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Convolution operators for Fourier-Jacobi expansions 

by 

Herman Bavinck 

Mathematisch Centrum, Amsterdam 

1. Introduction 

1.1. In some recent work [3], [4], the author has used the convolution 

structure for Jacobi se~ies, introduced by Askey and Wainger [2], in order 

to study the summation of Jacobi series by classical summability methods. 

Many of these summability methods, in fact, can be interpreted as convolu

tion operators and it is possible to investigate the order of approximation 

of these operators by the same techniques as are used for trigonometric 

convolution operators. In this paper some new summability kernels are 

introduced, which can be written in a simple closed form by means of Jacobi 

polynomials. Even in the case of Fourier series (o = 8 =-;)these kernels 

induce new approximation processes. The saturation order and the saturation 

class of these processes are obtained. 

1.2. By X we denote one of the following function spaces on [-1,1]: the 

space C of continuous functions with the norm (x = cos 6) 

I If I I c = sup I f( cos 6) I 
O<6<1r 

or the LP spaces (1 2-P <~) with respect to the weight function 

( 1 • 1 ) (o,8)( 6) ( . 6)2o+1 ( 6)28+1 p = sin - cos -2 2 

endowed with the norm 
1T 

I If I IP = [ f If( cos 0) IP / 0 ' 8 \ 0) d6 J 1 /p. 

0 

Functions belonging to X can be expanded in terms of Jacobi polynomials 

P~o,B)(cos·0), the polynomials which are orthogonal with respect to (1.1). 

If we take 
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then with f € X we associate 

( 1. 2) 

where 

( 1.3) 
A 

f (n) 

and 

( 1.4) 

00 

f(cos 8) ~ l fA(n) w~a,S) R~a,S)(cos 8), 
n=O 

TI" 

= J 
0 

f(cos 8) R(a,S)(cos 8) P(a,S)(8) d8, 
n 

= (2n+a+6+1)f(n+a+8+1)r(n+a+1) 
r(n+f,3+1)f(n+1)f(a+1)f(a+1) 

( n=O, 1 , ••• ) , 

Askey and Wainger [2] have introduced a generalized translation and a con

volution structure for Jacobi series. The translation T$ f maps a function 

f € X with the expansion (1.2) into 

( 1.5) 

Gasper [7] has shown that T$ is a positive operator and consequently has 

operator norm 1. For f 1,f2 E 1 1 the convolution f 1 * f 2 is defined by 

( 1 • 6) 

TI" 

(f1*f2 )(cos 8) = J T$ f 1(cos 8) f 2(cos $) p(a,S)($) d$ 

0 

and has the following properties. 
1 1.3. Theorem. For r1, f 2 , f 3 EL and g € X 
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i) f1 * f = f * 2 2 f 1 ' 

ii) f * (f2*f3) = (f,*f2) * f3, 1 
( 1 . 7) 

iii) 11 f 1 *g I IX 2- 11 f 1 11 1 I lgl Ix, 

iv) 
A /I /I 

(f1*f2 ) (n) = f 1(n) f 2(n). 

In [3] we have defined a summability kernel. 

1.4. Definition. Let KA E 11, A > 0, satisfying the conditions 

1T 

(a) f KA(cos 8) p(a,S)(8) d8 = 1, 

0 

(b) 

( C) 

KA(cos 8) ?_ 0, 

lim K~ ( n ) = 1 , 
A-+oo 

A> O, 0 < 8.:. n, 

n=0,1, .... 

Then we call KA a positive summability kernel. If instead of b we merely 

have 

1T 

(b') f IKA(cos 8)1 P(a,S)(8) d8.:. N, uniformly in A, 

0 

with N ?_ 1, we call KA a quasi-positive kernel. 

Condition c :1s often replaced by 

1T 

( c' ) lim J I KA ( cos 8) I P (a' S) ( 8) d8 = 0, . for each h, O < h < ,r. 

A-+<x> 
h 

We have ([3], theorems 3.3 and 3.4) 

1 
1.5. Theorem. If f EX and KA EL, A> O, satisfies the conditions a, b 

(orb') and c (or c') of definition 1.4, then 



4 

11 KA *f 11 X ~ N 11 f 11 X, uniformly in>., 

and 

lim I IK>. *f-fl Ix = o. 
).-+co 

The convolution operators {KA,>.>O} are said to be saturated if there exists 

a positive non-increasing function~(>.) on O <>.<~with lim ~(>.)=Osuch 
).-+co 

that 

i) ( ).-+co) 

if and only if f belongs to some 'trivial' subspace of X; 

ii) there exists a 'non-trivial' element f 0 € X satisfying 

The function~(>.) is then called the saturation order and the set F(X,KA), 

which consists of all the elements of X which satisfy ii, is called the 

saturation class or Farvard class of {KA}. 

The Lipschitz classes with respect to the generalized translation are 

defined by 

(1.8) Lip(y,X} = {f € X: :::Jc> o, sup IITi/Jf-fllx~c~Y}, 
O<ijJ<~ 

(0 < y ~2). 

If for f € X with the expansion (1.2) there exists an element Af € X such 

that 

( 1.9) Af ~ 
~ 

l n(n+a+8+1) fA(n) w(a,B) R(a,B)(cos e), 
n n n=O 

then we say that f € D(A) and we call A the operator which maps D(A) into 

X by f ➔ Af. The operator A is the realization in A of the differential 

operator 

- ( 1) dd8 {p(a,8)(8) dde} 
P a,8 (e) 
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with boundary conditions : 0 = 0 at 9 = 0 and 9 = n in view of the differen

tial equation for Jacobi polynomials 

1 i._ { (a,6)( 9) £_ R(a,B)( 9)} = 
- P(a,6)( 9) d9 P d9 n cos 

n(n+a+B+1) R(a,B)(cos 9). 
n 

There is a close connection between the generalized translation operator 

and the operator A, as Lofstrom and Peetre showed in [8]. For f E D(A), 

in fact, we have 

f - T f 

lim I I c ($1 - Afl Ix= o, 
$+0+ 1 

where 

Moreover, if the K function norm, introduced by Peetre [9] is given by 

K($,f;X,D(A)) = inf (llf0 llx+•llf1ll 0 (A)), 
f=f0 +f 1 
f 0EX 

f 1ED(A) 

where 

then it can be shown (Lofstrom-Peetre [8], Bavinck [3]) that the spaces 

-9 (X,D(A)) 9 oo•K = {f EX: sup$ K($,f;X,D(A)) < oo}, 
, , $>0 

0<9~1, 

coincide with the spaces Lip(29,x), defined by (1.8). 

Notation: We shall use the notation a ~ b (n➔oo) if there are positive 
n n 

numbers c 1 and c2 such that c 1a < b < c2a. n - n - n 
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2. An oscillating kernel 

The following formula is due to Szeg5 ([11], section 9.4) 

(2.1) R(a+k+ 1,B)(cos 8) = 
n 

= r(n+B+1)f(n+1)f(a+k+2)f(a+1) ~ r(n+v+a+B+k+2)f(n-v+k+1) (a,B)R(a,B)( e) 
f(n+a+B+k+2)f(n+a+k+2)f(k+1) v~O r(n+v+a+B+2)f(n-v+1) wv v cos 

(k > 0). 

11 1 ·1k 1J(a+k+1,B)( 8) . We sha study here the po ynomia erne 1 cos , n ~ O, defined 
n, 

by 

(2.2) J(a+1k+1,B)(cos e) = 
n, 

r(n+a+B+2)f(n+a+k+2)f(k+1) R(a+k+1,B)( e) 
r(n+B+1)r(n+k+1)r(a+k+2)r(a+1) n cos 

= O(n2a+2) R(a+k+1,B)(cos 8). 
n 

We first show that J(a+1k+1,B)(cos e) satisfies the conditions a, b' and c' 
n, 

in definition 1.4. Taking the term v = 0 in (2.1) we see that condition a 

is satisfied. For the proof of condition b' we use the well-known est.imates 

(Szego [11] (7.32.5)) 

a-~ 
, 

-1 1T 
e O(n-2-a) if en < e < -

R(a,B)(cos 
- 2 , 

(2.3) 8) = n -1 0( 1 ) if 0 < e < en . 
Then 

1T 1/n rr/2 Tr 

f IR(a+k+1,B)(cos e)I P(a,B)(e) = f + f + f = 11 + 12 + 13• 
n 

0 0 1/n 1r/2 

1/n 

11 = 0( 1 ) J 
e2a+1 d8 = ( -2a-2) 0 n , 

0 

rr/2 

12 = O(n-~-a-k-1) f 
a-k-~ de = O(n-2a-2), if k >a+ 

, 
e 2, 

1/n 



Hence 

(. S-a-k-1) r3 = 0.n 

TT 

7 

TT/2 

I 
0 

J I J ( a+k+ 1 , f3) ( ) I (a, f3) ( ) • 1 cos 8 p 8 d8 .::._ M, n, 
0 

For the proof of c' we take n 112 > • Then fork > "' + 1 
h "' 2 

TT 

O(n2a+2) j IR~a+k+1,f3)(cos 8)1 P(a,f3)(8) d8 < 

h 

TT/2 TT 

< O(n2a+2)( f, + I = 

n-2 TT/2 

( -a-k-~) 0 n . 

if k > a + ~. 

( a+k+1 f3) When we use the notation A = n(n+a+f3+1), the kernel J ' (cos 8) has n n, 1 
the following representation in the case k is an integer 

(2.4) J(a+1k+1,S\cos 8) = I k~1 ( 1 - \, ) w(a,S) R(a,S)(cos 8). 
n, . A • v v 

·v=O J=O n+J+1 

This representation shows that this kernel is essentially a generalization 

of the typical means (see Butzer-Nessel [6], p.262). Also, as is shown by 

Szego [11], section 9.41, this kernel is closely related to the Cesaro 

means. In the case of Fourier series (a= f3 =-~)we can choose k = 1 and 

we get 

(2,5) = - {1 + 2 TT 
n ( \/ 2 I (1 - n+l) ) cos v8}, 

v=1 

which are typical means. From the relation 

R(a+1,f3)( 8 ) = (a+1) 
n cos 2n+a+f3+2 

R(a,S)(cos 
n 

. 2 8 
sin 2 
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we derive 

(j,-½) __ l __ [(2n+3)sin(2n+1) ½- (2n+1)sin(2n+3) ½J 
J 1 ( cos e) = 2 e 3 . 
n, 4TT(n+1) (sin 2) 

1 f k O k 1 J ( ;+k,-;) ( ) . . For the other va ues o > , the erne 1 cos 8 differs slightly n, 
from the Riesz means. 

For the convolution of a function f EX with the kernel (2.2) the following 

relations are valid. 

(2 _6 ) J(a+k+2,B)*f 
n, 1 

J(a+k+2,B)*f = 
n-1 , 1 

(k+1)(2n+k+a+B+2) 
= n(n+a+B+1)(n+k+1)(n+a+B+k+2) Jn,1 

(a+k+1,B) 
*Af, 

where A is the operator defined by (1.9). In the case k = integer, formula 

(2.6) is easy to check by using the representation (2.4). Furthermore, we 

have 

(2 _7 ) J(a+k+2,B)*f 
n, 1 

J(a+k+1,B)*f 
n, 1 . 

__ ~---.-1---~ J(a+k+1,B)*Af. 
(n+k+1)(n+a+B+k+2) n,1 · 

By theorem 1.5 and by repeated application of (2.6) we obtain 

f _ J(a+k+2,B)*f = 
n, 1 

00 

= (k+1) (2l+k+a+B+2) J1(a+1k+1,B)*Af. 
l(l+a+S+1)(l+k+1)(l+a+B+k+2) , l=n+1 

Then, by (2.7) 

f _ J(a+k+1,B)*f 
n, 1 

1 J(a+k+1,B)*Af 
(n+k+1)(n+a+B+k+2) n,1 

00 l (21+k+a+B+2) J1(a+1k+1,B)*Af. 
+ (k+l) l=n+l l(l+a+B+1)(1+k+1)(1+a+B+k+2) , 
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If we put 
CX) 

C 
n 

= k l (21+k+a+6+2} = 
l=n+ 1 l(l+a+8+1)(l+k+1)(l+a+8+k+2) 

then 

< (k+1) 
k 

sup 
1~+1 

-1 

I IJ(a+k+1 ,B )*Af - Ari I + 
1, 1 X 

( -2 0 n ) , 

+ en I IJ(o+k+ 1' 8 )*Af - Ari I + 
(n+k+1)(n+a+8+k+2) n,1 X 

Hence, 

-1 
C 

+ I I Af 11 11 - n I = X k (n+k+1)(n+a+8+k+2) 

= 0(·1), 

lim [c-1 {f-J(a+k+1,B)*f} - Af] = 0 
n n, 1 

( n-+oo) • 

in X. 

Since for the operator A an inequality of the Bernstein type is valid 

( see Stein [ 10 J), there is a constant M such that 

. . (a+k+1 ,8) . . · · Therefore,the approximation process J 1 *f satisfies all the conditions n, 
of the general theorems on approximation processes in Banach spaces treated 

in Berens [5] (see also Butzer-Nessel [6], 13.4.1). It follows that the 
(a+k+1 8) . -2 

process J .1 ' *f is saturated with order n and the saturation class is n, 
Lip(2,X) = (X,D(A)) 1 oo•K· The spaces of non-optimal approximation can also 

' , 
be characterized in terms of the intermediate spaces (X,D(A)) 0 ·K· ,q, 
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3. A positive kernel 

We now consider the positive polynomial kernel J(a+2k+1,B)(cos 0), which is 
n, 

given by 

( 3. 1 ) 

where 

(3.2) 

J(a+2k+1,8)(cos e) 
n, 

-1 
C n 

1T 

= f 
0 

[R(a+k+1,8)( 
= en n cos e)i, 

The following useful estimate can be derived by means of (2.3) and some 

asymptotic formulas for Jacobi polynomials (see Szego [11], (7.34.1) for 

similar estimates). For a+k+1, a+l, Beach greater than-~, we have for 

n -+ CX) 

1T 

-2a-21-2 n , 21 < 2k + 1, 

(3.3) f [R~a+k+1,8)(cos 0)]2p(a+l,B)(0)d0 ~ -2a-2k-3 21 n log n, = 2k + 1, 

0 -2a-2k-3 n 

From (3.3) it follows that c ~ n20+2 , if k > -~. n 

, 21 > 2k + 1. 

For the kernel (3.1) the conditions a and b of definition 1.4 are trivially 

satisfied. We verify condition c', choosing n > h-2 . By (2.3) 

1T 

O(n2a+2) f [R~a+k+1,B)(cos e)J2 P(a,8)(0) d0 = 

h 

,r/2 1T 

= O(n2a+2) cf, + f ] = 
n-~ ,r/2 

,r/2 

= O(n-2k-1) cf, 0-2k-2 d0 
,r/2 

+ f d0] = o(1) (n-+ ex,, k > -~). 

n-~ 0 
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Hence fork>-~ the convolution of a function f EX with J(a+k+ 1 ,B) 
n,2 

(k >-;)approximates the function fin the X norm as n ➔ 00 • The trigono-

metric moments of order a for a kernel KA (cos e) are defined by 

1T 

T(KA;a) = f ( . 8) a sin 2 KA(cos 8) p(a,B)(8) d8 = 

0 

1T (a+ S!.. 'B) 

f KA(cos e) 
2 

( e) d8. = p 

0 

Thus, formula (3.3) enables us to survey the asymptotic behavior of the 

trigonometric moments of the kernel J(a+2k+ 1,B). If k >~'then it follows 
n, 

that 

T(J(a+k+1,B). 4 ) = o(T(J(a+2k+1,B); 2 )). 
n ,2 ' n, 

We may conclude by Bavinck [4 J, theorems 1 . 5 and 2. 3, that the process 
( a+k+ 1 , B) , . d · d -2 d · J 2 , k > 2 , is saturate with or er n an that the saturation 

n, . . ( ) 1 J(a+k+1,B) . k . . 1 1 h class is Lip 2,X. The kerne 2 , with sufficient y arge, sows n, 
the same behavior as the higher order Jackson kernel. We have, in fact, 

-a 
n 

For the Jackson kernel of order r 

- -1 
L (e) = A 
n,r n,r 

(sin n 8/2)2r 
sin 8/2 

the same relation is valid (see Bavinck [3], (4.19)) 

-a T(L ·a)~ n 
n,r' 

(0 < a < 2k+1). 

(2r > 2a+a+2), 

but for larger values of a a high order 

compete with the kernel J(a+2k+ 1,s). 
of the Jackson kernel is necessary to 

n, 
In the case of Fourier series (a= S = -~) the kernel J(~,-~) (the case k = 0) 

n,2 
coincides with the Fejer kernel, but the relatively simple kernel 
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3 1 
'2 ,- 2> 

J 2 , which has the same optimal properties as the Jackson kernel 
n, 

has never been considered, as far as the author knows. 

The case k = 1 will be studied in some more detail. In this case the constant 

c (see (3.2)) and the trigonometric moments can be computed explicitly by 
n 

means of Parseval's formula. Substituting k = 1 in formula (2.4), we have 

1T 

f [J~a,~2 ,B)(cos e)J2 P(a,B)(e} d0 = I 
v=O 

0 

The sum at the right-hand side can be evaluated, if one uses (2.4) for 

different values of k at the point e = 0. After some calculation one obtains 

-1 = r(n+B+1)r(n+1)r(a+3)r(a+1) (2n2 + 2n(a+B+3) + (a+3)(a+B+2)). 
en (a+3)f(n+a+B+3)r(n+a+3) 

The second and the fourth trigonometric moments are easily computed. 

T(J(a+2,B). 2 ) = C 
~2n+a+B+3) = (a+3)(a+1) 

n,2 ' n (a+2) w(a+2,B) P2n 
n 

and 

T(J(a+2,B). 4 ) 1 ( a+3 )( a+2) a+1) 
= C (a+2,B) = (2n+a+B+3 

, 
n,2 ' n P2n wn 

where 

P2n = 2n2 + 2n(a+B+3) + (a+3)(a+B+2). 

The author has not succeeded in calculating the Fourier-Jacobi coefficients 
( a+2, B) • • • of the kernel J 2 , except the first few, which follow from the tri-n, 

gonometric moments. In the case a= B = -~, k = 1, we have 

= _____ 1_5 ______ [(2n+3)sin(2n+1 )f - (2n+1 )~in(2n+3)~ 2 

ir(n+1)(2n+1)(2n+3)(4n2+8n+5) 4(sin })3 J 
and the Fourier coefficients can be calculated by squaring the series (2,5), 

since we have 
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cos ne cos me= ~(cos(n+m)e + cos(n-m)e). 

A simple representation of the product R(a,S)(cos 8} R(a,B)(cos 8) in the 
n m 

general case is not known. However, in some important special cases (a,a), 

(a,-~) and (a+1,a) the coefficients a(k,m,n) in the representation 

n+m 
\ ( ) R(a,B)(x) l a k,m,n _"k 

k=ln-ml 

are available (see Askey [1], p.11). 
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