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We study a mathematical model for an epidemic spreading In an age-structured population with age-
dependent transmission coefficient. We formulate the model as an abstract Cauchy problem on a Banach 
space and show the existence and uniqueness of solutions. Next we derive some conditions which guaran­
tee the existence and uniqueness for non-trivial steady states of the model. Finally the local and global sta­
bility for the steady states are examined. 
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l. INTRODUCTION 
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In this paper, we consider a mathematical model for an epidemic spreading in an age-structured 
population where the transmission coefficient depends on age. The model is derived for an SIR 
disease in a constant-sized population, that is, a susceptible individual who contracts the disease will 
become infective but will eventually recover with permanent immunity and the total population is 
assumed to be in a demographically stationary state. The SIR-type age-independent epidemic model 
has already been investigated satisfactory, and its threshold theorem is well known (Hethcote, 1974). 
On the other hand, since the work of McKendrick (1926), it has been recognized that the age­
structure of a population is an important factor which affects the dynamics of disease transmission. 
Therefore several authors introduced age-structure into their epidemic models (Hoppensteadt, 1974, 
1975; Dietz, 1975; Gripenberg, 1983; Schenzle, 1984; Anderson and May, 1985; Dietz and Schenzle, 
1985; Tudor, 1985; Andreasen, 1988; Busenberg. et al. 1988). .. 

Recently, Greenhalgh (1988b) investigated the age-structured SIR-type epidemic model in case that 
the transmission coefficient depends on the age of both susceptibles and infectious, and he conjectured 
that; 
(I) The threshold phenomenon can be formulated in tenns of the spectral radius r (T) of a certain 
integral operator T; 
(2) An endemic steady state is possible if and only if r(T)> l and if this state exists, it is unique; 
(3) The equilibrium with. no disease present always exists, and it is locally (in fact globally) stable if 
r(T)<l and locally unstable if r(T)>l; 
(4) For realistic values of parameters, the endemic equilibrium state is asymptotically stable. 

Our main purpose in this paper is to prove Greenhalgh's conjecture. First, we shall formulate the 
model by using the McKendrick-type partial differential equation system. Then we rewrite it into an 
abstract Cauchy problem on a Banach space, and show the existence and uniqueness of its solutions. 
Next, under appropriate conditions, we shall prove the existence and uniqueness results for non-trivial 
steady states of this model. Finally, we investigate the local and global stability for the steady states. 
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2. THE BASIC MODEL 

We subdivide a closed population into three compartments containing susceptibles, infectives and 
immunes. There is no incubating class, so a person who catches the disease becomes infectious instan­
taneously. Moreover, we assume that the population is in a stationary demographic state. Let 
N(a),Oo;;;;;ao;;;;;w (the number w denotes the life span of the population) be the density with respect to 
age of the total number of individuals. Under our assumption, N (a) satisfies 

" N(a) = µ*Nexp(- j µ(o)do), (2.l) 
0 

where µ(a) denotes the instantaneous death rate at age a of the population, the constant N is the total 
size of the population and µ* is the crude death rate. We assume that µ(a) is nonnegative, locally 
integrable on [O,w) and satisfies 

"' j µ.(a)do = + oo. 
0 I 

The crude death rate is determined such that 

"' 
µ• J e(a)da = I, 

0 

where 

" 
e(a) : = exp(- J µ(o)do), 

0 

is the survival function which is the proportion of individuals who survive to age a. Then we have the 
relation 

N(a) = µ• Ne(a). (2.2) 

Next let X(a,t), Y(a,t) and Z(a,t) be the age-densities of respectively the susceptible, infected and 
immune population at time t, so that 

N(a) = X(a,t)+ Y(a,t)+Z(a,t). (2.3) 

Let y- 1 be the average infectious period, i.e. the probability of still being infected at the duration s 
elapsed since initial infection is exp(-sy). Let fJ(a,b) be the age-dependent transmission coefficient, 
that is, the probability that a susceptible person of age a meets an infectious person of age b and 
becomes infected, per unit of time. Define the force of infection X(a, t) by 

"' 
>-.(a,t) = jfJ(a,o)Y(o,t)do. (2.4) 

0 

Then the transmission from the susceptible to the infectious state is a Poisson process, i.e. the proba­
bility that a susceptible individual becomes infected during the small interval (a,a +da) at time t is 
>..(a,t)da. Moreover we assume that the death rate of the population. is not affected by the presence of 
the disease. Under the above assumptions, the spread of the disease can be described by the system of 
partial differential equations 

a a 
(at"+a;)X(a,t) = -7\(a,t)X(a,t)-µ(a)X(a,t), (2.5a) 

a a 
<a1+a;)Y(a,t) = A(a,t)X(a,t)-(µ(a)+y)Y(a,t), (2.5b) 

a a (at+ 0)Z(a,t) = yY(a,t)-µ(a)Z(a,t), (2.5c) 



with boundary conditions 

X(O,t) = µ* N, Y(O,t) = 0, Z(O,t) = 0. 

Consider the fractions of susceptible, infectious and immune population at age a and time t; 

x(a,t) := X(a,t) y(at) ·= Y(a,t) z(at) ·= Z(a,t) 
N(a) ' ' · N(a) ' ' · N(a) · 

Then the system (2.5a)-(2.5c) can be rewritten to a simpler form. 

where 

a a (at+ aa)x(a,t) = -A(a,t)x(a,t), 

a a 
<ai+a;;)y(a,t) = A(a,t)x(a,t)-yy(a,t), 

a a 
<ai+a;;)z(a,t) = yy(a,t), 

x(O,t) = 1, y(O,t) = 0, z(O,t) = 0, 

., 
A(a,t) = jfJ(a,o)N(a)y(o,t)do, N(a) = µ.*Nf(a), 

0 

x(a,t)+y(a,t)+z(a,t) = 1. 

I 

In the following, we mainly consider the system (2.7a)-(2.7c) with initial conditions 

x(a, 0) = x 0(a), y(a, 0) = y 0(a), z(a, 0) = z 0(a). 
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(2.6) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

REMARK. For the system (2.5), threshold and stability results have been investigated for special forms 
of the transmission coefficient fJ; fJ =constant (Dietz, 1975; Greenhalgh, 1987); fJ(a,b) = f (a) (Gri­
penberg, 1983; Webb, 1985); fJ(a,b) = f (a )g(b) (Dietz and Schenzle, 1985; Greenhalgh, 1988b ). In 
particular, the models formulated by Gripenberg, Dietz and Schenzle treat a more general situation 
than the present model in the sense that the infectivity depends on the duration of an infection. How­
ever it should be noted that the existence problem of steady states for the duration-dependent model 
is reduced to the same kind of a nonlinear integral equation as discussed in section 4 of this paper. 
Tudor (1985) reduced the system (2.5) into an ordinary differential equation system by discretizing the 
age variable. It seems that his theoretical and numerical results support Greenhalgh's conjectures. 

3. ExlSTENCE AND UNIQUENESS OF SOLUTIONS 

In this section we shall show that the initial-boundary value problem (2.7a)-(2.7c) has a unique solu­
tion. First we note that it suffices to consider the system in terms of only x(a,t) andy(a,t) since, once 
these functions are known, z(a,t) can be obtained by z(a,t)= I-x(a,t)-y(a,t). 

First we introduce a new variable x by x(a,t) : = x (a,t)- I. Then we obtain the new system for x 
~y . 

a a A A 

<a;+a;;)x(a,t) = -A(a,t)(l+x(a,t)), (3.la) 

a a A 

<ai+a;;)y(a,t) = A(a,t)(l+x(a,t))-yy(a,t), (3.lb) 

x(O,t) = 0, y(O,t) = 0. 

Let us consider the initial-boundary value problem of the system composed of (3.la) and (3.lb) as 
an abstract Cauchy problem on the Banach space X := L 1(0,w;C2) that is the set of equivalence 
classes of Lebesgue integrable functions from [O,w] to C2 equipped with the L 1-norm. Let A be a 
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linear operator defined by 

d d 
(Aq>)(a) : = (- da 4>1(a), - da t/Ji(a)-'Y4>2(a))\ 

4> = (4>1(a),t/Ji(a)Y ED(A), 

where p" is the transpose of the vector p and the domain D (A) is given as 

D(A) = {l/>EX:'/>;EAC[O,w], 4>(0) = (O,OY}, 

(3.2) 

where AC[O,w] denotes the set of absolutely continuous functions on [0,w]. Suppose that 
/l(a,b)EL"°((O,w)X(O,w)). We define a nonlinear operator F:X-»Xby 

F(q>)(a) = (-(P'/>i)(a)(l +q,1(a)),(P4'2)(a)(l +<t>1(a))Y,4>EX, (3.3) 

where P is a bounded linear operator on L 1 (0, w; C) given by 
., 

(PJ)(a) = jfJ(a,o)N(a)f(a)da. 
I 

(3.4) 
0 

Note that P/EL 00 (0,w) for /EL 1(0,w) and hence the nonlinear operator Fis defined on the whole 
space X. Let u(t)=(x(·,t),y(·,t)Y EX. Then we can rewrite the initial-boundary problem (3.la)-(3.lb) 
as the abstract semilinear initial value problem in X 

d 
dt u(t) = Au(t)+ F(u(t)), u(O) = u0 EX, (3.5) 

where u0(a) : = (x 0(a),y 0(a)Y, x0(a) : = x 0(a)- l. It is easily seen that the operator A is the 
infinitesimal generator of C0-semigroup T(t),t;a.O and Fis continuously Frechet differentiable on X. 
Then for each u 0 EX, there exists a maximal interval of existence [O, t 0), and a unique continuous 
(mild) solution t-;.u(t;u 0) from [O,t0) to X such that 

I 

u(t;uo) = T(t)uo+ jT(t-s)F(u(s;uo))ds, 
0 

(3.6) 

for all tE[0,t 0) and either t 0 = oo or limllu(t;u0)11 = oo. Moreover, if u0 ED(A), then 
1t1. 

u(t ;u0)ED(A) for O..;;t <to and the function t-;.u(t ;u0) is continuously differentiable and satisfies 
(3.5) on [O,t0) (Webb, p.194, Proposition 4.16). 

LEMMA 3.1. Let D := {(x,y)EX:-1..;;.i,Oo;;;y} and let ~o = {(~,y)EX:-1..;;i..;;o,o..;;y..;;1}. Then 
the mild solution u(t ;u0),u 0 EU of (3.5) enters into 00 after finite time and the set U0 is positively invari­
ant. 

PROOF. From (2.7a), we have the representation 

x(a,t) = 

a 

exp(- J"A(p,t -a+ p)dp), t -a >0, 
0 

I 

x 0(a -t)exp(- f>...(a -t + p,p)dp), a -t >0, 
0 

which shows that x(a,t);a.-1 when x 0(a);a.O. If we write (3.lb) as an abstract Cauchy problem 

(3.7) 

d A I 
dty(t) = By(t)+(Py(t))(l + x(t)), y(O) = y 0 EL (O,w), (3.8) 

where the operator B is defined by 



B = - ! -y, D(B) = {1"EL 1(0,w):l/IEAC[O,w];i/i(o) = O}, 

then we obtain 
I 
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y(t) = S(t)y(O)+ f S(t-sXPy(s))(l +x(s))ds, (3.9) 
0 

where S(t) : = exp(tB) is the C0-semigroup generated by the closed operator B. If we assume that 
x(t);;;i.-1,y0 ;;;.0, (3.9) shows that y(t) is also positive because S(t),t;;;i.O is positive and y(t) can be 
obtained by monotone iteration 

I 

y(t) = S(t)y(O)+ f S(t-sXPS(s)y(0))(1 +x(s))ds + · · ·. 
0 

Hence we know that u(t;uo)Ell for all t>O when UoEll. Next let w(t): = x(t)+y(t). Then we have 

d A I I 
dt w(t) = Cw(t)-yy(t),w(O) = x 0 +y0 eL {O,w), (3.10) 

where the operator C is given by 

d 
C = - da • D(C) = {lf!eL 1(0,c.>):ifeAC[O,c.>],1/i(O) = 0}, 

From (3.10), it follpws that 
I 

w(t) = U(t)w(O)-j U(t-s)yy(s)ds~U(t)w(O), (3.11) 
0 

where U(t), 1;;;.o is the positive C0-semigroup generated by the operator C. Since U(t) is a nilpotent 
translation semigroup, we have w(t)(a)~x0(a-t)+y0(a -t), a >t and w(t)~O for t>w. Then it fol­
lows that the mild solution u(t;u0),u0 eil ·into 00 for t>w and if u0 e00, then u(t;u0) e00 for all 
t ;;;.o. This completes the proof. 0 

By the above lemma, we know that the norm of the local solution u(t;u0),u0 eD(A)nO, of (3.5) is 
finite as long as it is defined. Thus we arrive at the following result . 

.PROPOSITION 3.2. The abstract Cauchy problem (3.5) has a unique global classical solution on X with 
respect to initial data u0 ellnD(A). 

Therefore it follows immediately that the initial-boundary val~e problem (2.7)-(2.9) has a unique 
positive global solution with respect to the positive initial data. 

4. Exl:S1ENCE OF STEADY STA1ES 

Let u • = (x •(a ),y •(a ))1' be the steady state solutipn for the equation (2. 7a)-(2. 7b ). Then it is easy to 
verify the following 

u 

x*(a) = exp(-jX*(a)da), 
0 

u a 

y*(a) = jexp(-y(a -a))X*(a)exp(- JX*(1J)d1J)da, 
0 0 .. 

X*(a) = j!J(a,a)N(a)y*(a)da. 
0 

(4.la) 

(4.lb) 

(4.lc) 
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Substituting (4.lb) into (4.lc) and changing the order of integration, we obtain an equation for ;\*(a): 
w a 

l\*(a) = j<P<..a,a)l\*(o)exp(- j>..*(11)d11)do, (4.2) 
0 0 

w 

<P(a,a) := J /J(a,ON(Oexp(-y(t-a))dr 
a 

From (4.lc), it follows that ll\*(a)l .;;;;;llPll 00 l[y*lli, where 11·11 00 , ll·lli denote L 00 -norm and L 1-norm 
respectively. Then it follows fromy* EL~ (O,w) that;\* EL'f_ (O,w). It is clear that one solution of (4.2) 
is i\*(a)=<J, which corresponds to the equilibrium state with no disease. In order to investigate non­
trivial positive solutions for (4.2), we define a nonlinear operator 4.>(x) in the Banach space 
E : = L 1(0,w) with the positive cone E + : = {I/IEE; 1/;;;;::0, a.e. }, by 

w a 

<P(x)(a) := j<P<..a,a)x(a)exp(- J x(11)d11)do, xEE. 
0 0 

(4.3) 

I 
Since the range of lfl is included in L 00 (0, w ), the solutions of ( 4.2) correspond to fixed points of the 
operator«!>. Observe that the operator cl> has a positive linear majorant T defined by 

w 

(Tx)(a) := j<P<..a,o)x(a)do, xEE. (4.4) 
0 

Here we summarize the Perron-Frobenius theory for positive operators on the ordered Banach 
space as long as it is needed for our purpose. Let Ebe a real or complex Banach space and let E* be 
its dual, i.e. the space of all linear functionals on E. The value .of FEE* at l/;EE is denoted by 
<F,1/;>. A closed subset E+ is called a cone if the following holds; (1) E+ +E+ CE+, (2) 
i\E + CE + for i\;;;::O, (3) E + n(-E +) = {0}, (4) E + ¥={0}. We write x:s;;_y if and only if y -x EE+ 
and write x <y if y -x EE+ \ {O}. The cone E + is called total if the set {"1-rp; i/J,rpEE +} is dense 
in E. The dual cone E"+ is the subset of E* consisting of all positive linear functionals on E, i.e. 
FEE"+ if and only if FEE* and <F,if>;;;::O for all !/;EE+. o/EE+ is called nonsupportingpoint (or 
quasi-interior point) if <F,o/>>0 for all FEE"+\ {O}. A positive linear functional FEE"+ is called 
strictly positive if <F,t{l>>O for all l/;EE + \ {O}. Let B(E) be the set of bounded linear operators of 
E into E. TEB(E) is called positive with respect to the cone E+ if T(E+)CE+. We say r;;;::s if 
(T-S)(E +) CE + for T,S EB(E). We denote the spectral radius of TEB(E) by r(T). 

Although several formally different concepts about positivity of operators have been introduced to 
extend the Perron-Frobenius theory since the work of Krein and Rutman (1948), it seems that 
Sawashima's concepts are most natural and convenient for our pu~se (see Sawashima, 1964; Marek, 
1970; Heijmans, 1986): 

DEFINITION 4.1. (Sawashima, 1964) A positive operator TEB(E) is called semi-nonsupporting if and 
only if for every pair 1/JEE + \ {O},FEE"+ \ {O}, there exists a positive integer p = p(if,F) such that 
<F,TPl{l>>O. A positive operator TEB(E) is called nonsupporting if and only if for every pair 
1/;EE + \ {O}, FEE"+ \ {O}, there exists a positive iflteger p = p(o/,F) such that <F,Tnt/;>>0 for all 
n;;;::p. 

The reader may refer to Sawashima (1964), Niiro and Sawashima (1966) about the proof of the fol­
lowing theorem: 

PROPOSITION 4.2. Let the cone E + be total T EB (E) be semi-nonsupporting with respect to E + and let 
r (1) be a pole of the resolvent R (i\, T). Then the followings hold; 
(1) r(T)EP 0 (T) \ {O} and r(T) is a simple pole of the resolvent. 
(2) The eigenspace corresponding to r(T) is one-dimensional and the corresponding eigenvector o/EE + is 
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a nonsupporting point. The relation Tep = JJ4> with ijJEE + implies that cp = ci{; for some constant c. 
(3) The eigenspace of T* corresponding to r(T) is also a one-dimensional subspace of E• spanned by a 

strictly positive functional FEE"+. 
( 4) Assume that E is a Banach lattice. If T EB (E) is nonsupporting, then the peripheral spectrum of T 

consists only of r(T), i.e. IAI <r(T)for AEo(T)\ {r(T)}. 

The following comparison theorem is due to Marek (1970). 

PROPOSITION 4.3. Suppose that Eis a Banach lattice. Let Sand T be positive operators in B(E). 
(l) If S~T, then r(S)~r(T). 
(2) If Sand Tare semi-nonsupporting operators, then S~T,S=/=T implies that r(S)<r(T). 

After the above preparations, we first consider the nature of the majorant operator T defined by 
( 4.4). In the following, we shall make an assumption: 

ASSUMPTION 4.4. 
(1) fi(a, n EL'f ((O,w) x (0,w)). 
(2) 

"' 
lim JI /J(a + h, n- /J(a, ni da = 0 uniformly for t ER, 
h--+00 

where /J is extended by /J(a, !;) = 0 for a, tE(- oo,0) U(w,oo). 
(3) There exist numbers a with w>a>O and t:>O such that 

/J(a,!;);;;;i:t: for almost all (a,!;)E(O,w)X(w-a,w). 

Then we can prove that: 

I 

LEMMA 4.5. Under Assumption 4.4, the operator T:E-:,,E is nonsupporting and compact. 

PROOF. Define the positive linear functional FEE"+ by 

"' 
<F, if;> = j g(o)i{;(o)do, i{;EE, 

0 

where g(o) is given by 

"' 
g(a): = js(t)N(Oexp(-y(t-a))dt, 

" 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where the function s(t) is defined as s(t) = 0, tE[O,w-a); s(t) = t:, tE[w-a,wJ. Hence /J(a,!;);;;;i:s(O 
for almost all (a,!;)E[O,w]X[O,w]. Since g(a)>O for all aE[O,w), the functional Fis strictly positive 
and 

<F,x>e.,;;;;,.Tx, e = IEE+. 

Then for any integer n, we have 

rn+Ix;;;;i:<F,x ><F,e >ne. 

(4.9) 

Therefore we obtain < G, yn x > >0, n ;;;;: 1 for every pair x EE+ \ { 0}, GEE"+ \ { 0}, that is, T is non­
supporting. Next observe that 

W WW 

j I cp(a + h, a)-cp(a, a) Ida~µ· N j j I /J(a + h, !;)- /J(a, DI dadt. 
0 0 0 
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Then it follows from Assumption 4.4 that the kernel q, satisfies the condition of the Lemma in the 
Appendix. Hence we can conclude that the operator T is compact. D 

From Proposition 4.2, it follows that the spectral radius r(T) of the operator T is the only positive 
eigenvalue with a positive eigenvector and also an eigenvalue of the dual operator r· with a strictly 
positive eigenfunctional. Now we can prove the following: 

PROPOSITION 4.6 (Threshold results). Let r(T) be the spectral radius of the operator T defined by (4.4). 
Then the following holds; 
(1) If r(T)~ 1, the only non-negative solution x of the equation x = (f>(x) is the trivial solution x=<>. 
(2) If r(T)> 1, the equation x = W(x) has at least one non-zero positive solution. 

PROOF. Suppose that r(T)~l. It is easily checked that Tx-«I»(x)EE+ \{O} for xEE+ \{O}. If 
there exists a x 0 EE+ \ {O} being a solution of x = «I»(x), then x 0 = Cl»(x 0)~T(x 0). Let 
FO EE"+ \ {O} be the adjoint eigenvector of T corresponding to ryT). Taking duality pairing, we find 
<FO,T(xo)-xo> = (r(T)-l)<FO,x0>>0 because T(x0)-x0 EE+ \{O} and F0 is strictly posi­
tive. Then we have r(T)> 1, which is a contradiction. Next we assume that r(T)> I. Under Assump­
tion 4.4, in the same manner as the proof of Lemma 4.5, we can see that the operator Cl» is a com­
pletely continuous operator in the Banach space E. Moreover, if we define the number M 0 by 

., 
M 0 := SUJ> /4'Ca,a)da, o.;;a.,..,0 

the set 0 := {xEE: O~x. llxll~M0 } is invariant (in fact Cl»(E+)CO) under the operator Cl». We 
define an operator W7 by 

{
«I»(x), if llxll;;;i.r, xEE+, 

«I»,(x) = Cl»(x)+(r-llxll)x0, if llxll~r, xEE+, 

where x 0 is the positive eigenvector of T corresponding to r(T)> 1. Then Cl», is also completely con­
tinuous and transform the set 0, : = { x EE; O~x. llx II ~M 0 + r llx 0 II} into itself. Since 0, is bounded, 
convex and closed in E, Cl», has a fixed point x,EO, (Schauder's principle). Observe that the Frechet 
derivative of W(x) ai x = 0 is the operator T and T does not have in E + eigenvectors corresponding 
to the eigenvalue one. Then we can apply the method of M.A.Krasnoselskii (1964a, Theorem 4.11), 
and it can be shown that the norms of these fixed points are greater than r if r is sufficiently small. 
That is, Cl» has a positive fixed point. D 

Subsequently, in order to investigate the uniqueness problem for non-trivial positive fixed points of 
the operator Cl», we introduce the concept of concave operators (see Krasnoselskii, 1964a,b). 

DEFINITION 4. 7. Let E + be a cone in a real Banach space E and ~ be the partial ordering defined 
by E +. A positive operator A :E + -+E + is calle~ a concave operator if there exists a u0 EE+ \ {O} 
which satisfies the followings; 
(1) for any x EE+\ {O} there exist a = a(x)>O and P = P(x)>O such that au0 ~xo;;;;pu0 , that is, 

Ax is comparable with u0 , 

(2) A (tx);;;;.tAx for Oo:;;;t~l and for every x EE+ such that a(x)u0 ~x~P(x)u0 (a(x)>O,p(x)>O). 

Here we introduce a new class of concave operators which has at most one positive fixed point. This 
type of operator is closely related to the e-sublinear operator introduced by Amann (1972). 

LEMMA 4.8. Suppose that the operator A :E + -+E + is monotone and concave. If for any x EE+ satisfy­
ing a1uo~x~P1uo (a1 = a1(x)>O, P1 = P1(x)>O) and any O<t <l, there exists 71 = 71(x,t)>O such 
that 
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A (tx);;;;;i:tAx +11uo, (4.10) 

then A has at most one positive fixed point. 

PROOF. Suppose that x 1 eE + \ {O} and x 2 eE + \ {O} are two positive fixed points of A. From the 
concavity of A, we can choose positive constants a 1 and P2 such that 

x1 = Ax1;;;;;.a1uo = a1/J2 1/J2uo;;;;;.aifJi." 1Ax2 = a1/J21X2. 

If we define k = sup{µ:x 1;;;;;.µ.x 2}, then we see that k>O from the above inequality. If we assume 
that O<k <1, then there exists.,, = 11(x 2,k)>O such that 

x1 = Ax1;;;;.i:A(kx2);;;;.i:kAx2+11uo;;;;;.kx2+11/Ji 1Ax2 = (k+7J/J2 1)x2, 

which contradicts the definition of k. Hence we know that k;;;;;.t and x 1 ;;;;;.x2• In the same way, we can 
prove x 2 ;;;;;.x 1• Thus x 1 = x 2• D 

Here we introduce another assumption: I 

ASSUMPTION 4.9. For all (a,a)e[O,"']X[O,"'], the inequality 

"' 
/J(a, a)N(a)-y J /J(a,x)N(x)exp(-y(x -a))dx;;;;;i:O, (4.11) 

0 

holds. 

Then we can prove the following: 

PROPOSITION 4.10. Suppose that Assumption 4.9 holds. If r(n> 1, «P has only one positive fixed point. 

PRooF. From Lemma 4.8 and Proposition 4.6, it is sufficient to show that under Assumption 4.9, the 
operator(» is a monotonic concave operator satisfying the condition (4.10). From (4.3), it follows that 

"' d 0 

(»(x)(a) = /'P<.a,a)(--d )exp(-J x(11)d11)da 
o a o 

"' 0 

= t/(a,0)- /l/J(a,a)N(a)-ytp(_a,a)]exp(- jx(11)d11)da. 
0 0 

Then the operator Cl» is monotonic under Assumption 4.9. Next o~serve that 

a(x )u0 E;;(»(x)(a )E;;/J(x )u0, 

where u0=1 and 

"' a 
a(x) := /g(a)x(a)exp(- jx(11)d11)da, · 

0 0 

"' 0 

/J(x) := Mjh(a)x(a)exp(- jx(1J)d11)da, 
0 0 

where M := ess sup/J(a,b)<oo, g(a) is given by (4.8) and h(a) is defined by 

"' 
h(a) := jN(f)exp(-1(r-a))dr. 

a 

It follows that a(x)>O and /j(x)>O for xeE + \ {O}. Moreover we obtain 
"' 0 0 

«P(tx)(a)-tcf>(xXa) = t / tp(_a, a)x(a)exp(- / x(11)d11)[exp((1-t) J x(11)d11)- l]da 
0 0 0 
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w a a 

;;;i. t J g(a)x(a)ex.p(-J x(11)d11)[exp((l -t) J x(11)d11)- l]da, 
0 0 0 

from which we conclude that ell is a concave operator and the condition (4.10) is satisfied by letting 
uo = 1 and 

w a a 

11(x,t) : = t J g(a)x(a)exp(-J x(11)d11)[exp((l -t) J x(11)d11)-1]da. 
0 0 0 

This completes the proof. D 

Note that Assumption 4.9 holds if P(a,a)N(a) is non-increasing as a function of a. In fact, we have 
w 

ft(a, a)N(a)-y J ft(a,x)N(x)exp(-y(x -a))dx 
a 

w 

= y flP(a, a)N(a)-p(a,x)N(x)]ex.p(-y(x -a))dx +ex.p(-y(c.J-a))ft(a,a)N(a), 
a 

which is nonnegative for all (a,a)e[O,c.J]X[O,CAJJif fJ(a,a)N(a)-fJ(a,x)N(x);;;;i.O for x';!loa. In particular, 
Assumption 4.9 holds if P is independent of the age of infectives a, because N(a) is a decreasing func­
tion. Another type of condition which guarantees Assumption 4.9 is given as follows: 

f(a);;;;i.k(l -exp(-y("'-a)), 

if the constant k defined by 

k . = supp(a,b) 
· infP(a,b) ' 

(4.12) 

(4.13) 

is finite. Since N(a) = µ.* Nl(a)~µ.· N, the sufficiency of condition (4.12) follows from the inequality 

fJ(a, a)N(a)-'Y'lt{a, a)';iioinfft(a,b)µ.* N[f(a)-k(l -exp(-y("'-a)))]. 

REMARK 4.11. No matter whether Assumption 4.9 holds, if fJ(a,b) can be factorized as f(a)g(b) 
(which is called the proportionate mixing assumption, see Dietz and Schenzle, 1985), it is easily seen 
that there always exists a unique non-trivial steady state under the condition 

w 

r(T) = f 4'<.a,a)da>l. (4.14) 
0 

In this case, f (a) is the eigenvector of the operator T corresponding to the spectral radius r(T) (see 
Greenhalgh, 1988b). 

5. STABILITY ANALYSIS FOR EQUILIBRIUM SOLUTIONS 

In order to investigate the local stability of the e~uilibrium solutions (x*(a),y*(a))" of (2.7a)-(2.7b), 
we first rewrite (2.7a)-(2.7b) into the equation for small perturbations: Let 

x(a,t) = x"(a)+C(a,t), y(a,t) = y*(a)+11(a,t). 

From (2.7), we have 

( ;, + aaa)r(a,t) = -/\(a,t)(r(a,t)+x*(a))-1\*(a)r(a,t), (5.la) 

c;t + a~)T/(a,t) = /\(a,t)<rca,t)+x·(a))+/\*(a)r(a,t)-YT/(a,t), (5.lb) 

where 
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"' "' A.(a,t) = jfJ(a,a)N(afr1(o,t)do, A.'(a) = jfJ(a,a)N(a)y•(a)do, 
0 0 

r(O,t) = 0, 11(0,t) = 0. 

Therefore we can formulate (5.1) as an abstract semilinear problem on the Banach space X: 

d 
dt u(t) = Au(t)+ G(u(t)), u(t) : = (~(t),11(t))'" EX, (5.2) 

where the generator A is defined by (3.2) with the domain 

D(A) = {o/EX:iJ!;EAC[O,"'],iJ!(O) = O}. 

The nonlinear term G is defined as 

G(u) := (-(Pu2)(u 1 +x*)-A.*u.,(Pu2)(u1 +x*)+J\*u1Y. 

for u = (u1>uiY EX, where the operator P is defined by (3.4). Th,e linearized equation around u =O 
is given by 

d 
dtu(t) =(A +C)u(t), (5.3) 

where the bounded linear operator C is the Frechet derivative of G(u) at u =O and given by 

Cu = (-(Pu2)x* ->\ui.(Pu2)x* +A.*u1Y· 

Now let us consider the resolvent equation for A + C; 

(J\-(A +C))<p = l{I, </>ED(A), l[IEX, AEC. 

Then we have 

cf>'1 +(A+A.*)c/>1 = 1/11 -(Pc/>i)x*, 

4>'2 +(A+y)cf>i = i/11 +(Pcf>i)x* +A*<P1· 

From (5.5a), we obtain 

a 

<P1 (a) = exp(-A.a)Il(a) J [o/1(a)-(Pc/>i)(a)Il(o)]exp(J\a)Ir 1(a)do, 
0 

where Il(a) is defined by 

a 

Il(a) :=exp(- jA.*(a)da·) = x*(a). 
0 

From (5.5b), we have 

a 

cf>i(a) = j exp( -(y+ A.)(a -o))[i,/12(o)+ (Pc/>i)(o)Il(a)+ /\*(o)cp1(a)]da. 
0 

On the other hand, from (5.6), we can write 

a 

(5.4) 

(5.5a) 

(5.5b) 

(5.6) 

(5.7) 

A.• (a)c/>1 (a) = exp( -A.a)Il(o)A.* (o) J [1/!J (11)-(Pc/>i)(11)II(11)]exp(A.11)Il- 1(11)d7J. (5.8) 
0 

Using (5.7) and (5.8), we obtain 

(PcfJi)(a) = l(a)+J(a)+K(a)+L(a), (5.9) 

where 
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., 0 

I (a) : = J /l(a, a)N (a) J exp(-(y+ ]\)(a-71j)/Ji(71')cfqda, 
0 0 
., 0 

J (a) : = J /l(a,a)N(a) J exp(-(y+]\)(a-71))(P4»2)(71)IT(71)d71da, 
0 0 
., 0 ~ 

K(a) : = J fl(a,a)N(a) J exp(-(y+"-Xa-71))exp(-l\71)IT(71)l\*(71) f l/11<nex.p(l\OII- 1<.r)drd11da, 
0 0 0 

., 0 ~ 

L(a) : = - J fl(a, a)N(a) J exp(-(y+l\)(a-71})exp(-l\71)Il(71)}\*(71) J (Pq.,,)(f)ex.p(l\f)drd11da. 
0 0 0 

Define 
., 

ct».(a,a) : = J fl(a, 71}N(71)exp(-(y+l\)(71-a}}d71, 
I 

0 

then we can rewrite the above representations for l,J,K,L as 
., 

J(a) = f ct».(a,a)i/Ji(a)da, 
0 
., 

J (a) = J ct».(a, a)IT(a)(Pq.,,)(a)da, 
0 
., 0 

K(a) = J 4'>.(a, a)exp(-]\a)Il(a)}\*(a) J 1/11(71)TI- 1(71)exp('l\11)d71da, 
0 0 

., 0 

L (a) = - J cl». (a, a)exp( -Aa)Il( a)]\* (a) J (Pq.,,)(71)ex.p(A71)d71da, 
0 0 

If we define linear operators on the Banach space L 1(0,C<>) by 
., 

(T>.1/l)(a) : = J ct».(a, a)IT(a)l/l(a)da, 
0 
., 0 

(U>.l/l)(a) : = J ct».(a, a)exp(-Aa)TI(a)}\*(a) J 1/1(71)exp(A71)d71da, 
0 0 

(V>.1/l)(a) := (T>.1/l)(a)-(U>.l/l)(a), 

then the following expression holds: 
., 

(V >.1/l)(a) = jJo.(a, a)l/l(a)da, 
0 
., 

XA(a, a) : = jIT(x)[/l(a,x)N(x)-y.p,.(a,x)]exp(-A(x -a))dx, 
0 

It is easy to verify the above expression if we note that 

., arr',., 0 

(U>.1/l)(a) = J (-~ )ct».(a, a)exp(-/\a) J 1/1(71)exp(A71)d71da 
o ua o 

., 0 

= (T>.lf!)(a)- jIT(a)[/l(a,a)N(a)-yct».(a, a)]j 1/J(71)ex.p(-A(a-71))d71da. 
0 0 

(5.10) 

(5.11) 

(5.12) 

(5.13) 



From the above definitions and (5.9), it follows that 

(Pip,_)(a) = (T>. if;2II- 1)(a)+(T >.P'h)(a) + (U>. tJ,i 1 n-1)(0)-( U>.P'h)(a). 

Hence we have 

(Pip,_)(a) = (l-V>.)- 1[(T>.tJ.i2II- 1)(a)+(U>.1hII- 1Xa)]. 

From (5.6), (5.7) and (5.14), we can conclude that 

LEMMA 5.1. The perturbed operator A+C has a compact resolvent and 

a(A +C) = P 0 (A +C) = {A.EC: I EP a(V>.)}, 

where a(A) and P 0 (A) denote the spectrum of A and the point spectrum of A respectively. 

PROOF. From (5.6) and (5.14), we obtain the expression for q,1 

4'1(a) = J(tJ.i1)(a)-K(tJ.ii.t/.i2)(a), / 

where the operators J and K are defined by 
a 

J(tJ.i1)(a) := jG(a,a>tJ.i1(a)do, 
0 

a 

K(tJ.ii.i/12)(a) : = j G(a, o)II(o)(J - V >.T 1[(T>.o/2II- 1)(o)+ (U>.ifi n- 1)(a)]da, 
0 

13 

(5.14) 

(5.15) 

where G(a, o) : = exp[-A.(a -o)]II(a)II- 1(o). Since J is a Volterra operator with a continuous kernel, 
it is a compact operator on L 1(0,w). On the other hand, in the same manner as the proof of Lemma 
4.5, we can prove that T;.. and U;.. are compact for all AEC. Let A:= {A.EC: 1 Ea(V;..)}. Then it fol­
lows that when AEC\A the operator K is a compact operator from X to L 1(0,w). In the same way, 
we can prove that q,2(a) can be represented by a compact operator from X to L 1(0,w). Then we know 
that A + C has a compact resolvent, so it follows that o(A + C) = P 0 (A + C) (see KATO, p. 187). 
From the above argument, it follows that C \A cp(A + C) (p(A + C) denotes the resolvent set of 
A + C), that is, A:::i o(A + C) = P 0 (A + C). Since V;.. is a compact operator, we know that 
a(V;..) \ {O} = P 0 (V;..) \ {O} and if AEA, there exists an eigenfunction if>. such that V>.o/>. = o/>.· Then 
it is easily seen that if we define the following functions 

a 

cp1(a) = -exp(-Afi)II(a)/exp(A.o>tJ.i>-.(o)do, 
0 

a 

4>i(a) = J exp[-/1..(a -0)][1h(o)II(o)-/l...(0)4'1(o)]do, 
0 

(cf>i.4>2Y gives an eigenvector of A + C corresponding to the eigenvalue /I... Then A CP 0 (A + C) and we 
conclude that (5.15) holds. D 

LEMMA 5.2. Let T(t), t~O be the C 0 -semigroup generated by the perturbed operator A +C. Then 
T(t), t~O is eventually norm continuous and 

w0(A +C) = s(A +C) := sup{Reµ.: µ.Eo(A +C)}, (5.16) 

where w0(A +C) denotes the growth bound of the semigroup T(t),t~O and s(A +C) is the spectral 
bound of the generator A +C. 

PRooF. We define bounded operators C 1 and C2 by 
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C1<f> = (-A*<f>1)1.*<f>1)1", C2<f> = (-x*(P<f>i),x*(P<f>i))", <f>EX 

Then C = C 1 + C 2 and A + C 1 generates a C 0-semigroup S (t), t ;;a.o. Since S (t) is a nilpotent semi­
group, so it is eventually norm continuous. Using Assumption 4.4 and the Lemma in the Appendix, 
we can prove that C 2 is a compact operator in X. Therefore, from Theorem 1.30 in the book of 
NAGEL (1986, p.44), T(t) is also eventually norm continuous. Since the spectral mapping theorem 
holds for the eventually norm continuous semigroup (NAGEL, p.87), we obtain (5.16). D 

If w0(A + C)<O, the equilibrium u =O of system (5.2) is loca11y exponentially asymptotical1y stable 
in the sense that there exist t:>O, M;;a.1, and y<O such that if x EX and llxll o;;;;;t:, then the solution 
u(t;x) of (5.2) exists globally and llu(t;x)llE;;;Mexp(yt)llxll for all i;;a.O. This is the main part of the 
principle of linearized stability (Webb, 1985; Desch and Schappacher, 1986). Therefore, in order to 
study the stability of equilibrium states, we have to know the structure of the set of singular points 
A:= {AEC: 1EP 0 (V>.)}. Since llV>.11~0 if Rel\~oo, I- V>. is invertible for large values of Rei\. By 
the theorem of Steinberg ( 1968), the function "A~(J - V >.)- 1 is meromorphic in the complex domain, 
and hence the set A is a discrete set whose elements are poles of (J L V >.)- 1 of finite order. 

Now we shall make use of positive operator theory once more. Our main purpose here is to deter­
mine the dominant singular point, i.e. the element of the set A with the largest real part. From (5.15) 
and (5.16), the dominant singular point gives the growth bound of the semigroup T(t) generated by 
A + C. First we show that: 

LEMMA 5.3. Suppose that the following assumption holds: 

ASSUMPTION 5.4. 

y*(w)<e-'Y"'. (5.17) 

Then the operator V >,,A ER is nonsupporting with respect to E + and the following holds: 

lim r(V>.) = +oo, lim r(V>.) = 0. (5.18) 
>.~-oo >.~+oo 

PROOF. By changing the order of integration in the expression (5.13), it can be shown that 

"' f 
X>.(a, a) = j[II(!:)-y jIT(ri)exp(-y(t-ri))d11JP(a,t)N(!:)exp(-A(t-o))dt. (5.19) 

a o 

If we define 

r 
G o(t) : = II(!J-y jII(11)exp(-y(t-11))dTJ, (5.20) 

0 

then the operator V>,,AER is positive if G0 (!:)>0 for almost all tE[o,w], OE;;;oE;;;w. Since G0 (t)exp(yt) 
is monotone decreasing for the variable t, G0 (!:);;;.:exp[y(w-nJG0 (w) for all tE[o,w]. From 
G0 (w);;a.G0(w), we know that G0(w)>O is suffident to quarantee G0 (/:)>0 for all OE;;;oo;;;;;tE;;;w. 
Integrating (5.20) by parts, we have 

I 
G0 (!:) = II{o)exp(-y(t-o))- fll.•(11)II(11)exp(-y(t-TJ))d11. 

0 

Then we know that G0(w) = exp(-yw)-y*(w) and the operator V>,,AER is positive under Assump­
tion 5.4. From the expression (5.19), we have for AER, 

X>.(a, o);;a.G0(w'><f».(a, o). (5.21) 

Therefore, in order to show the nonsupporting property of V>,,AER, it suffices to prove that the 
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integral operator T :>. defined by 

"' 
(T;>.1/J)(a) := jch.(a,a)1/l(o)da, I/IEE, 

0 

is nonsupporting. It is easy to verify the inequality 
A 

T;>.o/~<J:>.,1/J>e, e = lEE+,1/JEE+, 

where the linear functional f :>. is defined by 

"' "' 
<f:>.,o/> = j[j s(x)N(x)exp(-(A +y)(x -a))dx]#_a)da. 

0 a 

Then it follows that for all integers n 
~+I 
1 ;>. 1/1~ <J:>.,1/l><f;>.,e >ne. 
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(5.22) 

(5.23) 

Since/:>. is striq,tly positive and the constant function e = l is a qu,si-interi2r point of L 1 (O,w), it fol­
lows that <F,T).1/1>>0 for every pair I/IEE+\ {O}, FEE"+ \ {O}. Then T;>,,AER is nonsupporting. 
Next we show (5.18). From (5.21) and (5.23), we obtain 

A 

V:>.lfl~Go(w)T;>.1/J~Go(w)<f;>.,i/;>e,"J\.eR, I/IEE+. 

Taking duality pairing with the eigenfunctional F>.. of V;>. that corresponds to r(V;>.), we have 

r(V;>.)<F>..,1/l>~Go(w)<F;>.,e> <f>..,1/J>. 

If we let o/ = e, we arrive at the inequality 

r(Vl't.);;;,:G0(w)<f>..,e >, 

where 

"'"' 
<fl't.,e > = J j s(x)N(x)exp[-(A+y)(x -a)]dxda 

0 a 

"' 1-e -(Hy)x "' 1-e -(A+y)x 
= js(x)N(x)[ A+ ]dx~l J N(x)[ A.+ ]dx. 

0 Y w-a "Y 

Since N(x)>O for x e[w-a,w), we know that lim r(V;>.) = + oo. On the other hand, we obtain 
A--;.-oo 

V;>.o/~T,..i[;.s;,T;>.o/~ <g;>.,l[l>e, A.ER, I/JEE+, 

where the positive functional g,.. is defined by 
., ., 

<g;>.,lf;> : = M J lf N(x)exp[ -(A.+y)(x -a)]dx ]1/l(a)da, 
0 0 

where M : = ess sup/J(a, f). Then we obtain the estimate 

"' 1-e-(A+y)x 
r(V,..)~<g;>.,e > = M j N(x)[ A. ]dx, 

0 +y 

from which we know that lim r(V,..) = 0. This completes the proof. 0 
:\-;.+co 

From Assumption 5.4 and the expression (5.19), the kernel X>,.(a, a) is strictly decreasing as a func­
tion of A.ER. Using Proposition 4.3, we know that the function A~r(V,..) is strictly decreasing for 
AER. Moreover if there exists AER such that r(V>..) = 1, then A.EA, because r(V;>.)EP 0 (V;>.). From 
the monotonicity of r(V>..) and (5.18), it is easy to see that the following holds: 
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LEMMA 5.5. Under Assumption 5.4, there exists a unique i\oeRnA such that r(V>..,) = I, and i\o>O if 

r(Vo)>1: i\o = 0 ifr(V0) = 1; i\o<O ifr(V0)<1. 

Next, by using the similar argument as Theorem 6.13 of Heijmans (1986), we can prove that i\o is 
the dominant singular point: 

LEMMA 5.6. Suppose that Assumption 5.4 holds. If there exists a A.eA,A.=FA-0, then Re'A.<i\o. 

PROOF. Suppose that A.eA and V>..o/ = o/. Then I V>..o/I = hid, where lo/l(a): = lo/(a)I. From the 
expression (5.19), it follows that V iw. 11/i I ;;;;i. 11/i I. Taking duality pairing with F Rr:A eE"+ on both sides, 
we have r(Viw.)<FRr:A• II/ii >;;;ai:<Fiw., l!fl >, from which we conclude that r(VRe>..);;;ai:l, because 
FRr:A is strictly positive. Since r(V>.,), A.eR is a decreasing function, we obtain that Re'A.:E;;i\o. If 
Re'A. = i\o, then V >... I o/ I = I o/ I . In fact, if we suppose that V Ao 11" I > I o/ I, taking duality pairing with 
the eigenfunctional F 0 corresponding to r(VA,,) = 1 on both sides yields <F0 , 11"1>><F0,11"1 > 
which is a contradiction. Then we can write that 11" I = c1f0 fc;ir some constant c which we may 
assume to be one, where 1"o is the eigenfunction corresponding to r(V>..,) = 1. Hence 
1f(a) = 1f0(a)exp(ia(a)) for some real-valued function a. If we substitute this relation into 
V>..,,o/o = I V>..o/I, we obtain 

"'"' J J Ga(x)fJ(a,x)N(x)exp(-i\o(x -a))1"o(o)dxda 
0 a 

"'"' = I J J G0 (x)fJ(a,x)N(x)exp(-(i\o+ ilm'A.)(x -o))1"o(o)exp(ia(a))dxdal. 
0 a 

From Lemma 6.12 of Heijmans (1986), it follows that -Im'A.(x-a)+a(a) = P for some constant p. 
Using the relation V>.."1 = \[I, we obtain that exp(ip)VA.,l/!o = "10exp(ia(a)), so fJ = a(a), which 
implies that Im'A. = 0. This completes the proof. 0 

PROPOSITION 5.7. Under Assumption 5.4, the equilibrium state (x*,y*) for (2.7a) - (2.7b) is locally 
asymptotically stable ifr(V0)<1 and locally unstable if r(V0)>1. 

PROOF. From Lemma 5.5 and 5.6, we conclude that sup{Re'A.; 1eP 0 (V>..)} = i\o. Hence it follows that 
s(A +C) = sup{Re'A.; leP0 (V>.,)}<O if r(V0)<1, and s(.A +C)>O if r(V0)>1. This completes the 
proof. D 

Now we can state the local stability results for our epidemic model: 

PROPOSITION 5.8. (Local stability results) Let r(T) be the spectral radius of the operator T defined by 
(4.4). Then the followings hold: 
(1) If r(T)< l, the trivial equilibrium point of (2. 7a)-(2. 7b) is locally asymptotically stable. 
(2) If r(T)> 1, the trivial equilibrium point of (2. 7a)-(2. 7b) is locally unstable. 
(3) If r(T)> I and .Assumption 5.4 holds for an endemic steady state, it is locally asymptotically stable. 

A 

PRooF. By our definition (4.4) and (5.22), note that T = T0 • Since Assumption 5.4 is satisfied. for the 
trivial steady state, it is sufficient to consider only the case that Assumption 5.4 holds. From (5.11) 
and (5.19), we know that U>.,, VA are positive operators for /\eR under Assumption 5.4, and it follows 
that 

V>., ~TA ~:rA for A.eR. (5.24) 
A 

which implies that r(V0)~r(T0) = r(T), where the equality holds if and only if A.*(a)=:O, which 
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corresponds to the trivial equilibrium state. Hence, for the trivial equilibrium state, Proposition 5.7 
says that if r(1) = r(V0)<1, it is locally asymptotically stable and it is locally unstable if 
r(1) = r(Vo)> 1. Next we show the result (3). By Proposition 5.7, it suffices to show that r(V0)<1 
for the endemic equilibrium state. From (5.11), we obtain the inequality r(V,,.)<r(T,.),AER, since T,. 
is nonsupporting for 'AER and V,.=FT>.. when "'-*(a):;i=O. In particular, the nonsupporting operator T0 

has an expression 
., a 

(T01f)(a) = f4»Ca,a)exp(- f"'-*(TJ')dTJ»(a)da. (5.25) 
0 0 

Since ')\*(a) is a non-trivial positive solution of x = f>(x), it follows that T0 has a positive eigenfunc­
tion ')\*(a) corresponding to the eigenvalue one. Since a nonsupporting operator has only one positive 
eigenfunction corresponding to its spectral radius, we conclude that r(T0) = 1, and hence r(V0)<1. 
This shows that the endemic equilibrium state satisfying Assumption 5.4 is locally asymptotically 
stable. D 

I 
We have not determined what kind of conditions could guarantee Assumption 5.4. Since it would 

be difficult to answer the question if we consider it under most general conditions, let us consider a 
simple case in the following example: 

ExAMPLE 5.9. Suppose that the transmission coefficient P is constant. In this case the steady state is 
given by 

x*(a) = exp(-'A*a), 

y*(a) = ~(exp(-')\*a)-exp(-ya)), 
y-'A 

where the constant force of infection 'A* at the steady state is given by 
.. 

"'-* = P J N(a)y*(a)da. 
0 

Defining a function f (A) as follows; 

/(A) : = * j(exp(-'Aa)-exp(-ya))N(a)da. 

(5.26) 

(5.27) 

Then (5.26) yields the characteristic equation ')\*(1-/ (')\*)) = 0. In particular, it follows that 
f (0) = r (1). Since f ('A) has an expression 

., a 

f ('A) = P J N(a)exp(-ya)j exp((y-')\)x)dxda, 
0 0 

then/("'-) is strictly decreasing for AER. If /(O)is>;l, 'A* = 0 is only nonnegative solution of the 
characteristic equation and if f (0)> 1, there exists another possible solution which is given as a 
unique positive solution of the equation f (A) = 1. If we define the critical value of the transmission 
rate by 

.. 
p• = y(j(l-exp(-ya))N(a)da)- 1, 

0 

(5.28) 

then/ (0) = pip•, the equation/("'-) = 1 has only one positive root if and only if P>P* and it has a 
zero solution if P = p•. On the other hand we obtain 

l 
G0(a) = y-'A* (yexp(-ya)-')\*exp(-')\*a)). (5.29) 
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From (5.29), we know that a necessary condition to show that G0(w)>O is A.* <w- 1 <y (from the 
physical meaning, it is always that w - I <y). Moreover if A.• (the total infectivity) is sufficiently small, 
then G0(w)>O, that is, the inequality (5.17) holds. This situation is possible if /3 is sufficiently near to 
the critical value /3*, because in that case the positive root A.• off (A.) = 1 is small enough. 

REMARK 5.10. Instead of Assumption 5.4, if we adopt Assumption 4.9, we can say that there is no 
nonnegative element in the set A of singular points for the endemic steady states. In fact, from 
Assumption 4.9 and the expression (5.13), we know that V>. is a positive operator for 
A.ER+= [O,oo). Suppose that there exists µEAnR+. Then there is a 1/;EE+ \{O} such that 
V,.lf! = iJ; = T,.lf;- U,.iJ;. Let F,. be the eigenfunctional corresponding to r(T,.). Then F,. is strictly 
positive, since T,. is nonsupporting. Since <F,.,Up.1/;>>0 for the endemic steady state, we obtain 

<F,.,o/><<F,.,T,.o/> = r(Tp.)<Fp.,o/>. 

which shows that r(T,.)>l, because <F,.,o/>>0. On the other hand, r(T>.), A.ER+ is a strictly 
decreasing function, it follows that r(T0 ) = J;;;or(T>.) for AER+. J'his is a contradiction. Therefore 
we conclude that the set AnR + is empty. However there remahls a possibility that the set A con­
tains complex roots with positive real part, and hence we cannot exclude the possibility of unstable 
endemic steady states. Nevertheless, if r (T) > I but r (T)- 1 is small, the endemic steady states are 
locally stable (the principle of the exchange of stability). 

Finally, in the case that r(T)<l, we shall prove the global stability for the trivial equilibrium state: 

PROPOSITION 5.11. (Global stability result) If r(T)< l, the trivial equilibrium point of (2. 7) is globally 
stable with respect to positive initial conditions. 

PRooF. By Lemma 3.1, it suffices to show the global stability for the equation (3.5) with respect to the 
initial data u0 = (x 0 ,y 0)E~0 • As was seen in (3.8), the second element y(t) of u(t ;u0) of (3.5) is 
governed by the abstract equation 

d A I dty (t) = By (t) +(Py (t))(1 + x(t)), y (0) = y 0 EL (0, w ), 

which can be seen as a linear equation for y (t) if we consider x(t) as a known function. If we define a 
bounded operator C(t):E~E, 1;;;;.o by C(t)<p: = (Pcp)(l +x(t)), then we have 

I I 

y(t) = S(t)y(O)+ J S(t-s)C(s)y(s)ds,.;;;S(t)y(O)+ J S(t-s)Py(s)ds, (5.30) 
0 0 .. 

because -1,.;;;x(t),.;;;O, 0"9(t),.;;;l for all 1;;;.o. Therefore we conclude that 0"9(t),.;;;W(t).}•(O), where 
W(t), 1;;;.0 is a C 0-semigroup generated by the perturbed operator B +P. By the same reason as the 
proof of Lemma 5.2, W(t) is eventually norm continuous. Moreover the resolvent R (A.,B + P) is given 
by 

Q A 

R(A,B+P)o/ = /exp[-(>i.+y)a][(J-T>.)- 11/;](a)da, 
0 

where the operator T is defined by (5.22). Then we know that B + P has a compact resolvent and 

a(B + P) = P 0 (B + P) = {A.EC: 1 Ea(T>.)}. 
A A A 

Let ~ : = {AEC: 1 Ea(T>.)}. Since TJ.,AER is compact, we obtain that l: = {AEC: I EP ,,(T>.)}. 
Using similar arguments as in the,.Proofs of Lemma 5.5 and Lemma 5.6, we knows that _!here exists a 
unique AoERn~ such that r(T>.,,) =} and s(B +P) =Ao· Hence if r(T) = r(T0 )<1, then 
w0(B + P) = s (B + P) = A.a <0 since r(T >.) is strictly decreasing for A ER. That is, the semigroup 
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W(t) is exponentially stable and limy(t) = 0. From (2.9) and (3.7), it is easily seen that 
1 ..... <:J:J 

limx (t) = I. This completes the proof. D 
1--><:J:J 

Summary and Discussions 
In this paper we have examined Greenhalgh's conjectures for an age-structured SIR-type epidemic 
model. Under the appropriate conditions, we could prove his conjectures, i.e. (1) there exists a thres­
hold value r(T) given as the spectral radius of the positive linear operator T; (2) The equilibrium with 
no disease is always possible and it is locally, in fact globally, stable if r(T)< 1 and unstable if 
r(T)> 1; (3) The endemic equilibrium state is possible if and only if r(T)> 1; (4) The endemic steady 
state is unique if Assumption 4.9 holds and locally stable if Assumption 5.4 is satisfied. However it 
should be noted that the results (l)-(3) are robust to the variation of parameters, the conditions for 
uniqueness and stability for the endemic steady state are rather sensitive to the values of parameters. 
To seek more advantageous conditions to guarantee the uniqueness and stability for the endemic 
equilibrium state remains as an open problem. Another important ~uestion is whether destabilization 
of the endemic steady state could lead to the bifurcation of time-periodic solutions. This phenomenon 
would give an explanation for the fact that some SIR-type diseases tend to occur in regular periodic 
cycles (see Greenhalgh, 1988b). 

On the other hand it should be also noted that the model investigated here is based on some res­
trictive assumptions as an epidemic model. We have assumed that; 
(1) the population is in a demographically steady state; 
(2) the latent period is negligibly short; 
(3) the recovery rate is constant; 
(4) the infectivity is independent of the duration of an infection; 
The assumption of demographic steady state is appropriate for short-time argument in developed 
countries with low population growth rate, but in general the fact that the population growth affects 
the spread of disease is important in case that we consider epidemiology in populations with high 
growth rate or we examine the diseases with a long latent period. If we intend to take into account 
the latent period, it suffices to introduce the incubation class into the model. The reader may refer to 
McLean (1986) for more realistic model building which takes into account the incubation class and 
the effect of demographic growth. Most essential improvement in the model would be attained by 
introducing duration-dependence in the transmission process. Several authors have already intro­
duced SIR-type age-dependent epidemic models with duration-dependent infectivity (Hoppensteadt, 
1974; Gripenberg, 1983; Dietz and Schenzle, 1985). However they assume that the transmission 
coefficient has a special form, and hence the general case that the transmission coefficient depends on 
age of both susceptibles and infectious should be investigated in futJJre. 

APPENDIX 

We shall prove the compactness criterion for a linear integral operator in the Banach space L 1 (0, w ). 

LEMMA. Let T be a linear integral operator from E : ;== L 1(0,w) to E defined by 
., 

(Tf)(a) = J G(a, o)f (o)do, f EE, 
0 

where the kernel G(a, o) satisfies 

G(a, o)EL <:J:J((O,w) X(O,w)), (1) 
., 

limjlG(a+h,a)-G(a,o)lda = 0 
h-->Oo 

(2) 

uniformly for aER. where G(a,o) is defined as G(a,o) = 0 for a,aE(-oo,O)U(w,oo). Then Tisa 
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compact operator. 

PRooF. We identify the Banach space E with the subspace of L 1(R) such that 
E = {i/;EL 1(R): i[;(a) = 0 for aE(-oo,O)U(w,oo)} and extend the domain of G(a,o) as G(a,o) = 0 
for a,oE(-oo,O)U(w,oo). Then we can interpret T as an operator on L 1(R) such that Eis its invari­
ant subspace, so it is sufficient to show that the extended operator T is compact in L 1(R). Let K be a 
bounded subset of L 1(R). Then it follows immediately that T(K) is also a bounded subset. Observe 
that 

J l(Tj)(a +h)-(Tj)(a)lda~J J IG(a +h,o)-G(a,a)l lf(a)ldada 
R RR 

o;;;;llfll sup J IG(a +h,a)-G(a,o)lda. 
Oo;;aE;;wR 

Therefore it follows from the condition (2) for G that T(K) is an equicontinuous family in L 1-norm. 
Moreover it follows from T(K) CE that ; 

j l(Tf)(o)ido = 0,fEK 
I a I;;;.., 

Thus we can apply the compactness criterion by Frechet-Kolmogorov (YosIDA, p.275; DUNFORD & 
ScHW ARTZ, p.298), that is, T(K) is relatively compact in L 1(R). Then T is a compact operator. D 
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