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Abstract. We study the convergence rate of a hierarchy of upper bounds for polynomial
optimization problems, proposed by Lasserre, and a related hierarchy by de Klerk, Hess,
and Laurent. For polynomial optimization over the hypercube, we show a refined con-
vergence analysis for the first hierarchy. We also show lower bounds on the convergence
rate for both hierarchies on a class of examples. These lower bounds match the upper
bounds and thus establish the true rate of convergence on these examples. Interestingly,
these convergence rates are determined by the distribution of extremal zeroes of certain
families of orthogonal polynomials.
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1. Introduction
We consider the problem of minimizing a polynomial f : Rn → R over a compact set K ⊆ Rn. That is, we
consider the problem of computing the parameter:

fmin,K :� min
x∈K f (x).

We recall the following reformulation for fmin,K, established by Lasserre [13]:

fmin,K � inf
σ∈Σ[x]

∫
K
σ(x)f (x)dμ(x) s.t.

∫
K
σ(x)dμ(x) � 1,

where Σ[x] denotes the set of sums of squares of polynomials, and μ is a signed Borel measure supported on
K. Given an integer d ∈ N, by bounding the degree of the polynomial σ ∈ Σ[x] by 2d, Lasserre [13] defined the
parameter

f (d)
K

:� inf
σ∈Σ[x]d

∫
K
σ(x)f (x)dμ(x) s.t.

∫
K
σ(x)dμ(x) � 1, (1)

where Σ[x]d consists of the polynomials in Σ[x] with degree at most 2d.
The inequality fmin,K ≤ f (d)

K
holds for all d ∈ N, and in view of the identity (1), it follows that the sequence f (d)

K
converges to fmin,K as d → ∞. De Klerk and Laurent [2] established the following rate of convergence for the
sequence f (d)

K
, when μ is the Lebesgue measure and K is a convex body.

Theorem 1. [2] Let f ∈ R[x],K a convex body, and μ the Lebesgue measure onK. There exist constants Cf ,K (depending only
on f and K) and dK ∈ N (depending only on K) such that

f (d)
K

− fmin,K ≤ Cf ,K

d
for all d ≥ dK. (2)

That is, the following asymptotic convergence rate holds: f (d)
K

− fmin,K � O(1d).

1
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This result was an improvement on an earlier result by de Klerk et al. [5, theorem 3], who showed a
convergence rate in O(1/ ̅̅

d
√ ) (for K convex body or, more generallly, compact under a mild assumption).

As explained in Lasserre [13], the parameter f (d)
K

can be computed using semidefinite programming, assuming
one knows the (generalised) moments of the measure μ on K with respect to some polynomial basis. Set

mα(K) :�
∫
K
bα(x)dμ(x), mα,β(K) :�

∫
K
bα(x)bβ(x)dμ(x) for α, β ∈ Nn,

where the polynomials {bα} form a basis for the space R[x1, . . . , xn]2d of polynomials of degree at most 2d,
indexed by N(n, 2d) � {α ∈ Nn :

∑n
i�1 αi ≤ 2d}. For example, the standard monomial basis in R[x1, . . . , xn]2d is

bα(x) � xα :� ∏n
i�1 x

αi
i for α ∈ N(n, 2d), and then mα,β(K) � mα+β(K). If f (x) � ∑

β∈N(n,d0) fβbβ(x) has degree d0, and
writing σ ∈ Σ[x]d as σ(x) � ∑

α∈N(n,2d) σαbα(x), then the parameter f (d)
K

in (1) can be computed as follows:

f (d)
K

� min
∑

β∈N(n,d0)
fβ

∑
α∈N(n,2d)

σαmα,β(K)

s.t.
∑

α∈N(n,2d)
σαmα(K) � 1,∑

α∈N(n,2d)
σαbα(x) ∈ Σ[x]d. (3)

Since the sum-of-squares condition on σ may be written as a linear matrix inequality, this is a semidefinite
program. In fact, since the program (3) has only one linear equality constraint, using semidefinite pro-
gramming duality it can be rewritten as a generalised eigenvalue problem. In particular, f (d)

K
is equal to the the

smallest generalised eigenvalue of the system:
Ax � λBx (x 
� 0),

where the symmetric matrices A and B are of order (n+dd ) with rows and columns indexed by N(n, d), and
Aα,β �

∑
δ∈N(n,d0)

fδ

∫
K
bα(x)bβ(x)bδ(x)dμ(x), Bα,β �

∫
K
bα(x)bβ(x)dμ(x) for α, β ∈ N(n, d). (4)

For more details, see Lasserre [13] and de Klerk et al. [5]. In particular, if the basis {bα} is orthonormal with
respect to the measure μ, then B is the identity matrix, and f (d)

K
is the smallest eigenvalue of the above matrix A.

For further reference, we summarize this result, which will play a central role in our approach.

Lemma 1. Assume {bα : α ∈ N(n, 2d)} is a basis of the spaceR[x1, . . . , xn]2d, which is orthonormal with respect to the measure
μ on K—that is,

∫
K bα(x)bβ(x)dμ(x) � δα,β. Then the parameter f (d)

K
is equal to the smallest eigenvalue of the matrix A in (4).

Under the conditions of the lemma, note in addition that, if the vector u � (uα)α∈N(n,d) is an eigenvector of the
matrix A in (4) for its smallest eigenvalue, then the (square) polynomial σ(x) � (∑α∈N(n,d) uαbα(x))2 is an optimal
density function for the parameter f (d)

K
.

1.1. Related Hierarchy by de Klerk, Hess, and Laurent
For the hypercube K � [−1, 1]n, de Klerk et al. [3] considered a variant on the Lasserre hierarchy Equation (1),
where the density function σ is allowed to take the more general form

σ(x) � ∑
I⊆{1,...,n}

σI(x)∏
i∈I

1 − x2i
( )

(5)

and the polynomials σI are sum-of-squares polynomials with degree at most 2d − 2|I| (to ensure that the degree
of σ is at most 2d), and I � ∅ is included in the summation. Moreover, the measure μ is fixed to be

dμ(x) � ∏
n

i�1
̅̅̅̅̅̅̅̅
1 − x2i

√( )−1
dx1 · · · dxn. (6)

As we will recall below, this measure is associated with the Chebyshev orthogonal polynomials. We let f (d)
denote the parameter1 obtained by using in (1) these choices (5) of density functions σ(x) and (6) of measure μ.
By construction, we have

fmin,K ≤ f (d) ≤ f (d)
K
.

De Klerk et al. [3] proved a stronger convergence rate for the bounds f (d).
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Theorem 2. [3] Let f ∈ R[x] be a polynomial and K � [−1, 1]n. We have

f (d) − fmin,K � O
1
d2

( )
.

1.2. Contribution of This Paper
In this paper, we investigate the rate of convergence of the hierarchies f (d)

K
and f (d) to fmin,K for the case of the

box K � [−1, 1]n. The above discussion raises naturally the following questions:

• Is the sublinear convergence rate f (d) − fmin,K � O( 1d2) tight, or can this result be improved?

• Does this convergence rate extend to the Lasserre bounds, where we restrict to sums-of-squares density
functions? Indeed, numerical results from de Klerk et al. [3] on simple test functions already suggested that the
correct convergence rate could be O(1/d2) in this case.

We give a positive answer to both questions. Regarding the first question, we show that the convergence
rate is Ω(1/d2) when f is a linear polynomial, which implies that the convergence analysis in Theorem 2 for the
bounds f (d) is tight. This relies on the eigenvalue reformulation of the bounds (from Lemma 1) and an ad-
ditional link to the extremal zeros of the associated Chebyshev polynomials. We also show that the same lower
bound holds for the convergence rate of the Lasserre bounds f (d)

K
when considering measures on the hy-

percube corresponding to general Jacobi polynomials.
Regarding the second question, we show that also the Lasserre bounds have a O(1/d2) convergence rate

when using the Chebyshev-type measure from (6). The starting point is again the reformulation from Lemma 1
in terms of eigenvalues, combined with some further analytical arguments.

The paper is organised as follows. In Section 2 we group preliminary results about orthogonal polyno-
mials and their extremal roots. Then, in Section 3.1 we analyse the convergence rate of the Lasserre bounds
f (d)
K

when f is a linear polynomial, and in Section 3.2 we analyse the bounds f (d). In both cases we show a

Ω(1/d2) lower bound. In Section 4 we show a O(1/d2) upper bound for the convergence rate of the Lasserre
bounds f (d)

K
, and this analysis is tight in view of the previously shown lower bounds.

1.3. Notation
We recap here some notation that is used throughout. For an integer d ∈ N, R[x]d denotes the set of n-variate
polynomials in the variables x � (x1, . . . , xn) with degree at most d and Σ[x]d denotes the set of polynomials
with degree at most 2d that can be written as a sum of squares of polynomials.

We use the classical Landau notation. For two functions f , g : N → R+, the notation f (n) � O(g(n)) (resp.,
f (n) � Ω(g(n)), f (n) � o(g(n))) means lim supn→∞ f (n)/g(n)<∞ (resp., lim infn→∞ f (n)/g(n)>∞, limn→∞ f (n)/
g(n) � 0), and f (n) � Θ(g(n)) means f (n) � O(g(n)) and f (n) � Ω(g(n)). We also use this notation when f , g are
functions of a continuous variable x and we want to indicate the behavior of f (x) and g(x) in the neigh-
bourhood of a given scalar x0 when x → x0. So, f (x) � O(g(x)) as x → x0 means lim supx→x0 f (x)/g(x)<∞, and
so forth.

2. Preliminaries on Orthogonal Polynomials
In what follows we review some known facts on classical orthogonal polynomials that we need for our
treatment. Unless we give detailed references, the relevant results may be found in the classical text by Szegö
[17] (see also Gautsch [9]).

We consider families of univariate polynomials {pk(x)} (k � 0, 1, . . . , d) that satisfy a three-term recursive
relation of the form

xpk(x) � akpk+1(x) + bkpk(x) + ckpk−1(x) (k � 1, . . . , d − 1), (7)

where p0 is a constant, p1(x) � (x − b0)p0/a0, and ak, bk and ck are real values that satisfy ak−1ck > 0 for
k � 1, . . . , d − 1. If we set c0 � 0, then relation (7) also holds for k � 0).

Defining the k × k tri-diagonal matrix

Ak :�

b0 a0 0 · · · 0
c1 b1 a1 0

0 . .
. . .

. . .
.

..

.
ck−2 bk−2 ak−2

0 0 · · · ck−1 bk−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (8)
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one has the classical relation

∏
k−1

j�0
aj

( )
pk(x) � det(xIk − Ak)p0 for k � 1, . . . , d, (9)

which can be easily verified using induction on k ≥ 1 and the relation (7) (see, e.g., Ismail and Li [12]).
Therefore, the roots of the polynomial pk are precisely the eigenvalues of the matrix Ak in (8). Alternatively, if λ
is a root of the polynomial pk(x), then it follows from the three-term relation (7) that the vector (pi(λ) : 0 ≤
i ≤ k − 1) is an eigenvector of the matrix Ak with eigenvalue λ.

Recall that the polynomials pk (k � 0, 1, . . . , d) are orthogonal with respect to a weight function w : [−1, 1] → R,
that is continuous and positive on (−1, 1), if

pi, pj
〈 〉

:�
∫

1

−1
pi(x)pj(x)w(x)dx � 0 for all i≠ j.

We denote by p̂k :� pk/
̅̅̅̅̅̅̅̅̅̅〈pk, pk〉

√
the corresponding normalized polynomial, so that 〈p̂k, p̂k〉 � 1.

As is well known, if the polynomials pk are degree k polynomials that are pairwise orthogonal with respect
to such a weight function, then they satisfy a three-terms recurrence relation of the form (7) (see, e.g., Gautsch
[9, section 1.3]). Of course, the corresponding orthonormal polynomials p̂k also satisfy such a three-terms
recurrence relation (for different scaled parameters ak, bk, ck).

By taking the inner product of both sides in (7) with pk−1 and pk+1 one gets the relations ck〈pk−1, pk−1〉 �
〈pk, xpk−1〉 and ak〈pk+1, pk+1〉 � 〈pk+1, xpk〉, which imply ck〈pk−1, pk−1〉 � ak−1〈pk, pk〉 and thus ak−1ck > 0. Moreover,
when considering the recurrence relations associated with the orthonormal polynomials p̂k, we have ak−1 � ck
for any k ≥ 1—that is, the matrix Ak in (8) is symmetric. We will use later the following fact.

Lemma 2. Let {p̂k} be orthonormal polynomials for the measure dμ(x) � w(x)dx on [−1, 1], where w(x) is continuous and
positive on (−1, 1), and assume they satisfy the three-terms recurrence relation (7). Then, the matrix

xp̂i, p̂j
〈 〉 � ∫ 1

−1
xp̂i(x)p̂j(x)w(x)dx

( )k−1
i,j�0

(10)

is equal to the matrix Ak in (8). In particular, its smallest eigenvalue is the smallest root of the polynomial pk.

Proof. Using the recurrence relation (7), we obtain

xp̂i, p̂j
〈 〉 � aip̂i+1 + bip̂i + cip̂i−1, p̂j

〈 〉
�

ai if j � i + 1
bi if j � i

ci if j � i − 1
0 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Hence, the matrix in (10) is equal to Ak and the last claim follows from (9). Q.E.D.

It is also known that the roots of pk are all real, simple, and lie in (−1, 1), and that they interlace the roots of pk+1
(see, e.g., Gautsch [9, Section 1.2]). In what follows we will use the smallest (and largest) roots to give closed-form
expressions for the bounds f (d)

K
and f (d) in some examples. For nowwemay observe that, for theminimization of the

polynomial f (x) � x over K � [−1, 1], the optimal degree 2d sum-of-squares density for the bound f (d)
K

has the
explicit form

σ(x) �
∑d

i�0 p̂i(λ)p̂i(x)
( )

2∑d
i�0 p̂i(λ)2

,

where λ is the smallest root of the polynomial p̂d+1(x). This follows directly from Lemma 2 combined with
the fact mentioned earlier that the vector (p̂i(λ) : 0 ≤ i ≤ d) is an eigenvector of the matrix Ad+1 for its ei-
genvalue λ.

We now recall several classical univariate orthogonal polynomials on the interval [−1, 1] and some information
on their smallest roots.
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Chebyshev Polynomials
We will use the univariate Chebyshev polynomials (of the first kind), defined by

Tk(x) � cos(k arccos(x)), for x ∈ [−1, 1], k � 0, 1, . . . . (11)

They satisfy the following three-terms recurrence relationships:

T0(x) � 1, T1(x) � x, Tk+1(x) � 2xTk(x) − Tk−1(x) for k ≥ 1. (12)

The Chebyshev polynomials are orthogonal with respect to the weight function w(x) � 1̅̅̅̅̅
1−x2√ , and the roots of

Tk are given by

cos
2i − 1
2k

π

( )
for i � 1, . . . , k. (13)

Jacobi Polynomials
The Jacobi polynomials, denoted by {Pα,β

k } (k � 0, 1, . . .), are orthogonal with respect to the weight function

wα,β(x) :� (1 − x)α(1 + x)β, x ∈ (−1, 1), (14)

where α> − 1 and β> − 1 are given parameters. The normalized Jacobi polynomials are denoted by P̂α,β
k , so

that
∫
1
−1(P̂

α,β
k (x))2wα,β(x)dx � 1.

Thus, the Chebyshev polynomials may be seen as the special case corresponding to α � β � − 1
2.

Likewise, the Legendre polynomials are the orthogonal polynomials with respect to the constant weight
function (w(x) � 1), so they correspond to the special case α � β � 0.

There is no closed-form expression for the roots of Jacobi polynomials in general. But some bounds are
known for the smallest root of Pα,β

k , denoted by ξ
α,β
k , that we recall in the next theorem.

Theorem 3. The smallest root, denoted ξ
α,β
k , of the Jacobi polynomial Pα,β

k satisfies the following inequalities:

(i) (Driver and Jordaan [7]) ξα,βk ≤ −1 + 2(β+1)(β+3)
2(k−1)(k+α+β+2)+(β+3)(α+β+2) .

(ii) (Dimitrov and Nikolov [6]) ξα,βk ≥ F−4(k−1) ̅̅
Δ

√
E , where

F � (β − α)((α + β + 6)k + 2(α + β)),
E � (2k + α + β)(k(2k + α + β) + 2(α + β + 2))
Δ � k2(k + α + β + 1)2 + (α + 1)(β + 1)(k2 + (α + β + 4)k + 2(α + β)).

The smallest roots ξα,βk of the Jacobi polynomials Pα,β
k converge to −1 as k → ∞. Using the above bounds we see

that the rate of convergence is O(1/k2).
Corollary 1. The smallest roots of the Jacobi polynomials Pα,β

k satisfy

ξ
α,β
k � −1 +Θ

1
k2

( )
as k → ∞.

Proof. The upper bound in Theorem 3(i) gives directly ξ
α,β
k � −1 +O( 1k2). We now use the lower bound

in Theorem 3(ii) to show ξ
α,β
k � −1 +Ω( 1k2). For this we give asymptotic estimates for the quantities E,F,Δ. First,

using the expansion
̅̅̅̅̅̅̅
1 + x

√ � 1 + x
2 − x2

8 + o(x2) as x → 0 we obtain

̅̅̅
Δ

√ � k2 1 + α + β + 1
k

+ (α + 1)(β + 1)
2k2

+ o
1
k2

( )( )
.

Second, using the expansion 1
1+x � 1 − x + x2 + o(x2) as x → 0 we obtain

1
E
� 1
4k3

1 − α + β

k
− 4(α + β + 2)

k2
+ o

1
k2

( )( )
.
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Combining these two relations gives

4(k − 1) ̅̅̅
Δ

√
E

� 1 − 1
k

( )
1 + α + β + 1

k
+ (α + 1)(β + 1)

2k2
+ o

1
k2

( )( )
1 − α + β

k
− 4(α + β + 2)

k2
+ o

1
k2

( )( )
� 1 + C

2k2
+ o

1
k2

( )
,

where we set C � (α + 1)(β + 1) − 8(α + β + 2) − 2(α + β)(α + β + 1) − 2. Finally, using

F
E
� (β − α)(β + α + 6)

4k2
+ o

1
k2

( )
,

we obtain

F − 4(k − 1) ̅̅̅
Δ

√
E

� −1 + 1
k2

(β − α)(β + α + 6)
4

− C
2

( )
+ o

1
k2

( )
,

where the coefficient of 1/k2 can be verified to be strictly positive, which thus implies the estimate ξ
α,β
k �

−1 +Ω(1/k2). Q.E.D.

It is also known that Pα,β
k (x) � (−1)kPβ,α

k (−x). Therefore, the largest root of Pα,β
k (x) is equal to −ξβ,αk � 1 −Θ(1/k2).

3. Tight Lower Bounds for a Class of Examples
In this section we consider the following simple examples

min
∑n
i�1

cixi : x ∈ [−1, 1]n
{ }

, (15)

asking to minimize the linear polynomial f (x) � ∑n
i�1 cixi over the box K � [−1, 1]n. Here ci ∈ R are given scalars

for i ∈ [n]. Hence, fmin,K � −∑n
i�1 |ci|. For these examples we can obtain explicit closed-form expressions for the

Lasserre bounds f (d)
K

when using product measures with weight functions wα,β on [−1, 1], and also for the
strengthened bounds f (d) considered by de Klerk, Hess, and Laurent, which use product measures with weight
functions w−1/2,−1/2. These closed-form expressions are in terms of extremal roots of Jacobi polynomials.

3.1. Tight Lower Bound for the Lasserre Hierarchy
Here we consider the bounds f (d)

K
for the example (15), when the measure μ on K � [−1, 1]n is a product of

univariate measures given by weight functions.
First we consider the univariate case n � 1. When the measure μ on K � [−1, 1] is given by a continuous

positive weight function w on (−1, 1), one can obtain a closed form expression for f (d)
K

in terms of the smallest
root of the corresponding orthogonal polynomials.

Theorem 4. Consider the measure dμ(x) � w(x)dx on K � [−1, 1], where w is a positive, continuous weight function on
(−1, 1), and let pk be univariate degree k polynomials that are orthogonal with respect to this measure. For the univariate
polynomial f (x) � x (resp., f (x) � −x), the parameter f (d)

K
is equal to the smallest root (resp., the opposite of the largest root) of

the polynomial pd+1.

Proof. Let p̂0, . . . , p̂d+1 denote the corresponding orthonormal polynomials, with p̂i � pi/
̅̅̅̅̅̅̅̅̅〈pi, pi〉

√
. Consider first

f (x) � x. Using Lemma 1, we see that f (d)
K

is equal to the smallest eigenvalue of the matrix A in (10) (for k � d + 1),
which coincides with the matrix Ad+1 in (8), so that its smallest eigenvalue is equal to the smallest root of pd+1.

Assume now f (x) � −x. Then f (d)
K

is equal to λmin(−A) � −λmax(A), which in turn is equal to the opposite of the
largest root of pd+1. Q.E.D.

Recall that ξα,βd+1 denotes the smallest root of the Jacobi polynomial Pα,β
d+1 and that the largest root of Pα,β

d+1 is equal
to −ξβ,αd+1.

Corollary 2. Consider the measure dμ(x) � wα,β(x)dx on K � [−1, 1] with the weight function wα,β(x) � (1 − x)α(1 + x)β
and α, β> −1 . For the univariate polynomial f (x) � x (resp., f (x) � −x), the parameter f (d)

K
is equal to ξα,βd+1 (resp., to ξ

β,α
d+1) and

thus we have

f (d)
K

− fmin,K � Θ 1/d2
( )

.

In particular, f (d)
K

� − cos( π
2d+2) when α � β � −1/2.
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Proof. This follows directly using Theorem 4, Corollary 1, the fact that the largest root of Pα,β
d+1 is equal to −ξβ,αd+1, and

the closed form expression (13) for the roots of the Chebyshev polynomials of the first kind. Q.E.D.

We now use the above result to show f (d)
K

− fmin,K � Ω(1/d2) for the example (15) in the multivariate case n ≥ 2.

Corollary 3. Consider the measure dμ(x) � ∏n
i�1 wαi,βi(xi)dxi on the hypercube K � [−1, 1]n, with the weight functions

wαi ,βi (xi) � (1 − xi)αi(1 + xi)βi and αi, βi > −1 for i ∈ [n] . For the polynomial f (x) � ∑n
l�1 clxl we have

f (d)
K

≥ ∑
l:cl > 0

clξ
αl,βl
d+1 + ∑

l:cl < 0
|cl|ξβl ,αl

d+1 ,

and thus f (d)
K

− fmin,K � Ω(1/d2).
Proof. Assume f (d)

K
� ∫

K(
∑n

l�1 clxl)σ(x)dμ(x), where σ ∈ R[x1, . . . , xn]2d is a sum of squares of polynomials and∫
K σ(x)dμ(x) � 1. For each l ∈ [n] consider the univariate polynomial

σl(xl) :�
∫
[−1,1]n−1

σ(x1, . . . , xn) ∏
i∈[n]\{l}

wαi,βi(xi)dxi,

where we integrate over all variables xi with i ∈ [n] \ {l}. Then we have
∫ 1

−1 σl(xl)wαl,βl(xl)dxl � 1. Moreover, σl
has degree at most 2d and, as it is a univariate polynomial that is nonnegative on R, it is a sum of squares of
polynomials. Hence, using Corollary 2, we can conclude that∫ 1

−1
xlσl(xl)wαl,βl(xl)dxl ≥ ξ

αl ,βl
d+1 ,

∫
1

−1
(−xl)σl(xl)wαl ,βl (xl)dxl ≥ ξ

βl ,αl
d+1 .

Combining with the definition of f (d)
K

we obtain

f (d)
K

� ∑n
l�1

cl

∫ 1

−1
xlσl(xl)wαl ,βl(xl)dxl ≥

∑
l:cl > 0

clξ
αl,βl
d+1 + ∑

l:cl < 0
|cl|ξβl ,αl

d+1

and thus f (d)
K

− fmin,K ≥ ∑
l:cl > 0 cl(ξαl ,βl

d+1 + 1) +∑
l:cl < 0 |cl|(ξβl ,αl

d+1 + 1) � Ω(1/d2). Q.E.D.

3.2. Tight Lower Bound for the de Klerk, Hess, and Laurent Hierarchy
In this section we consider the hierarchy of bounds f (d) studied by de Klerk et al. [3], which are poten-
tially stronger than the bounds f (d)

K
since they involve the wider class of density functions in (5). Their

convergence rate is known to be O(1/d2) (de Klerk et al. [3]; recall Theorem 2).
For the example Equation (15) we can also give an explicit expression for the bounds f (d) and we will show

that their convergence rate to fmin,K is also in the order Ω(1/d2), which shows that the analysis in de Klerk et al.
[3] is tight.

We first treat the univariate case, to introduce the main ideas, and then we extend to the multivariate case.

Theorem 5. For the univariate polynomial f (x) � ±x, we have
f (d) � min ξ−1/2,−1/2d+1 , ξ1/2,1/2d

{ }
,

the smallest value among the smallest roots of the Jacobi polynomials P−1/2,−1/2
d+1 and P1/2,1/2

d . In particular, we have
f (d) − fmin,K � Θ(1/d2).
Proof. Consider first f (x) � x. We first recall how to compute f (d) as an eigenvalue problem. By definition, it is
the minimum value of

∫
1
−1 x(σ0(x) + σ1(x)(1 − x2))w−1/2,−1/2(x)dx, where σ0 ∈ Σ[x]2d, σ1 ∈ Σ[x]2d−2 and

∫
1
−1(σ0(x) +

σ1(x)(1 − x2))w−1/2,−1/2(x)dx � 1. We express the polynomial σ0 in the normalized Jacobi (Chebychev) basis
{P̂−1/2,−1/2

k } as

σ0 �
∑d
i,j�0

M(0)
ij P̂

−1/2,−1/2
i P̂−1/2,−1/2

j
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for some matrix M(0) of order d + 1, constrained to be positive semidefinite. Based on the observation
that (1 − x2)w−1/2,−1/2(x) � w1/2,1/2(x), we express the polynomial σ1 in the normalized Jacobi basis {P̂1/2,1/2

k }
as

σ1 �
∑d−1
i,j�0

M(1)
ij P̂

1/2,1/2
i P̂1/2,1/2

j

for some matrix M(1) of order d, also constrained to be positive semidefinite. Then, we obtain

f (d) � min A−1/2,−1/2
d ,M(0)

〈 〉
+ A1/2,1/2

d−1 ,M(1)
〈 〉

: Tr M(0)
( )

+ Tr M(1)
( )

� 1, M(0) � 0,M(1) � 0
{ }

,

where A1/2,1/2
d and A−1/2,−1/2

d−1 are instances of (10) defined as follows:

Aα,β
d :�

∫ 1x

−1
P̂α,β
h (x)P̂α,β

k (x)wα,β(x)dx
( )d

h,k�0

for any α, β> −1 and d ∈ N. Since strong duality holds we obtain

f (d) � max t : A−1/2,−1/2
d − tI � 0, A1/2,1/2

d−1 − tI � 0
{ }

� min λmin A−1/2,−1/2
d

( )
, λmin A1/2,1/2

d−1
( ){ }

.

By Lemma 2, we have λmin(A−1/2,−1/2
d ) � ξ−1/2,−1/2d+1 and λmin(A1/2,1/2

d−1 ) � ξ1/2,1/2d , and thus f (d) � min{ξ−1/2,−1/2d+1 ,

ξ1/2,1/2d }. The same result holds when f (x) � −x. Finally, by Corollary 1, these two smallest roots are both equal
to −1 +Θ(1/d2), which concludes the proof. Q.E.D.

We now extend this result to the multivariate case of example Equation (15):

Corollary 4. For the linear polynomial f (x) � ∑n
l�1 clxl, we have

f (d) ≥ ∑n
l�1

|cl|
( )

min ξ−1/2,−1/2d+1 , ξ1/2,1/2d

{ }
and thus f (d) − fmin,K � Ω(1/d2).
Proof. The proof is analogous to that of Corollary 3, with some more technical details. Assume f (d) �∫
K(

∑n
l�1 xl)σ(x)dμ(x), where σ(x) � ∑

I⊆[n] σI(x)∏i∈I(1 − x2i ), σI(x) is a sum of squares of degree at most 2d − 2|I|,
and

∫
K σ(x)dμ(x) � 1.

Fix l ∈ [n]. Then we can write

σ(x) � ∑
I⊆[n]\{l}

σI(x)∏
i∈I

1 − x2i
( ) + 1 − x2l

( ) ∑
I⊆[n]:l∈I

σI(x) ∏
i∈I\{l}

1 − x2i
( )

.

Next, define the univariate polynomials in the variable xl:

σl,0(xl) :�
∑

I⊆[n]\{l}

∫
[−1,1]n−1

σI(x)∏
i∈I

1 − x2i
( )

∏
i∈[n]\{l}

w−1/2,−1/2(xi)dxi,

σl,1(xl) :�
∑

I⊆[n]:l∈I

∫
[−1,1]n−1

σI(x) ∏
i∈I\{l}

1 − x2i
( )

∏
i∈[n]\{l}

w−1/2,−1/2(xi)dxi,

σl(xl) :�
∫
[−1,1]n−1

σ(x) ∏
i∈[n]\{l}

w−1/2,−1/2(xi)dxi � σl,0(xl) + 1 − x2l
( )

σl,1(xl).

By construction, we have∫
K
xlσ(x)dμ(x) �

∫
1

−1
xlσl(xl)w−1/2,−1/2(xl)dxl,

∫
1

−1
σl(xl)w−1/2,−1/2(xl)dxl �

∫
K
σ(x)dμ(x) � 1.
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Moreover, the polynomial σl,0 is a sum of squares (since it is univariate and nonnegative on R) and its degree is
at most 2d, and the polynomial σl,1 is a sum of squares of degree at most 2d − 2. Hence, using Theorem 5, we
can conclude that ∫

1

−1
(±xl)σl(xl)w−1/2,−1/2(xl)dxl ≥ min ξ−1/2,−1/2d+1 , ξ1/2,1/2d

{ }
.

This implies that

f (d) �
∫
K

∑n
l�1

clxl

( )
σ(x)dμ(x) � ∑n

l�1
cl

∫
1

−1
xlσl(xl)w−1/2,−1/2(xl)dxl

is at least (∑l |cl|)min{ξ−1/2,−1/2d+1 , ξ1/2,1/2d } and the proof is complete. Q.E.D.

4. Tight Upper Bounds for the Lasserre Hierarchy
In this section we analyze the rate of convergence of the Lasserre bounds f (d)

K
when using the measure dμ(x) �

∏n
i�1 w−1/2,−1/2(xi)dxi on the box K � [−1, 1]n (corresponding to the Chebyshev orthogonal polynomials). For

this measure, it is known that the stronger bounds f (d)—that use a much richer class of density functions—enjoy
a O(1/d2) rate of convergence (de Klerk et al. [3], see Theorem 2). We show that the convergence rate remains
O(1/d2) for the weaker bounds f (d)

K
, which thus also implies Thoerem 2.

Theorem 6. Consider the measure dμ(x) � ∏n
i�1 w−1/2,−1/2(xi)dxi on the hypercube K � [−1, 1]n, with the weight function

w−1/2,−1/2(xi) � (1 − x2i )−1/2 for i ∈ [n] . For any polynomial f we have

f (d)
K

− fmin,K � O 1/d2
( )

.

It turns out that we can reduce the general result to the univariate quadratic case. In what follows we
consider first the special case when f is univariate and quadratic (see Lemma 3), and then we indicate how
to derive the result for an arbitrary multivariate polynomial f . A key tool we use for this reduction is
the existence of a quadratic upper estimator for f having the same minimum as f over K. In the quadratic
univariate case, we exploit again the formulation of f (d)

K
in terms of the smallest eigenvalue of the associ-

ated matrix Ad in (16) (recall Lemma 1). This matrix Ad is now 5-diagonal, but a key feature is that it contains a
large Toeplitz submatrix, whose eigenvalues can be estimated by embedding it into a circulant matrix for
which closed form expressions exist for the eigenvalues. This nice structure, which allows a simple analysis,
follows from the choice of the Chebyshev-type measure. We expect that a similar convergence rate should
hold when selecting any measure of Jacobi type, but the analysis seems more complicated.

4.1. The Quadratic Univariate Case
Here we consider the case when K � [−1, 1] and f is a univariate quadratic polynomial of the form f (x) �
x2 + αx, for some scalar α ∈ R.

We can first easily deal with the case when α /∈ (−2, 2). Indeed, then we have

f (x) ≤ g(x) :�αx + 1 for all x ∈ [−1, 1],
and both f and g have the same minimum value on [−1, 1]. Namely, fmin,K � gmin,K is equal to 1 − α if α ≥ 2, and
to 1 + α if α ≤ −2. Therefore, we have

f (d)
K

− fmin,K ≤ g(d)
K

− gmin,K � O 1/d2
( )

,

where we use Corollary 3 for the last estimate.
We may now assume that f (x) � x2 + αx, where α ∈ [−2, 2]. Then, fmin,K � −α2/4, which is attained at

x � −α/2. After scaling the measure μ by 2/π, the Chebyshev polynomials Ti satisfy∫
1

−1
Ti(x)Tj(x) 2

π
̅̅̅̅̅̅̅̅
1 − x2

√ dx � 0 if i 
� j, 2 if i � j � 0, 1 if i � j ≥ 1.

De Klerk and Laurent: Worst-case Examples for Lasserre's Measure-Based Hierarchy
Mathematics of Operations Research, Articles in Advance, pp. 1–13, © 2019 INFORMS 9



So with respect to this scaled measure the normalized Chebyshev polynomials are T̂0 � 1/
̅̅
2

√
and T̂i � Ti for

i ≥ 1, and they satisfy the 3-terms relation:

xT̂0 � 1̅̅
2

√ T̂1, xT̂1 � 1
2
T̂2 + 1̅̅

2
√ T̂0 and xT̂k � 1

2
T̂k+1 + 1

2
T̂k−1 for k ≥ 2.

In view of Lemma 1 we know that the parameter f (d)
K

is equal to the smallest eigenvalue of the following matrix:

Ad �
∫

1

−1
x2 + αx
( )

T̂i(x)T̂j(x) 2

π
̅̅̅̅̅̅̅̅
1 − x2

√ dx
( )d

i,j�0
.

Using the above 3-terms relations one can verify that the matrix Ad has the following form:

Ad �

1
2

α̅̅
2

√ 1
2

̅̅
2

√
α̅̅
2

√ 3
4

α
2

1
4

1
2

̅̅
2

√ α
2 a b c
1
4 b a b c

c b . .
. . .

. . .
.

c . .
. . .

. . .
. . .

.

. .
. . .

. . .
. . .

.
c

. .
. . .

. . .
.

b
c b a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where we set a � 1/2, b � α/2 and c � 1/4.
Observe that if we remove the first two rows and columns of A then we obtain a principal submatrix,

denoted B, which is a symmetric 5-diagonal Toeplitz matrix. Now we may embed B into a symmetric circulant
matrix of size d + 1, denoted Cd, by suitably defining the first two rows and columns. Namely,

Cd �

a b c c b
b a b c c
c b a b c

c b a b c

c b . .
. . .

. . .
.

c . .
. . .

. . .
. . .

.

. .
. . .

. . .
. . .

.
c

c . .
. . .

. . .
.

b
b c c b a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Recall that the eigenvalues of a circulant matrix are known in closed form—see, for example, Gray [10]. In
particular, the eigenvalues of Cd are given by

a + 2b cos(2πj/(d + 1)) + 2c cos(4πj/(d + 1), j � 0, . . . , d, (d ≥ 5). (17)

By the Cauchy interlacing theorem for eigenvalues (see, e.g., corollary 2.2 in Haemers [11]), we have

f (d)
K

� λmin(Ad) ≤ λmin(B) ≤ λ3(Cd),
where λ3(Cd) is the third smallest eigenvalue of Cd. As noted above, the eigenvalues of Cd are known in closed
form as in (17), and this is the key fact which enables us to conclude the analysis.

Lemma 3. For any α ∈ [−2, 2], the third smallest eigenvalue of the matrix Cd satisfies

λ3(Cd) � −α2

4
+O

1
d2

( )
.

Therefore, if f (x) � x2 + αx with α ∈ [−2, 2], then f (d)
K

− fmin,K � O(1/d2).
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Proof. Setting ϑj � 2πj
d+1 for j ∈ N, then by Equation (17) the eigenvalues of the matrix Cd are the scalars

1
2
+ α cos ϑj

( ) + 1
2
cos 2ϑj

( ) � cos2 ϑj
( ) + α cos ϑj

( )
for 0 ≤ j ≤ d.

Consider the function f (ϑ) � cos2(ϑ) + α cos(ϑ) for ϑ ∈ [0, 2π]. Then f satisfies f (ϑ) � f (2π − ϑ), and its mini-
mum value is equal to −α2/4, which is attained at ϑ � arccos(−α/2) ∈ [0, π] and 2π − ϑ. Let j be the integer such
that ϑj ≤ ϑ<ϑj+1. Then the smallest eigenvalue of Cd is λmin(Cd) � min{ f (ϑj), f (ϑj+1)} and its third smallest
eigenvalue is given by λ3(Cd) � min{ f (ϑj−1), f (ϑj+1)} if λmin(Cd) � f (ϑj), and λ3(Cd) � min{ f (ϑj), f (ϑj+2)} if
λmin(Cd) � f (ϑj+1). Therefore, λ3(Cd) � f (ϑk) for some k ∈ { j − 1, j, j + 1, j + 2}.

Using Taylor theorem (and the fact that f ′(ϑ) � 0) we can conclude that

λ3(Cd) + α2

4
� f (ϑk) − f (ϑ) � 1

2
f ′′(ξ)(ϑ − ϑk)2,

for some scalar ξ ∈ (ϑ, ϑk) (or (ϑk, ϑ)). Finally, f ′′(ξ) � −2 cos(ξ) − α cos(ξ) and thus we have | f ′′(ξ)| ≤ 2 + |α|.
Also |ϑ − ϑk | ≤ |ϑj+2 − ϑj−1| � 6π

d+1 . The claimed result now follows directly. Q.E.D.

4.2. The General Case
As a direct application, we can also deal with the case when f is multivariate quadratic and separable.

Corollary 5. Consider the box K � [−1, 1]n and a multivariate polynomial of the form f (x) � ∑n
i�1 x2i + αixi for some scalars

αi ∈ R. Then we have f (d)
K

− fmin,K � O(1/d2).
Proof. The polynomial f is separable: f (x) � ∑n

i�1 fi(xi), after setting fi(xi) � x2i + αixi. Hence, its minimum over the
box K is fmin,K � ∑n

i�1( fi)min,[−1,1]. Suppose σi ∈ Σ[xi]d is an optimal density function for the bound fi(d)[−1,1] and
consider the polynomial σ(x) � ∏n

i�1 σi(xi) ∈ Σ[x]nd, which is a density function over K. Then we have

f (nd)
K

− fmin,K ≤
∫
K
f (x)σ(x)dμ(x) � ∑n

i�1

∫
1

−1
fi(xi)σi(xi)dμ(xi) − ( fi)min,[−1,1]

( )
� O 1/d2

( )
,

where we use Lemma 3 for the last estimate. This implies the claimed convergence rate for the bounds
f (d)
K
. Q.E.D.

Assume now f is an arbitrary polynomial and let a ∈ K � [−1, 1]n be a minimizer of f over K. Consider the
following quadratic polynomial:

g(x) � f (a) + ∇f (a)T(x − a) + Cf ‖x − a‖22,
where we set Cf � maxx∈K ‖∇2f (x)‖2. By Taylor’s theorem, we know that f (x) ≤ g(x) for all x ∈ K and that the
minimum value of g(x) over K is gmin,K � f (a) � fmin,K. This implies

f (d)
K

− fmin,K ≤ g(d)
K

− gmin,K � O 1/d2
( )

,

where we use Corollary 5 for the last estimate. This concludes the proof of Theorem 6.

5. Concluding Remarks
Some other hierarchical upper bounds for polynomial optimization over the hypercube have been investigated
in the literature. In particular, bounds are proposed in de Klerk [4] that rely on selecting density functions
arising from beta distributions:

f Hd :� min
(α,β)∈N(2n,d)

∫
K f (x) xα(1 − x)β dx∫

K xα(1 − x)β dx ,

where K � [−1, 1]n and (1 − x)β � ∏n
i�1(1 − xi)βi for β ∈ Nn. These bounds can be computed via elementary

operations only, and their rate of convergence is f Hd − fmin,K � O(1/ ̅̅
d

√ ) (or O(1/d) for quadratic polynomials
with rational data).
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Other hierarchies involve selecting discrete measures. They rely on polynomial evaluations at rational grid
points [1] or at polynomial meshes like Chebyshev grids [15]. The grids in Piazzon and Vianello [15] are given
by the Chebyshev–Lobatto points:

Cd :� cos
jπ
d

( ){ }
j � 0, . . . , d.

In particular, the authors of Piazzon and Vianello [15] show that minx∈Cn
d
f (x) − fmin,K � O( 1d2), where

Cn
d � Cd × · · · × Cd ⊂ [−1, 1]n.

Note that |Cn
d | � (d + 1)n, which is of course exponential in n even for fixed d.

The same O( 1d2) rate of convergence was shown in de Klerk and Laurent [1] for the regular grid (using d + 1
evenly spaced points). We also refer to the recent work [16] where polynomial meshes are investigated for
polynomial optimization over general convex bodies.

Thus, the Lasserre bound f (d)
K

has the same O( 1d2) asymptotic rate of convergence as the grid searches, but
with the advantage that the computation may be done in polynomial time for fixed d.

Of course, the problem studied in this paper falls in the general framework of bound-constrained global optimization
problems, and many other algorithms are available for such problems; a recent survey is given in the thesis Pál [14].
The point is that the methods we studied in this paper allow analysis of the convergence rate to the global minimum.

We conclude with some unresolved questions:
• Does the O( 1d2) rate of convergence still hold for the Lasserre bounds if K is a general convex body? (The

best known result is the O(1/d) rate from de Klerk and Laurent [2].) A good starting point may be to consider
the Euclidean ball, since orthonormal polynomial bases with respect to various measures are known in this
case; see, for example, Dunkl and Xu [8, chapter 6].

• What is the precise influence of the choice of reference measure μ in Equation (1) on the convergence rate?
• Is is possible to show a “saturation” result for the Lasserre bounds of the type

f (d)
K

− fmin,K � o
1
d2

( )
⇐⇒ f is a constant polynomial?

In other words, is O(1/d2) the fastest possible convergence rate for nonconstant polynomials?
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Endnote
1We drop the dependence on K which is implictly selected to be the box [−1, 1]n.
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