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Abstract. When decisions must be based on incomplete (coarsened)
observations and the coarsening mechanism is unknown, a minimax app-
roach offers the best guarantees on the decision maker’s expected loss.
Recent work has derived mathematical conditions characterizing mini-
max optimal decisions, but also found that computing such decisions is a
difficult problem in general. This problem is equivalent to that of maxi-
mizing a certain conditional entropy expression. In this work, we present
a highly efficient algorithm for the case where the coarsening mechanism
can be represented by a tree, whose vertices are outcomes and whose
edges are coarse observations.
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Minimax decision making · Maximum entropy

1 Introduction

Suppose a decision maker needs to choose an action a, and will suffer an amount
of loss determined by a and an unobserved random variable X. The decision
maker knows the distribution of X, and receives some information on the realized
value X = x in the form of a coarsened observation: a set Y = y that includes
x but also other, unrealized outcomes. Here, x lies in a finite set X , and y is a
member of some family Y ⊂ 2X ; both X and Y are also known to the decision
maker, but importantly, the distribution P (Y | X) of the coarsening mechanism
is not.

One of the most well-known examples illustrating this setting is the Monty
Hall puzzle [14]: In a game show, the contestant is faced with three doors X =
{1, 2, 3}. X indicates which of these hides a prize. The contestant initially picks
a door; we will assume w.l.o.g. this is door 2. Then the quizmaster opens either
door 1 or 3, revealing a goat. When both doors could be opened (i.e. if X =
2), one is chosen by the quizmaster’s unknown coarsening mechanism. (In our
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notation, Y is the set of the two doors that are still closed at this point; its
possible values are the two members of Y = {{1, 2}, {2, 3}}.) The contestant is
now offered the option to switch to another door. The surprising insight is that
the strategy of switching doors results in a larger probability of winning the
prize.

We adopt a minimax (or worst-case) approach: we want to find a strategy (a
function that maps each y ∈ Y to an action) for which the maximum expected
loss over all possible coarsening mechanisms is as small as possible. Such a strat-
egy does not require us to make any assumptions on the coarsening mechanism,
so is a robust choice when the mechanism is unknown. (In the case of the Monty
Hall puzzle, this means we do not need to assume anything about the distribution
of Y given X = 2.)

In this paper, we propose efficient algorithms for a decision problem that
generalizes the Monty Hall puzzle in the following way: to any number of out-
comes, any distribution P (X) over them, a very general class of loss functions,
and any family Y that is the set of edges of an undirected tree over vertices X .
In other words, each set y ∈ Y consists of two elements of X , and for each pair
xa, xb ∈ X , there exists a unique sequence (xi)ki=1 of distinct elements from X
with x1 = xa, xk = xb, and {x1, x2}, {x2, x3}, . . . , {xk−1, xk} ∈ Y. We will call
Y the message structure, and its elements y ∈ Y messages.

To illustrate this generalization, consider a version of the Monty Hall game
show with a row of doors X = {1, 2, . . . , n}, where the quizmaster will pick two
adjacent doors that he leaves shut, revealing a goat behind each other door (so
Y = {{i, i + 1} | i = 1, . . . , n − 1}). If the number of doors n is odd and the
distribution on X is uniform, we find (see Sect. 2) that, upon observing Y = y,
a cautious decision maker should assign probability (n + 1)/(2n) > 1/2 to the
door in y with the odd index, and (n − 1)/(2n) < 1/2 to the one with the even
index. The case n = 3 is the original Monty Hall puzzle, where a contestant who
always switches to door 1 or 3 will have a probability of 2/3 of winning the prize.
The generalization we consider also extends to distributions over X other than
uniform, for which the problem becomes computationally trickier.

The above message structure Y (which we call a path graph) may occur in
practice as the message structure of a decision problem when, for example, a
real-valued quantity of interest is reported to us as an integer, but we do not
know if the value was rounded up or down. Then outcomes x ∈ X correspond to
the intervals (ai, ai + 1) between consecutive integers (we assume that the true
value is a.s. not an integer), and messages to unions of two adjacent intervals.

This type of decision problem with incomplete information was introduced
in [16], where minimax optimal strategies are characterized for arbitrary Y, but
where the question of how to compute them is not addressed. This computational
problem was considered previously in [17], where it was demonstrated that the
problem is hard for general Y, but a direct formula could be given for finding a
minimax optimal strategy in the special case that Y forms a partition matroid.1

1 We refer to that paper for a definition, but remark that if each message consists
of two outcomes, the class of partition matroids coincides with complete bipartite
graphs. The message structure of the Monty Hall puzzle is an example.
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Related work dealing with coarse data sometimes proceeds by making
assumptions about the coarsening mechanism; for example, the CAR (coars-
ened at random) assumption [9] or the superset assumption [10] (see Sect. 2 for
an explanation). Neither of these assumptions is compatible with the Monty Hall
setting; see e.g. [5,7].

The approach we consider is more closely related to the maximin strategy
described in [3] and studied specifically in [8]. However, it differs in some respects,
e.g.: our objective does not feature a marginal or joint, but a conditional distri-
bution of outcomes given messages (see (1)); and our objective is not interpreted
as a (generalized) likelihood function, as we do not have a data set. This reflects
that we are interested in making a decision pertaining to an unknown outcome
given a single message (which is a coarsened observation of the outcome).

The general problem of finding a minimax optimal strategy can be solved
using convex optimization. Reasonably efficient algorithms exist for this task
[2], but they converge to the solution rather than computing it exactly. The
algorithms in this paper are strongly polynomial [13]. A strongly polynomial
algorithm finds the exact solution in a number of steps polynomial in the number
of elements in the input, regardless of the precision of any numeric elements.

The rest of this paper is structured as follows. In Sect. 2, relevant results from
[16] are summarized. We consider in Sect. 3 the special case where (X ,Y) is a
path graph, where the solution is given by a surprising and intuitive algorithm.
This algorithm is extended to the case of arbitrary trees in Sect. 4. All proofs are
in the appendix. The results on path graphs were previously described in [15];
the results on trees have not appeared elsewhere.

2 Preliminaries

A decision problem with tree-structured incompleteness is given by a finite set X ,
a family Y of two-element subsets of X such that the undirected graph (X ,Y)
forms a tree, a distribution p over X having px > 0 everywhere, and a loss
function L : X × A → [0,∞], where A is the set of actions available to the
decision maker. We assume that the loss function L satisfies the conditions in
Theorem 18 of [16].2 A coarsening mechanism for this problem is an (unknown)
joint distribution P on X × Y that satisfies P (x, y) = 0 whenever x /∈ y, and
P (x) =

∑
y�x P (x, y) = px for each x.

The minimax approach may be viewed as a game: first the decision maker
chooses a strategy A : Y → A, then the opponent chooses a coarsening mecha-
nism P , and finally the decision maker’s expected loss

∑
x,y P (x, y)L(x,A(y)) is

evaluated. The opponent’s goal is to make the expected loss as large as possible
(i.e. it is a zero-sum game). If the opponent were to move first, their best strat-
egy would be the maximin optimal coarsening mechanism. In the case that L is

2 Namely, that the generalized entropy HL [6] is finite and continuous; further, HL or
an affine transformation of it is invariant under permutation of x1 and x3 whenever
{x1, x2}, {x2, x3} ∈ Y. See [16] for definitions.
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logarithmic loss, this is the P that maximizes the expected conditional entropy
∑

y∈Y
P (y)H(P (· | y)) =

∑

y∈Y
P (y)

∑

x∈y

−P (x | y) log P (x | y). (1)

It was found in [16] that if the action space is rich enough, this game has
a Nash equilibrium, so that neither player benefits from knowing the other’s
strategy before picking their own. We concentrate on finding a maximin P ,
because once it is known, minimax optimal strategies A are typically easily
determined.

For the setting considered in this paper, it was shown in [16, Theorem 18]
that a coarsening mechanism P is maximin optimal if for some vector q ∈ [0, 1]X

it satisfies the RCAR condition:

qx = P (x | y) for all y ∈ Y, x ∈ y with P (y) > 0, and
∑

x∈y

qx ≤ 1 for all y ∈ Y. (2)

Note that the second equation holds with equality for y with P (y) > 0. The
vector q is called the RCAR vector; it exists and is unique by [16, Lemma 11].
We remark that the loss function L does not feature in this condition; this
implies that a coarsening mechanism P that satisfies the RCAR condition is
maximin optimal regardless of what loss function we are interested in,3 and that
the entropy maximization (1) is relevant for any L, not just logarithmic loss.

RCAR stands for ‘reverse CAR’, because the first line of (2) mimics the form
of the CAR assumption [9], but with x and y switched. It is also similar in
form to (part of) the superset assumption [10], but both CAR and the superset
assumption look at P (y | x), while RCAR considers P (x | y). But the most
crucial difference with these is that RCAR is not an assumption, but rather a
condition we can check to verify if a coarsening mechanism is maximin optimal.

The question is: how do we find maximin optimal/RCAR coarsening mecha-
nism? One computational challenge in finding the maximin optimal coarsening
mechanism is that for some coarsening mechanisms P (including the maximin
one), some y may have P (y) = 0. At such a point P , that y’s contribution to the
expected conditional entropy is nondifferentiable. This means for instance that
standard convex optimization algorithms will converge slowly to such a point.
The algorithms in this paper overcome this challenge.

3 Path Graphs and the Taut String Algorithm

Even though the results in this section will be superseded later when we give
an algorithm for general trees, we devote this section to the subclass of decision
problems for which the graph (X ,Y) consists of just a single path. The reason is
that for such problems, the minimax optimal coarsening mechanisms turn out to
be described by an intuitive physical problem, for which an efficient algorithm
is already known.
3 This property is called loss invariance: see [16, Section 5.5].
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3.1 Correspondence

Consider a decision problem where the messages form a path: for the n ≥ 2 out-
comes X := {1, 2, . . . , n}, the messages Y are y1 = {1, 2}, . . . , yn−1 = {n − 1, n}.
(A graph of the form (X ,Y) is called a path graph.) Then the solution corre-
sponds to that of a taut string problem. Imagine a string is constrained to pass
above certain points (say, pins on a board), and below others. Then the string
is pulled taut. The taut string will follow the shortest allowed path between
its endpoints, going in straight line segments between the points it is pushed
against.

A0 A1

A2

A3

A4

p1 p2 p3 p4

p2

p4

Fig. 1. The taut string problem corresponding to the decision problem with X =
{1, 2, 3, 4}, Y = {y1, y2, y3} with yi = {i, i + 1}, and marginal on the outcomes p =
(1/3, 1/6, 1/6, 1/3). The arrowheads at the points A0, . . . , A4 show on what side the string
must pass. We see that the string, when pulled taut, touches the point A2; its slope is
1/3 to the left of A2 and 2/3 to the right.

Taut strings have been considered in the statistics literature before; see for
example [1,4,11], where taut strings appear as a way of defining simple functions
approximating noisy regression data. In these applications, all pins come in pairs,
but we do not restrict the placement of pins in this way.

The taut string problem we are interested in uses the constraining points
A0, A1, . . . , An, with A0 = (0, 0) and

Ak =
( ∑

i≤k

pi ,
∑

i≤k,
i even

pi

)
(3)

for k ∈ {1, . . . , n}. The string must pass through the points A0 and An; above
points Ak with k odd; and below Ak for k even. See Fig. 1 for an example.
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The following theorem relates the solution of this taut string problem instance
to the maximin optimal P (the proof is in the appendix).

Theorem 1. Given a decision problem on a path graph, find the solution of
the taut string problem described in (3). Then a maximin optimal coarsening
mechanism P is given by:

– For 0 < k < n such that the string touches the point Ak, we have P (yk) = 0;
– For 0 < k < n such that the string does not touch Ak, P (yk) = |δk|/(αk(1 −

αk)), where δk is the vertical distance between Ak and the string, and αk is
the slope of the string at that point;

– Also for k such that the string does not touch the point Ak (so P (yk) > 0),
the conditional distribution P (· | yk) puts mass on the even outcome in yk
equal to the slope of the string as it passes above or below Ak.

For the decision problem and corresponding taut string problem displayed in
Fig. 1, we conclude that:

– P (y2) = 0;
– For y1, |δ1| = 1/9 (it is two-thirds of p2 = 1/6) and α1 = 1/3, so P (y1) =

(1/9)/(9/2) = 1/2. In the same way, we find P (y3) = 1/2.
– Using that the slope of the string above A1 equals 1/3, we find P (2 | y1) = 1/3

(so P (1 | y1 = 2/3). Above A3, the slope equals 2/3, so P (4 | y3) = 2/3 and
P (3 | y3) = 1/3.

3.2 Algorithm

We can now find maximin optimal coarsening mechanisms for decision problems
on path graphs efficiently using the taut string algorithm, in O(n) time [4]. This
is clearly much more efficient than using a general purpose convex optimization
algorithm. We list the taut string algorithm in Algorithm 1; for a more detailed
explanation, we refer to [4] and [1].

The algorithm keeps track of three sequences of points. These represent piece-
wise linear functions: K is the solution, specified as the sequence of points the
taut string pushes against; G is the greatest convex minorant (the pointwise
maximum convex function respecting the upper bounds) of the part of the input
that has been read but not added to the solution yet: and S the smallest concave
majorant of that part of the input. Each of these sequences is a subsequence of
the input points A0, . . . , An, and at each step of the algorithm, the first points
of G and S are equal to the last point of K. The algorithm operates only on
the beginning and end of each of these sequences, so these operations can be
implemented efficiently without the aid of complex data structures.

We denote the number of elements in a sequence by |K|, use zero-based indices
(so K[0] is the first element of K), and use negative indices to refer to the end
of a sequence: K[−1] is the last element, K[−2] the second-to-last, etc. We write
α(Ai, Aj) for the slope of the line segment from Ai to Aj , with i < j. For the
points (3) used in the taut string problem corresponding to a decision problem,
these slopes are given by α(Ai, Aj) =

∑
i<k≤j,k even pk/

∑
i<k≤j pk.
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Algorithm 1: The taut string algorithm [4]
Input: Points A0, . . . , An constraining the string, sorted from left to right
Output: Sequence of points K where the taut string pushes against the

constraints
Let the sequences G, S, and K each consist of the single point A0;
for i from 1 to n do

if i is even or i = n then
// Ai is an upper bound
Append Ai to G;
while |G| ≥ 3 and α(G[−3],G[−2]) ≥ α(G[−2],G[−1]) do

Delete second-to-last point from G;
end
// G is now convex

end
if i is odd or i = n then

// Ai is a lower bound
Append Ai to S;
while |S| ≥ 3 and α(S[−3], S[−2]) ≤ α(S[−2], S[−1]) do

Delete second-to-last point from S;
end
// S is now concave

end
while |G| ≥ 2, |S| ≥ 2, and α(G[0],G[1]) < α(S[0], S[1]) do

// No straight path remains between G and S
Remove first point from G and from S;
if (new) first point in G is to the left of first point in S then

Append first point in G to K, and prepend it to S;
else

Append first point in S to K, and prepend it to G;
end

end

end
Append An to K.

4 Generalization to Trees

Our main contribution is the generalization of the taut string algorithm to tree-
shaped coarsening mechanisms. The result is displayed as Algorithm 2.

4.1 Mathematical Description of the Algorithm

Algorithm 2 takes an arbitrary node r ∈ X to be the root of the tree. In reference
to this root, we write Ch(x) for the children of node x, pa(x) for the (unique)
parent of x �= r, and De(x) for the descendants of x, which include x itself.

The fx and f̄x in the algorithm are piecewise linear functions from [0, 1] to
[0, 1], which allows them to be stored efficiently; see Sect. 4.2 for details. If the
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graph is a path and one of its endpoint is chosen as the root, the computations
can be simplified to those of Algorithm 1.

Theorem 2. The P computed by Algorithm 2 is a coarsening mechanism that
satisfies the RCAR condition (2).

Algorithm 2: The taut tree algorithm
Treating the tree as a bipartite graph, call one of its parts S;
Pick an arbitrary node r ∈ X to be the root of the tree;
Recursively determine:

pS
x =

∑

x′∈S∩De(x)

px′ ;

fx(α) = pxα +
∑

c∈Ch(x)

f̄c(α);

f̄x(α) =

{
min(fx(α), pS

x ) if x ∈ S;

max(fx(α), pS
x ) if x �∈ S;

Find αr such that fr(αr) = pS
r , and αx such that fx(αx) = f̄x(αpa(x));

For x �= r, let P ({x, pa(x)}) =

{
1

αx(1−αx)
|f̄x(αx) − pS

x | if αx = αpa(x);

0 otherwise;

Let P (x | ·) =

{
αx for x ∈ S;

1 − αx for x �∈ S.

4.2 Efficient Implementation of the Algorithm

An efficient algorithm would require a data structure that allows us to construct
the piecewise linear function fr (or enough of it to determine αr) quickly. For
computing the αx’s afterwards, it suffices to store in each node the value of α
where fx(α) = pSx .

A function f can be represented using a double-ended priority queue whose
elements represent the bends in f , keyed by α and with values equal to the
change in slope at that point. Alongside this priority queue, f(0), f(1), f ′(0)
and f ′(1) are stored. Because the function is increasing (see the proof of Theo-
rem 2), taking a min (max) with a constant of an increasing function represented
this way can be done by testing and discarding the smallest (largest) element
repeatedly. Summing two functions requires merging their priority queues, so
ideally we would use a priority queue that supports an efficient merge operation.
By using for example a pointer-based min-max-pair heap [12], a worst-case time
complexity of O(n log n) can be achieved.
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5 Conclusion

In this paper, we showed how to efficiently find a coarsening mechanism that
maximizes the conditional entropy (1), for two special cases of the message struc-
ture Y. In the case where (X ,Y) is a path graph, the problem can be reduced to
a taut string problem, and solved in O(n). We then generalized this algorithm
to the case that (X ,Y) is a tree, and showed that this allows the solution to be
found in O(n log n).

Acknowledgments. This research was supported by Vici grant 639.073.04 and Veni
grant 639.021.439 from the Netherlands Organization for Scientific Research (NWO).

Appendix

Proof (Theorem 1). Define q ∈ Rn as follows: for x even, let qx equal the slope
of the string between Ax−1 and Ax; for x odd, let qx equal one minus this slope.
For any message yk ∈ Y and outcome x ∈ yk such that the string does not push
against Ak, we see that P (x | y) = qx since both are determined by the slope of
the string as it passes above or below Ak. Thus P is RCAR with vector q.

For any message yk with P (yk) = 0, we need to verify that P satisfies qk +
qk+1 ≤ 1. Note that the string does not touch A1, because all other points are
above the line through A0 and A1. By the same argument (replacing ‘above’ by
‘below’ if n is odd) the string does not touch An−1. If k is even, the string may be
pushed down at Ak, so the slope to the left of that point, which equals qk, must
be smaller than or equal to the slope to the right, which equals 1 − qk+1. If k is
odd, we similarly find 1 − qk ≥ qk+1. In both cases, we conclude qk + qk+1 ≤ 1.

What remains is to show that the marginal of P on the outcomes given in
the theorem agrees with p. We do this by first deriving from p a formula for the
marginal of P on the messages.

Consider two points Aa, Ab with a < b such that the string touches these
points but no points in between (thus the string follows a straight line between
points Aa and Ab). Using the notation pS for

∑
x∈S px, the slope of this segment

of the string equals
p(a,b],even

p(a,b]
.

This quantity equals qx for any even a < x ≤ b, so we call it qeven, and define
qodd := p(a,b],odd/p(a,b] = 1 − qeven.

For a < x ≤ b, the marginal constraints
∑

y�x P (y)P (x | y) = px are equiva-
lent to

∑
y�x P (y) = px/qx. By defining P (y0) and P (yn) as 0 (note that there

are no such elements in Y), we can write
∑

y�x P (y) = P (yx−1) + P (yx). For
a < k ≤ b, we must have P (yk) = pk/qk − P (yk−1) by the marginal constraint
on x = k. Using P (ya) = 0 and applying this recursion repeatedly, we find that
the following choice of marginal on messages satisfies all marginal constraints
for a < x ≤ b:

P (yk) = (−1)k
(

p(a,k],even

qeven
− p(a,k],odd

qodd

)

for a < k ≤ b.
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(Note that we get P (yb) = 0 as required.) Meanwhile in string land, the point
Ak is at height p(0,k],even, and the string intersects the vertical line through Ak

at height p(0,a],even + p(a,k]qeven; the (signed) difference is

δk := p(a,k],even − p(a,k]qeven = p(a,k],even − (p(a,k],even + p(a,k],odd)qeven
= p(a,k],evenqodd − p(a,k],oddqeven.

This is positive at even k where the string passes below Ak, and negative at odd
k. Thus the choice of marginal we found above equals the choice given in the
theorem:

P (yk) = (−1)k
δk

qevenqodd
=

|δk|
qevenqodd

.

which is positive for all a < k < b. Because P also satisfies all marginal con-
straints, it follows that P is a probability distribution.

Proof (Theorem 2). Write qx = P (x | ·); we will show that q is the RCAR vector
to P . We first prove the following claims by induction:

1. for all x, fx is a strictly increasing function of α;
2. for all x �= r, f̄x is a nondecreasing function of α;
3. for all x such that either x = r or αx �= αpa(x), fx(αx) = pSx =∑

x′∈De(x) px′αx′ .

For the first two claims, both the base case and induction step are straightfor-
ward.

For the third claim, first observe that if x = r, αx is chosen to satisfy fx(αx) =
pSx . The other case is αx �= αpa(x); this happens only if fx(αpa(x)) �= f̄x(αpa(x)),
hence if f̄x(αpa(x)) = pSx . Then we also see that αx is chosen to satisfy fx(αx) =
pSx . A base case for the induction occurs when x is such that all x′ ∈ De(x) have
the same αx′ . In such a base case, we have for all x′ ∈ De(x) that f̄x′(αx′) =
fx′(αx′), so that fx(αx) =

∑
x′∈De(x) px′αx′ . For the induction step, we can use

that for x′ ∈ De(x) with αx′ �= αpa(x′), the claim holds by induction. Let Tx

be the descendants of x that are not descendants of such an x′. Then for all
t ∈ Tx, we again have f̄t(αt) = ft(αt), so that the total contribution to fx(αx)
from terms ptα with t ∈ Tx equals

∑
t∈Tx

ptαt; combined with the induction
hypothesis, we find fx(αx) =

∑
x′∈De(x) px′αx′ . This completes the proof of

claim 3.
For given x, we get

∑
y�x P (y)qx = px (and P ({x, x′}) = 0 whenever qx +

qx′ �= 1) if the marginal distribution P (Y ) satisfies

P ({x,pa(x)}) =

{
px

qx
− ∑

x′∈Ch(x) P ({x′, x}) if qpa(x) = qx;
0 otherwise.
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For x ∈ S, this equals, and for x /∈ S, this equals the negative of,

∑

x′∈Tx∩S

px′

qx′
−

∑

x′∈Tx\S

px′

qx′
=

1 − αx

αx(1 − αx)

∑

x′∈Tx∩S

px′ − αx

αx(1 − αx)

∑

x′∈Tx∩S

px′

=
1

αx(1 − αx)

[
∑

x′∈Tx∩S

px′ − αx

∑

x′∈Tx

px′

]

=
1

αx(1 − αx)
[
pSx − fx(αx)

]
,

where the final equality follows by applying claim 3 to x′ /∈ Tx. We see that this is
equal (in both magnitude and sign) to the value assigned to P ({x,pa(x)}) by the
algorithm. Because

∑
x px = 1, it follows in particular that the algorithm’s out-

put is a probability distribution. The remaining aspects of the RCAR condition
are now easy to verify.
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