idiom for traversing a data structure and manipulating
locations in it in a non-destructive way. It uses the idea of storing information
about the location of a substructure (a subexpression in our case) with the help
of contexts. To this end, we define a data structure Context in parallel to our
definition for Term.

data Context = Hole

| CAppL Context Term

| CAppR Term Context

| CAndL Context Term

| CAndR Term Context

| CNot Context

| CLambda Int Context

| CReset Flavor Context

deriving (Eq,Show)

A list of such contexts is called thread. A zipper is specified as a thread
together with a term. The term is some subexpression t of a bigger expression
t′, and the thread encodes the location of t in t′. The thread can thus be
thought of as storing the path that was traversed in t′ in order to get to t’s
location.

type Thread = [Context]

type Zipper = (Thread ,Term)

As an example, consider the example expression (λx.¬(fish ∧ x) chips):

exampleTerm = (Lambda 1 (Not ((Const "fish") :/\: (Var 1))))

:@: (Const "chips")



6.4 Operator scope 153

Focusing on Var 1 as a subterm of exampleTerm, we can represent it as a
zipper, where its location is stored in the thread.

exampleZipper = ([ CAndR (Const "fish") Hole ,

CNot Hole ,

CLambda 1 Hole ,

CAppL Hole (Const "chips")],

Var 1)

Now we can go from a zipper to a term by unwinding the thread.

unwind :: Zipper -> Term

unwind ([],t) = t

unwind ((CAppR t _) :ts,t’) = unwind (ts,t :@: t’)

unwind ((CAppL _ t) :ts,t’) = unwind (ts,t’ :@: t )

unwind ((CAndR t _) :ts,t’) = unwind (ts,t :/\: t’)

unwind ((CAndL _ t) :ts,t’) = unwind (ts,t’ :/\: t )

unwind ((CNot _) :ts,t’) = unwind (ts,Not t’)

unwind (( CLambda n _):ts,t ) = unwind (ts,Lambda n t)

unwind (( CReset f _) :ts,t ) = unwind (ts,Reset f t)

Going back to our example, unwind exampleZipper would return the ex-
pression exampleTerm we started with. Later we will use a function unwind1
that unwinds not the whole thread but only its head (i.e. is not recursive).

unwind1 :: Zipper -> Zipper

unwind1 z@([],t) = z

unwind1 (( CAppR t _) :ts ,t’) = (ts ,t :@: t’)

unwind1 (( CAppL _ t) :ts ,t’) = (ts ,t’ :@: t )

unwind1 (( CAndR t _) :ts ,t’) = (ts ,t :/\: t’)

unwind1 (( CAndL _ t) :ts ,t’) = (ts ,t’ :/\: t )

unwind1 ((CNot _) :ts ,t’) = (ts ,Not t’)

unwind1 (( CLambda n _):ts ,t ) = (ts ,Lambda n t)

unwind1 (( CReset f _) :ts ,t ) = (ts ,Reset f t)

Now we intersperse the evaluation function eval’ from above with a zipper.
This means that the type of eval is not Term -> Term but Zipper -> [Zipper].
(Returning not a single zipper but a list of zippers is again a way to implement
non-determinism.) Every time we move to a subexpression, we store its context
and every time we move up again, we unwind this context.

eval :: Zipper -> [Zipper]

Constants and variables evaluate to themselves, so eval simply returns the
zipper it got as input.

eval z@(_,Const _) = [ z ]

eval z@(_,Var _) = [ z ]

For lambda expressions, we evaluate the body. The only difference to the
corresponding clause of eval’ above is that here we do not eta-reduce the
result. We will perform eta-reduction later on the whole expression. This



154 Implementation 6

is because otherwise we would reduce (∃ λx.(P x)) to (∃ P ), for example.
Interspersing the clause with the zipper (i.e. stacking the context and later
unwinding it) yields the following.

eval (thread ,Lambda n t) = map unwind1 $

eval (( CLambda n Hole):thread ,t)

The reduction of applications are handled by distinguishing three cases, like
with eval’. The first one is the case of an expression (λx.t1 t2). This is
reduced by substituting x in t1 by t2.

eval (th ,( Lambda n t1):@:t2) = eval (th,substitute t1 n t2)

The second case is that of stacked applications. Since we do not want to fix
a certain evaluation order, the expression is evaluated twice: once from left to
right and once from right to left. For pure expressions, this will always yield
the same result, but for impure expressions both directions may differ (e.g.
may result in different scopings). The way the reduction itself works is parallel
to the clause in eval’.

eval (thread ,t1@(_:@:_) :@: t2) =

(concat $ map (evalL . unwind1) $

eval (( CAppR t1 Hole):thread ,t2))

++

(concat $ map (evalR . unwind1) $

eval (( CAppL Hole t2):thread ,t1))

where

evalL (th ,y) = case y of

(a:@:b) -> map unwind1 $

eval ((CAppL Hole b):th,a)

t -> eval (th ,t)

evalR (th ,y) = case y of

(a@(Lambda _ _):@:b) -> eval (th ,a:@:b)

(a :@: b) -> map unwind1 $

eval ((CAppR a Hole):th,b)

t -> eval (th ,t)

The third case comprises all remaining possibilities.

eval (thread ,t@(t1:@:t2)) = map unwind1 $

eval ((CAppR t1 Hole):thread ,t2)

The reduction of a negated term is straightforward.

eval (thread ,Not t) = map unwind1 $

eval ((CNot Hole):thread ,t)

With conjunctions, free evaluation order can be emulated like in the case of
applications, namely by executing both left-to-right and right-to-left order and
collecting the results in a list.



6.4 Operator scope 155

eval (thread ,t1 :/\: t2) = (concat $ map (evalR . unwind1) $

eval ((CAndL Hole t2):thread ,t1))

++

(concat $ map (evalL . unwind1) $

eval ((CAndR t1 Hole):thread ,t2))

where

evalL (th ,y) = case y of

(a :/\: b) -> map unwind1 $

eval ((CAndL Hole b):th,a)

t -> eval (th ,t)

evalR (th ,y) = case y of

(a :/\: b) -> map unwind1 $

eval ((CAndR a Hole):th,b)

t -> eval (th ,t)

Our fragment will not make use of this. If we are sure that no control effects
occur in either conjunct, a simpler evaluation clause could be given:

eval (th,t1 :/\: t2) = [ (th,x :/\: y) | (_,x) <- eval (th,t1),

(_,y) <- eval (th,t2) ]

Now let us turn to the control operators. The reduction of a term enclosed
by a reset depends on whether the term is pure or not, i.e. whether it contains
shift operators of the same mode or not. (The test pure will be defined below.)
If it is pure, we simply drop the reset and evaluate the term. If it is impure, on
the other hand, we keep the reset by storing it in the context and unwinding
it after reducing the term.

eval (thread ,Reset f t)

| pure f t = eval (thread ,t)

| otherwise = concat $ map (eval . unwind1) $

eval (( CReset f Hole):thread ,t)

Finally, we implement the shift reduction rule as follows.

eval z@(thread ,Shift m f n t)

| noResets f thread = [ z ]

| otherwise = map unwind1 $ concat

[ eval (th2 ,substitute t n (reify f th1)) |

(th1 ,th2) <- filter (admissible m f) $

splitt f [] thread ]

eval z@(_,_) = [ z ]

The expression substitute t n (reify f th1) corresponds to the body
of the shifted expression where the variable bound by the operator shift (n) is
replaced by the reified context. The context is every possible context th1 up
to an enclosing reset that matches in flavor. These contexts are determined by
a function splitt that splits the thread in position of a matching reset, and



156 Implementation 6

then filtered with admissible, depending on the mode of the shift. For weak
and strong shifts, only the context up to the nearest enclosing reset is allowed
(for weak shifts moreover only contexts not containing other shifts), while for
free shifts, all contexts are possible.

splitt :: Flavor -> Thread -> Thread -> [(Thread ,Thread )]

splitt _ _ [] = []

splitt f thread (c@(CReset f’ _):cs)

| f == f’ = (thread ,(c:cs)) : (splitt f (thread ++[c]) cs)

| otherwise = splitt f (thread ++[c]) cs

splitt f thread (c:cs) = splitt f (thread ++[c]) cs

admissible :: Mode -> Flavor -> (Thread ,Thread) -> Bool

admissible Weak f ((c:cs),_) = noResets f cs

&& pureThread f cs

admissible Strong f ((c:cs),_) = noResets f cs

admissible _ _ _ = True

The function admissible uses the auxiliary functions noResets, which re-
turns true if a thread does not contain resets of a certain flavor, and pureThread,
which checks whether a thread contains shifts of a certain flavor. This serves
the purpose of determining whether the evaluation is skipping over a shift ex-
pression that should actually be evaluated first. (For convenience, pureThread
only checks arguments of applications, because these are the relevant cases for
us. However, it is easy to extend the function to all other cases, if needed.)
The latter uses another auxiliary function pure, which checks whether a term
is pure with respect to a particular flavor.

noResets :: Flavor -> Thread -> Bool

noResets f thread = null $ filter (== CReset f Hole) thread

pureThread :: Flavor -> Thread -> Bool

pureThread f [] = True

pureThread f (( CAppL c t):cs) = pure f t

&& pureThread f cs

pureThread f (( CReset _ c):cs) = pureThread f [c]

&& pureThread f cs

pureThread f (_:cs) = pureThread f cs

pure :: Flavor -> Term -> Bool

pure f (Lambda _ t) = pure f t

pure f (t1 :@: t2) = pure f t1 && pure f t2

pure f (Not t) = pure f t

pure f (t1 :/\: t2) = pure f t1 && pure f t2

pure f (Reset _ t) = pure f t

pure f (Shift _ f’ _ _) = f /= f’

pure _ _ = True

Reifying the context as a function is taken care of by the function reify,
defined as follows. The auxiliary functions variablesC and variables traverse



6.4 Operator scope 157

context lists and terms, respectively, in order to collect all occuring variables,
from which the maximum is chosen (or zero if the list of occuring variables is
empty) and added by 1. The resulting integer is a fresh variable fresh that
can be used for reifying the context without risking variable clashes.

reify :: Flavor -> Thread -> Term

reify f thread = Lambda fresh

(Reset f (unwind (thread ,Var fresh )))

where fresh = (maxList $ concat $ map varsC thread) + 1

varsC :: Context -> [Int]

varsC Hole = []

varsC (CAppL _ t) = variables t

varsC (CAppR t _) = variables t

varsC (CAndL _ t) = variables t

varsC (CAndR t _) = variables t

varsC (CLambda n _) = [n]

varsC (CNot _ ) = []

varsC (CReset _ _) = []

variables :: Term -> [Int]

variables (Var n) = [n]

variables (Not t) = variables t

variables (t1 :/\: t2) = variables t1 ++ variables t2

variables (t1 :@: t2) = variables t1 ++ variables t2

variables (Lambda n body) = n : (variables body)

variables (Shift _ _ n t) = n : (variables t)

variables (Reset _ t) = variables t

variables _ = []

maxList :: [Int] -> Int

maxList [] = 0

maxList xs = maximum xs

Now we also define a top-level function evaluate of type Term -> [Term],
that evaluates the input expression by initiating eval with an empty thread,
picking the resulting expression (the thread is empty after application of eval
because every time a context is appended to the thread, it is unwound after-
wards), performing eta-reduction and removing duplicates.

evaluate :: Term -> [Term]

evaluate t = map eta $ nub $ map snd $ eval ([],t)

eta :: Term -> Term

eta t@((Op _) :@: Lambda _ _) = t

eta t@(Lambda n (t’ :@: (Var n’)))

| n == n’ && notFree n t’ = t’

| otherwise = t

eta (t1 :@: t2) = (eta t1) :@: (eta t2)



158 Implementation 6

eta (t1 :/\: t2) = (eta t1) :/\: (eta t2)

eta (Not t) = Not (eta t)

eta (Reset f t) = Reset f (eta t)

eta (Shift m f n t) = Shift m f n (eta t)

eta t = t

The only thing that is still missing is an implementation of capture-avoiding
substitution. The function substitute that achieves this is as one would
expect. Here, substitute t1 n t2 means that the variable n is substituted
in t1 for t2.

substitute :: Term -> Int -> Term -> Term

Constants are not substituted, and a variable is substituted if it is the input
variable.

substitute c@(Const _) _ _ = c

substitute v@(Var n1) n2 t | n1 == n2 = t

| otherwise = v

For negated terms, conjunctions, and applications, the substitution is simply
passed to the subexpressions.

substitute (Not t’) n t = Not $ substitute t’ n t

substitute (t1 :/\: t2) n t = (substitute t1 n t)

:/\: (substitute t2 n t)

substitute (t1 :@: t2) n t = (substitute t1 n t)

:@: (substitute t2 n t)

In principle the same happens with lambda expressions, but it needs to be
ensured that variables in the expression we are substituting do note accidentally
get bound by the lambda. If this happens (which is the second case below),
the variable is renamed in the lambda expression.

substitute (Lambda n’ body) n t

| n’ == n = Lambda n’ body

| n’ ‘elem ‘ (variables t) =

let

fresh = (maximum (n’:( variables body ))) + 1

body ’ = substitute body n’ (Var fresh)

in

substitute (Lambda fresh body ’) n t

| otherwise = Lambda n’ (substitute body n t)

And pretty much the same is done for expressions with a shift operator: A
substitution in an expression enclosed by a reset is simply passed on, and
operators can be ignored althogether because they do not contain variables.



6.5 Front end 159

substitute (Shift m f n body) n’ t

| n’ ‘elem ‘ (variables t) =

let

fresh = (maxList $ (n’:( variables body ))) + 1

body ’ = substitute body n’ (Var fresh)

in

substitute (Shift m f fresh body ’) n’ t

| otherwise = Shift m f n (substitute body n’ t)

substitute (Reset f t’) n t = Reset f (substitute t’ n t)

substitute t@(Op _) _ _ = t

This concludes the implementation of the semantic mechanism employed in
Chapter 5.

6.5 Front end

Let us now move to implementing a front end that facilitates playing with the
implementation.

module FrontEnd where

import Datatypes

import Lexicon

import Displacement

import Eval

import Data.Char (toLower ,isSpace)

import Data.List ((\\))

For example, when we want to build the sentence

Which great man died?

we have to apply merge to great and man, then merge the result with which,
and finally merge the resulting NP with the verb died. We would have to input
the following:

remerge Single (merge Mixed epsilonWh (merge Mixed died
(merge Mixed which (merge Mixed great man))))

In this section I define some auxiliaries so we can instead input the follow-
ing, which is not only clearer but also prevents us from specifying different
parameters inside one sentence:

build Mixed Single "(RM (M1 epsilonWh (M1 died (M1 which
(M1 great man)))))"



160 Implementation 6

Where M1 represents merge and RM represents remerge.
To this end, I define a datatype SO (reminiscent of syntactic object) that

specifies the operation that is to be applied to its arguments: M1 for merging a
one-place function with an argument, M2 for merging a two-place function with
two arguments, and RM for remerge. Additionally, LI represents lexical items.

data SO = LI String

| M1 SO SO

| M2 SO SO SO

| RM SO

deriving (Eq,Show)

The first step now is to parse an input string and construct the correspond-
ing SO. This is actually only to avoid having to write (LI "word") and instead
be able to simply write word.

parse :: String -> SO

parse s@(’(’ : xs) = parseCon ((init . tail)

(upToClosingBracket s))

parse s = LI s

parseCon :: String -> SO

parseCon s = case op of

"M1" -> M1 (parse func) (parse arg1)

"M2" -> M2 (parse func) (parse arg1)

(parse arg2)

"RM" -> RM (parse func)

where op = head (wordz s)

func = head (tail (wordz s))

arg1 = head (tail (tail (wordz s)))

arg2 = last (wordz s)

wordz :: String -> [String]

wordz [] = []

wordz s | head s == ’(’ = (upToClosingBracket s) :

(wordz $ remove (length (upToClosingBracket s)+1) s)

| otherwise = firstWord :

(wordz $ remove (length firstWord + 1) s)

where firstWord = fst $ break (==’ ’) s

For example, calling wordz on the string "(wise man) enki" returns the list
["(wise man)","enki"].

remove :: Int -> String -> String

remove n s = s \\ (take n s)

upToClosingBracket :: String -> String

upToClosingBracket s = head [ x | x <- prefixes s,

bracketsFine x ]



6.5 Front end 161

prefixes s = [ ys | ys <- [take i s | i <- [1..( length s)]]]

bracketsFine x = (count ’(’ x) == (count ’)’ x)

count y [] = 0

count y (z:zs) | y == z = 1 + count y zs

| otherwise = count y zs

The next step is to translate the SO we created into the corresponding
applications of operations. For LIs, the function trans simply looks up the
string in the lexicon (see below for lookUp). For SOs encoding merge or remerge
operations, trans is defined recursively. It uses two auxiliary functions that
stack the operations that have to be applied.

trans :: SO -> WhPar -> SpecPar -> [Exp]

trans (LI string) _ _ = [lookUp string]

trans (M1 so1 so2) wh spec = glueM wh (trans so1 wh spec)

(trans so2 wh spec)

trans (M2 so1 so2 so3) wh spec =

glueM wh (glueM wh (trans so1 wh spec)

(trans so2 wh spec))

(trans so3 wh spec)

trans (RM so) wh spec = glueRM spec (trans so wh spec)

The auxiliary functions glue and glueRM are specified as follows.

glueM :: WhPar -> [Exp] -> [Exp] -> [Exp]

glueM p xs ys = [ z | x <- xs ,

y <- ys,

z <- merge p x y ]

glueRM :: SpecPar -> [Exp] -> [Exp]

glueRM p xs = map (remerge p) xs

Finally, I define a top-level function build that takes two parameters and
a string as input, and returns the successful results of applying the operations
as specified in the input string.

build :: WhPar -> SpecPar -> String -> [Exp]

build wh spec string = filter converged $

trans (parse string) wh spec

converged :: Exp -> Bool

converged (Simple _ _) = True

converged _ = False

As a last thing, we only need a function lookUp for looking up strings in
the lexicon. Its implementation is very straightforward because the expressions
in the lexicon were named like the string with which we refer to them.

lookUp :: String -> Exp



162 Implementation 6

lookUp "enkidu" = enkidu

lookUp "gilgamesh" = gilgamesh

lookUp "ishtar" = ishtar

lookUp "who" = who

lookUp "whom" = whom

lookUp "what" = what

lookUp "king" = king

lookUp "beast" = beast

lookUp "man" = man

lookUp "citizen" = citizen

lookUp "goddess" = goddess

lookUp "that" = that

lookUp "epsilon" = epsilon

lookUp "sought" = sought

lookUp "liked" = liked

lookUp "met" = met

lookUp "fought" = fought

lookUp "left" = left

lookUp "died" = died

lookUp "great" = great

lookUp "wild" = wild

lookUp "some" = some

lookUp "every" = every

lookUp "which" = which

lookUp "epsilonWh" = epsilonWh

lookUp "everyone" = everyone

lookUp "someone" = someone

lookUp "everything" = everything

lookUp "something" = something

Now we can use the frontend by feeding build with strings like the following:

s1 = "(M1 that (M2 fought (M1 some beast) gilgamesh ))"

s2 = "(RM (M1 epsilonWh (M2 liked whom enkidu )))"

s3 = "(RM (M1 epsilonWh (M1 died (M1 which (M1 great man )))))"

s4 = "(RM (M1 epsilonWh (M2 liked what who )))"

s5 = "(RM (M1 epsilonWh (M2 fought whom who )))"

s6 = "(M1 epsilon (M2 liked something everyone ))"

For a language like English, we would use build Mixed Single, while
for most Slavic languages we would use build Fronting Multiple, and for
Japanese and other in situ languages we can use both build InSitu Single
and build InSitu Mixed. Note that the semantic procedure for scope con-
strual applies automatically because the evaluation of the constructed semantic
expression is part of the definition of merge.



7

Concluding remarks and
future perspectives

Finally, I will wrap up by briefly recapitulating the main points of the thesis
and considering its implications for the syntax/semantics interface.

The main subject of this thesis was the syntax and semantics of non-local
dependencies, focusing on wh-displacement and operator scope. These depen-
dencies give rise to the question that lies at the heart of this thesis: What is
the relationship between form and meaning and to which extent do syntax and
semantics operate in parallel?

A common view of formal grammar theories is to impose a strict correspon-
dence between syntax and semantics and assume that syntactic displacement
and semantic scope construal go hand in hand, or even are two sides of the same
coin. This seems to be half right and half wrong, for the syntactic position of
a displaced operator expression in some cases does coincide with its semantic
scope position and in some cases does not. From the strict correspondence
point of view, the observed parallels are expected and do not require further
ado. The mismatches, on the other hand, constitute exceptions and require the
adjustment of either the syntactic rule for displacement or the semantic rule
for establishing scope.

In this thesis I set out to explore the opposite approach: displacement and
scope construal are two distinct mechanisms. That is, the mismatches between
the syntactic position of an operator expression and its semantic scope position
are the normal case, parallels are the exception – they emerge simply as a result



164 Concluding remarks and future perspectives 7

of the general relation between syntax and semantics.
The overall picture of the syntax/semantics interface drawn in this thesis

rests on the assumption that grammar consists of two parts: a core system for
establishing local dependencies, with syntax and semantics operating in paral-
lel, and extensions to this core system for establishing non-local dependencies,
with syntax and semantics operating independently of one another. I proposed
that it is those extensions that are responsible for displacement and operator
scope. More specifically, I took displacement to be a syntactic procedure that
does not have a semantic counterpart, and scope construal to be a semantic
procedure that does not have a syntactic counterpart.

Chapter 2 started by carving out the core system. Expressions were taken to
be form-meaning pairs and combining such expressions consisted of two opera-
tions: string concatenation on the form side, serving to fulfill subcategorization
requirements, and functional application on the meaning side, serving to fulfill
argument requirements. Recall that all expressions that could be built in this
way were pairs of a well-typed syntactic form and a corresponding well-typed
semantic term. That is, there was a hardwired connection between form and
meaning that ensured them to be synchronized.

This core system was then extended by procedures operating only on one
of the two dimensions. Displacement, on the one hand, operated on the form
dimension only. It was driven by the need to check syntactic features in a po-
sition different from the one where the expression originated. Scope construal,
on the other hand, operated on the meaning dimension only, resulting in the
establishment of logical scope in a position different from where the expres-
sion was originally interpreted. There were cases where both overlap, because
clausal heads play two roles: they trigger displacement and they delimit scope.
But there was no intrinsic tie between them. Displacement was driven only by
the need to fulfil formal requirements, and semantics was blind to the results
this fulfilment led to. That is, syntax and semantics parted company. Now,
what happened to the bond between form and meaning that we had in the base
grammar?

Let us first look at the case of syntax parting company with semantics.
Expressions were extended to not only comprise simple form-meaning pairs
but also complex expressions consisting of a form-meaning pair together with a
number of forms at the edge. Remember that the complex expressions inherited
its properties (the syntactic type, the features, as well as the meaning) from the
underlying form-meaning pair. That is, carrying along forms at the edge had no
effect on the properties of the whole expression. The displacement procedure
thus did not affect the core system of combining expressions. In this sense, it is
a safe extension of the base grammar: It does not cut the bond between form
and meaning. The question it raised, however, is which purpose displacement
serves if it does not receive an interpretation. The answer I hinted at is that
displacement can indeed have an interpretative effect, even if it is not directly
input to a semantic interpretation, namely by creating new configurations from



7 Concluding remarks and future perspectives 165

which information-structural notions are derived. The claim of this thesis is
thus not to deprive displacement of its general purpose, but only to deprive it
of its role in establishing operator scope.

Let us now turn to the case of semantics parting company with syntax. I
invoked a mechanism for control transfer that basically consisted of a rewriting
rule operating on semantic expressions in order to establish operator scope.
Since control transfers occurred in the meaning dimension only and since they
were encoded in the semantic types but were not reflected in the syntactic
category, they had no effect on syntactic well-formedness or behavior. They
also did not affect the basic operations for combining expressions. Therefore
also the semantic procedure leaves the base grammar untouched.

The syntax/semantics interface encoded in the base grammar in Chapter 2
is thus unaffected by the extensions in Chapter 4 and Chapter 5. That is, we
can give up a strict correspondence between form and meaning without losing
the important connection between them.

Although this thesis focused on quantifiers and wh-question formation, the
proposal of loosening the tie between syntax and semantics has far-reaching
consequences for the modeling of the syntax/semantics interface in general.
Additional to the phenomena considered in this thesis, there are a lot more
which seem to require a tight interaction between syntax and semantics, for
example bound variable pronouns, crossover effects, VP ellipsis and antecedent-
contained deletion, quantifier intervention effects as discussed by Beck [7], and
so on. All of them would require a substantial amount of further research.

In order to sketch that a treatment of such phenomena in our approach to
the syntax/semantics interface could not only be possible but also simple and
attractive, I will briefly consider crossover effects. Crossover effects subsume the
generalization that a wh-expression can bind a pronoun only if it c-commands
it in its base position, or in other words: displacement of a wh-expression
does not create new binding possibilities. This is illustrated in the following
examples. In (7.76), the pronoun can be bound by the wh-expression, whereas
this is not possible in (7.77).

(7.76) a. Who1 1 searched for his1 friend?

b. Who1 1 thought that he1 can defeat death?

(7.77) a. ∗Whom1 did he1 search for 1?

b. ∗Whom1 did [his1 friend] search for 1?

c. ∗Whom1 did he1 think death will defeat 1?

The way we keep track of the derivational order at the edge of complex
expressions and discard all other information actually allows for two straight-
forward ways to explain crossover effects – a syntactic and a semantic one,
depending on whether one wants to consider conditions on pronominal binding
to be of a syntactic or a semantic nature.



166 Concluding remarks and future perspectives 7

First assume that pronominal binding is semantic. Then a very natural way
to account for it in the present proposal is to assume that a binding relation is
established whenever the expression denoting the binder enters the derivation.
This is because at that point all semantic information is contributed and pro-
cessed. Later operations such as splitting and percolating an expression only
keep phonological and syntactic information but is not subject to semantic
interpretation. So if a semantic relation is to be established between two ex-
pressions, it has to happen when they are merged. Now, this actually already
gives us the crossover effects above: When the binder who in (7.76a) enters
the derivation, it is merged with the predicate searched for his friend. At this
point, the pronoun is present and therefore can be bound. When who enters
the derivation in (7.77b), on the other hand, it is merged with the verb search
for. The pronoun is not yet part of the expression built and cannot be bound.
Later, when the pronoun finally is present, the semantics of who has already
been processed. Even if it is still at the edge, it is only a form and does not
carry any semantic content, thus cannot provide a binder at this stage.

If we instead assume that pronominal binding is a syntactic notion, we could
derive the same pattern. We have to rely on two straightforward assumptions.
First, syntactic binding requires c-command. And second, c-command is de-
fined in the derivational sense of Epstein (recall Section 2.2.1 from the begin-
ning): an expression x c-commands another expression y if x is merged with
y in the course of a derivation, or with an expression that contains y. This
is, in fact, the only way to express c-command in our approach, since we do
not preserve structural configurations. Recall that two expressions are merged
only when they enter the derivation (merge is not part of the remerge opera-
tion), therefore c-command is defined only with respect to the base position of
a displaced expression and disregards its target position. Now, in (7.76), who
is merged with an expression that contains the pronoun, thus c-commands the
pronoun according to the derivational definition of c-command. In (7.77), on
the other hand, whom is merged with an expression that does not yet contain
the pronoun, thus according to the definition it does not c-command the pro-
noun. The requirement for syntactic binding is thus satisfied in (7.76), but is
not in (7.77).

I hope that this thesis has demonstrated that the parallel assembly of form
and meaning does not require a tight link between syntactic and semantic
procedures. I claim that a proper amount of independence not only offers
promising analyses for phenomena on the border between syntax and semantics,
but also facilitates a general and simple approach to the syntax/semantics
interface.



Bibliography

[1] Hiyan Alshawi and Richard Crouch. Monotonic semantic interpretation.
In Proceedings of the 30th Annual Meeting of the Association for Com-
putational Linguistics (ACL-92), Newark, NJ, pages 32–39, 1992.

[2] Joseph Aoun and Yen-Hui Audrey Li. Essays on the representational and
derivational nature of grammar. MIT Press, 2003.

[3] Carl L. Baker. Notes on the description of English questions: The role
of an abstract question morpheme. Foundations of Language, 6:197–219,
1970.

[4] Henk Barendregt and Erik Barendsen. Introduction to the lambda cal-
culus, revised edition. Technical report, University of Nijmegen, 2000.
ftp://ftp.cs.kun.nl/pub/CompMath.Found/lambda.pdf.

[5] Chris Barker. Continuations and the nature of quantification. Natural
Language Semantics, 10(3):211–242, 2002.

[6] Jon Barwise and Robin Cooper. Generalized quantifiers and natural
language. Linguistics and Philosophy, 4(2):159–219, 1981.

[7] Sigrid Beck. Quantified structures as barriers for LF movement. Natural
Language Semantics, 4:1–56, 1996.

[8] Sigrid Beck and Shin-Sook Kim. On wh- and operator scope in Korean.
Journal of East Asian Linguistics, 6:339–384, 1997.

[9] Raffaella Bernardi and Michael Moortgat. Continuation semantics for
the Lambek-Grishin calculus. Information and Computation, to appear.

[10] Rajesh Bhatt. Topics in the syntax of the modern Indo-
Aryan languages: wh-in-situ and wh-movement. Handout, 2003.
http://web.mit.edu/rbhatt/www/24.956/wh.pdf.



168 Bibliography

[11] Loren Billings and Catherine Rudin. Optimality and superiority: A new
approach to overt multiple-wh ordering. In J. Toman, editor, Proceedings
of Annual Workshop on Formal Approaches to Slavic Linguistics. The
College Park Meeting 1994, pages 35–60. Michigan Slavic Publications,
1996.

[12] Johan Bos. Predicate logic unplugged. In Proceedings of the 10th Ams-
terdam Colloquium, pages 133–142, 1995.

[13] Michael Brody. On the status of representations and derivations. In
D. Epstein S. and D. Seely T. editors, Derivation and Explanation in the
Minimalist Program, pages 19–41. Blackwell, 2002.

[14] Ulf Brosziewski. Syntactic Derivations. A Nontransformational View.
Linguistische Arbeiten 470. Niemeyer, 2003.

[15] Miriam Butt. Object specificity and agreement in Hindi/Urdu. In Pa-
pers from the 29th Regional Meeting of the Chicago Linguistics Society.
Chicago Linguistics Society, Chicago, 1993.

[16] Lisa Lai-Shen Cheng. On the Typology of Questions. PhD thesis, Mas-
sachusetts Institute of Technology, 1991.

[17] Noam Chomsky. The logical structure of linguistic theory. PhD thesis
draft, MIT, 1955. Published in 1975 by Plenum Press, New York.

[18] Noam Chomsky. Conditions on transformations. In S. Anderson and
P. Kiparsky, editors, A Festschrift for Morris Halle, pages 232–286. Aca-
demic Press, New York, 1973.

[19] Noam Chomsky. A minimalist program for linguistic theory. In K. Hale
and J. Keyser S. editors, The view from Building 20: Essays in linguis-
tics in honor of Sylvain Bromberger, pages 1–52. MIT Press, Cambridge,
Mass., 1993.

[20] Noam Chomsky. The Minimalist Program. MIT Press, 1995.

[21] Noam Chomsky. Minimalist Inquiries: The framework. In D. Michaels
R. Martin and J. Uriagereka, editors, Step by Step. Essays on Minimalist
Syntax in Honor of Howard Lasnik. MIT Press, Cambridge, MA, 2000.

[22] Noam Chomsky. Derivation by phase. In M. Kenstowicz, editor, Ken
Hale: a Life in Language. MIT Press, 2001.

[23] Noam Chomsky. On phases. Ms., MIT, 2005.

[24] Peter Cole and Gabriella Hermon. Is there LF wh-movement? Linguistic
Inquiry, 25:239–262, 1994.



Bibliography 169

[25] Peter Cole and Gabriella Hermon. The typology of wh-movement: Wh-
questions in Malay. Syntax, 1(33):221–258, 1998.

[26] Robin Cooper. Montague’s semantic theory and transformational syntax.
PhD thesis, University of Massachusetts at Amherst, 1975.

[27] Robin Cooper. Quantification and Syntactic Theory, volume 21 of Syn-
these Language Library. Reidel, 1983.

[28] Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. Mini-
mal Recursion Semantics: An introduction. Research on Language and
Computation, 3(4):281–332, 2005.

[29] Diana Cresti. Some considerations on wh-decomposition and unselective
binding. In G. Katz, S.-S. Kim, and H. Winhart, editors, Sprachtheo-
retische Grundlagen fr Computerlinguistik: Arbeitspapiere des Sonder-
forschungsbereichs 340. Universitt Tübingen, 1998.

[30] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings
of the 1990 ACM conference on Lisp and functional programming, pages
151–160, New York, 1990. ACM Press.

[31] Veneeta Dayal. Locality in Wh-quantification: Questions and Relative
Clauses in Hindi, volume 62 of Studies in Linguistics and Philosophy.
Kluwer, Dordrecht, 1996.

[32] Philippe de Groote. Type raising, continuations, and classical logic. In
R. van Rooy and M. Stokhof, editors, Thirteenth Amsterdam Colloquium,
pages 97–101. Institute for Logic, Language and Computation, Univer-
siteit van Amsterdam, 2001.

[33] Philippe de Groote. Towards a Montagovian account of dynamics. In
Proceedings of Semantics and Linguistic Theory 16. CLC Publications,
2006.

[34] Elisabeth Engdahl. Constituent Questions: With Special Reference to
Swedish. Reidel, 1986.

[35] Samuel David Epstein. Unprincipled syntax and the derivation of syn-
tactic relations. Manuscript, Harvard, 1995. Published in: S.D. Epstein
& N. Hornstein: Working Minimalism, pp 317–345. MIT Press, 1999.

[36] Samuel David Epstein, Erich M. Groat, Ruriko Kawashima, and Hisat-
sugu Kitahara. A Derivational Approach to Syntactic Relations. Oxford
University Press, 1998.

[37] Samuel David Epstein and T. Daniel Seely. Rule applications as cycles
in a level-free syntax. In S.D. Epstein and T.D. Seely, editors, Deriva-
tion and Explanation in the Minimalist Program. Blackwell Publishers,
Oxford, 2002.



170 Bibliography

[38] Sam Featherstone. Magnitude estimation and what it can do for your syn-
tax: Some wh-constraints in german. Lingua, 115(11):1525–1550, 2005.

[39] Matthias Felleisen. The theory and practice of first-class prompts. In Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 180–190, 1988.

[40] Janet Dean Fodor and Ivan A. Sag. Referential and quantificational
indefinites. Linguistics and Philosophy, 5(3):355–398, 1982.

[41] Robert Frank. Phrase structure composition and syntactic dependencies.
MIT Press, Cambridge, Mass., 2002.

[42] Gerald Gazdar. Unbounded dependencies and coordinate structure. Lin-
guistic Inquiry, 12:155–184, 1981.

[43] Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Gen-
eralized Phrase Structure Grammar. Harvard University Press, Cam-
bridge, and Basil Blackwell, Oxford, 1985.

[44] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol-
ume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1988.

[45] Jeroen Groenendijk and Martin Stokhof. Studies on the Semantics of
Questions and the Pragmatics of Answers. PhD thesis, Universiteit van
Amsterdam, 1984.

[46] C. L. Hamblin. Questions in Montague English. Foundations of Language,
10:41–53, 1973.

[47] Fabian Heck and Gereon Müller. Successive cyclicity, long-distance su-
periority, and local optimization. In Roger Billerey and Brook D. Lille-
haugen, editors, Proceedings of WCCFL 19, pages 218–231. Somerville,
MA: Cascadilla Press, 2000.

[48] Irene Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD
thesis, Umass Amherst, 1982.

[49] Irene Heim and Angelika Kratzer. Semantics in Generative Grammar.
Blackwell Textbooks in Linguistics. Blackwell Publishers Ltd, Oxford,
1998.

[50] Herman Hendriks. Type change in semantics: the scope of quantification
and coordination. In E. Klein and J. van Benthem, editors, Categories,
Polymorphism and Unification, pages 96–119. ITLI, Amsterdam, 1988.

[51] Herman Hendriks. Studied Flexibility. PhD thesis, ILLC Dissertation
Series, Amsterdam, 1993.



Bibliography 171

[52] James Higginbotham and Robert May. Questions, quantifiers, and cross-
ing. The Linguistic Review, 1:41–80, 1981.

[53] Jerry Hobbs and Stuart Shieber. An algorithm for generating quantifier
scoping. Computational Linguistics, 13:47–63, 1987.

[54] Norbert Hornstein. On A-chains: A reply to Brody. Syntax, 3(2):129–143,
2000.

[55] Cheng-Teh James Huang. Logical relations in Chinese and the theory of
grammar. PhD thesis, MIT, Cambridge, Mass., 1982.

[56] Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–
554, 1997.

[57] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct
grammars. Journal of Computer and System Science, 10:136–163, 1975.

[58] Lauri Karttunen. Syntax and semantics of questions. Linguistics and
Philosophy, 1:1–44, 1977. Also published in: Portner & Partee (eds.):
Formal Semantics. The Essential Readings. Blackwell, 2003, pp 382–420.

[59] Richard S. Kayne. Connectedness. Linguistic Inquiry, 14:223–250, 1983.

[60] Richard S. Kayne. The Antisymmetry of Syntax. Linguistic Inquiry
Monograph Twenty-Five. The MIT Press, Cambridge, 1994.

[61] William R. Keller. Nested cooper storage: The proper treatment of quan-
tification in ordinary noun phrases. In U. Reyle and C. Rohrer, editors,
Natural Language Parsing and Linguistic Theories, pages 432–447. Rei-
del, Dordrecht, 1988.

[62] Oleg Kiselyov. How to remove a dynamic prompt: static and dynamic de-
limited continuation operators are equally expressible. Technical Report
611, Computer Science Department, Indiana University, 2005.

[63] Oleg Kiselyov. Call-by-name linguistic side effects. ESSLLI 2008
Workshop on Symmetric calculi and Ludics for the semantic in-
terpretation. 4-7 August, 2008. Hamburg, Germany. Available at
http://okmij.org/ftp/Computation/gengo/gengo-side-effects-cbn.pdf,
2008.

[64] Robert Kluender. On the distinction between strong and weak islands:
a processing perspective. Syntax and Semantics, 29:241–279, 1998.

[65] Gregory M. Kobele. Generating Copies: An investigation into structural
identity in language and grammar. PhD thesis, UCLA, 2006.



172 Bibliography

[66] Masatoshi Koizumi. Layered specifiers. In Proceedings of the North East-
ern Linguistic Society, volume 24, pages 255–269. University of Mas-
sachusetts, Amherst, 1994.

[67] Jan Koster. Variable-free grammar. Ms., University of Groningen, 2000.

[68] Anthony Kroch. Asymmetries on long distance extraction in a Tree Ad-
joining Grammar. In M. Baltin and A. Kroch, editors, Alternative con-
ceptions of phrase structure, pages 66–98. University of Chicago Press,
1989.

[69] Anthony Kroch and Aravind K. Joshi. The linguistic relevance of Tree
Adjoining Grammar. Technical report, University of Pennsylvania De-
partment of Computer and Information Sciences Technical Report MS-
CIS-85-16, 1985.

[70] Richard Larson. On the double object construction. Linguistic Inquiry,
19:335–391, 1988.

[71] David Lewis. Adverbs of quantification. In E. Keenan, editor, Formal
Semantics of Natural Language, pages 3–15. Cambridge University Press,
1975.

[72] Anoop Mahajan. The A/A-bar distinction and movement theory. PhD
thesis, MIT, Cambridge, Mass., 1990.

[73] Joan Maling. An asymmetry with respect to wh-islands. Linguistic In-
quiry, 9:75–89, 1978.

[74] Robert May. The Grammar of Quantification. PhD thesis, MIT, 1977.

[75] Robert May. Logical Form: Its Structure and Derivation. MIT Press,
Cambridge, Mass., 1985.

[76] Roland Meyer. Superiority effects in Russian, Polish and Czech: Judg-
ments and grammar. Cahiers linguistiques d’Ottawa, 32:44–65, 2004.

[77] Gary L. Milsark. Existential sentences in English. Garland, New York &
London, 1979. Published version of MIT PhD thesis, 1974.

[78] Richard Montague. The proper treatment of quantification in ordinary
English. In H. Thomason R. editor, Formal Philosophy: Selected Pa-
pers of Richard Montague, pages 247–270. Yale University Press, 1974
(original version of the paper: 1970).

[79] Michael Moortgat. Categorial type logics. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language, chapter 2, pages 93–
177. Elsevier/MIT Press, 1997.



Bibliography 173

[80] Gereon Müller. Constraints on displacement: A phase-based approach.
Ms., University of Leipzig.

[81] Gereon Müller. A-bar syntax: A study in movement types. Mouton, 1995.

[82] Gereon Müller. Incomplete Category Fronting. Kluwer, 1998.

[83] Ad Neeleman and Hans van de Koot. A local encoding of syntactic
dependencies and its consequences for the theory of movement. Ms.,
University College London, 2007.

[84] William O’Grady. Syntactic Carpentry: An Emergentist Approach to
Syntax. Erlbaum, Mahwah, NJ, 2005.

[85] Jong Cheol Park. Quantifier scope, lexical semantics, and surface struc-
ture constituency. Technical report, IRCS Report 96-28, 1996.

[86] David Pesetsky. Language-particular processes and the Earliness Princi-
ple. Ms., MIT, Cambridge, Mass., 1989.

[87] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.
University of Chicago Press, 1994.

[88] Tanya Reinhart. The Syntactic Domain of Anaphora. PhD thesis, MIT,
1976.

[89] Tanya Reinhart. Quantifier scope: How labor is divided between QR and
choice functions. Linguistics and Philosophy, 20:335–397, 1997.

[90] Tanya Reinhart. Interface strategies: Optimal and costly computation.
Linguistic Inquiry Monographs. MIT Press, Cambridge, Mass., 2006.

[91] Chris H. Reintges, Philip LeSourd, and Sandra Chung. Movement, wh-
agreement, and apparent wh-in-situ. In Lisa Lai-Shen Cheng and Norbert
Corver, editors, Wh-Movement: Moving On, pages 165–194. The MIT
Press, 2006.

[92] Uwe Reyle. Dealing with ambiguities by underspecification. Journal of
Semantics, 10:123–179, 1993.

[93] Norvin Richards. Subjacency forever. In Proceedings of WECOL 1996.
Department of Linguistics, California State University, Fresno, 1998.

[94] Norvin Richards. Movement in Language: Interactions and Architectures.
Oxford University Press, 2001.

[95] Luigi Rizzi. Relativized Minimality. Number 16 in Linguistic Inquiry
Monographs. MIT Press, Cambridge, 1990.

[96] John Robert Ross. Constraints on variables in syntax. PhD thesis, MIT,
Cambridge, Mass., 1967.



174 Bibliography

[97] Catherine Rudin. On multiple questions and multiple wh-fronting. Nat-
ural Language and Linguistic Theory, 6:445–501, 1988.

[98] Eddy Ruys. The Scope of Indefinites. PhD thesis, OTS, Utrecht, 1992.

[99] Chung-chieh Shan. Delimited continuations in natural language: quan-
tification and polar sensitivity. Continuation Workshop 2004, Venice.

[100] Chung-chieh Shan. Quantifier strengths predict scopal possibilities of
Mandarin Chinese wh-indefinites. Draft manuscript, Harvard University;
http://www.eecs.harvard.edu/~ccshan/mandarin/.

[101] Chung-chieh Shan. Shift to control. In O. Shivers and O. Waddell,
editors, Proceedings of the 2004 ACM SIGPLAN Workshop on Scheme
and Functional Programming, Snowbird, Utah, 2004.

[102] Chung-chieh Shan. Linguistic Side Effects. PhD thesis, Harvard Univer-
sity, 2005.

[103] Chung-chieh Shan and Chris Barker. Explaining crossover and superior-
ity as left-to-right evaluation. Linguistics and Philosophy, 29(1):91–134,
2006.

[104] Natalia Slioussar. Grammar and information structure: a study with
reference to Russian. PhD thesis, Utrecht Institute of Linguistics OTS,
LOT Dissertation Series 161, 2007.

[105] Edward Stabler. Computing quantifier scope. In Anna Szaboicsi, editor,
Ways of Scope-Taking, pages 155–182. Kluwer, Dordrecht, 1997.

[106] Edward Stabler. Derivational minimalism. In C. Retoré, editor, Logical
Aspects of Computational Linguistics, pages 68–95. Springer, 1997.

[107] Edward Stabler and Edward Keenan. Structural similarity. Theoretical
Computer Science, 293:345–363, 2003.

[108] Michal Starke. Move dissolves into Merge: A theory of locality. PhD
thesis, University of Geneva, 2001.

[109] Mark Steedman. The syntactic process. MIT Press, 2000.

[110] Arthur Stepanov. The end of CED? Minimalism and extraction domains.
Syntax, 10(1):80–126(47), 2007.

[111] Thomas S. Stroik. Locality in Minimalist Syntax. Linguistic Inquiry
Monograph 51. The MIT Press, 2009.

[112] Anna Szabolcsi. Ways of Scope Taking. Kluwer, Dordrecht, 1997.



Bibliography 175

[113] Anna Szabolcsi. The syntax of scope. In M. Baltin and C. Collins, editors,
Handbook of Contemporary Syntactic Theory, pages 607–634. Blackwell,
2000.

[114] Anna Szabolcsi and Marcel den Dikken. Islands. GLOT International
4/6, 1999. reprinted in Lisa Cheng and Rint Sybesma, eds., The Second
GLOT State-of-the-Article Book, Mouton de Gruyter (2002).

[115] Sonoko Takahashi. The interrogative marker KA in Japanese. PhD thesis,
The Ohio State University, 1995.

[116] Hidekazu Tanaka. LF wh-islands and the Minimal Scope Principle. Nat-
ural Language and Linguistic Theory, 17:371–402, 1999.

[117] Wei-Tien Dylan Tsai. On economizing the theory of A-bar dependencies.
PhD thesis, MIT, 1994.

[118] Jan van Eijck and Christina Unger. Computational Semantics with Func-
tional Programming. Cambridge University Press, to appear.

[119] Willemijn Vermaat. The logic of variation. A cross-linguistic account of
wh-question formation. PhD thesis, UiL OTS, Utrecht, 2005.

[120] Željko Bošković. On certain violations of the Superiority Condition,
AgrOP, and economy of derivation. Journal of Linguistics, 33:227–254,
1997.

[121] Željko Bošković. On multiple feature checking: Multiple wh-fronting
and multiple head movement. In S. Epstein & N. Hornstein, editor,
Working Minimalism, Current Studies in Linguistics 32, pages 159–187.
MIT Press, 1999.

[122] Željko Bošković. Sometimes in SpecCP, sometimes in-situ. In R. Martin,
D. Michaels, and J. Uriagereka, editors, Step by step: Essays on mini-
malism in honor of Howard Lasnik, pages 53–87. MIT Press, Cambridge,
Mass., 2000.

[123] Željko Bošković. On multiple wh-fronting. Linguistic Inquiry, 33(3):351–
383, 2002.

[124] Željko Bošković. On wh-islands and obligatory wh-movement contexts
in South Slavic. In C. Boeckx and K. Grohmann, editors, In Multiple
wh-fronting, pages 27–50. John Benjamins, 2003.

[125] Željko Bošković. On the selective wh-island effect, 2008.

[126] Akira Watanabe. Subjacency and s-structure movement of wh-in-situ.
Journal of East Asian Linguistics, 1:255–291, 1992.



176 Bibliography

[127] Akira Watanabe. Wh-in-situ languages. In M. Baltin and C. Collins,
editors, The Handbook of Contemporary Syntactic Theory, pages 203–
225. Blackwell, Oxford, 2001.



Index

ε, 53
⊕, 46, 57
+, 60, 68
++, 41
::, 42, 44
D′, 115
D,C, 101
Df , D′f , Cf , 122
F, 115
V , 96
[ ], 95
◦, 45, 47, 93, 102–103
ξ, 99
ξ′, 116
ξstrong, ξweak, 115
ξfree, 118
ξwh, ξ′wh, ξfree

wh , 122
〈 〉, 99
〈 〉wh, 122
∅, 56
a, b, 56
f , F , 56
s, 56
x, 68
x, y, z, 56
<, 43
α, β, γ, δ, 100
r, 100
τβα , 100
τf :β
f :α , 122

[τ ], 103

active expressions, 54
Ancash Quechua, 33, 73
antisuperiority, 25
Arabic, 23

Backus-Naur-Form (BNF), 39
Baker, Carl, 35
Barker, Chris, 113, 134
beta-reduction, 45, 96
binding, 23, 165–166
Bošković, Željko, 67
bottom of a dependency, 16
bound variables, 44, 92
Brody, Michael, 55
Brosziewski, Ulf, 51, 52, 85
Bulgarian, 18, 25, 26, 63, 69, 71

call-by-value, 96
Cat, 41
categorial grammars, 41, 51
categories, 42
Chinese, 17, 32, 33, 73, 130, 131, 133
Chomsky, Noam, 40, 60, 62, 86
complement, 42
complex expressions, 55, 57, 75, 86, 87
Condition on Extraction Domain, 22
control, 98
control constructions, 133
control operators, 98
convergence of a derivation, 61
Cooper stores, 36
crossover effects, 165–166



178 Index

Czech, 25

D-linking, 24, 26, 71
Dayal, Veneeta, 133
DLink, 72
Dutch, 18
dynamic scoping, 102

E, 100, 122
Earliness Principle, 60
echo questions, 66, 69
edge, 57, 81
Epstein, Samuel David, 20, 40
eta-reduction, 45
evaluation contexts, 95, 101
Expression, 53
expressions, 39, 122

active and inactive, 54
complex, 55, 57, 75, 86, 87
pure and impure, 100

(FC1),(FC2), 64
Feat, 53
features, 52, 56, 85

weak and strong, 62
Flavor, 121
Flexible types approach, 94
Form, 42, 52
free variables, 45
fs, 56

Gazdar, Gerald, 16
generalized quantifiers, 92, 93, 104, 118
German, 18, 23
goal features, 53
GPSG, 86

head, 42
head movement, 85
Hendriks, Herman, 94
Hindi, 18, 31, 131, 133
hole, 95
HPSG, 86
Huet, Gérard, 152

impure expressions, 100

inactive expressions, 54
indefinites, 29, 30
information structure, 89, 165
intervention effects, 74
island sensitivity, 23, 72
islands, 21, 72, 85

strong islands, 21–22
weak islands, 21–24

Japanese, 17, 31–33, 63, 73, 128

ka, 31, 32, 129
Kayne, Richard, 26, 43
Kiselyov, Oleg, 98, 151
Kobele, Greg, 36, 88
Koizumi, Masotoshi, 67
Korean, 17

Lebanese Arabic, 23
linearization, 43
locality (relativized, rigid), 19
Logical Form (LF), 34, 40, 94

(M1), 57–58
(M2),(M3), 57, 59, 64
Müller, Gereon, 22, 80
Malay, 19, 34
Mandarin Chinese, 17, 32, 33, 73, 130,

131, 133
May, Robert, 34, 113
Meaning, 44
merge, 42, 46, 57
middle of a dependency, 16
Minimal Compliance, 26, 68
Minimal Link Condition, 24
Minimalist Grammars, 52, 88
Minimalist Program, 51
Mode, 115, 118
Montague, Richard, 33, 37, 40, 95
multiple specifiers, 67

nucleus, 56
nucleus, 57

O’Grady, William, 60
order preservation, 68, 75, 83, 87



Index 179

partial wh-movement, 18
Pesetsky, David, 60
phase theory, 40, 86
Pied Piping, 113
probe features, 53
prompt, 98
pronominal binding, 165–166
pure expressions, 100

Quantifier Raising, 34–35, 40, 113
quantifiers, strong and weak, 29
Quantifying In, 37, 95, 97
Quechua, 33, 73

Reinhart, Tanya, 35
relativized locality, 19
Relativized Minimality, 22
remerge, 60, 67, 82
remnant movement, 52
reset, 98
result types, 100
Richards, Norvin, 25, 26, 67
rigid locality, 19
Rizzi, Luigi, 22
Ross, John Robert, 21
Russian, 69

scope, 27, 44, 93
scope islands, 114
scope marker, 18, 32, 129
semantic types, 99
Serbo-Croatian, 18, 69
Shan, Chung-chieh, 98, 117, 151
shift, 98
Slioussar, Natalia, 89
split, 58, 63, 67, 69, 81
Stabler, Ed, 52, 88, 117
Starke, Michal, 72
static scoping, 102, 116
String, 58
Stroik, Thomas S., 72, 87
strong quantifiers, 29
subcategorization, 42, 85
superiority, 24, 26
Swedish, 72

Szabolcsi, Anna, 28

Takahashi, Sonoko, 129
Tanaka, Hidekazu, 128
top of a dependency, 16
Tree Adjoining Grammar, 86
Tucking in, 25, 26
Type, 44, 99
types

result types, 100
semantic types, 44
syntactic types, 41

Unambiguous Domination, 80
unselective binding, 36, 119

values, 96
Vermaat, Willemijn, 88

weak contexts, 115
weak quantifiers, 29
wh-islands, 22

zipper, 152





Samenvatting
in het Nederlands

Deze dissertatie gaat over de syntaxis en semantiek van niet-lokale afhanke-
lijkheden. Het concentreert zich op wh-verplaatsing en het bereik van op-
eratoren, en kijkt naar de uitdagingen die deze fenomenen vormen voor de
theoretische taalkunde: hoe zijn vorm en betekenis gerelateerd en in hoeverre
opereren syntaxis en semantiek parallel aan elkaar?

In formeel grammaticale theorieën is het gangbaar er vanuit te gaan dat
syntactische verplaatsing en bereiksconstructie hand in hand gaan, en daarmee
wordt aangenomen dat een strikte correspondentie bestaat tussen syntaxis en
semantiek. Deze aanpak wordt echter ter discussie gesteld door een aanzienlijk
aantal empirische gevallen waarin de syntactische positie van een operator-
expressie niet samenvalt met de semantische bereikspositie. In deze dissertatie
is het uitgangspunt omgekeerd: er wordt beargumenteerd dat syntactische ver-
plaatsing en semantische bereikseffecten elkaar helemaal niet bëınvloeden.

De aanpak die in deze dissertatie wordt ontwikkeld heeft als centrale aan-
name dat grammatica uit twee delen bestaat. Allereerst is er een kern waarin
de lokale afhankelijkheden worden bepaald, en waarin syntaxis en semantiek
parallel aan elkaar opereren. Vervolgens zijn er uitbreidingen van deze kern
waarin de niet-lokale afhankelijkheden worden bepaald, en waarin syntaxis en
semantiek onafhankelijk van elkaar opereren. Het is juist in het uitbreidingsdeel
waar syntactische verplaatsing en bereiksconstructie worden behandeld. Syn-
tactische verplaatsing wordt gezien als een syntactische procedure die opereert
op vormniveau, terwijl bereiksconstructie wordt beschouwd als een semantische
procedure die alleen op betekenisniveau opereert.

In de uiteenzetting van deze procedures wordt duidelijk dat de belangrijke
data – zoals de formulering van wh-clusters, behoud van volgorde met multi-
pele syntactische verplaatsing, condities op lokaliteit, overblijfselverplaatsing
(remnant movement) en Freezing, zowel als afwijkende gevallen van semantisch



182 Index

bereik – op een bevredigende manier geanalyseerd kunnen worden met behulp
van een syntaxis en semantiek die onafhankelijk van elkaar opereren.



Curriculum vitae

Christina Unger was born on the 5th of May 1982 in Leipzig, German Demo-
cratic Republic. She got her Abitur graduating from the Neue Nikolaischule
in Leipzig in 2000. In the same year, she started her studies in Logic & Phi-
losophy of Science, Mathematics and Linguistics at the University of Leipzig,
from which she received a Magister Artium degree (“passed with distinction”)
in 2006, majoring in Linguistics and Logic & Philosophy of Science. In 2006,
she was enrolled in the International PhD program at the Utrecht Institute of
Linguistics OTS in the Netherlands. This thesis is the result of the work she
carried out there. In October 2009, she started work as a research assistant
in the Semantic Computing Group of the Cognitive Interaction Technology
Center of Excellence (CITEC) at the University of Bielefeld, Germany.




