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a b s t r a c t

In this paper, we present a monolithic multigrid method for the efficient solution of
flow problems in fractured porous media. Specifically, we consider a mixed-dimensional
model which couples Darcy flow in the porous matrix with Forchheimer flow within
the fractures. A suitable finite volume discretization permits to reduce the coupled
problem to a system of nonlinear equations with a saddle point structure. In order to
solve this system, we propose a full approximation scheme (FAS) multigrid solver that
appropriately deals with the mixed-dimensional nature of the problem by using mixed-
dimensional smoothing and inter-grid transfer operators. Numerical experiments show
that the proposed multigrid method is robust with respect to the fracture permeability,
the Forchheimer coefficient and the mesh size. The case of several possibly intersecting
fractures in a heterogeneous porous medium is also discussed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling and simulation of fluid flow in fractured porous media is a challenging task which is getting increasing
attention in recent years, due to the wide range of applications in which it plays an essential role. Different fracture
models have been proposed in the last decades based on the spatial scale under consideration and the knowledge of the
fracture distribution. On the one hand, double-continuum models are suitable for regularly distributed micro-fractures
showing interconnections with the surrounding matrix. Such models assume the existence of a mass transfer function
between the bulk and the fractures [1], and are usually derived via homogenization theory [2]. On the other hand, discrete
fracture networks consider sets of individual macro-fractures which are isolated from the porous matrix [3,4]. Typically,
these networks are obtained stochastically and provide information about the orientation, density, size and hydrological
properties of the fractures [5]. In these latter models, fluid exchange between the fractures and the matrix is not allowed,
so that flow is restricted to the fracture network. If we properly combine the preceding models, we may construct what
we refer to as discrete fracture–matrix models: sets of individual macro-fractures, similar to those arising in discrete
fracture networks, but suitably coupled with the surrounding matrix, as in double-continuum models. These are the
models considered in this paper. More precisely, we suppose that fractures can be represented as (n − 1)-dimensional
interfaces immersed into an n-dimensional porous matrix, thus giving rise to the so-called mixed-dimensional or interface
models [6,7].
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Most earlier works using this approach suppose that the flow within the fractures and in the porous matrix is described
by Darcy’s law [8–10]. Darcy’s law has been shown to govern single-phase incompressible flow in porous media at specific
flow regimes where the velocity is low. This is the case, for example, of subsurface reservoirs and aquifers, where a low
permeability of the porous matrix implies low velocities. However, in proximity to wellbores or within high-permeability
fractures, velocities are higher, thus requiring the use of alternative nonlinear flow models [11]. The simplest of such
models is based on the addition of a quadratic correction term in the velocity to the linear Darcy model. The new model,
referred to as Forchheimer’s law, combines the contribution of viscous and inertial effects: at low flow rates, the viscous
effect is dominant and the model reduces to Darcy’s law; at increasing flow rates, however, the inertial effect gains
relevance and plays a significant role [12]. Remarkably, other nonlinear correction terms – e.g., cubic [13], polynomial [11]
or exponential [14]–have also been proposed in the literature.

The validity of Forchheimer’s law in a certain range of velocities for laminar flow has been established empirically
(see [15,16] and references therein). From a theoretical viewpoint, the Forchheimer model has been deduced using
homogenization methods [17,18], volume averaging [19,20], and related techniques [21]. Existence, uniqueness and
regularity results have been derived in [22–24]. Numerically, different strategies – ranging from mixed finite elements
[25–27] to block-centered finite differences [28,29] and multipoint flux approximation methods [30]–have been applied
to obtain approximate solutions of this model.

In this work, we are concerned with the numerical solution of a discrete fracture–matrix model which couples
Darcy flow in the porous matrix with Forchheimer flow within the fractures. The solvability of this problem is analyzed
in [31]. In [32,33], numerical approximations are obtained using the lowest order Raviart–Thomas mixed finite elements
in combination with a domain decomposition technique. In both works, the nonlinear system stemming from the
Forchheimer equation is solved using fixed-point iteration and quasi-Newton methods. Alternative efficient solvers for
various discretizations of the isolated Forchheimer model include the Peaceman–Rachford iteration scheme [34], different
variants of the two-grid method [35,36], and a multigrid method based on the so-called full approximation scheme
(FAS) [37]. In the spirit of this latter work, we propose a monolithic mixed-dimensional multigrid method that extends
our earlier work [38] for the Darcy–Darcy coupling to the Darcy–Forchheimer case. Note that, in this case, the mixed-
dimensional approach establishes a connection between dimensionality and nonlinearity: an n-dimensional linear Darcy
problem is coupled with an (n − 1)-dimensional nonlinear Forchheimer problem. For the discretization, we consider a
finite volume method that combines control volumes of different dimensions in the fractures and the porous matrix. The
nonlinear system stemming from the discretization has a saddle point structure, and can be suitably handled using the
FAS multigrid solver [39].

Multigrid methods are well known to be among the fastest solvers for the solution of linear and nonlinear systems of
equations, showing very often optimal computational cost and convergence behavior [40]. The performance of multigrid
algorithms strongly depends on the choice of their components, so that many details are open for discussion and decision
in the design of a multigrid method for a target problem. In the framework considered here, where a mixed-dimensional
problem needs to be solved, it seems natural to combine two-dimensional smoothing and inter-grid transfer operators
for the unknowns in the porous matrix with their one-dimensional counterparts within the fracture network. Regarding
the smoother, due to the saddle point character of the resulting system, a Vanka-type relaxation is proposed for both
the unknowns in the porous matrix and within the fractures. This class of smoothers was firstly proposed by Vanka
in [41] for the multigrid solution of the staggered finite difference discretization of the Navier–Stokes equations and, since
then, it has been applied to different problems in both computational fluid and solid mechanics. In particular, here we
consider a standard two-dimensional five-point Vanka smoother for the unknowns in the porous matrix, and a variant of
its one-dimensional three-point nonlinear counterpart for those unknowns within the fractures. The proposed relaxation
procedure simultaneously updates the fracture unknowns at one cell within the fracture with those two velocities from the
porous matrix located at the edges of the corresponding two-dimensional elements that match at that particular fracture
cell. The inter-grid transfer operators that act on the different unknowns are dictated by the corresponding one- and two-
dimensional staggered location of the grid points within the fractures and the porous matrix, respectively. The proposed
mixed-dimensional multigrid method is shown to be robust with respect to the fracture permeability, the mesh size, and
the so-called Forchheimer coefficient, which represents a measure of the strength of the nonlinearity (see problem (1)).
In addition, robustness is preserved for a fracture network with several possibly intersecting fractures, in heterogeneous
porous media, and at different injection rates within the fractures.

The rest of the paper is organized as follows. In Section 2, we describe the discrete fracture–matrix model coupling
Darcy flow in the porous matrix with Forchheimer flow in the fractures. The finite volume spatial discretization is
formulated in Section 3, where we further specify the resulting nonlinear system of algebraic equations. In Section 4, we
introduce a monolithic mixed-dimensional multigrid method for solving such a system. Finally, we report a collection
of numerical experiments in Section 5, illustrating the robustness of the proposed method with respect to different
parameters.

2. The continuous problem

Let Ω ⊂ R2 be an open, bounded, and convex polygonal domain, whose boundary is denoted by Γ = ∂Ω . We consider
a single-phase incompressible flow in Ω governed by the mass conservation equation, together with Forchheimer’s law
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Fig. 1. Schematic representation of the original domain (left) and the reduced domain (right).

that relates the gradient of the pressure p to the flow velocity u, i.e.,
(1 + β |u|)u = −K∇p in Ω,

∇ · u = q in Ω,

p = 0 on Γ .

(1)

Here, β represents the dynamic viscosity or Forchheimer coefficient, and is supposed to be a scalar, K ∈ R2×2 is the
permeability tensor, and q is a source/sink term. We suppose that K is a diagonal tensor whose entries Kxx and Kyy
are strictly positive and bounded in Ω . For the sake of convenience, homogeneous Dirichlet boundary conditions are
considered, but other types of boundary data can also be handled. We further assume that the porous medium Ω contains
a subset Ωf representing a single fracture, which divides the flow domain into two disjoint connected subdomains Ω1
and Ω2, i.e.,

Ω\Ω f = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.

In addition, we introduce the notations Γk = ∂Ωk ∩ Γ , for k = 1, 2, f , and γk = ∂Ωk ∩ ∂Ωf ∩ Ω , for k = 1, 2. The unit
vector normal to γk pointing outward from Ωk is denoted by nk, for k = 1, 2. A schematic representation of the flow
domain including the previous notations is shown in Fig. 1 (left).

Following [33], we assume that the velocity in the subdomains is small enough to be described by Darcy’s law, while
that in the fracture needs to be modeled by Forchheimer’s law. Under these assumptions, problem (1) may be rewritten
as the following transmission problem, for k = 1, 2, f , and j = 1, 2

uj = −Kj∇pj in Ωj, (2a)(
1 + β |uf |

)
uf = −Kf ∇pf in Ωf , (2b)

∇ · uk = qk in Ωk, (2c)

pj = pf on γj, (2d)

uj · nj = uf · nj on γj, (2e)

pk = 0 on Γk, (2f)

where pk, uk, Kk and qk are the restrictions of p, u, K and q, respectively, to Ωk, for k = 1, 2, f . Eqs. (2d) and (2e) provide
coupling conditions that guarantee the continuity of the pressure and the normal flux, respectively, across the interfaces
between the fracture and the porous matrix.

In the preceding transmission problem, both the bulk and the fracture are defined to be two-dimensional domains. As
a consequence, from a numerical viewpoint, we will need extremely fine meshing to resolve the width of the fracture,
assumed to be much smaller than its length. This fact will thus increase the computational cost of the algorithm. In order
to circumvent this drawback, the fracture is considered to be a one-dimensional interface between the bulk subdomains
Ω1 and Ω2. The resulting model is known as mixed-dimensional or reduced model. This idea was first proposed in [7]
for a Darcy–Darcy coupling between the fracture and the porous matrix, and has been subsequently used in [31–33]
in the context of Darcy–Forchheimer couplings. Note that, as an additional advantage in this latter case, the nonlinear
Forchheimer problem (2b) posed in the fracture is no longer a two-dimensional problem, but a one-dimensional one.

According to [7], there exists a non-self-intersecting one-dimensional manifold γ such that the fracture can be
expressed as

Ωf =

{
x ∈ Ω : x = s + θ nγ , for some s ∈ γ and |θ | <

d(s)
2

}
,

where d(s) > 0 denotes the width of the fracture at s in the normal direction, and nγ is the outward unit normal to γ
with a fixed orientation from Ω1 to Ω2. Note that, with this definition, nγ = n1 = −n2 (see Fig. 1). We will suppose that
d(s) is much smaller than the other characteristic dimensions of the fracture.
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The key point in this procedure is to collapse the fracture Ωf into the line γ , and integrate Eqs. (2b) and (2c) (the
latter for the index k = f ) along the fracture width. In doing so, we need to split up such equations into their normal
and tangential parts. Let us denote the projection operators onto the normal and tangent spaces of γ as Pn = nγnT

γ and
Pτ = I−Pn, I being the identity tensor. For regular vector- and scalar-valued functions g and g , the tangential divergence
and gradient operators on the fracture are defined, respectively, as

∇
τ
· g = Pτ : ∇g, ∇

τg = Pτ∇g.

Following [3], we assume that the permeability tensor Kf decomposes additively as

Kf = Kn
f Pn + K τ

f Pτ, (3)

where Kn
f and K τ

f are defined to be strictly positive and bounded in Ωf . Accordingly, uf = uf ,τ + uf ,n, where uf ,τ = Pτuf
and uf ,n = Pnuf .

In this framework, we introduce the so-called reduced variables, namely: the reduced pressure pγ , the reduced Darcy
velocity uγ , and the reduced source/sink term qγ , formally defined as [7,9]

pγ (s) =
1

d(s)
(pf , 1)ℓ(s), uγ (s) = (uf ,τ, 1)ℓ(s), qγ (s) = (qf , 1)ℓ(s),

where ℓ(s) =
(
−

d(s)
2 ,

d(s)
2

)
. In addition, along the lines of [33], we assume that the flow in the normal direction within

the fracture is described by Darcy’s law. This assumption is based on the fact that the ratio between the width and the
length of the fracture is small. Thus, Eq. (2b) may be decomposed into its tangential and normal direction as follows(

1 + β |uf |
)
uf ,τ = −K τ

f ∇
τpf , (4a)

uf ,n = −Kn
f ∇

npf . (4b)

Since uf ,n is assumed to be much smaller than uf ,τ , we have the approximation |uf | ≈ |uf ,τ | ≈
1
d |uγ |. Then, the

integration of (4a) along the line segment ℓ(s) permits us to derive a Forchheimer’s law in the one-dimensional domain
γ . In turn, the integration of (4b) in the normal direction to the fracture can be used to give boundary conditions along
γ for the systems in Ω1 and Ω2. Hence, we obtain the following interface problem, for k = 1, 2,

uk = −Kk∇pk in Ωk, (5a)

∇ · uk = qk in Ωk, (5b)(
1 +

β

d
|uγ |

)
uγ = −dK τ

f ∇
τpγ on γ , (5c)

∇
τ
· uγ = qγ + (u1 · n1 + u2 · n2) on γ , (5d)

αγ (pk − pγ ) = ξ uk · nk − (1 − ξ )uk+1 · nk+1 on γ , (5e)

pk = 0 on Γk, (5f)

pγ = 0 on ∂γ , (5g)

where αγ = 2Kn
f /d and the index k is supposed to vary in Z/2Z, so that, if k = 2, then k + 1 = 1. According

to [7,42], ξ ∈ (1/2, 1] is a closure parameter related to the pressure cross profile in the fracture. The ratio Kn
f /d and the

product K τ
f d are sometimes referred to as effective permeabilities in the normal and tangential directions to the fracture,

respectively [8].
In the preceding system, (5c) represents Forchheimer’s law in the tangential direction to the fracture, while (5d) models

mass conservation inside the fracture. Remarkably, the additional source term u1 · n1 + u2 · n2 is introduced on γ to take
into account the contribution of the subdomain flows to the fracture flow. In turn, (5e) is obtained by averaging Eq. (4b)
in the normal direction to the fracture and using a quadrature rule with weights ξ and 1− ξ for integrating uf ·nk across
the fracture, for k = 1, 2. Formally, it can be regarded as a Robin boundary condition for the subdomain Ωk that involves
the pressure in the fracture pγ and the normal flux from the neighboring subdomain Ωk+1. It is quite usual to express
(5e) in terms of average operators for the pressures and normal fluxes, and jump operators for the pressures across the
fracture [9,43].

3. The spatial discretization

Let us assume that the subdomains Ωk admit rectangular partitions T k
h , for k = 1, 2, that match at the interface γ .

Such meshes T k
h induce a unique partition on γ denoted by T γ

h . In the case of considering a vertical fracture as that shown
in Fig. 1, such partitions may be defined as T k

h = ∪
N+1
i,j=1E

k
i,j and T γ

h = ∪
N+1
j=1 Eγ

j , where

Ek
i,j = (xki−1/2, x

k
i+1/2) × (yj−1/2, yj+1/2),

Eγ

j = {xγ } × (yj−1/2, yj+1/2),
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Fig. 2. Staggered grid location of unknowns and corresponding control volumes. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

xγ being equal to x1N+3/2 and x21/2. In the framework of finite volume methods, these sets are known as control volumes.
Fig. 2 shows the control volumes E1

2,N , E
2
2,N and Eγ

N highlighted in blue. Note that both E1
2,N and E2

2,N are two-dimensional
control volumes, while Eγ

N is one-dimensional.
In this setting, we associate the pressure unknowns pki,j and pγ

j to the element centers (xki , yj) and (xγ , yj), respectively,
as indicated with cross signs in Fig. 2. In particular,

pki,j ≈
1

|Ek
i,j|

∫∫
Eki,j

p(x, y) dx dy, pγ

j ≈
1

|Eγ

j |

∫
Eγ
j

pγ (s) ds.

In order to introduce the velocity unknowns, we first define some additional control volumes associated to the midpoints
of the edges of the meshes T k

h , for k = 1, 2, and T γ

h . In particular, let us define the following control volumes associated
to the vertical edges of T k

h ,

Ek
i+1/2,j = (xki , x

k
i+1) × (yj−1/2, yj+1/2), i = 1, . . . ,N, j = 1, . . . ,N + 1,

Ek
1/2,j = (xk1/2, x

k
1) × (yj−1/2, yj+1/2), j = 1, . . . ,N + 1,

Ek
N+3/2,j = (xkN+1, x

k
N+3/2) × (yj−1/2, yj+1/2), j = 1, . . . ,N + 1.

The control volumes associated to the horizontal edges of T k
h are denoted by Ek

i,j+1/2, for i = 1, . . . ,N + 1 and j =

0, 1, . . . ,N + 1, and may be defined in a similar way. Finally, we define the following one-dimensional control volumes
associated to the mesh points (xγ , yj+1/2) of the partition T γ

h ,

Eγ

j+1/2 = {xγ } × (yj, yj+1), j = 1, . . . ,N,

Eγ

1/2 = {xγ } × (y1/2, y1),

Eγ

N+3/2 = {xγ } × (yN+1, yN+3/2).

Fig. 2 shows the control volumes E1
N+1/2,N+1 and E2

N+1/2,N+1 highlighted in brown, and the control volumes E1
1,3/2, E

2
1,3/2

and Eγ

3/2 highlighted in green.
In this context, the velocity unknowns can be classified into three groups. The first group comprises the normal

flux components associated to the vertical edges of the two-dimensional grids T k
h , which are denoted by uk

i+1/2,j, for
i = 0, 1, . . . ,N+1, j = 1, . . . ,N+1, k = 1, 2, and are represented by black empty circles in Fig. 2. The second set contains
the normal flux components associated to the horizontal edges of T k

h , which are denoted by vk
i,j+1/2, for i = 1, . . . ,N + 1,

j = 0, 1, . . . ,N + 1, k = 1, 2, and are depicted by black filled dots in the same plot. Finally, the third group comprises
the normal flux components associated to the edges of the one-dimensional grid T γ

h , which are denoted by uγ

j+1/2, for
j = 0, 1, . . . ,N + 1, and are marked by red filled dots. In particular,

uk
i+1/2,j ≈

1
|Ek

i+1/2,j|

∫∫
Eki+1/2,j

uk(x, y) dx dy,

vk
i,j+1/2 ≈

1
|Ek

i,j+1/2|

∫∫
Eki,j+1/2

vk(x, y) dx dy,
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uγ

j+1/2 ≈
1

|Eγ

j+1/2|

∫
Eγ
j+1/2

uγ (s) ds.

Let us introduce the notation uk
= (uk, vk)T for the two components of the velocity on Ωk, for k = 1, 2. Taking into

account that Kk are diagonal tensors, with diagonal coefficients K k
xx and K k

yy, Eq. (5a) can be decomposed as

uk
+ K k

xx
∂pk
∂x

= 0, (6a)

vk
+ K k

yy
∂pk
∂y

= 0. (6b)

The integration of Eq. (6a) over the control volumes Ek
i−1/2,j, together with the application of the midpoint quadrature rule

in the x-direction and a suitable approximation of the flux at the midpoints of the cell edges, gives rise to the discrete
equations for the horizontal velocities. In this case, we consider that the flux over each edge is approximated by using
the pressure unknowns in the two cells sharing that edge. This scheme, known as the two-point flux approximation
method [44], is widely used in reservoir simulations. In turn, the discrete equations for the vertical velocities are obtained
by integrating equation (6b) over the control volumes Ei,j−1/2 and following a similar procedure.

In particular, the interior velocity unknowns will satisfy the following equations

uk
i−1/2,j + 2

(
∆xki−1

(K k
xx)i−1,j

+
∆xki

(K k
xx)i,j

)−1

(pki,j − pki−1,j) = 0,

vk
i,j−1/2 + 2

(
∆yj−1

(K k
yy)i,j−1

+
∆yj

(K k
yy)i,j

)−1

(pki,j − pki,j−1) = 0,

where ∆xki = xki+1/2 − xki−1/2 and ∆yj = yj+1/2 − yj−1/2. Finally, integrating Eq. (5b) over the control volumes Ek
i,j and

applying the divergence theorem, we get

uk
i+1/2,j − uk

i−1/2,j

∆xki
+

vk
i,j+1/2 − vk

i,j−1/2

∆yj
= qki,j,

where

qki,j =
1

∆xki ∆yj

∫∫
Eki,j

qk dx dy.

Similarly, by integrating Eqs. (5c) and (5d) over the control volumes Eγ

j−1/2 and Eγ

j , respectively, we get the following
equations for the interior unknowns of γ(

1 +
β

d
|uγ

j−1/2|

)
uγ

j−1/2 + 2 d

(
∆yj−1

(K τ
f )j−1

+
∆yj
(K τ

f )j

)−1

(pγ

j − pγ

j−1) = 0,

uγ

j+1/2 − uγ

j−1/2

∆yj
− (u1

N+3/2,j − u2
1/2,j) = qγ

j ,

where qγ

j =
1

|Eγ
j |

∫
Eγ
j
qγ (s) ds.

Considering homogeneous Dirichlet boundary conditions, the equations for the normal fluxes at the horizontal
boundaries are given by

vk
i,1/2 + 2

(K k
yy)i,1

∆y1
pki,1 = 0,

vk
i,N+3/2 − 2

(K k
yy)i,N+1

∆yN+1
pki,N+1 = 0,(

1 +
β

d
|uγ

1/2|

)
uγ

1/2 + 2 d
(K τ

f )1
∆y1

pγ

1 = 0,(
1 +

β

d
|uγ

N+3/2|

)
uγ

N+3/2 − 2 d
(K τ

f )N+1

∆yN+1
pγ

N+1 = 0.

In turn, the equations for the normal fluxes at the vertical boundaries take the form

u1
1/2,j + 2

(K 1
xx)1,j

∆x11
p11,j = 0,
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u2
N+3/2,j − 2

(K 2
xx)N+1,j

∆x2N+1
p2N+1,j = 0.

Finally, considering the coupling condition (5e), the equations for the normal fluxes of the porous matrix at the interface
γ are (

1 +
ξ a1j
αγ

)
u1
N+3/2,j + a1j (p

γ

j − p1N+1,j) +
(1 − ξ ) a1j

αγ

u2
1/2,j = 0,(

1 +
ξ a2j
αγ

)
u2
1/2,j + a2j (p

2
1,j − pγ

j ) +
(1 − ξ ) a2j

αγ

u1
N+3/2,j = 0,

for j = 1, . . . ,N + 1, where a1j = 2(K 1
xx)N+1,j/∆x1N+1 and a2j = 2(K 2

xx)1,j/∆x21.
Suitable scaling of the previous equations results in a nonlinear saddle point problem of the form⎛⎜⎜⎜⎜⎜⎝

A1 CT 0 BT
1 0 F T

1
C A2 0 0 BT

2 F T
2

0 0 Aγ (Uγ ) 0 0 BT
γ

B1 0 0 0 0 0
0 B2 0 0 0 0
F1 F2 Bγ 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
U1
U2
Uγ

P1
P2
Pγ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
Q1
Q2
Qγ

⎞⎟⎟⎟⎟⎟⎠ ,

where U1, U2 and Uγ comprise the velocity unknowns on Ω1, Ω2 and γ , respectively. Similarly, P1, P2 and Pγ contain
the pressure unknowns on Ω1, Ω2 and γ , respectively. The matrices A1, A2 and Aγ (Uγ ) are diagonal. It is important to
notice that the nonlinearity of the problem is associated only with the one-dimensional Forchheimer equation posed on
the fracture.

Remark 1. If we consider a fracture network with several intersecting fractures, we shall impose mass conservation and
pressure continuity at the intersection points. In this case, the preceding system should be appropriately modified, yet
preserving a nonlinear saddle point structure.

4. The monolithic multigrid method

Typically, there are two approaches for solving nonlinear problems by using multigrid techniques. One is to apply some
linearization method, such as Newton’s iteration or Picard method, and then to use multigrid for solving the linear problem
corresponding to each iteration step. The second approach, known as full approximation scheme (FAS) [39], consists of
applying multigrid directly to the nonlinear problem. This is the approach followed in this work, that is briefly described
in the sequel. Remarkably, we only need to consider the two-level variant since, as for the linear case, the nonlinear FAS
multigrid method can be defined recursively on the basis of this variant. In this way, if Ah(uh) = fh denotes a nonlinear
system of equations, a two-level FAS scheme reads as follows:

Full Approximation Scheme (FAS):

• Pre-smoothing: compute ūm
h by applying ν1 smoothing steps: ūm

h = Sν1
h um

h .
• Restrict the residual and the current approximation to the coarse grid: rH = Ih,H (fh − Ah(ūm

h )) and um
H = Ĩh,H ūm

h .
• Solve the coarse-grid problem: AH (vm

H ) = AH (um
H ) + rH .

• Interpolate the error approximation to the fine grid and correct the current fine grid approximation: ûm
h = ūm

h +

IH,h(vm
H − um

H ).
• Post-smoothing: compute um+1

h by applying ν2 smoothing steps : um+1
h = Sν2

h ûm
h .

Here, Sh denotes a nonlinear relaxation procedure, Ih,H and Ĩh,H are possibly different transfer operators from the fine to
the coarse grid, and IH,h is a transfer operator from the coarse to the fine grid. Note that, if Ah is a linear operator, then
the FAS scheme is identical to the standard linear multigrid method.

In this work, we propose a monolithic multigrid method for solving the Darcy–Forchheimer flow in a fractured porous
media. This means that we do not iterate between the subproblems in the matrix and within the fracture network, and
we treat the whole problem at once. It is well known that the performance of a multigrid method strongly depends on
its components. Notice that we are considering a nonlinear saddle point problem with a mixed-dimensional character,
and this will have a great influence on the choice of the multigrid elements. Next, we describe the components used to
define the nonlinear multigrid scheme.

4.1. Inter-grid transfer operators

In this section, we introduce the restriction and interpolation operators involved in the multigrid method for solving
the mixed-dimensional problem. We consider different transfer operators for the unknowns belonging to the matrix
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Fig. 3. Unknowns updated together by the (left) two-dimensional and (right) one-dimensional Vanka-type smoothers, applied in the porous matrix
and within the fractures, respectively.

and for those located at the fractures. Specifically, we choose two-dimensional and one-dimensional transfer operators,
respectively. This means that we implement mixed-dimensional transfer operators in our multigrid algorithm in order to
handle the problem at once.

Regarding the unknowns of the porous matrix, we take into account the staggered arrangement of their location.
Therefore, the inter-grid transfer operators acting on the porous matrix unknowns are defined as follows: a six-point
restriction is considered at the velocity grid points, while a four-point restriction is applied at the pressure grid points.
In stencil notation, these restriction operators are given by

Iuh,H =
1
8

(1 2 1
∗

1 2 1

)
h

, Ivh,H =
1
8

(1 1
2 ∗ 2
1 1

)
h

, Iph,H =
1
4

(1 1
∗

1 1

)
h

,

respectively. We have used the same restriction operators for the current approximations, that is, Ĩuh,H = Iuh,H , Ĩ
v
h,H = Ivh,H

and Ĩph,H = Iph,H . Note that we choose the adjoints of the restrictions as the prolongation operators Iu/v/p
H,h .

Regarding the inter-grid transfer operators for the unknowns at the fractures, we again take into account their
one-dimensional staggered arrangement, yielding the following restriction transfer operators

Ĩu
γ

h,H = Iu
γ

h,H =
1
4

(
1 2 1

)
h , Ĩp

γ

h,H = Ip
γ

h,H =
1
2

(
1 ∗ 1

)
h .

In turn, their adjoints are considered to be the prolongation operators.

4.2. Smoother

The proposed smoother is based on the well-known Vanka relaxation procedure, which was proposed by Vanka in [41]
for solving the staggered finite difference discretization of the Navier–Stokes equations. This smoother was based on
simultaneously updating all unknowns appearing in the discrete divergence operator in the pressure equation. Thus,
the relaxation designed here for the proposed coupled problem lies in combining two- and one-dimensional Vanka-type
smoothers for the unknowns in the matrix and within the fractures, respectively. Moreover, at each smoothing step, two
relaxations of the one-dimensional Vanka smoother, with a relaxation parameter w = 0.7, are performed within the
fractures, whereas only one smoothing iteration of the two-dimensional Vanka relaxation is carried out in the matrix.
Notice that the computational cost of the smoothing step in the fracture is negligible in comparison with that of the
porous matrix, since it is a one-dimensional calculation.

More concretely, in the case of the porous matrix, the Vanka smoothing approach implies that four velocity unknowns
and one pressure unknown are simultaneously updated (see Fig. 3, left). This means that we iterate over all cells at each
two-dimensional smoothing step, and a 5 × 5 system is solved on each cell. In terms of increments, such a system is
written as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −
Kxx

h
0 1 0 0

Kxx

h

0 0 1 0 −
Kyy

h
0 0 0 1

Kyy

h
1
h

−
1
h

1
h

−
1
h

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

δui+1/2,j

δui−1/2,j

δvi,j+1/2

δvi,j−1/2

δpi,j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

rui+1/2,j

rui−1/2,j

rv
i,j+1/2

rv
i,j−1/2

rpi,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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For the sake of simplicity, in the previous system we omitted the superscript k indicating the corresponding subdomain,
we considered a uniform grid in both directions, with mesh size h, and we assumed that the permeability tensors are
homogeneous on the corresponding subdomain.

Regarding the one-dimensional Vanka smoother within the fractures, three fracture unknowns are simultaneously
updated on each cell – those corresponding to the pressure and the velocities associated to the cell – together with two
velocities from the porous matrix which are located at the same point as the fracture pressure (see Fig. 3, right). In this
way, a 5 × 5 system has to be solved for each pressure grid point. In particular, for the case of one vertical fracture
considered in Section 3, the system to solve takes the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
β

d
|uγ

j+1/2| 0 −d
K τ
f

h
0 0

0 1 +
β

d
|uγ

j−1/2| d
K τ
f

h
0 0

1
h

−
1
h

0 −1 1

0 0 a1j 1 +
ξa1j
αγ

(1 − ξ )a1j
αγ

0 0 −a2j
(1 − ξ )a2j

αγ

1 +
ξa2j
αγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δuγ

j+1/2

δuγ

j−1/2

δpγ

j

δu1
N+3/2,j

δu2
1/2,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δru
γ

j+1/2

δru
γ

j−1/2

δrp
γ

j

δru
1

N+3/2,j

δru
2

1/2,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where h denotes the uniform mesh size, K τ
f is assumed constant along the fracture, and the rest of the parameters are

those defined in Section 3. Here, the nonlinearity is handled via a Picard iteration, namely: the diagonal elements of
the previous matrix are computed by using the velocities at the previous smoothing step. Finally, we apply a block
Gauss–Seidel smoother coupling the fracture velocity unknowns located at each intersection point between fractures,
if any.

4.3. Computational cost

It is well known that, in general, the most time-consuming part of a multigrid algorithm is the smoothing procedure.
In our case, this is even more noticeable due to the fact that the chosen smoother has to solve small dense systems of
equations for each grid point. In particular, for the proposed mixed-dimensional multigrid method, the most demanding
part in terms of CPU time is the relaxation method in the two-dimensional porous matrix. Hence, we can get an idea of the
computational complexity of the method by looking at the complexity of the proposed two-dimensional Vanka smoother.
In the porous matrix, this Vanka smoother requires the solution of small 5 × 5 dense systems for each pressure degree of
freedom. The most expensive parts of this smoothing iteration are the matrix–vector multiplications required to calculate
the local residual and the solution of each dense system. By using a standard approach, the cost of the computation of each
local defect is O(n), where n is the total number of degrees of freedom. In turn, the cost of solving the system depends on
the chosen method: assuming that the inverse of the system matrix is stored or the resulting L and U factors are stored
in a block LU-factorization, the cost of calculating the correction is O(n) too. As a consequence, the global computational
cost per iteration of the multiplicative Schwarz smoother is O(n).

Remark 2. The proposed method can be straightforwardly extended to solve three-dimensional problems with an
arbitrary fracture network composed of possibly intersecting horizontal and/or vertical planar fractures. In this case,
the mixed-dimensional multigrid method would combine two- and three-dimensional smoothers and inter-grid transfer
operators within the fractures and the porous matrix, respectively. Moreover, we could use a one-dimensional smoother,
or even a direct solver, at the intersections of fractures. We would expect very successful results as in the two-dimensional
case presented here. However, the implementation of a three-dimensional model that considers intersecting fractures
could easily become quite involved.

5. Numerical experiments

In this section, we present some numerical experiments to show the robustness and the efficiency of the proposed
multigrid method for the interface model. In all the tests, we apply the FAS multigrid method based on the Vanka-type
smoothers described in Section 4.2. At each smoothing step, we apply one iteration of the Vanka strategy in the porous
medium and two iterations within the fracture, considering a damping parameter w = 0.7. Note that, in this model, the
fracture is considered to be a one-dimensional object, so that the computational cost of calculating the fracture unknowns
is negligible as compared to that of solving the problem in the porous medium. We use W-cycles with two pre- and two
post-smoothing steps, since this choice was shown to provide very good results for solving complex coupled problems
like the Darcy–Stokes system [45], the Biot–Stokes system [46] and the single phase Darcy–Darcy coupling between the
fractures and the porous matrix [38]. All our numerical computations are carried out using MATLAB.
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Fig. 4. (a) Domain and boundary conditions and (b) pressure solution for the case Kf = 10−6 and β = 10.

Fig. 5. History of convergence for the monolithic multigrid method if Kf = 10−6 and β = 10.

5.1. A single fracture test

First, we consider a test problem presented in [33], where the domain consists of a horizontal rectangular slice of
porous medium Ω = (0, 2) × (0, 1). Such a domain is divided into two equally-sized subdomains by a vertical fracture
Ωf of unit length and width d = 0.01. The permeability in the porous medium is assumed to be K = K I, where K = 10−9

and I stands for the identity matrix. In turn, the permeability in the fracture is given by Kf = Kf I, where Kf = K τ
f = Kn

f
is supposed to be greater than K . We will perform several numerical tests for different values of the permeability Kf ,
as well as for different values of the Forchheimer coefficient β . The upper and lower boundaries of the porous medium
are assumed to be impermeable. Pressure is fixed to the values p = 0 and p = 106 on the left and right boundaries,
respectively. The boundary conditions of the fracture are of Dirichlet type. More precisely, pf = 106 on the top extremity
of the fracture and pf = 0 on the bottom. All these settings are displayed in Fig. 4(a). For illustration, we show the pressure
solution obtained for a fracture permeability Kf = 10−6 and a Forchheimer coefficient β = 10 in Fig. 4(b). The problem
has been discretized using the finite volume scheme described in Section 3, considering a uniform grid in both directions
with mesh size h.

Throughout this subsection, we show the robustness of the monolithic mixed-dimensional multigrid method with
respect to the spatial discretization parameter h, the permeability of the fracture Kf , and the Forchheimer coefficient β .
Note that the problem becomes harder to solve as the permeability of the fracture Kf increases, mainly because of the
bigger jump between this permeability and that of the porous matrix. In addition, the solution of the mixed-dimensional
coupled problem becomes more involved as the coefficient β increases, since this coefficient enhances the nonlinearity.

We study the performance of the monolithic mixed-dimensional multigrid method by fixing the permeability of the
fracture to Kf = 10−6 and the Forchheimer coefficient to β = 10. In Fig. 5, we display the history of convergence of
the multigrid solver for different mesh sizes. In particular, the reduction of the residual is depicted versus the number of
iterations, while the stopping criterion is set to reduce the initial residual to 10−8. It can be observed that the convergence
of the multigrid method is independent of the spatial discretization parameter. Moreover, it results in a very efficient
solver, since only around 8 iterations are needed to solve the nonlinear mixed-dimensional coupled problem.

Next, we set the Forchheimer coefficient to be β = 10 in order to study the robustness of the multigrid solver with
respect to different values of the permeability of the fracture Kf . In Table 1, we display the number of iterations needed
to reduce the initial residual by a factor of 10−10, for different grid sizes and permeability values. We can observe that,
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Table 1
Number of W (2, 2)-iterations of the FAS multigrid method required to reduce the initial
residual by a factor of 10−10 , for different values of the permeability in the fracture Kf
and for different mesh sizes. The Forchheimer coefficient is β = 10 and a single fracture
is considered.
Kf h−1

= 32 h−1
= 64 h−1

= 128 h−1
= 256

10−6 8 8 8 9
10−4 9 9 9 9
10−2 9 9 9 10
1 10 10 11 11

Table 2
Number of W (2, 2)-iterations of the FAS multigrid method required to reduce the initial
residual by a factor of 10−10 , for different values of the Forchheimer coefficient β and for
different mesh sizes. The permeability in the fracture is Kf = 10−6 and a single fracture
is considered.
β h−1

= 32 h−1
= 64 h−1

= 128 h−1
= 256

0 8 8 8 9
10 8 8 8 9
50 8 9 9 10

100 9 9 10 10
200 10 10 10 10

Table 3
Number of W (2, 2)-iterations of the FAS multigrid method required to reduce the initial
residual by a factor of 10−10 , for different values of the permeability in the fractures Kf
and for different mesh sizes. The Forchheimer coefficient is β = 100 and two intersecting
fractures are considered.
Kf h−1

= 32 h−1
= 64 h−1

= 128 h−1
= 256

10−6 9 9 9 9
10−4 9 9 9 9
10−2 9 9 9 9
1 9 9 9 9

for all the considered values of Kf , the performance of the multigrid method is independent of the spatial discretization
parameter. Further, the number of iterations needed to satisfy the stopping criterion is kept to a small quantity.

Finally, Table 2 shows the number of iterations required to reduce the initial residual by a factor of 10−10, for different
values of the Forchheimer coefficient β and for different grid sizes. In this case, we fix the permeability of the fracture to
the value Kf = 10−6. As mentioned above, the parameter β controls the strength of the nonlinearity, thus implying that
the bigger β , the harder the problem we solve. For comparison, we have also included the case β = 0, corresponding to
Darcy’s law within the fracture. It is well known that the FAS scheme for linear problems is theoretically equivalent to
the usual linear multigrid scheme [40]. In such a case, the resulting multigrid method is similar to that proposed in [38]
for solving a single-phase Darcy–Darcy coupling in a fractured porous medium. The numerical results indicate that the
performance of the solver is very similar for all the cases under consideration, i.e., the multigrid method is also robust
with respect to the Forchheimer coefficient β .

5.2. Two intersecting fractures

The aim of this numerical test is to discuss the performance of the proposed multigrid method when several fractures
are considered. In particular, the fracture network in this example consists of two crossing fractures, and the results shown
below indicate that the treatment of the intersection points between fractures provides a robust solver. The computational
domain in this example is the unit square, with impermeable lateral walls and a given pressure on the top (p = 1) and
bottom (p = 0) boundaries. As shown in Fig. 6(a), this flow domain is divided into four equally-sized squares by two
crossing fractures. The permeabilities in the porous matrix and the fractures are considered to be diagonal tensors, given
by K = 10−6(1+ xy) I and Kf = Kf I, respectively. Unlike the previous experiment, this example considers heterogeneous
permeability tensors in the porous matrix. In Fig. 6(b), we show the pressure solution for Kf = 10−3.

First, we illustrate the robustness of the proposed algorithm with respect to the value of the permeability in the
fracture. In Table 3, the number of FAS iterations required to reduce the initial residual by a factor of 10−10 is shown, for
different values of Kf . Furthermore, we can also see that the convergence of the proposed multigrid method is independent
of the discretization parameter, since the number of iterations remains constant for different mesh sizes. In this example,
the Forchheimer coefficient is fixed to β = 100.

Next, as in the case of a single fracture, we test the performance of our solver for different values of the Forchheimer
parameter. For this purpose, we set the permeability in the fracture to a value Kf = 10−3. In Table 4, the number of FAS
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Fig. 6. (a) Fracture network and settings, and (b) pressure solution for the case Kf = 10−3 and β = 100.

Table 4
Number of W (2, 2)-iterations of the FAS multigrid method required to reduce the initial
residual by a factor of 10−10 , for different values of the Forchheimer coefficient β and for
different mesh sizes. The permeability in the fractures is Kf = 10−3 and two intersecting
fractures are considered.
β h−1

= 32 h−1
= 64 h−1

= 128 h−1
= 256

0 9 9 9 9
10 9 9 9 9
50 9 9 9 9

100 9 9 9 9
200 9 9 9 9

Table 5
Number of W (2, 2)-iterations of the FAS multigrid method required to reduce the initial
residual by a factor of 10−10 , for different values of the Dirichlet boundary data pf and
for different mesh sizes. The permeability in the fracture is Kf = 10−4 , the Forchheimer
coefficient is β = 100 and two intersecting fractures are considered.
pf h−1

= 32 h−1
= 64 h−1

= 128 h−1
= 256

101 8 9 9 9
102 8 9 9 9
103 9 9 10 11

iterations required to reduce the initial residual by a factor of 10−10 is shown, for different values of β and for several mesh
sizes. It is clear from the results that the proposed nonlinear multigrid method is robust with respect to such parameters.
Remarkably, the stopping criterion is achieved after a small number of iterations, even when the Forchheimer parameter
is large (that is, when the problem is strongly nonlinear).

Finally, we study the effect of an increasing in the injection rate for one of the fractures. In particular, we consider
the same configuration as that shown in Fig. 6(a), but now assuming a non-homogeneous Dirichlet boundary condition
pf for the vertical fracture at the North boundary. Table 5 shows the number of iterations required by the FAS algorithm
to reduce the initial residual by a factor of 10−10, for different values of pf and for several mesh sizes. In this case, we
observe that the performance of the multigrid method is not affected by the Dirichlet boundary data imposed on the
fracture.
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